1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/CodeGen/DFAPacketizer.h"
48 #include "llvm/CodeGen/LiveIntervals.h"
49 #include "llvm/CodeGen/MachineBasicBlock.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineMemOperand.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachinePipeliner.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/ModuloSchedule.h"
61 #include "llvm/CodeGen/RegisterPressure.h"
62 #include "llvm/CodeGen/ScheduleDAG.h"
63 #include "llvm/CodeGen/ScheduleDAGMutation.h"
64 #include "llvm/CodeGen/TargetOpcodes.h"
65 #include "llvm/CodeGen/TargetRegisterInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
96 #define DEBUG_TYPE "pipeliner"
98 STATISTIC(NumTrytoPipeline
, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined
, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues
, "Number of node order issues found");
101 STATISTIC(NumFailBranch
, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop
, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader
, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII
, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII
, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule
, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage
, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage
, "Pipeliner abort due to too many stages");
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt
<bool> EnableSWP("enable-pipeliner", cl::Hidden
, cl::init(true),
113 cl::desc("Enable Software Pipelining"));
115 /// A command line option to enable SWP at -Os.
116 static cl::opt
<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117 cl::desc("Enable SWP at Os."), cl::Hidden
,
120 /// A command line argument to limit minimum initial interval for pipelining.
121 static cl::opt
<int> SwpMaxMii("pipeliner-max-mii",
122 cl::desc("Size limit for the MII."),
123 cl::Hidden
, cl::init(27));
125 /// A command line argument to limit the number of stages in the pipeline.
127 SwpMaxStages("pipeliner-max-stages",
128 cl::desc("Maximum stages allowed in the generated scheduled."),
129 cl::Hidden
, cl::init(3));
131 /// A command line option to disable the pruning of chain dependences due to
132 /// an unrelated Phi.
134 SwpPruneDeps("pipeliner-prune-deps",
135 cl::desc("Prune dependences between unrelated Phi nodes."),
136 cl::Hidden
, cl::init(true));
138 /// A command line option to disable the pruning of loop carried order
141 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142 cl::desc("Prune loop carried order dependences."),
143 cl::Hidden
, cl::init(true));
146 static cl::opt
<int> SwpLoopLimit("pipeliner-max", cl::Hidden
, cl::init(-1));
149 static cl::opt
<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150 cl::ReallyHidden
, cl::init(false),
151 cl::ZeroOrMore
, cl::desc("Ignore RecMII"));
153 static cl::opt
<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden
,
155 static cl::opt
<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden
,
158 static cl::opt
<bool> EmitTestAnnotations(
159 "pipeliner-annotate-for-testing", cl::Hidden
, cl::init(false),
160 cl::desc("Instead of emitting the pipelined code, annotate instructions "
161 "with the generated schedule for feeding into the "
162 "-modulo-schedule-test pass"));
164 static cl::opt
<bool> ExperimentalCodeGen(
165 "pipeliner-experimental-cg", cl::Hidden
, cl::init(false),
167 "Use the experimental peeling code generator for software pipelining"));
171 // A command line option to enable the CopyToPhi DAG mutation.
173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden
,
174 cl::init(true), cl::ZeroOrMore
,
175 cl::desc("Enable CopyToPhi DAG Mutation"));
177 } // end namespace llvm
179 unsigned SwingSchedulerDAG::Circuits::MaxPaths
= 5;
180 char MachinePipeliner::ID
= 0;
182 int MachinePipeliner::NumTries
= 0;
184 char &llvm::MachinePipelinerID
= MachinePipeliner::ID
;
186 INITIALIZE_PASS_BEGIN(MachinePipeliner
, DEBUG_TYPE
,
187 "Modulo Software Pipelining", false, false)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
192 INITIALIZE_PASS_END(MachinePipeliner
, DEBUG_TYPE
,
193 "Modulo Software Pipelining", false, false)
195 /// The "main" function for implementing Swing Modulo Scheduling.
196 bool MachinePipeliner::runOnMachineFunction(MachineFunction
&mf
) {
197 if (skipFunction(mf
.getFunction()))
203 if (mf
.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize
) &&
204 !EnableSWPOptSize
.getPosition())
207 if (!mf
.getSubtarget().enableMachinePipeliner())
210 // Cannot pipeline loops without instruction itineraries if we are using
211 // DFA for the pipeliner.
212 if (mf
.getSubtarget().useDFAforSMS() &&
213 (!mf
.getSubtarget().getInstrItineraryData() ||
214 mf
.getSubtarget().getInstrItineraryData()->isEmpty()))
218 MLI
= &getAnalysis
<MachineLoopInfo
>();
219 MDT
= &getAnalysis
<MachineDominatorTree
>();
220 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
221 TII
= MF
->getSubtarget().getInstrInfo();
222 RegClassInfo
.runOnMachineFunction(*MF
);
230 /// Attempt to perform the SMS algorithm on the specified loop. This function is
231 /// the main entry point for the algorithm. The function identifies candidate
232 /// loops, calculates the minimum initiation interval, and attempts to schedule
234 bool MachinePipeliner::scheduleLoop(MachineLoop
&L
) {
235 bool Changed
= false;
236 for (auto &InnerLoop
: L
)
237 Changed
|= scheduleLoop(*InnerLoop
);
240 // Stop trying after reaching the limit (if any).
241 int Limit
= SwpLoopLimit
;
243 if (NumTries
>= SwpLoopLimit
)
249 setPragmaPipelineOptions(L
);
250 if (!canPipelineLoop(L
)) {
251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
253 return MachineOptimizationRemarkMissed(DEBUG_TYPE
, "canPipelineLoop",
254 L
.getStartLoc(), L
.getHeader())
255 << "Failed to pipeline loop";
263 Changed
= swingModuloScheduler(L
);
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop
&L
) {
269 // Reset the pragma for the next loop in iteration.
270 disabledByPragma
= false;
273 MachineBasicBlock
*LBLK
= L
.getTopBlock();
278 const BasicBlock
*BBLK
= LBLK
->getBasicBlock();
282 const Instruction
*TI
= BBLK
->getTerminator();
286 MDNode
*LoopID
= TI
->getMetadata(LLVMContext::MD_loop
);
287 if (LoopID
== nullptr)
290 assert(LoopID
->getNumOperands() > 0 && "requires atleast one operand");
291 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop");
293 for (unsigned i
= 1, e
= LoopID
->getNumOperands(); i
< e
; ++i
) {
294 MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
));
299 MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
304 if (S
->getString() == "llvm.loop.pipeline.initiationinterval") {
305 assert(MD
->getNumOperands() == 2 &&
306 "Pipeline initiation interval hint metadata should have two operands.");
308 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
309 assert(II_setByPragma
>= 1 && "Pipeline initiation interval must be positive.");
310 } else if (S
->getString() == "llvm.loop.pipeline.disable") {
311 disabledByPragma
= true;
316 /// Return true if the loop can be software pipelined. The algorithm is
317 /// restricted to loops with a single basic block. Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop
&L
) {
320 if (L
.getNumBlocks() != 1) {
322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE
, "canPipelineLoop",
323 L
.getStartLoc(), L
.getHeader())
324 << "Not a single basic block: "
325 << ore::NV("NumBlocks", L
.getNumBlocks());
330 if (disabledByPragma
) {
332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE
, "canPipelineLoop",
333 L
.getStartLoc(), L
.getHeader())
334 << "Disabled by Pragma.";
339 // Check if the branch can't be understood because we can't do pipelining
340 // if that's the case.
344 if (TII
->analyzeBranch(*L
.getHeader(), LI
.TBB
, LI
.FBB
, LI
.BrCond
)) {
345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE
, "canPipelineLoop",
349 L
.getStartLoc(), L
.getHeader())
350 << "The branch can't be understood";
355 LI
.LoopInductionVar
= nullptr;
356 LI
.LoopCompare
= nullptr;
357 if (!TII
->analyzeLoopForPipelining(L
.getTopBlock())) {
358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE
, "canPipelineLoop",
362 L
.getStartLoc(), L
.getHeader())
363 << "The loop structure is not supported";
368 if (!L
.getLoopPreheader()) {
369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE
, "canPipelineLoop",
373 L
.getStartLoc(), L
.getHeader())
374 << "No loop preheader found";
379 // Remove any subregisters from inputs to phi nodes.
380 preprocessPhiNodes(*L
.getHeader());
384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock
&B
) {
385 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
386 SlotIndexes
&Slots
= *getAnalysis
<LiveIntervals
>().getSlotIndexes();
388 for (MachineInstr
&PI
: make_range(B
.begin(), B
.getFirstNonPHI())) {
389 MachineOperand
&DefOp
= PI
.getOperand(0);
390 assert(DefOp
.getSubReg() == 0);
391 auto *RC
= MRI
.getRegClass(DefOp
.getReg());
393 for (unsigned i
= 1, n
= PI
.getNumOperands(); i
!= n
; i
+= 2) {
394 MachineOperand
&RegOp
= PI
.getOperand(i
);
395 if (RegOp
.getSubReg() == 0)
398 // If the operand uses a subregister, replace it with a new register
399 // without subregisters, and generate a copy to the new register.
400 Register NewReg
= MRI
.createVirtualRegister(RC
);
401 MachineBasicBlock
&PredB
= *PI
.getOperand(i
+1).getMBB();
402 MachineBasicBlock::iterator At
= PredB
.getFirstTerminator();
403 const DebugLoc
&DL
= PredB
.findDebugLoc(At
);
404 auto Copy
= BuildMI(PredB
, At
, DL
, TII
->get(TargetOpcode::COPY
), NewReg
)
405 .addReg(RegOp
.getReg(), getRegState(RegOp
),
407 Slots
.insertMachineInstrInMaps(*Copy
);
408 RegOp
.setReg(NewReg
);
414 /// The SMS algorithm consists of the following main steps:
415 /// 1. Computation and analysis of the dependence graph.
416 /// 2. Ordering of the nodes (instructions).
417 /// 3. Attempt to Schedule the loop.
418 bool MachinePipeliner::swingModuloScheduler(MachineLoop
&L
) {
419 assert(L
.getBlocks().size() == 1 && "SMS works on single blocks only.");
421 SwingSchedulerDAG
SMS(*this, L
, getAnalysis
<LiveIntervals
>(), RegClassInfo
,
424 MachineBasicBlock
*MBB
= L
.getHeader();
425 // The kernel should not include any terminator instructions. These
426 // will be added back later.
429 // Compute the number of 'real' instructions in the basic block by
430 // ignoring terminators.
431 unsigned size
= MBB
->size();
432 for (MachineBasicBlock::iterator I
= MBB
->getFirstTerminator(),
433 E
= MBB
->instr_end();
437 SMS
.enterRegion(MBB
, MBB
->begin(), MBB
->getFirstTerminator(), size
);
442 return SMS
.hasNewSchedule();
445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage
&AU
) const {
446 AU
.addRequired
<AAResultsWrapperPass
>();
447 AU
.addPreserved
<AAResultsWrapperPass
>();
448 AU
.addRequired
<MachineLoopInfo
>();
449 AU
.addRequired
<MachineDominatorTree
>();
450 AU
.addRequired
<LiveIntervals
>();
451 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
452 MachineFunctionPass::getAnalysisUsage(AU
);
455 void SwingSchedulerDAG::setMII(unsigned ResMII
, unsigned RecMII
) {
456 if (II_setByPragma
> 0)
457 MII
= II_setByPragma
;
459 MII
= std::max(ResMII
, RecMII
);
462 void SwingSchedulerDAG::setMAX_II() {
463 if (II_setByPragma
> 0)
464 MAX_II
= II_setByPragma
;
469 /// We override the schedule function in ScheduleDAGInstrs to implement the
470 /// scheduling part of the Swing Modulo Scheduling algorithm.
471 void SwingSchedulerDAG::schedule() {
472 AliasAnalysis
*AA
= &Pass
.getAnalysis
<AAResultsWrapperPass
>().getAAResults();
474 addLoopCarriedDependences(AA
);
475 updatePhiDependences();
476 Topo
.InitDAGTopologicalSorting();
481 NodeSetType NodeSets
;
482 findCircuits(NodeSets
);
483 NodeSetType Circuits
= NodeSets
;
485 // Calculate the MII.
486 unsigned ResMII
= calculateResMII();
487 unsigned RecMII
= calculateRecMII(NodeSets
);
491 // This flag is used for testing and can cause correctness problems.
495 setMII(ResMII
, RecMII
);
498 LLVM_DEBUG(dbgs() << "MII = " << MII
<< " MAX_II = " << MAX_II
499 << " (rec=" << RecMII
<< ", res=" << ResMII
<< ")\n");
501 // Can't schedule a loop without a valid MII.
503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
505 Pass
.ORE
->emit([&]() {
506 return MachineOptimizationRemarkAnalysis(
507 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
508 << "Invalid Minimal Initiation Interval: 0";
513 // Don't pipeline large loops.
514 if (SwpMaxMii
!= -1 && (int)MII
> SwpMaxMii
) {
515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
516 << ", we don't pipleline large loops\n");
517 NumFailLargeMaxMII
++;
518 Pass
.ORE
->emit([&]() {
519 return MachineOptimizationRemarkAnalysis(
520 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
521 << "Minimal Initiation Interval too large: "
522 << ore::NV("MII", (int)MII
) << " > "
523 << ore::NV("SwpMaxMii", SwpMaxMii
) << "."
524 << "Refer to -pipeliner-max-mii.";
529 computeNodeFunctions(NodeSets
);
531 registerPressureFilter(NodeSets
);
533 colocateNodeSets(NodeSets
);
535 checkNodeSets(NodeSets
);
538 for (auto &I
: NodeSets
) {
539 dbgs() << " Rec NodeSet ";
544 llvm::stable_sort(NodeSets
, std::greater
<NodeSet
>());
546 groupRemainingNodes(NodeSets
);
548 removeDuplicateNodes(NodeSets
);
551 for (auto &I
: NodeSets
) {
552 dbgs() << " NodeSet ";
557 computeNodeOrder(NodeSets
);
559 // check for node order issues
560 checkValidNodeOrder(Circuits
);
562 SMSchedule
Schedule(Pass
.MF
);
563 Scheduled
= schedulePipeline(Schedule
);
566 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
568 Pass
.ORE
->emit([&]() {
569 return MachineOptimizationRemarkAnalysis(
570 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
571 << "Unable to find schedule";
576 unsigned numStages
= Schedule
.getMaxStageCount();
577 // No need to generate pipeline if there are no overlapped iterations.
578 if (numStages
== 0) {
579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
581 Pass
.ORE
->emit([&]() {
582 return MachineOptimizationRemarkAnalysis(
583 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
584 << "No need to pipeline - no overlapped iterations in schedule.";
588 // Check that the maximum stage count is less than user-defined limit.
589 if (SwpMaxStages
> -1 && (int)numStages
> SwpMaxStages
) {
590 LLVM_DEBUG(dbgs() << "numStages:" << numStages
<< ">" << SwpMaxStages
591 << " : too many stages, abort\n");
592 NumFailLargeMaxStage
++;
593 Pass
.ORE
->emit([&]() {
594 return MachineOptimizationRemarkAnalysis(
595 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
596 << "Too many stages in schedule: "
597 << ore::NV("numStages", (int)numStages
) << " > "
598 << ore::NV("SwpMaxStages", SwpMaxStages
)
599 << ". Refer to -pipeliner-max-stages.";
604 Pass
.ORE
->emit([&]() {
605 return MachineOptimizationRemark(DEBUG_TYPE
, "schedule", Loop
.getStartLoc(),
607 << "Pipelined succesfully!";
610 // Generate the schedule as a ModuloSchedule.
611 DenseMap
<MachineInstr
*, int> Cycles
, Stages
;
612 std::vector
<MachineInstr
*> OrderedInsts
;
613 for (int Cycle
= Schedule
.getFirstCycle(); Cycle
<= Schedule
.getFinalCycle();
615 for (SUnit
*SU
: Schedule
.getInstructions(Cycle
)) {
616 OrderedInsts
.push_back(SU
->getInstr());
617 Cycles
[SU
->getInstr()] = Cycle
;
618 Stages
[SU
->getInstr()] = Schedule
.stageScheduled(SU
);
621 DenseMap
<MachineInstr
*, std::pair
<unsigned, int64_t>> NewInstrChanges
;
622 for (auto &KV
: NewMIs
) {
623 Cycles
[KV
.first
] = Cycles
[KV
.second
];
624 Stages
[KV
.first
] = Stages
[KV
.second
];
625 NewInstrChanges
[KV
.first
] = InstrChanges
[getSUnit(KV
.first
)];
628 ModuloSchedule
MS(MF
, &Loop
, std::move(OrderedInsts
), std::move(Cycles
),
630 if (EmitTestAnnotations
) {
631 assert(NewInstrChanges
.empty() &&
632 "Cannot serialize a schedule with InstrChanges!");
633 ModuloScheduleTestAnnotater
MSTI(MF
, MS
);
637 // The experimental code generator can't work if there are InstChanges.
638 if (ExperimentalCodeGen
&& NewInstrChanges
.empty()) {
639 PeelingModuloScheduleExpander
MSE(MF
, MS
, &LIS
);
642 ModuloScheduleExpander
MSE(MF
, MS
, LIS
, std::move(NewInstrChanges
));
649 /// Clean up after the software pipeliner runs.
650 void SwingSchedulerDAG::finishBlock() {
651 for (auto &KV
: NewMIs
)
652 MF
.DeleteMachineInstr(KV
.second
);
655 // Call the superclass.
656 ScheduleDAGInstrs::finishBlock();
659 /// Return the register values for the operands of a Phi instruction.
660 /// This function assume the instruction is a Phi.
661 static void getPhiRegs(MachineInstr
&Phi
, MachineBasicBlock
*Loop
,
662 unsigned &InitVal
, unsigned &LoopVal
) {
663 assert(Phi
.isPHI() && "Expecting a Phi.");
667 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
668 if (Phi
.getOperand(i
+ 1).getMBB() != Loop
)
669 InitVal
= Phi
.getOperand(i
).getReg();
671 LoopVal
= Phi
.getOperand(i
).getReg();
673 assert(InitVal
!= 0 && LoopVal
!= 0 && "Unexpected Phi structure.");
676 /// Return the Phi register value that comes the loop block.
677 static unsigned getLoopPhiReg(MachineInstr
&Phi
, MachineBasicBlock
*LoopBB
) {
678 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
679 if (Phi
.getOperand(i
+ 1).getMBB() == LoopBB
)
680 return Phi
.getOperand(i
).getReg();
684 /// Return true if SUb can be reached from SUa following the chain edges.
685 static bool isSuccOrder(SUnit
*SUa
, SUnit
*SUb
) {
686 SmallPtrSet
<SUnit
*, 8> Visited
;
687 SmallVector
<SUnit
*, 8> Worklist
;
688 Worklist
.push_back(SUa
);
689 while (!Worklist
.empty()) {
690 const SUnit
*SU
= Worklist
.pop_back_val();
691 for (auto &SI
: SU
->Succs
) {
692 SUnit
*SuccSU
= SI
.getSUnit();
693 if (SI
.getKind() == SDep::Order
) {
694 if (Visited
.count(SuccSU
))
698 Worklist
.push_back(SuccSU
);
699 Visited
.insert(SuccSU
);
706 /// Return true if the instruction causes a chain between memory
707 /// references before and after it.
708 static bool isDependenceBarrier(MachineInstr
&MI
, AliasAnalysis
*AA
) {
709 return MI
.isCall() || MI
.mayRaiseFPException() ||
710 MI
.hasUnmodeledSideEffects() ||
711 (MI
.hasOrderedMemoryRef() &&
712 (!MI
.mayLoad() || !MI
.isDereferenceableInvariantLoad(AA
)));
715 /// Return the underlying objects for the memory references of an instruction.
716 /// This function calls the code in ValueTracking, but first checks that the
717 /// instruction has a memory operand.
718 static void getUnderlyingObjects(const MachineInstr
*MI
,
719 SmallVectorImpl
<const Value
*> &Objs
) {
720 if (!MI
->hasOneMemOperand())
722 MachineMemOperand
*MM
= *MI
->memoperands_begin();
725 getUnderlyingObjects(MM
->getValue(), Objs
);
726 for (const Value
*V
: Objs
) {
727 if (!isIdentifiedObject(V
)) {
735 /// Add a chain edge between a load and store if the store can be an
736 /// alias of the load on a subsequent iteration, i.e., a loop carried
737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
738 /// but that code doesn't create loop carried dependences.
739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis
*AA
) {
740 MapVector
<const Value
*, SmallVector
<SUnit
*, 4>> PendingLoads
;
741 Value
*UnknownValue
=
742 UndefValue::get(Type::getVoidTy(MF
.getFunction().getContext()));
743 for (auto &SU
: SUnits
) {
744 MachineInstr
&MI
= *SU
.getInstr();
745 if (isDependenceBarrier(MI
, AA
))
746 PendingLoads
.clear();
747 else if (MI
.mayLoad()) {
748 SmallVector
<const Value
*, 4> Objs
;
749 ::getUnderlyingObjects(&MI
, Objs
);
751 Objs
.push_back(UnknownValue
);
752 for (auto V
: Objs
) {
753 SmallVector
<SUnit
*, 4> &SUs
= PendingLoads
[V
];
756 } else if (MI
.mayStore()) {
757 SmallVector
<const Value
*, 4> Objs
;
758 ::getUnderlyingObjects(&MI
, Objs
);
760 Objs
.push_back(UnknownValue
);
761 for (auto V
: Objs
) {
762 MapVector
<const Value
*, SmallVector
<SUnit
*, 4>>::iterator I
=
763 PendingLoads
.find(V
);
764 if (I
== PendingLoads
.end())
766 for (auto Load
: I
->second
) {
767 if (isSuccOrder(Load
, &SU
))
769 MachineInstr
&LdMI
= *Load
->getInstr();
770 // First, perform the cheaper check that compares the base register.
771 // If they are the same and the load offset is less than the store
772 // offset, then mark the dependence as loop carried potentially.
773 const MachineOperand
*BaseOp1
, *BaseOp2
;
774 int64_t Offset1
, Offset2
;
775 bool Offset1IsScalable
, Offset2IsScalable
;
776 if (TII
->getMemOperandWithOffset(LdMI
, BaseOp1
, Offset1
,
777 Offset1IsScalable
, TRI
) &&
778 TII
->getMemOperandWithOffset(MI
, BaseOp2
, Offset2
,
779 Offset2IsScalable
, TRI
)) {
780 if (BaseOp1
->isIdenticalTo(*BaseOp2
) &&
781 Offset1IsScalable
== Offset2IsScalable
&&
782 (int)Offset1
< (int)Offset2
) {
783 assert(TII
->areMemAccessesTriviallyDisjoint(LdMI
, MI
) &&
784 "What happened to the chain edge?");
785 SDep
Dep(Load
, SDep::Barrier
);
791 // Second, the more expensive check that uses alias analysis on the
792 // base registers. If they alias, and the load offset is less than
793 // the store offset, the mark the dependence as loop carried.
795 SDep
Dep(Load
, SDep::Barrier
);
800 MachineMemOperand
*MMO1
= *LdMI
.memoperands_begin();
801 MachineMemOperand
*MMO2
= *MI
.memoperands_begin();
802 if (!MMO1
->getValue() || !MMO2
->getValue()) {
803 SDep
Dep(Load
, SDep::Barrier
);
808 if (MMO1
->getValue() == MMO2
->getValue() &&
809 MMO1
->getOffset() <= MMO2
->getOffset()) {
810 SDep
Dep(Load
, SDep::Barrier
);
816 MemoryLocation::getAfter(MMO1
->getValue(), MMO1
->getAAInfo()),
817 MemoryLocation::getAfter(MMO2
->getValue(),
818 MMO2
->getAAInfo()))) {
819 SDep
Dep(Load
, SDep::Barrier
);
829 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
830 /// processes dependences for PHIs. This function adds true dependences
831 /// from a PHI to a use, and a loop carried dependence from the use to the
832 /// PHI. The loop carried dependence is represented as an anti dependence
833 /// edge. This function also removes chain dependences between unrelated
835 void SwingSchedulerDAG::updatePhiDependences() {
836 SmallVector
<SDep
, 4> RemoveDeps
;
837 const TargetSubtargetInfo
&ST
= MF
.getSubtarget
<TargetSubtargetInfo
>();
839 // Iterate over each DAG node.
840 for (SUnit
&I
: SUnits
) {
842 // Set to true if the instruction has an operand defined by a Phi.
843 unsigned HasPhiUse
= 0;
844 unsigned HasPhiDef
= 0;
845 MachineInstr
*MI
= I
.getInstr();
846 // Iterate over each operand, and we process the definitions.
847 for (MachineInstr::mop_iterator MOI
= MI
->operands_begin(),
848 MOE
= MI
->operands_end();
852 Register Reg
= MOI
->getReg();
854 // If the register is used by a Phi, then create an anti dependence.
855 for (MachineRegisterInfo::use_instr_iterator
856 UI
= MRI
.use_instr_begin(Reg
),
857 UE
= MRI
.use_instr_end();
859 MachineInstr
*UseMI
= &*UI
;
860 SUnit
*SU
= getSUnit(UseMI
);
861 if (SU
!= nullptr && UseMI
->isPHI()) {
863 SDep
Dep(SU
, SDep::Anti
, Reg
);
868 // Add a chain edge to a dependent Phi that isn't an existing
870 if (SU
->NodeNum
< I
.NodeNum
&& !I
.isPred(SU
))
871 I
.addPred(SDep(SU
, SDep::Barrier
));
875 } else if (MOI
->isUse()) {
876 // If the register is defined by a Phi, then create a true dependence.
877 MachineInstr
*DefMI
= MRI
.getUniqueVRegDef(Reg
);
878 if (DefMI
== nullptr)
880 SUnit
*SU
= getSUnit(DefMI
);
881 if (SU
!= nullptr && DefMI
->isPHI()) {
883 SDep
Dep(SU
, SDep::Data
, Reg
);
885 ST
.adjustSchedDependency(SU
, 0, &I
, MI
->getOperandNo(MOI
), Dep
);
889 // Add a chain edge to a dependent Phi that isn't an existing
891 if (SU
->NodeNum
< I
.NodeNum
&& !I
.isPred(SU
))
892 I
.addPred(SDep(SU
, SDep::Barrier
));
897 // Remove order dependences from an unrelated Phi.
900 for (auto &PI
: I
.Preds
) {
901 MachineInstr
*PMI
= PI
.getSUnit()->getInstr();
902 if (PMI
->isPHI() && PI
.getKind() == SDep::Order
) {
903 if (I
.getInstr()->isPHI()) {
904 if (PMI
->getOperand(0).getReg() == HasPhiUse
)
906 if (getLoopPhiReg(*PMI
, PMI
->getParent()) == HasPhiDef
)
909 RemoveDeps
.push_back(PI
);
912 for (int i
= 0, e
= RemoveDeps
.size(); i
!= e
; ++i
)
913 I
.removePred(RemoveDeps
[i
]);
917 /// Iterate over each DAG node and see if we can change any dependences
918 /// in order to reduce the recurrence MII.
919 void SwingSchedulerDAG::changeDependences() {
920 // See if an instruction can use a value from the previous iteration.
921 // If so, we update the base and offset of the instruction and change
923 for (SUnit
&I
: SUnits
) {
924 unsigned BasePos
= 0, OffsetPos
= 0, NewBase
= 0;
925 int64_t NewOffset
= 0;
926 if (!canUseLastOffsetValue(I
.getInstr(), BasePos
, OffsetPos
, NewBase
,
930 // Get the MI and SUnit for the instruction that defines the original base.
931 Register OrigBase
= I
.getInstr()->getOperand(BasePos
).getReg();
932 MachineInstr
*DefMI
= MRI
.getUniqueVRegDef(OrigBase
);
935 SUnit
*DefSU
= getSUnit(DefMI
);
938 // Get the MI and SUnit for the instruction that defins the new base.
939 MachineInstr
*LastMI
= MRI
.getUniqueVRegDef(NewBase
);
942 SUnit
*LastSU
= getSUnit(LastMI
);
946 if (Topo
.IsReachable(&I
, LastSU
))
949 // Remove the dependence. The value now depends on a prior iteration.
950 SmallVector
<SDep
, 4> Deps
;
951 for (const SDep
&P
: I
.Preds
)
952 if (P
.getSUnit() == DefSU
)
954 for (int i
= 0, e
= Deps
.size(); i
!= e
; i
++) {
955 Topo
.RemovePred(&I
, Deps
[i
].getSUnit());
956 I
.removePred(Deps
[i
]);
958 // Remove the chain dependence between the instructions.
960 for (auto &P
: LastSU
->Preds
)
961 if (P
.getSUnit() == &I
&& P
.getKind() == SDep::Order
)
963 for (int i
= 0, e
= Deps
.size(); i
!= e
; i
++) {
964 Topo
.RemovePred(LastSU
, Deps
[i
].getSUnit());
965 LastSU
->removePred(Deps
[i
]);
968 // Add a dependence between the new instruction and the instruction
969 // that defines the new base.
970 SDep
Dep(&I
, SDep::Anti
, NewBase
);
971 Topo
.AddPred(LastSU
, &I
);
972 LastSU
->addPred(Dep
);
974 // Remember the base and offset information so that we can update the
975 // instruction during code generation.
976 InstrChanges
[&I
] = std::make_pair(NewBase
, NewOffset
);
982 // FuncUnitSorter - Comparison operator used to sort instructions by
983 // the number of functional unit choices.
984 struct FuncUnitSorter
{
985 const InstrItineraryData
*InstrItins
;
986 const MCSubtargetInfo
*STI
;
987 DenseMap
<InstrStage::FuncUnits
, unsigned> Resources
;
989 FuncUnitSorter(const TargetSubtargetInfo
&TSI
)
990 : InstrItins(TSI
.getInstrItineraryData()), STI(&TSI
) {}
992 // Compute the number of functional unit alternatives needed
993 // at each stage, and take the minimum value. We prioritize the
994 // instructions by the least number of choices first.
995 unsigned minFuncUnits(const MachineInstr
*Inst
,
996 InstrStage::FuncUnits
&F
) const {
997 unsigned SchedClass
= Inst
->getDesc().getSchedClass();
998 unsigned min
= UINT_MAX
;
999 if (InstrItins
&& !InstrItins
->isEmpty()) {
1000 for (const InstrStage
&IS
:
1001 make_range(InstrItins
->beginStage(SchedClass
),
1002 InstrItins
->endStage(SchedClass
))) {
1003 InstrStage::FuncUnits funcUnits
= IS
.getUnits();
1004 unsigned numAlternatives
= countPopulation(funcUnits
);
1005 if (numAlternatives
< min
) {
1006 min
= numAlternatives
;
1012 if (STI
&& STI
->getSchedModel().hasInstrSchedModel()) {
1013 const MCSchedClassDesc
*SCDesc
=
1014 STI
->getSchedModel().getSchedClassDesc(SchedClass
);
1015 if (!SCDesc
->isValid())
1016 // No valid Schedule Class Desc for schedClass, should be
1017 // Pseudo/PostRAPseudo
1020 for (const MCWriteProcResEntry
&PRE
:
1021 make_range(STI
->getWriteProcResBegin(SCDesc
),
1022 STI
->getWriteProcResEnd(SCDesc
))) {
1025 const MCProcResourceDesc
*ProcResource
=
1026 STI
->getSchedModel().getProcResource(PRE
.ProcResourceIdx
);
1027 unsigned NumUnits
= ProcResource
->NumUnits
;
1028 if (NumUnits
< min
) {
1030 F
= PRE
.ProcResourceIdx
;
1035 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1038 // Compute the critical resources needed by the instruction. This
1039 // function records the functional units needed by instructions that
1040 // must use only one functional unit. We use this as a tie breaker
1041 // for computing the resource MII. The instrutions that require
1042 // the same, highly used, functional unit have high priority.
1043 void calcCriticalResources(MachineInstr
&MI
) {
1044 unsigned SchedClass
= MI
.getDesc().getSchedClass();
1045 if (InstrItins
&& !InstrItins
->isEmpty()) {
1046 for (const InstrStage
&IS
:
1047 make_range(InstrItins
->beginStage(SchedClass
),
1048 InstrItins
->endStage(SchedClass
))) {
1049 InstrStage::FuncUnits FuncUnits
= IS
.getUnits();
1050 if (countPopulation(FuncUnits
) == 1)
1051 Resources
[FuncUnits
]++;
1055 if (STI
&& STI
->getSchedModel().hasInstrSchedModel()) {
1056 const MCSchedClassDesc
*SCDesc
=
1057 STI
->getSchedModel().getSchedClassDesc(SchedClass
);
1058 if (!SCDesc
->isValid())
1059 // No valid Schedule Class Desc for schedClass, should be
1060 // Pseudo/PostRAPseudo
1063 for (const MCWriteProcResEntry
&PRE
:
1064 make_range(STI
->getWriteProcResBegin(SCDesc
),
1065 STI
->getWriteProcResEnd(SCDesc
))) {
1068 Resources
[PRE
.ProcResourceIdx
]++;
1072 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1075 /// Return true if IS1 has less priority than IS2.
1076 bool operator()(const MachineInstr
*IS1
, const MachineInstr
*IS2
) const {
1077 InstrStage::FuncUnits F1
= 0, F2
= 0;
1078 unsigned MFUs1
= minFuncUnits(IS1
, F1
);
1079 unsigned MFUs2
= minFuncUnits(IS2
, F2
);
1081 return Resources
.lookup(F1
) < Resources
.lookup(F2
);
1082 return MFUs1
> MFUs2
;
1086 } // end anonymous namespace
1088 /// Calculate the resource constrained minimum initiation interval for the
1089 /// specified loop. We use the DFA to model the resources needed for
1090 /// each instruction, and we ignore dependences. A different DFA is created
1091 /// for each cycle that is required. When adding a new instruction, we attempt
1092 /// to add it to each existing DFA, until a legal space is found. If the
1093 /// instruction cannot be reserved in an existing DFA, we create a new one.
1094 unsigned SwingSchedulerDAG::calculateResMII() {
1096 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1097 SmallVector
<ResourceManager
*, 8> Resources
;
1098 MachineBasicBlock
*MBB
= Loop
.getHeader();
1099 Resources
.push_back(new ResourceManager(&MF
.getSubtarget()));
1101 // Sort the instructions by the number of available choices for scheduling,
1102 // least to most. Use the number of critical resources as the tie breaker.
1103 FuncUnitSorter FUS
= FuncUnitSorter(MF
.getSubtarget());
1104 for (MachineBasicBlock::iterator I
= MBB
->getFirstNonPHI(),
1105 E
= MBB
->getFirstTerminator();
1107 FUS
.calcCriticalResources(*I
);
1108 PriorityQueue
<MachineInstr
*, std::vector
<MachineInstr
*>, FuncUnitSorter
>
1111 for (MachineBasicBlock::iterator I
= MBB
->getFirstNonPHI(),
1112 E
= MBB
->getFirstTerminator();
1114 FuncUnitOrder
.push(&*I
);
1116 while (!FuncUnitOrder
.empty()) {
1117 MachineInstr
*MI
= FuncUnitOrder
.top();
1118 FuncUnitOrder
.pop();
1119 if (TII
->isZeroCost(MI
->getOpcode()))
1121 // Attempt to reserve the instruction in an existing DFA. At least one
1122 // DFA is needed for each cycle.
1123 unsigned NumCycles
= getSUnit(MI
)->Latency
;
1124 unsigned ReservedCycles
= 0;
1125 SmallVectorImpl
<ResourceManager
*>::iterator RI
= Resources
.begin();
1126 SmallVectorImpl
<ResourceManager
*>::iterator RE
= Resources
.end();
1128 dbgs() << "Trying to reserve resource for " << NumCycles
1129 << " cycles for \n";
1132 for (unsigned C
= 0; C
< NumCycles
; ++C
)
1134 if ((*RI
)->canReserveResources(*MI
)) {
1135 (*RI
)->reserveResources(*MI
);
1141 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1142 << ", NumCycles:" << NumCycles
<< "\n");
1143 // Add new DFAs, if needed, to reserve resources.
1144 for (unsigned C
= ReservedCycles
; C
< NumCycles
; ++C
) {
1145 LLVM_DEBUG(if (SwpDebugResource
) dbgs()
1146 << "NewResource created to reserve resources"
1148 ResourceManager
*NewResource
= new ResourceManager(&MF
.getSubtarget());
1149 assert(NewResource
->canReserveResources(*MI
) && "Reserve error.");
1150 NewResource
->reserveResources(*MI
);
1151 Resources
.push_back(NewResource
);
1154 int Resmii
= Resources
.size();
1155 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii
<< "\n");
1156 // Delete the memory for each of the DFAs that were created earlier.
1157 for (ResourceManager
*RI
: Resources
) {
1158 ResourceManager
*D
= RI
;
1165 /// Calculate the recurrence-constrainted minimum initiation interval.
1166 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1167 /// for each circuit. The II needs to satisfy the inequality
1168 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1169 /// II that satisfies the inequality, and the RecMII is the maximum
1170 /// of those values.
1171 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType
&NodeSets
) {
1172 unsigned RecMII
= 0;
1174 for (NodeSet
&Nodes
: NodeSets
) {
1178 unsigned Delay
= Nodes
.getLatency();
1179 unsigned Distance
= 1;
1181 // ii = ceil(delay / distance)
1182 unsigned CurMII
= (Delay
+ Distance
- 1) / Distance
;
1183 Nodes
.setRecMII(CurMII
);
1184 if (CurMII
> RecMII
)
1191 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1192 /// but we do this to find the circuits, and then change them back.
1193 static void swapAntiDependences(std::vector
<SUnit
> &SUnits
) {
1194 SmallVector
<std::pair
<SUnit
*, SDep
>, 8> DepsAdded
;
1195 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
1196 SUnit
*SU
= &SUnits
[i
];
1197 for (SUnit::pred_iterator IP
= SU
->Preds
.begin(), EP
= SU
->Preds
.end();
1199 if (IP
->getKind() != SDep::Anti
)
1201 DepsAdded
.push_back(std::make_pair(SU
, *IP
));
1204 for (std::pair
<SUnit
*, SDep
> &P
: DepsAdded
) {
1205 // Remove this anti dependency and add one in the reverse direction.
1206 SUnit
*SU
= P
.first
;
1208 SUnit
*TargetSU
= D
.getSUnit();
1209 unsigned Reg
= D
.getReg();
1210 unsigned Lat
= D
.getLatency();
1212 SDep
Dep(SU
, SDep::Anti
, Reg
);
1213 Dep
.setLatency(Lat
);
1214 TargetSU
->addPred(Dep
);
1218 /// Create the adjacency structure of the nodes in the graph.
1219 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1220 SwingSchedulerDAG
*DAG
) {
1221 BitVector
Added(SUnits
.size());
1222 DenseMap
<int, int> OutputDeps
;
1223 for (int i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
1225 // Add any successor to the adjacency matrix and exclude duplicates.
1226 for (auto &SI
: SUnits
[i
].Succs
) {
1227 // Only create a back-edge on the first and last nodes of a dependence
1228 // chain. This records any chains and adds them later.
1229 if (SI
.getKind() == SDep::Output
) {
1230 int N
= SI
.getSUnit()->NodeNum
;
1232 auto Dep
= OutputDeps
.find(BackEdge
);
1233 if (Dep
!= OutputDeps
.end()) {
1234 BackEdge
= Dep
->second
;
1235 OutputDeps
.erase(Dep
);
1237 OutputDeps
[N
] = BackEdge
;
1239 // Do not process a boundary node, an artificial node.
1240 // A back-edge is processed only if it goes to a Phi.
1241 if (SI
.getSUnit()->isBoundaryNode() || SI
.isArtificial() ||
1242 (SI
.getKind() == SDep::Anti
&& !SI
.getSUnit()->getInstr()->isPHI()))
1244 int N
= SI
.getSUnit()->NodeNum
;
1245 if (!Added
.test(N
)) {
1246 AdjK
[i
].push_back(N
);
1250 // A chain edge between a store and a load is treated as a back-edge in the
1251 // adjacency matrix.
1252 for (auto &PI
: SUnits
[i
].Preds
) {
1253 if (!SUnits
[i
].getInstr()->mayStore() ||
1254 !DAG
->isLoopCarriedDep(&SUnits
[i
], PI
, false))
1256 if (PI
.getKind() == SDep::Order
&& PI
.getSUnit()->getInstr()->mayLoad()) {
1257 int N
= PI
.getSUnit()->NodeNum
;
1258 if (!Added
.test(N
)) {
1259 AdjK
[i
].push_back(N
);
1265 // Add back-edges in the adjacency matrix for the output dependences.
1266 for (auto &OD
: OutputDeps
)
1267 if (!Added
.test(OD
.second
)) {
1268 AdjK
[OD
.first
].push_back(OD
.second
);
1269 Added
.set(OD
.second
);
1273 /// Identify an elementary circuit in the dependence graph starting at the
1275 bool SwingSchedulerDAG::Circuits::circuit(int V
, int S
, NodeSetType
&NodeSets
,
1277 SUnit
*SV
= &SUnits
[V
];
1282 for (auto W
: AdjK
[V
]) {
1283 if (NumPaths
> MaxPaths
)
1289 NodeSets
.push_back(NodeSet(Stack
.begin(), Stack
.end()));
1293 } else if (!Blocked
.test(W
)) {
1294 if (circuit(W
, S
, NodeSets
,
1295 Node2Idx
->at(W
) < Node2Idx
->at(V
) ? true : HasBackedge
))
1303 for (auto W
: AdjK
[V
]) {
1306 if (B
[W
].count(SV
) == 0)
1314 /// Unblock a node in the circuit finding algorithm.
1315 void SwingSchedulerDAG::Circuits::unblock(int U
) {
1317 SmallPtrSet
<SUnit
*, 4> &BU
= B
[U
];
1318 while (!BU
.empty()) {
1319 SmallPtrSet
<SUnit
*, 4>::iterator SI
= BU
.begin();
1320 assert(SI
!= BU
.end() && "Invalid B set.");
1323 if (Blocked
.test(W
->NodeNum
))
1324 unblock(W
->NodeNum
);
1328 /// Identify all the elementary circuits in the dependence graph using
1329 /// Johnson's circuit algorithm.
1330 void SwingSchedulerDAG::findCircuits(NodeSetType
&NodeSets
) {
1331 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1332 // but we do this to find the circuits, and then change them back.
1333 swapAntiDependences(SUnits
);
1335 Circuits
Cir(SUnits
, Topo
);
1336 // Create the adjacency structure.
1337 Cir
.createAdjacencyStructure(this);
1338 for (int i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
1340 Cir
.circuit(i
, i
, NodeSets
);
1343 // Change the dependences back so that we've created a DAG again.
1344 swapAntiDependences(SUnits
);
1347 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1348 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1349 // additional copies that are needed across iterations. An artificial dependence
1350 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1352 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1353 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1354 // PHI-------True-Dep------> USEOfPhi
1356 // The mutation creates
1357 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1359 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1360 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1361 // late to avoid additional copies across iterations. The possible scheduling
1363 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1365 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs
*DAG
) {
1366 for (SUnit
&SU
: DAG
->SUnits
) {
1367 // Find the COPY/REG_SEQUENCE instruction.
1368 if (!SU
.getInstr()->isCopy() && !SU
.getInstr()->isRegSequence())
1371 // Record the loop carried PHIs.
1372 SmallVector
<SUnit
*, 4> PHISUs
;
1373 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1374 SmallVector
<SUnit
*, 4> SrcSUs
;
1376 for (auto &Dep
: SU
.Preds
) {
1377 SUnit
*TmpSU
= Dep
.getSUnit();
1378 MachineInstr
*TmpMI
= TmpSU
->getInstr();
1379 SDep::Kind DepKind
= Dep
.getKind();
1380 // Save the loop carried PHI.
1381 if (DepKind
== SDep::Anti
&& TmpMI
->isPHI())
1382 PHISUs
.push_back(TmpSU
);
1383 // Save the source of COPY/REG_SEQUENCE.
1384 // If the source has no pre-decessors, we will end up creating cycles.
1385 else if (DepKind
== SDep::Data
&& !TmpMI
->isPHI() && TmpSU
->NumPreds
> 0)
1386 SrcSUs
.push_back(TmpSU
);
1389 if (PHISUs
.size() == 0 || SrcSUs
.size() == 0)
1392 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1393 // SUnit to the container.
1394 SmallVector
<SUnit
*, 8> UseSUs
;
1395 // Do not use iterator based loop here as we are updating the container.
1396 for (size_t Index
= 0; Index
< PHISUs
.size(); ++Index
) {
1397 for (auto &Dep
: PHISUs
[Index
]->Succs
) {
1398 if (Dep
.getKind() != SDep::Data
)
1401 SUnit
*TmpSU
= Dep
.getSUnit();
1402 MachineInstr
*TmpMI
= TmpSU
->getInstr();
1403 if (TmpMI
->isPHI() || TmpMI
->isRegSequence()) {
1404 PHISUs
.push_back(TmpSU
);
1407 UseSUs
.push_back(TmpSU
);
1411 if (UseSUs
.size() == 0)
1414 SwingSchedulerDAG
*SDAG
= cast
<SwingSchedulerDAG
>(DAG
);
1415 // Add the artificial dependencies if it does not form a cycle.
1416 for (auto I
: UseSUs
) {
1417 for (auto Src
: SrcSUs
) {
1418 if (!SDAG
->Topo
.IsReachable(I
, Src
) && Src
!= I
) {
1419 Src
->addPred(SDep(I
, SDep::Artificial
));
1420 SDAG
->Topo
.AddPred(Src
, I
);
1427 /// Return true for DAG nodes that we ignore when computing the cost functions.
1428 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1429 /// in the calculation of the ASAP, ALAP, etc functions.
1430 static bool ignoreDependence(const SDep
&D
, bool isPred
) {
1431 if (D
.isArtificial())
1433 return D
.getKind() == SDep::Anti
&& isPred
;
1436 /// Compute several functions need to order the nodes for scheduling.
1437 /// ASAP - Earliest time to schedule a node.
1438 /// ALAP - Latest time to schedule a node.
1439 /// MOV - Mobility function, difference between ALAP and ASAP.
1440 /// D - Depth of each node.
1441 /// H - Height of each node.
1442 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType
&NodeSets
) {
1443 ScheduleInfo
.resize(SUnits
.size());
1446 for (int I
: Topo
) {
1447 const SUnit
&SU
= SUnits
[I
];
1453 // Compute ASAP and ZeroLatencyDepth.
1454 for (int I
: Topo
) {
1456 int zeroLatencyDepth
= 0;
1457 SUnit
*SU
= &SUnits
[I
];
1458 for (SUnit::const_pred_iterator IP
= SU
->Preds
.begin(),
1459 EP
= SU
->Preds
.end();
1461 SUnit
*pred
= IP
->getSUnit();
1462 if (IP
->getLatency() == 0)
1464 std::max(zeroLatencyDepth
, getZeroLatencyDepth(pred
) + 1);
1465 if (ignoreDependence(*IP
, true))
1467 asap
= std::max(asap
, (int)(getASAP(pred
) + IP
->getLatency() -
1468 getDistance(pred
, SU
, *IP
) * MII
));
1470 maxASAP
= std::max(maxASAP
, asap
);
1471 ScheduleInfo
[I
].ASAP
= asap
;
1472 ScheduleInfo
[I
].ZeroLatencyDepth
= zeroLatencyDepth
;
1475 // Compute ALAP, ZeroLatencyHeight, and MOV.
1476 for (ScheduleDAGTopologicalSort::const_reverse_iterator I
= Topo
.rbegin(),
1480 int zeroLatencyHeight
= 0;
1481 SUnit
*SU
= &SUnits
[*I
];
1482 for (SUnit::const_succ_iterator IS
= SU
->Succs
.begin(),
1483 ES
= SU
->Succs
.end();
1485 SUnit
*succ
= IS
->getSUnit();
1486 if (IS
->getLatency() == 0)
1488 std::max(zeroLatencyHeight
, getZeroLatencyHeight(succ
) + 1);
1489 if (ignoreDependence(*IS
, true))
1491 alap
= std::min(alap
, (int)(getALAP(succ
) - IS
->getLatency() +
1492 getDistance(SU
, succ
, *IS
) * MII
));
1495 ScheduleInfo
[*I
].ALAP
= alap
;
1496 ScheduleInfo
[*I
].ZeroLatencyHeight
= zeroLatencyHeight
;
1499 // After computing the node functions, compute the summary for each node set.
1500 for (NodeSet
&I
: NodeSets
)
1501 I
.computeNodeSetInfo(this);
1504 for (unsigned i
= 0; i
< SUnits
.size(); i
++) {
1505 dbgs() << "\tNode " << i
<< ":\n";
1506 dbgs() << "\t ASAP = " << getASAP(&SUnits
[i
]) << "\n";
1507 dbgs() << "\t ALAP = " << getALAP(&SUnits
[i
]) << "\n";
1508 dbgs() << "\t MOV = " << getMOV(&SUnits
[i
]) << "\n";
1509 dbgs() << "\t D = " << getDepth(&SUnits
[i
]) << "\n";
1510 dbgs() << "\t H = " << getHeight(&SUnits
[i
]) << "\n";
1511 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits
[i
]) << "\n";
1512 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits
[i
]) << "\n";
1517 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1518 /// as the predecessors of the elements of NodeOrder that are not also in
1520 static bool pred_L(SetVector
<SUnit
*> &NodeOrder
,
1521 SmallSetVector
<SUnit
*, 8> &Preds
,
1522 const NodeSet
*S
= nullptr) {
1524 for (SetVector
<SUnit
*>::iterator I
= NodeOrder
.begin(), E
= NodeOrder
.end();
1526 for (const SDep
&Pred
: (*I
)->Preds
) {
1527 if (S
&& S
->count(Pred
.getSUnit()) == 0)
1529 if (ignoreDependence(Pred
, true))
1531 if (NodeOrder
.count(Pred
.getSUnit()) == 0)
1532 Preds
.insert(Pred
.getSUnit());
1534 // Back-edges are predecessors with an anti-dependence.
1535 for (const SDep
&Succ
: (*I
)->Succs
) {
1536 if (Succ
.getKind() != SDep::Anti
)
1538 if (S
&& S
->count(Succ
.getSUnit()) == 0)
1540 if (NodeOrder
.count(Succ
.getSUnit()) == 0)
1541 Preds
.insert(Succ
.getSUnit());
1544 return !Preds
.empty();
1547 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1548 /// as the successors of the elements of NodeOrder that are not also in
1550 static bool succ_L(SetVector
<SUnit
*> &NodeOrder
,
1551 SmallSetVector
<SUnit
*, 8> &Succs
,
1552 const NodeSet
*S
= nullptr) {
1554 for (SetVector
<SUnit
*>::iterator I
= NodeOrder
.begin(), E
= NodeOrder
.end();
1556 for (SDep
&Succ
: (*I
)->Succs
) {
1557 if (S
&& S
->count(Succ
.getSUnit()) == 0)
1559 if (ignoreDependence(Succ
, false))
1561 if (NodeOrder
.count(Succ
.getSUnit()) == 0)
1562 Succs
.insert(Succ
.getSUnit());
1564 for (SDep
&Pred
: (*I
)->Preds
) {
1565 if (Pred
.getKind() != SDep::Anti
)
1567 if (S
&& S
->count(Pred
.getSUnit()) == 0)
1569 if (NodeOrder
.count(Pred
.getSUnit()) == 0)
1570 Succs
.insert(Pred
.getSUnit());
1573 return !Succs
.empty();
1576 /// Return true if there is a path from the specified node to any of the nodes
1577 /// in DestNodes. Keep track and return the nodes in any path.
1578 static bool computePath(SUnit
*Cur
, SetVector
<SUnit
*> &Path
,
1579 SetVector
<SUnit
*> &DestNodes
,
1580 SetVector
<SUnit
*> &Exclude
,
1581 SmallPtrSet
<SUnit
*, 8> &Visited
) {
1582 if (Cur
->isBoundaryNode())
1584 if (Exclude
.contains(Cur
))
1586 if (DestNodes
.contains(Cur
))
1588 if (!Visited
.insert(Cur
).second
)
1589 return Path
.contains(Cur
);
1590 bool FoundPath
= false;
1591 for (auto &SI
: Cur
->Succs
)
1592 FoundPath
|= computePath(SI
.getSUnit(), Path
, DestNodes
, Exclude
, Visited
);
1593 for (auto &PI
: Cur
->Preds
)
1594 if (PI
.getKind() == SDep::Anti
)
1596 computePath(PI
.getSUnit(), Path
, DestNodes
, Exclude
, Visited
);
1602 /// Compute the live-out registers for the instructions in a node-set.
1603 /// The live-out registers are those that are defined in the node-set,
1604 /// but not used. Except for use operands of Phis.
1605 static void computeLiveOuts(MachineFunction
&MF
, RegPressureTracker
&RPTracker
,
1607 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1608 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1609 SmallVector
<RegisterMaskPair
, 8> LiveOutRegs
;
1610 SmallSet
<unsigned, 4> Uses
;
1611 for (SUnit
*SU
: NS
) {
1612 const MachineInstr
*MI
= SU
->getInstr();
1615 for (const MachineOperand
&MO
: MI
->operands())
1616 if (MO
.isReg() && MO
.isUse()) {
1617 Register Reg
= MO
.getReg();
1618 if (Register::isVirtualRegister(Reg
))
1620 else if (MRI
.isAllocatable(Reg
))
1621 for (MCRegUnitIterator
Units(Reg
.asMCReg(), TRI
); Units
.isValid();
1623 Uses
.insert(*Units
);
1626 for (SUnit
*SU
: NS
)
1627 for (const MachineOperand
&MO
: SU
->getInstr()->operands())
1628 if (MO
.isReg() && MO
.isDef() && !MO
.isDead()) {
1629 Register Reg
= MO
.getReg();
1630 if (Register::isVirtualRegister(Reg
)) {
1631 if (!Uses
.count(Reg
))
1632 LiveOutRegs
.push_back(RegisterMaskPair(Reg
,
1633 LaneBitmask::getNone()));
1634 } else if (MRI
.isAllocatable(Reg
)) {
1635 for (MCRegUnitIterator
Units(Reg
.asMCReg(), TRI
); Units
.isValid();
1637 if (!Uses
.count(*Units
))
1638 LiveOutRegs
.push_back(RegisterMaskPair(*Units
,
1639 LaneBitmask::getNone()));
1642 RPTracker
.addLiveRegs(LiveOutRegs
);
1645 /// A heuristic to filter nodes in recurrent node-sets if the register
1646 /// pressure of a set is too high.
1647 void SwingSchedulerDAG::registerPressureFilter(NodeSetType
&NodeSets
) {
1648 for (auto &NS
: NodeSets
) {
1649 // Skip small node-sets since they won't cause register pressure problems.
1652 IntervalPressure RecRegPressure
;
1653 RegPressureTracker
RecRPTracker(RecRegPressure
);
1654 RecRPTracker
.init(&MF
, &RegClassInfo
, &LIS
, BB
, BB
->end(), false, true);
1655 computeLiveOuts(MF
, RecRPTracker
, NS
);
1656 RecRPTracker
.closeBottom();
1658 std::vector
<SUnit
*> SUnits(NS
.begin(), NS
.end());
1659 llvm::sort(SUnits
, [](const SUnit
*A
, const SUnit
*B
) {
1660 return A
->NodeNum
> B
->NodeNum
;
1663 for (auto &SU
: SUnits
) {
1664 // Since we're computing the register pressure for a subset of the
1665 // instructions in a block, we need to set the tracker for each
1666 // instruction in the node-set. The tracker is set to the instruction
1667 // just after the one we're interested in.
1668 MachineBasicBlock::const_iterator CurInstI
= SU
->getInstr();
1669 RecRPTracker
.setPos(std::next(CurInstI
));
1671 RegPressureDelta RPDelta
;
1672 ArrayRef
<PressureChange
> CriticalPSets
;
1673 RecRPTracker
.getMaxUpwardPressureDelta(SU
->getInstr(), nullptr, RPDelta
,
1675 RecRegPressure
.MaxSetPressure
);
1676 if (RPDelta
.Excess
.isValid()) {
1678 dbgs() << "Excess register pressure: SU(" << SU
->NodeNum
<< ") "
1679 << TRI
->getRegPressureSetName(RPDelta
.Excess
.getPSet())
1680 << ":" << RPDelta
.Excess
.getUnitInc());
1681 NS
.setExceedPressure(SU
);
1684 RecRPTracker
.recede();
1689 /// A heuristic to colocate node sets that have the same set of
1691 void SwingSchedulerDAG::colocateNodeSets(NodeSetType
&NodeSets
) {
1692 unsigned Colocate
= 0;
1693 for (int i
= 0, e
= NodeSets
.size(); i
< e
; ++i
) {
1694 NodeSet
&N1
= NodeSets
[i
];
1695 SmallSetVector
<SUnit
*, 8> S1
;
1696 if (N1
.empty() || !succ_L(N1
, S1
))
1698 for (int j
= i
+ 1; j
< e
; ++j
) {
1699 NodeSet
&N2
= NodeSets
[j
];
1700 if (N1
.compareRecMII(N2
) != 0)
1702 SmallSetVector
<SUnit
*, 8> S2
;
1703 if (N2
.empty() || !succ_L(N2
, S2
))
1705 if (llvm::set_is_subset(S1
, S2
) && S1
.size() == S2
.size()) {
1706 N1
.setColocate(++Colocate
);
1707 N2
.setColocate(Colocate
);
1714 /// Check if the existing node-sets are profitable. If not, then ignore the
1715 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1716 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1717 /// then it's best to try to schedule all instructions together instead of
1718 /// starting with the recurrent node-sets.
1719 void SwingSchedulerDAG::checkNodeSets(NodeSetType
&NodeSets
) {
1720 // Look for loops with a large MII.
1723 // Check if the node-set contains only a simple add recurrence.
1724 for (auto &NS
: NodeSets
) {
1725 if (NS
.getRecMII() > 2)
1727 if (NS
.getMaxDepth() > MII
)
1731 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1734 /// Add the nodes that do not belong to a recurrence set into groups
1735 /// based upon connected componenets.
1736 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType
&NodeSets
) {
1737 SetVector
<SUnit
*> NodesAdded
;
1738 SmallPtrSet
<SUnit
*, 8> Visited
;
1739 // Add the nodes that are on a path between the previous node sets and
1740 // the current node set.
1741 for (NodeSet
&I
: NodeSets
) {
1742 SmallSetVector
<SUnit
*, 8> N
;
1743 // Add the nodes from the current node set to the previous node set.
1745 SetVector
<SUnit
*> Path
;
1746 for (SUnit
*NI
: N
) {
1748 computePath(NI
, Path
, NodesAdded
, I
, Visited
);
1751 I
.insert(Path
.begin(), Path
.end());
1753 // Add the nodes from the previous node set to the current node set.
1755 if (succ_L(NodesAdded
, N
)) {
1756 SetVector
<SUnit
*> Path
;
1757 for (SUnit
*NI
: N
) {
1759 computePath(NI
, Path
, I
, NodesAdded
, Visited
);
1762 I
.insert(Path
.begin(), Path
.end());
1764 NodesAdded
.insert(I
.begin(), I
.end());
1767 // Create a new node set with the connected nodes of any successor of a node
1768 // in a recurrent set.
1770 SmallSetVector
<SUnit
*, 8> N
;
1771 if (succ_L(NodesAdded
, N
))
1773 addConnectedNodes(I
, NewSet
, NodesAdded
);
1774 if (!NewSet
.empty())
1775 NodeSets
.push_back(NewSet
);
1777 // Create a new node set with the connected nodes of any predecessor of a node
1778 // in a recurrent set.
1780 if (pred_L(NodesAdded
, N
))
1782 addConnectedNodes(I
, NewSet
, NodesAdded
);
1783 if (!NewSet
.empty())
1784 NodeSets
.push_back(NewSet
);
1786 // Create new nodes sets with the connected nodes any remaining node that
1787 // has no predecessor.
1788 for (SUnit
&SU
: SUnits
) {
1789 if (NodesAdded
.count(&SU
) == 0) {
1791 addConnectedNodes(&SU
, NewSet
, NodesAdded
);
1792 if (!NewSet
.empty())
1793 NodeSets
.push_back(NewSet
);
1798 /// Add the node to the set, and add all of its connected nodes to the set.
1799 void SwingSchedulerDAG::addConnectedNodes(SUnit
*SU
, NodeSet
&NewSet
,
1800 SetVector
<SUnit
*> &NodesAdded
) {
1802 NodesAdded
.insert(SU
);
1803 for (auto &SI
: SU
->Succs
) {
1804 SUnit
*Successor
= SI
.getSUnit();
1805 if (!SI
.isArtificial() && NodesAdded
.count(Successor
) == 0)
1806 addConnectedNodes(Successor
, NewSet
, NodesAdded
);
1808 for (auto &PI
: SU
->Preds
) {
1809 SUnit
*Predecessor
= PI
.getSUnit();
1810 if (!PI
.isArtificial() && NodesAdded
.count(Predecessor
) == 0)
1811 addConnectedNodes(Predecessor
, NewSet
, NodesAdded
);
1815 /// Return true if Set1 contains elements in Set2. The elements in common
1816 /// are returned in a different container.
1817 static bool isIntersect(SmallSetVector
<SUnit
*, 8> &Set1
, const NodeSet
&Set2
,
1818 SmallSetVector
<SUnit
*, 8> &Result
) {
1820 for (unsigned i
= 0, e
= Set1
.size(); i
!= e
; ++i
) {
1821 SUnit
*SU
= Set1
[i
];
1822 if (Set2
.count(SU
) != 0)
1825 return !Result
.empty();
1828 /// Merge the recurrence node sets that have the same initial node.
1829 void SwingSchedulerDAG::fuseRecs(NodeSetType
&NodeSets
) {
1830 for (NodeSetType::iterator I
= NodeSets
.begin(), E
= NodeSets
.end(); I
!= E
;
1833 for (NodeSetType::iterator J
= I
+ 1; J
!= E
;) {
1835 if (NI
.getNode(0)->NodeNum
== NJ
.getNode(0)->NodeNum
) {
1836 if (NJ
.compareRecMII(NI
) > 0)
1837 NI
.setRecMII(NJ
.getRecMII());
1838 for (SUnit
*SU
: *J
)
1849 /// Remove nodes that have been scheduled in previous NodeSets.
1850 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType
&NodeSets
) {
1851 for (NodeSetType::iterator I
= NodeSets
.begin(), E
= NodeSets
.end(); I
!= E
;
1853 for (NodeSetType::iterator J
= I
+ 1; J
!= E
;) {
1854 J
->remove_if([&](SUnit
*SUJ
) { return I
->count(SUJ
); });
1865 /// Compute an ordered list of the dependence graph nodes, which
1866 /// indicates the order that the nodes will be scheduled. This is a
1867 /// two-level algorithm. First, a partial order is created, which
1868 /// consists of a list of sets ordered from highest to lowest priority.
1869 void SwingSchedulerDAG::computeNodeOrder(NodeSetType
&NodeSets
) {
1870 SmallSetVector
<SUnit
*, 8> R
;
1873 for (auto &Nodes
: NodeSets
) {
1874 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes
.size() << "\n");
1876 SmallSetVector
<SUnit
*, 8> N
;
1877 if (pred_L(NodeOrder
, N
) && llvm::set_is_subset(N
, Nodes
)) {
1878 R
.insert(N
.begin(), N
.end());
1880 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1881 } else if (succ_L(NodeOrder
, N
) && llvm::set_is_subset(N
, Nodes
)) {
1882 R
.insert(N
.begin(), N
.end());
1884 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1885 } else if (isIntersect(N
, Nodes
, R
)) {
1886 // If some of the successors are in the existing node-set, then use the
1887 // top-down ordering.
1889 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1890 } else if (NodeSets
.size() == 1) {
1891 for (auto &N
: Nodes
)
1892 if (N
->Succs
.size() == 0)
1895 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1897 // Find the node with the highest ASAP.
1898 SUnit
*maxASAP
= nullptr;
1899 for (SUnit
*SU
: Nodes
) {
1900 if (maxASAP
== nullptr || getASAP(SU
) > getASAP(maxASAP
) ||
1901 (getASAP(SU
) == getASAP(maxASAP
) && SU
->NodeNum
> maxASAP
->NodeNum
))
1906 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1909 while (!R
.empty()) {
1910 if (Order
== TopDown
) {
1911 // Choose the node with the maximum height. If more than one, choose
1912 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1913 // choose the node with the lowest MOV.
1914 while (!R
.empty()) {
1915 SUnit
*maxHeight
= nullptr;
1916 for (SUnit
*I
: R
) {
1917 if (maxHeight
== nullptr || getHeight(I
) > getHeight(maxHeight
))
1919 else if (getHeight(I
) == getHeight(maxHeight
) &&
1920 getZeroLatencyHeight(I
) > getZeroLatencyHeight(maxHeight
))
1922 else if (getHeight(I
) == getHeight(maxHeight
) &&
1923 getZeroLatencyHeight(I
) ==
1924 getZeroLatencyHeight(maxHeight
) &&
1925 getMOV(I
) < getMOV(maxHeight
))
1928 NodeOrder
.insert(maxHeight
);
1929 LLVM_DEBUG(dbgs() << maxHeight
->NodeNum
<< " ");
1930 R
.remove(maxHeight
);
1931 for (const auto &I
: maxHeight
->Succs
) {
1932 if (Nodes
.count(I
.getSUnit()) == 0)
1934 if (NodeOrder
.contains(I
.getSUnit()))
1936 if (ignoreDependence(I
, false))
1938 R
.insert(I
.getSUnit());
1940 // Back-edges are predecessors with an anti-dependence.
1941 for (const auto &I
: maxHeight
->Preds
) {
1942 if (I
.getKind() != SDep::Anti
)
1944 if (Nodes
.count(I
.getSUnit()) == 0)
1946 if (NodeOrder
.contains(I
.getSUnit()))
1948 R
.insert(I
.getSUnit());
1952 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1953 SmallSetVector
<SUnit
*, 8> N
;
1954 if (pred_L(NodeOrder
, N
, &Nodes
))
1955 R
.insert(N
.begin(), N
.end());
1957 // Choose the node with the maximum depth. If more than one, choose
1958 // the node with the maximum ZeroLatencyDepth. If still more than one,
1959 // choose the node with the lowest MOV.
1960 while (!R
.empty()) {
1961 SUnit
*maxDepth
= nullptr;
1962 for (SUnit
*I
: R
) {
1963 if (maxDepth
== nullptr || getDepth(I
) > getDepth(maxDepth
))
1965 else if (getDepth(I
) == getDepth(maxDepth
) &&
1966 getZeroLatencyDepth(I
) > getZeroLatencyDepth(maxDepth
))
1968 else if (getDepth(I
) == getDepth(maxDepth
) &&
1969 getZeroLatencyDepth(I
) == getZeroLatencyDepth(maxDepth
) &&
1970 getMOV(I
) < getMOV(maxDepth
))
1973 NodeOrder
.insert(maxDepth
);
1974 LLVM_DEBUG(dbgs() << maxDepth
->NodeNum
<< " ");
1976 if (Nodes
.isExceedSU(maxDepth
)) {
1979 R
.insert(Nodes
.getNode(0));
1982 for (const auto &I
: maxDepth
->Preds
) {
1983 if (Nodes
.count(I
.getSUnit()) == 0)
1985 if (NodeOrder
.contains(I
.getSUnit()))
1987 R
.insert(I
.getSUnit());
1989 // Back-edges are predecessors with an anti-dependence.
1990 for (const auto &I
: maxDepth
->Succs
) {
1991 if (I
.getKind() != SDep::Anti
)
1993 if (Nodes
.count(I
.getSUnit()) == 0)
1995 if (NodeOrder
.contains(I
.getSUnit()))
1997 R
.insert(I
.getSUnit());
2001 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
2002 SmallSetVector
<SUnit
*, 8> N
;
2003 if (succ_L(NodeOrder
, N
, &Nodes
))
2004 R
.insert(N
.begin(), N
.end());
2007 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2011 dbgs() << "Node order: ";
2012 for (SUnit
*I
: NodeOrder
)
2013 dbgs() << " " << I
->NodeNum
<< " ";
2018 /// Process the nodes in the computed order and create the pipelined schedule
2019 /// of the instructions, if possible. Return true if a schedule is found.
2020 bool SwingSchedulerDAG::schedulePipeline(SMSchedule
&Schedule
) {
2022 if (NodeOrder
.empty()){
2023 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2027 bool scheduleFound
= false;
2028 // Keep increasing II until a valid schedule is found.
2029 for (unsigned II
= MII
; II
<= MAX_II
&& !scheduleFound
; ++II
) {
2031 Schedule
.setInitiationInterval(II
);
2032 LLVM_DEBUG(dbgs() << "Try to schedule with " << II
<< "\n");
2034 SetVector
<SUnit
*>::iterator NI
= NodeOrder
.begin();
2035 SetVector
<SUnit
*>::iterator NE
= NodeOrder
.end();
2039 // Compute the schedule time for the instruction, which is based
2040 // upon the scheduled time for any predecessors/successors.
2041 int EarlyStart
= INT_MIN
;
2042 int LateStart
= INT_MAX
;
2043 // These values are set when the size of the schedule window is limited
2044 // due to chain dependences.
2045 int SchedEnd
= INT_MAX
;
2046 int SchedStart
= INT_MIN
;
2047 Schedule
.computeStart(SU
, &EarlyStart
, &LateStart
, &SchedEnd
, &SchedStart
,
2051 dbgs() << "Inst (" << SU
->NodeNum
<< ") ";
2052 SU
->getInstr()->dump();
2056 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart
,
2057 LateStart
, SchedEnd
, SchedStart
);
2060 if (EarlyStart
> LateStart
|| SchedEnd
< EarlyStart
||
2061 SchedStart
> LateStart
)
2062 scheduleFound
= false;
2063 else if (EarlyStart
!= INT_MIN
&& LateStart
== INT_MAX
) {
2064 SchedEnd
= std::min(SchedEnd
, EarlyStart
+ (int)II
- 1);
2065 scheduleFound
= Schedule
.insert(SU
, EarlyStart
, SchedEnd
, II
);
2066 } else if (EarlyStart
== INT_MIN
&& LateStart
!= INT_MAX
) {
2067 SchedStart
= std::max(SchedStart
, LateStart
- (int)II
+ 1);
2068 scheduleFound
= Schedule
.insert(SU
, LateStart
, SchedStart
, II
);
2069 } else if (EarlyStart
!= INT_MIN
&& LateStart
!= INT_MAX
) {
2071 std::min(SchedEnd
, std::min(LateStart
, EarlyStart
+ (int)II
- 1));
2072 // When scheduling a Phi it is better to start at the late cycle and go
2073 // backwards. The default order may insert the Phi too far away from
2074 // its first dependence.
2075 if (SU
->getInstr()->isPHI())
2076 scheduleFound
= Schedule
.insert(SU
, SchedEnd
, EarlyStart
, II
);
2078 scheduleFound
= Schedule
.insert(SU
, EarlyStart
, SchedEnd
, II
);
2080 int FirstCycle
= Schedule
.getFirstCycle();
2081 scheduleFound
= Schedule
.insert(SU
, FirstCycle
+ getASAP(SU
),
2082 FirstCycle
+ getASAP(SU
) + II
- 1, II
);
2084 // Even if we find a schedule, make sure the schedule doesn't exceed the
2085 // allowable number of stages. We keep trying if this happens.
2087 if (SwpMaxStages
> -1 &&
2088 Schedule
.getMaxStageCount() > (unsigned)SwpMaxStages
)
2089 scheduleFound
= false;
2093 dbgs() << "\tCan't schedule\n";
2095 } while (++NI
!= NE
&& scheduleFound
);
2097 // If a schedule is found, check if it is a valid schedule too.
2099 scheduleFound
= Schedule
.isValidSchedule(this);
2102 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2103 << " (II=" << Schedule
.getInitiationInterval()
2106 if (scheduleFound
) {
2107 Schedule
.finalizeSchedule(this);
2108 Pass
.ORE
->emit([&]() {
2109 return MachineOptimizationRemarkAnalysis(
2110 DEBUG_TYPE
, "schedule", Loop
.getStartLoc(), Loop
.getHeader())
2111 << "Schedule found with Initiation Interval: "
2112 << ore::NV("II", Schedule
.getInitiationInterval())
2113 << ", MaxStageCount: "
2114 << ore::NV("MaxStageCount", Schedule
.getMaxStageCount());
2119 return scheduleFound
&& Schedule
.getMaxStageCount() > 0;
2122 /// Return true if we can compute the amount the instruction changes
2123 /// during each iteration. Set Delta to the amount of the change.
2124 bool SwingSchedulerDAG::computeDelta(MachineInstr
&MI
, unsigned &Delta
) {
2125 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2126 const MachineOperand
*BaseOp
;
2128 bool OffsetIsScalable
;
2129 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, OffsetIsScalable
, TRI
))
2132 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2133 if (OffsetIsScalable
)
2136 if (!BaseOp
->isReg())
2139 Register BaseReg
= BaseOp
->getReg();
2141 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2142 // Check if there is a Phi. If so, get the definition in the loop.
2143 MachineInstr
*BaseDef
= MRI
.getVRegDef(BaseReg
);
2144 if (BaseDef
&& BaseDef
->isPHI()) {
2145 BaseReg
= getLoopPhiReg(*BaseDef
, MI
.getParent());
2146 BaseDef
= MRI
.getVRegDef(BaseReg
);
2152 if (!TII
->getIncrementValue(*BaseDef
, D
) && D
>= 0)
2159 /// Check if we can change the instruction to use an offset value from the
2160 /// previous iteration. If so, return true and set the base and offset values
2161 /// so that we can rewrite the load, if necessary.
2162 /// v1 = Phi(v0, v3)
2164 /// v3 = post_store v1, 4, x
2165 /// This function enables the load to be rewritten as v2 = load v3, 4.
2166 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr
*MI
,
2168 unsigned &OffsetPos
,
2171 // Get the load instruction.
2172 if (TII
->isPostIncrement(*MI
))
2174 unsigned BasePosLd
, OffsetPosLd
;
2175 if (!TII
->getBaseAndOffsetPosition(*MI
, BasePosLd
, OffsetPosLd
))
2177 Register BaseReg
= MI
->getOperand(BasePosLd
).getReg();
2179 // Look for the Phi instruction.
2180 MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
2181 MachineInstr
*Phi
= MRI
.getVRegDef(BaseReg
);
2182 if (!Phi
|| !Phi
->isPHI())
2184 // Get the register defined in the loop block.
2185 unsigned PrevReg
= getLoopPhiReg(*Phi
, MI
->getParent());
2189 // Check for the post-increment load/store instruction.
2190 MachineInstr
*PrevDef
= MRI
.getVRegDef(PrevReg
);
2191 if (!PrevDef
|| PrevDef
== MI
)
2194 if (!TII
->isPostIncrement(*PrevDef
))
2197 unsigned BasePos1
= 0, OffsetPos1
= 0;
2198 if (!TII
->getBaseAndOffsetPosition(*PrevDef
, BasePos1
, OffsetPos1
))
2201 // Make sure that the instructions do not access the same memory location in
2202 // the next iteration.
2203 int64_t LoadOffset
= MI
->getOperand(OffsetPosLd
).getImm();
2204 int64_t StoreOffset
= PrevDef
->getOperand(OffsetPos1
).getImm();
2205 MachineInstr
*NewMI
= MF
.CloneMachineInstr(MI
);
2206 NewMI
->getOperand(OffsetPosLd
).setImm(LoadOffset
+ StoreOffset
);
2207 bool Disjoint
= TII
->areMemAccessesTriviallyDisjoint(*NewMI
, *PrevDef
);
2208 MF
.DeleteMachineInstr(NewMI
);
2212 // Set the return value once we determine that we return true.
2213 BasePos
= BasePosLd
;
2214 OffsetPos
= OffsetPosLd
;
2216 Offset
= StoreOffset
;
2220 /// Apply changes to the instruction if needed. The changes are need
2221 /// to improve the scheduling and depend up on the final schedule.
2222 void SwingSchedulerDAG::applyInstrChange(MachineInstr
*MI
,
2223 SMSchedule
&Schedule
) {
2224 SUnit
*SU
= getSUnit(MI
);
2225 DenseMap
<SUnit
*, std::pair
<unsigned, int64_t>>::iterator It
=
2226 InstrChanges
.find(SU
);
2227 if (It
!= InstrChanges
.end()) {
2228 std::pair
<unsigned, int64_t> RegAndOffset
= It
->second
;
2229 unsigned BasePos
, OffsetPos
;
2230 if (!TII
->getBaseAndOffsetPosition(*MI
, BasePos
, OffsetPos
))
2232 Register BaseReg
= MI
->getOperand(BasePos
).getReg();
2233 MachineInstr
*LoopDef
= findDefInLoop(BaseReg
);
2234 int DefStageNum
= Schedule
.stageScheduled(getSUnit(LoopDef
));
2235 int DefCycleNum
= Schedule
.cycleScheduled(getSUnit(LoopDef
));
2236 int BaseStageNum
= Schedule
.stageScheduled(SU
);
2237 int BaseCycleNum
= Schedule
.cycleScheduled(SU
);
2238 if (BaseStageNum
< DefStageNum
) {
2239 MachineInstr
*NewMI
= MF
.CloneMachineInstr(MI
);
2240 int OffsetDiff
= DefStageNum
- BaseStageNum
;
2241 if (DefCycleNum
< BaseCycleNum
) {
2242 NewMI
->getOperand(BasePos
).setReg(RegAndOffset
.first
);
2247 MI
->getOperand(OffsetPos
).getImm() + RegAndOffset
.second
* OffsetDiff
;
2248 NewMI
->getOperand(OffsetPos
).setImm(NewOffset
);
2249 SU
->setInstr(NewMI
);
2250 MISUnitMap
[NewMI
] = SU
;
2256 /// Return the instruction in the loop that defines the register.
2257 /// If the definition is a Phi, then follow the Phi operand to
2258 /// the instruction in the loop.
2259 MachineInstr
*SwingSchedulerDAG::findDefInLoop(Register Reg
) {
2260 SmallPtrSet
<MachineInstr
*, 8> Visited
;
2261 MachineInstr
*Def
= MRI
.getVRegDef(Reg
);
2262 while (Def
->isPHI()) {
2263 if (!Visited
.insert(Def
).second
)
2265 for (unsigned i
= 1, e
= Def
->getNumOperands(); i
< e
; i
+= 2)
2266 if (Def
->getOperand(i
+ 1).getMBB() == BB
) {
2267 Def
= MRI
.getVRegDef(Def
->getOperand(i
).getReg());
2274 /// Return true for an order or output dependence that is loop carried
2275 /// potentially. A dependence is loop carried if the destination defines a valu
2276 /// that may be used or defined by the source in a subsequent iteration.
2277 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit
*Source
, const SDep
&Dep
,
2279 if ((Dep
.getKind() != SDep::Order
&& Dep
.getKind() != SDep::Output
) ||
2283 if (!SwpPruneLoopCarried
)
2286 if (Dep
.getKind() == SDep::Output
)
2289 MachineInstr
*SI
= Source
->getInstr();
2290 MachineInstr
*DI
= Dep
.getSUnit()->getInstr();
2293 assert(SI
!= nullptr && DI
!= nullptr && "Expecting SUnit with an MI.");
2295 // Assume ordered loads and stores may have a loop carried dependence.
2296 if (SI
->hasUnmodeledSideEffects() || DI
->hasUnmodeledSideEffects() ||
2297 SI
->mayRaiseFPException() || DI
->mayRaiseFPException() ||
2298 SI
->hasOrderedMemoryRef() || DI
->hasOrderedMemoryRef())
2301 // Only chain dependences between a load and store can be loop carried.
2302 if (!DI
->mayStore() || !SI
->mayLoad())
2305 unsigned DeltaS
, DeltaD
;
2306 if (!computeDelta(*SI
, DeltaS
) || !computeDelta(*DI
, DeltaD
))
2309 const MachineOperand
*BaseOpS
, *BaseOpD
;
2310 int64_t OffsetS
, OffsetD
;
2311 bool OffsetSIsScalable
, OffsetDIsScalable
;
2312 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2313 if (!TII
->getMemOperandWithOffset(*SI
, BaseOpS
, OffsetS
, OffsetSIsScalable
,
2315 !TII
->getMemOperandWithOffset(*DI
, BaseOpD
, OffsetD
, OffsetDIsScalable
,
2319 assert(!OffsetSIsScalable
&& !OffsetDIsScalable
&&
2320 "Expected offsets to be byte offsets");
2322 if (!BaseOpS
->isIdenticalTo(*BaseOpD
))
2325 // Check that the base register is incremented by a constant value for each
2327 MachineInstr
*Def
= MRI
.getVRegDef(BaseOpS
->getReg());
2328 if (!Def
|| !Def
->isPHI())
2330 unsigned InitVal
= 0;
2331 unsigned LoopVal
= 0;
2332 getPhiRegs(*Def
, BB
, InitVal
, LoopVal
);
2333 MachineInstr
*LoopDef
= MRI
.getVRegDef(LoopVal
);
2335 if (!LoopDef
|| !TII
->getIncrementValue(*LoopDef
, D
))
2338 uint64_t AccessSizeS
= (*SI
->memoperands_begin())->getSize();
2339 uint64_t AccessSizeD
= (*DI
->memoperands_begin())->getSize();
2341 // This is the main test, which checks the offset values and the loop
2342 // increment value to determine if the accesses may be loop carried.
2343 if (AccessSizeS
== MemoryLocation::UnknownSize
||
2344 AccessSizeD
== MemoryLocation::UnknownSize
)
2347 if (DeltaS
!= DeltaD
|| DeltaS
< AccessSizeS
|| DeltaD
< AccessSizeD
)
2350 return (OffsetS
+ (int64_t)AccessSizeS
< OffsetD
+ (int64_t)AccessSizeD
);
2353 void SwingSchedulerDAG::postprocessDAG() {
2354 for (auto &M
: Mutations
)
2358 /// Try to schedule the node at the specified StartCycle and continue
2359 /// until the node is schedule or the EndCycle is reached. This function
2360 /// returns true if the node is scheduled. This routine may search either
2361 /// forward or backward for a place to insert the instruction based upon
2362 /// the relative values of StartCycle and EndCycle.
2363 bool SMSchedule::insert(SUnit
*SU
, int StartCycle
, int EndCycle
, int II
) {
2364 bool forward
= true;
2366 dbgs() << "Trying to insert node between " << StartCycle
<< " and "
2367 << EndCycle
<< " II: " << II
<< "\n";
2369 if (StartCycle
> EndCycle
)
2372 // The terminating condition depends on the direction.
2373 int termCycle
= forward
? EndCycle
+ 1 : EndCycle
- 1;
2374 for (int curCycle
= StartCycle
; curCycle
!= termCycle
;
2375 forward
? ++curCycle
: --curCycle
) {
2377 // Add the already scheduled instructions at the specified cycle to the
2379 ProcItinResources
.clearResources();
2380 for (int checkCycle
= FirstCycle
+ ((curCycle
- FirstCycle
) % II
);
2381 checkCycle
<= LastCycle
; checkCycle
+= II
) {
2382 std::deque
<SUnit
*> &cycleInstrs
= ScheduledInstrs
[checkCycle
];
2384 for (SUnit
*CI
: cycleInstrs
) {
2385 if (ST
.getInstrInfo()->isZeroCost(CI
->getInstr()->getOpcode()))
2387 assert(ProcItinResources
.canReserveResources(*CI
->getInstr()) &&
2388 "These instructions have already been scheduled.");
2389 ProcItinResources
.reserveResources(*CI
->getInstr());
2392 if (ST
.getInstrInfo()->isZeroCost(SU
->getInstr()->getOpcode()) ||
2393 ProcItinResources
.canReserveResources(*SU
->getInstr())) {
2395 dbgs() << "\tinsert at cycle " << curCycle
<< " ";
2396 SU
->getInstr()->dump();
2399 ScheduledInstrs
[curCycle
].push_back(SU
);
2400 InstrToCycle
.insert(std::make_pair(SU
, curCycle
));
2401 if (curCycle
> LastCycle
)
2402 LastCycle
= curCycle
;
2403 if (curCycle
< FirstCycle
)
2404 FirstCycle
= curCycle
;
2408 dbgs() << "\tfailed to insert at cycle " << curCycle
<< " ";
2409 SU
->getInstr()->dump();
2415 // Return the cycle of the earliest scheduled instruction in the chain.
2416 int SMSchedule::earliestCycleInChain(const SDep
&Dep
) {
2417 SmallPtrSet
<SUnit
*, 8> Visited
;
2418 SmallVector
<SDep
, 8> Worklist
;
2419 Worklist
.push_back(Dep
);
2420 int EarlyCycle
= INT_MAX
;
2421 while (!Worklist
.empty()) {
2422 const SDep
&Cur
= Worklist
.pop_back_val();
2423 SUnit
*PrevSU
= Cur
.getSUnit();
2424 if (Visited
.count(PrevSU
))
2426 std::map
<SUnit
*, int>::const_iterator it
= InstrToCycle
.find(PrevSU
);
2427 if (it
== InstrToCycle
.end())
2429 EarlyCycle
= std::min(EarlyCycle
, it
->second
);
2430 for (const auto &PI
: PrevSU
->Preds
)
2431 if (PI
.getKind() == SDep::Order
|| PI
.getKind() == SDep::Output
)
2432 Worklist
.push_back(PI
);
2433 Visited
.insert(PrevSU
);
2438 // Return the cycle of the latest scheduled instruction in the chain.
2439 int SMSchedule::latestCycleInChain(const SDep
&Dep
) {
2440 SmallPtrSet
<SUnit
*, 8> Visited
;
2441 SmallVector
<SDep
, 8> Worklist
;
2442 Worklist
.push_back(Dep
);
2443 int LateCycle
= INT_MIN
;
2444 while (!Worklist
.empty()) {
2445 const SDep
&Cur
= Worklist
.pop_back_val();
2446 SUnit
*SuccSU
= Cur
.getSUnit();
2447 if (Visited
.count(SuccSU
))
2449 std::map
<SUnit
*, int>::const_iterator it
= InstrToCycle
.find(SuccSU
);
2450 if (it
== InstrToCycle
.end())
2452 LateCycle
= std::max(LateCycle
, it
->second
);
2453 for (const auto &SI
: SuccSU
->Succs
)
2454 if (SI
.getKind() == SDep::Order
|| SI
.getKind() == SDep::Output
)
2455 Worklist
.push_back(SI
);
2456 Visited
.insert(SuccSU
);
2461 /// If an instruction has a use that spans multiple iterations, then
2462 /// return true. These instructions are characterized by having a back-ege
2463 /// to a Phi, which contains a reference to another Phi.
2464 static SUnit
*multipleIterations(SUnit
*SU
, SwingSchedulerDAG
*DAG
) {
2465 for (auto &P
: SU
->Preds
)
2466 if (DAG
->isBackedge(SU
, P
) && P
.getSUnit()->getInstr()->isPHI())
2467 for (auto &S
: P
.getSUnit()->Succs
)
2468 if (S
.getKind() == SDep::Data
&& S
.getSUnit()->getInstr()->isPHI())
2469 return P
.getSUnit();
2473 /// Compute the scheduling start slot for the instruction. The start slot
2474 /// depends on any predecessor or successor nodes scheduled already.
2475 void SMSchedule::computeStart(SUnit
*SU
, int *MaxEarlyStart
, int *MinLateStart
,
2476 int *MinEnd
, int *MaxStart
, int II
,
2477 SwingSchedulerDAG
*DAG
) {
2478 // Iterate over each instruction that has been scheduled already. The start
2479 // slot computation depends on whether the previously scheduled instruction
2480 // is a predecessor or successor of the specified instruction.
2481 for (int cycle
= getFirstCycle(); cycle
<= LastCycle
; ++cycle
) {
2483 // Iterate over each instruction in the current cycle.
2484 for (SUnit
*I
: getInstructions(cycle
)) {
2485 // Because we're processing a DAG for the dependences, we recognize
2486 // the back-edge in recurrences by anti dependences.
2487 for (unsigned i
= 0, e
= (unsigned)SU
->Preds
.size(); i
!= e
; ++i
) {
2488 const SDep
&Dep
= SU
->Preds
[i
];
2489 if (Dep
.getSUnit() == I
) {
2490 if (!DAG
->isBackedge(SU
, Dep
)) {
2491 int EarlyStart
= cycle
+ Dep
.getLatency() -
2492 DAG
->getDistance(Dep
.getSUnit(), SU
, Dep
) * II
;
2493 *MaxEarlyStart
= std::max(*MaxEarlyStart
, EarlyStart
);
2494 if (DAG
->isLoopCarriedDep(SU
, Dep
, false)) {
2495 int End
= earliestCycleInChain(Dep
) + (II
- 1);
2496 *MinEnd
= std::min(*MinEnd
, End
);
2499 int LateStart
= cycle
- Dep
.getLatency() +
2500 DAG
->getDistance(SU
, Dep
.getSUnit(), Dep
) * II
;
2501 *MinLateStart
= std::min(*MinLateStart
, LateStart
);
2504 // For instruction that requires multiple iterations, make sure that
2505 // the dependent instruction is not scheduled past the definition.
2506 SUnit
*BE
= multipleIterations(I
, DAG
);
2507 if (BE
&& Dep
.getSUnit() == BE
&& !SU
->getInstr()->isPHI() &&
2509 *MinLateStart
= std::min(*MinLateStart
, cycle
);
2511 for (unsigned i
= 0, e
= (unsigned)SU
->Succs
.size(); i
!= e
; ++i
) {
2512 if (SU
->Succs
[i
].getSUnit() == I
) {
2513 const SDep
&Dep
= SU
->Succs
[i
];
2514 if (!DAG
->isBackedge(SU
, Dep
)) {
2515 int LateStart
= cycle
- Dep
.getLatency() +
2516 DAG
->getDistance(SU
, Dep
.getSUnit(), Dep
) * II
;
2517 *MinLateStart
= std::min(*MinLateStart
, LateStart
);
2518 if (DAG
->isLoopCarriedDep(SU
, Dep
)) {
2519 int Start
= latestCycleInChain(Dep
) + 1 - II
;
2520 *MaxStart
= std::max(*MaxStart
, Start
);
2523 int EarlyStart
= cycle
+ Dep
.getLatency() -
2524 DAG
->getDistance(Dep
.getSUnit(), SU
, Dep
) * II
;
2525 *MaxEarlyStart
= std::max(*MaxEarlyStart
, EarlyStart
);
2533 /// Order the instructions within a cycle so that the definitions occur
2534 /// before the uses. Returns true if the instruction is added to the start
2535 /// of the list, or false if added to the end.
2536 void SMSchedule::orderDependence(SwingSchedulerDAG
*SSD
, SUnit
*SU
,
2537 std::deque
<SUnit
*> &Insts
) {
2538 MachineInstr
*MI
= SU
->getInstr();
2539 bool OrderBeforeUse
= false;
2540 bool OrderAfterDef
= false;
2541 bool OrderBeforeDef
= false;
2542 unsigned MoveDef
= 0;
2543 unsigned MoveUse
= 0;
2544 int StageInst1
= stageScheduled(SU
);
2547 for (std::deque
<SUnit
*>::iterator I
= Insts
.begin(), E
= Insts
.end(); I
!= E
;
2549 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
< e
; ++i
) {
2550 MachineOperand
&MO
= MI
->getOperand(i
);
2551 if (!MO
.isReg() || !Register::isVirtualRegister(MO
.getReg()))
2554 Register Reg
= MO
.getReg();
2555 unsigned BasePos
, OffsetPos
;
2556 if (ST
.getInstrInfo()->getBaseAndOffsetPosition(*MI
, BasePos
, OffsetPos
))
2557 if (MI
->getOperand(BasePos
).getReg() == Reg
)
2558 if (unsigned NewReg
= SSD
->getInstrBaseReg(SU
))
2561 std::tie(Reads
, Writes
) =
2562 (*I
)->getInstr()->readsWritesVirtualRegister(Reg
);
2563 if (MO
.isDef() && Reads
&& stageScheduled(*I
) <= StageInst1
) {
2564 OrderBeforeUse
= true;
2567 } else if (MO
.isDef() && Reads
&& stageScheduled(*I
) > StageInst1
) {
2568 // Add the instruction after the scheduled instruction.
2569 OrderAfterDef
= true;
2571 } else if (MO
.isUse() && Writes
&& stageScheduled(*I
) == StageInst1
) {
2572 if (cycleScheduled(*I
) == cycleScheduled(SU
) && !(*I
)->isSucc(SU
)) {
2573 OrderBeforeUse
= true;
2577 OrderAfterDef
= true;
2580 } else if (MO
.isUse() && Writes
&& stageScheduled(*I
) > StageInst1
) {
2581 OrderBeforeUse
= true;
2585 OrderAfterDef
= true;
2588 } else if (MO
.isUse() && Writes
&& stageScheduled(*I
) < StageInst1
) {
2589 // Add the instruction before the scheduled instruction.
2590 OrderBeforeUse
= true;
2593 } else if (MO
.isUse() && stageScheduled(*I
) == StageInst1
&&
2594 isLoopCarriedDefOfUse(SSD
, (*I
)->getInstr(), MO
)) {
2596 OrderBeforeDef
= true;
2601 // Check for order dependences between instructions. Make sure the source
2602 // is ordered before the destination.
2603 for (auto &S
: SU
->Succs
) {
2604 if (S
.getSUnit() != *I
)
2606 if (S
.getKind() == SDep::Order
&& stageScheduled(*I
) == StageInst1
) {
2607 OrderBeforeUse
= true;
2611 // We did not handle HW dependences in previous for loop,
2612 // and we normally set Latency = 0 for Anti deps,
2613 // so may have nodes in same cycle with Anti denpendent on HW regs.
2614 else if (S
.getKind() == SDep::Anti
&& stageScheduled(*I
) == StageInst1
) {
2615 OrderBeforeUse
= true;
2616 if ((MoveUse
== 0) || (Pos
< MoveUse
))
2620 for (auto &P
: SU
->Preds
) {
2621 if (P
.getSUnit() != *I
)
2623 if (P
.getKind() == SDep::Order
&& stageScheduled(*I
) == StageInst1
) {
2624 OrderAfterDef
= true;
2630 // A circular dependence.
2631 if (OrderAfterDef
&& OrderBeforeUse
&& MoveUse
== MoveDef
)
2632 OrderBeforeUse
= false;
2634 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2635 // to a loop-carried dependence.
2637 OrderBeforeUse
= !OrderAfterDef
|| (MoveUse
> MoveDef
);
2639 // The uncommon case when the instruction order needs to be updated because
2640 // there is both a use and def.
2641 if (OrderBeforeUse
&& OrderAfterDef
) {
2642 SUnit
*UseSU
= Insts
.at(MoveUse
);
2643 SUnit
*DefSU
= Insts
.at(MoveDef
);
2644 if (MoveUse
> MoveDef
) {
2645 Insts
.erase(Insts
.begin() + MoveUse
);
2646 Insts
.erase(Insts
.begin() + MoveDef
);
2648 Insts
.erase(Insts
.begin() + MoveDef
);
2649 Insts
.erase(Insts
.begin() + MoveUse
);
2651 orderDependence(SSD
, UseSU
, Insts
);
2652 orderDependence(SSD
, SU
, Insts
);
2653 orderDependence(SSD
, DefSU
, Insts
);
2656 // Put the new instruction first if there is a use in the list. Otherwise,
2657 // put it at the end of the list.
2659 Insts
.push_front(SU
);
2661 Insts
.push_back(SU
);
2664 /// Return true if the scheduled Phi has a loop carried operand.
2665 bool SMSchedule::isLoopCarried(SwingSchedulerDAG
*SSD
, MachineInstr
&Phi
) {
2668 assert(Phi
.isPHI() && "Expecting a Phi.");
2669 SUnit
*DefSU
= SSD
->getSUnit(&Phi
);
2670 unsigned DefCycle
= cycleScheduled(DefSU
);
2671 int DefStage
= stageScheduled(DefSU
);
2673 unsigned InitVal
= 0;
2674 unsigned LoopVal
= 0;
2675 getPhiRegs(Phi
, Phi
.getParent(), InitVal
, LoopVal
);
2676 SUnit
*UseSU
= SSD
->getSUnit(MRI
.getVRegDef(LoopVal
));
2679 if (UseSU
->getInstr()->isPHI())
2681 unsigned LoopCycle
= cycleScheduled(UseSU
);
2682 int LoopStage
= stageScheduled(UseSU
);
2683 return (LoopCycle
> DefCycle
) || (LoopStage
<= DefStage
);
2686 /// Return true if the instruction is a definition that is loop carried
2687 /// and defines the use on the next iteration.
2688 /// v1 = phi(v2, v3)
2689 /// (Def) v3 = op v1
2691 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2693 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG
*SSD
,
2694 MachineInstr
*Def
, MachineOperand
&MO
) {
2699 MachineInstr
*Phi
= MRI
.getVRegDef(MO
.getReg());
2700 if (!Phi
|| !Phi
->isPHI() || Phi
->getParent() != Def
->getParent())
2702 if (!isLoopCarried(SSD
, *Phi
))
2704 unsigned LoopReg
= getLoopPhiReg(*Phi
, Phi
->getParent());
2705 for (unsigned i
= 0, e
= Def
->getNumOperands(); i
!= e
; ++i
) {
2706 MachineOperand
&DMO
= Def
->getOperand(i
);
2707 if (!DMO
.isReg() || !DMO
.isDef())
2709 if (DMO
.getReg() == LoopReg
)
2715 // Check if the generated schedule is valid. This function checks if
2716 // an instruction that uses a physical register is scheduled in a
2717 // different stage than the definition. The pipeliner does not handle
2718 // physical register values that may cross a basic block boundary.
2719 bool SMSchedule::isValidSchedule(SwingSchedulerDAG
*SSD
) {
2720 for (SUnit
&SU
: SSD
->SUnits
) {
2721 if (!SU
.hasPhysRegDefs
)
2723 int StageDef
= stageScheduled(&SU
);
2724 assert(StageDef
!= -1 && "Instruction should have been scheduled.");
2725 for (auto &SI
: SU
.Succs
)
2726 if (SI
.isAssignedRegDep())
2727 if (Register::isPhysicalRegister(SI
.getReg()))
2728 if (stageScheduled(SI
.getSUnit()) != StageDef
)
2734 /// A property of the node order in swing-modulo-scheduling is
2735 /// that for nodes outside circuits the following holds:
2736 /// none of them is scheduled after both a successor and a
2738 /// The method below checks whether the property is met.
2739 /// If not, debug information is printed and statistics information updated.
2740 /// Note that we do not use an assert statement.
2741 /// The reason is that although an invalid node oder may prevent
2742 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2743 /// it does not lead to the generation of incorrect code.
2744 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType
&Circuits
) const {
2746 // a sorted vector that maps each SUnit to its index in the NodeOrder
2747 typedef std::pair
<SUnit
*, unsigned> UnitIndex
;
2748 std::vector
<UnitIndex
> Indices(NodeOrder
.size(), std::make_pair(nullptr, 0));
2750 for (unsigned i
= 0, s
= NodeOrder
.size(); i
< s
; ++i
)
2751 Indices
.push_back(std::make_pair(NodeOrder
[i
], i
));
2753 auto CompareKey
= [](UnitIndex i1
, UnitIndex i2
) {
2754 return std::get
<0>(i1
) < std::get
<0>(i2
);
2757 // sort, so that we can perform a binary search
2758 llvm::sort(Indices
, CompareKey
);
2762 // for each SUnit in the NodeOrder, check whether
2763 // it appears after both a successor and a predecessor
2764 // of the SUnit. If this is the case, and the SUnit
2765 // is not part of circuit, then the NodeOrder is not
2767 for (unsigned i
= 0, s
= NodeOrder
.size(); i
< s
; ++i
) {
2768 SUnit
*SU
= NodeOrder
[i
];
2771 bool PredBefore
= false;
2772 bool SuccBefore
= false;
2779 for (SDep
&PredEdge
: SU
->Preds
) {
2780 SUnit
*PredSU
= PredEdge
.getSUnit();
2781 unsigned PredIndex
= std::get
<1>(
2782 *llvm::lower_bound(Indices
, std::make_pair(PredSU
, 0), CompareKey
));
2783 if (!PredSU
->getInstr()->isPHI() && PredIndex
< Index
) {
2790 for (SDep
&SuccEdge
: SU
->Succs
) {
2791 SUnit
*SuccSU
= SuccEdge
.getSUnit();
2792 // Do not process a boundary node, it was not included in NodeOrder,
2793 // hence not in Indices either, call to std::lower_bound() below will
2794 // return Indices.end().
2795 if (SuccSU
->isBoundaryNode())
2797 unsigned SuccIndex
= std::get
<1>(
2798 *llvm::lower_bound(Indices
, std::make_pair(SuccSU
, 0), CompareKey
));
2799 if (!SuccSU
->getInstr()->isPHI() && SuccIndex
< Index
) {
2806 if (PredBefore
&& SuccBefore
&& !SU
->getInstr()->isPHI()) {
2807 // instructions in circuits are allowed to be scheduled
2808 // after both a successor and predecessor.
2809 bool InCircuit
= llvm::any_of(
2810 Circuits
, [SU
](const NodeSet
&Circuit
) { return Circuit
.count(SU
); });
2812 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2815 NumNodeOrderIssues
++;
2816 LLVM_DEBUG(dbgs() << "Predecessor ";);
2818 LLVM_DEBUG(dbgs() << Pred
->NodeNum
<< " and successor " << Succ
->NodeNum
2819 << " are scheduled before node " << SU
->NodeNum
2826 dbgs() << "Invalid node order found!\n";
2830 /// Attempt to fix the degenerate cases when the instruction serialization
2831 /// causes the register lifetimes to overlap. For example,
2832 /// p' = store_pi(p, b)
2833 /// = load p, offset
2834 /// In this case p and p' overlap, which means that two registers are needed.
2835 /// Instead, this function changes the load to use p' and updates the offset.
2836 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque
<SUnit
*> &Instrs
) {
2837 unsigned OverlapReg
= 0;
2838 unsigned NewBaseReg
= 0;
2839 for (SUnit
*SU
: Instrs
) {
2840 MachineInstr
*MI
= SU
->getInstr();
2841 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
< e
; ++i
) {
2842 const MachineOperand
&MO
= MI
->getOperand(i
);
2843 // Look for an instruction that uses p. The instruction occurs in the
2844 // same cycle but occurs later in the serialized order.
2845 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == OverlapReg
) {
2846 // Check that the instruction appears in the InstrChanges structure,
2847 // which contains instructions that can have the offset updated.
2848 DenseMap
<SUnit
*, std::pair
<unsigned, int64_t>>::iterator It
=
2849 InstrChanges
.find(SU
);
2850 if (It
!= InstrChanges
.end()) {
2851 unsigned BasePos
, OffsetPos
;
2852 // Update the base register and adjust the offset.
2853 if (TII
->getBaseAndOffsetPosition(*MI
, BasePos
, OffsetPos
)) {
2854 MachineInstr
*NewMI
= MF
.CloneMachineInstr(MI
);
2855 NewMI
->getOperand(BasePos
).setReg(NewBaseReg
);
2857 MI
->getOperand(OffsetPos
).getImm() - It
->second
.second
;
2858 NewMI
->getOperand(OffsetPos
).setImm(NewOffset
);
2859 SU
->setInstr(NewMI
);
2860 MISUnitMap
[NewMI
] = SU
;
2868 // Look for an instruction of the form p' = op(p), which uses and defines
2869 // two virtual registers that get allocated to the same physical register.
2870 unsigned TiedUseIdx
= 0;
2871 if (MI
->isRegTiedToUseOperand(i
, &TiedUseIdx
)) {
2872 // OverlapReg is p in the example above.
2873 OverlapReg
= MI
->getOperand(TiedUseIdx
).getReg();
2874 // NewBaseReg is p' in the example above.
2875 NewBaseReg
= MI
->getOperand(i
).getReg();
2882 /// After the schedule has been formed, call this function to combine
2883 /// the instructions from the different stages/cycles. That is, this
2884 /// function creates a schedule that represents a single iteration.
2885 void SMSchedule::finalizeSchedule(SwingSchedulerDAG
*SSD
) {
2886 // Move all instructions to the first stage from later stages.
2887 for (int cycle
= getFirstCycle(); cycle
<= getFinalCycle(); ++cycle
) {
2888 for (int stage
= 1, lastStage
= getMaxStageCount(); stage
<= lastStage
;
2890 std::deque
<SUnit
*> &cycleInstrs
=
2891 ScheduledInstrs
[cycle
+ (stage
* InitiationInterval
)];
2892 for (std::deque
<SUnit
*>::reverse_iterator I
= cycleInstrs
.rbegin(),
2893 E
= cycleInstrs
.rend();
2895 ScheduledInstrs
[cycle
].push_front(*I
);
2899 // Erase all the elements in the later stages. Only one iteration should
2900 // remain in the scheduled list, and it contains all the instructions.
2901 for (int cycle
= getFinalCycle() + 1; cycle
<= LastCycle
; ++cycle
)
2902 ScheduledInstrs
.erase(cycle
);
2904 // Change the registers in instruction as specified in the InstrChanges
2905 // map. We need to use the new registers to create the correct order.
2906 for (int i
= 0, e
= SSD
->SUnits
.size(); i
!= e
; ++i
) {
2907 SUnit
*SU
= &SSD
->SUnits
[i
];
2908 SSD
->applyInstrChange(SU
->getInstr(), *this);
2911 // Reorder the instructions in each cycle to fix and improve the
2913 for (int Cycle
= getFirstCycle(), E
= getFinalCycle(); Cycle
<= E
; ++Cycle
) {
2914 std::deque
<SUnit
*> &cycleInstrs
= ScheduledInstrs
[Cycle
];
2915 std::deque
<SUnit
*> newOrderPhi
;
2916 for (SUnit
*SU
: cycleInstrs
) {
2917 if (SU
->getInstr()->isPHI())
2918 newOrderPhi
.push_back(SU
);
2920 std::deque
<SUnit
*> newOrderI
;
2921 for (SUnit
*SU
: cycleInstrs
) {
2922 if (!SU
->getInstr()->isPHI())
2923 orderDependence(SSD
, SU
, newOrderI
);
2925 // Replace the old order with the new order.
2926 cycleInstrs
.swap(newOrderPhi
);
2927 llvm::append_range(cycleInstrs
, newOrderI
);
2928 SSD
->fixupRegisterOverlaps(cycleInstrs
);
2931 LLVM_DEBUG(dump(););
2934 void NodeSet::print(raw_ostream
&os
) const {
2935 os
<< "Num nodes " << size() << " rec " << RecMII
<< " mov " << MaxMOV
2936 << " depth " << MaxDepth
<< " col " << Colocate
<< "\n";
2937 for (const auto &I
: Nodes
)
2938 os
<< " SU(" << I
->NodeNum
<< ") " << *(I
->getInstr());
2942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2943 /// Print the schedule information to the given output.
2944 void SMSchedule::print(raw_ostream
&os
) const {
2945 // Iterate over each cycle.
2946 for (int cycle
= getFirstCycle(); cycle
<= getFinalCycle(); ++cycle
) {
2947 // Iterate over each instruction in the cycle.
2948 const_sched_iterator cycleInstrs
= ScheduledInstrs
.find(cycle
);
2949 for (SUnit
*CI
: cycleInstrs
->second
) {
2950 os
<< "cycle " << cycle
<< " (" << stageScheduled(CI
) << ") ";
2951 os
<< "(" << CI
->NodeNum
<< ") ";
2952 CI
->getInstr()->print(os
);
2958 /// Utility function used for debugging to print the schedule.
2959 LLVM_DUMP_METHOD
void SMSchedule::dump() const { print(dbgs()); }
2960 LLVM_DUMP_METHOD
void NodeSet::dump() const { print(dbgs()); }
2964 void ResourceManager::initProcResourceVectors(
2965 const MCSchedModel
&SM
, SmallVectorImpl
<uint64_t> &Masks
) {
2966 unsigned ProcResourceID
= 0;
2968 // We currently limit the resource kinds to 64 and below so that we can use
2969 // uint64_t for Masks
2970 assert(SM
.getNumProcResourceKinds() < 64 &&
2971 "Too many kinds of resources, unsupported");
2972 // Create a unique bitmask for every processor resource unit.
2973 // Skip resource at index 0, since it always references 'InvalidUnit'.
2974 Masks
.resize(SM
.getNumProcResourceKinds());
2975 for (unsigned I
= 1, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
2976 const MCProcResourceDesc
&Desc
= *SM
.getProcResource(I
);
2977 if (Desc
.SubUnitsIdxBegin
)
2979 Masks
[I
] = 1ULL << ProcResourceID
;
2982 // Create a unique bitmask for every processor resource group.
2983 for (unsigned I
= 1, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
2984 const MCProcResourceDesc
&Desc
= *SM
.getProcResource(I
);
2985 if (!Desc
.SubUnitsIdxBegin
)
2987 Masks
[I
] = 1ULL << ProcResourceID
;
2988 for (unsigned U
= 0; U
< Desc
.NumUnits
; ++U
)
2989 Masks
[I
] |= Masks
[Desc
.SubUnitsIdxBegin
[U
]];
2993 if (SwpShowResMask
) {
2994 dbgs() << "ProcResourceDesc:\n";
2995 for (unsigned I
= 1, E
= SM
.getNumProcResourceKinds(); I
< E
; ++I
) {
2996 const MCProcResourceDesc
*ProcResource
= SM
.getProcResource(I
);
2997 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2998 ProcResource
->Name
, I
, Masks
[I
],
2999 ProcResource
->NumUnits
);
3001 dbgs() << " -----------------\n";
3006 bool ResourceManager::canReserveResources(const MCInstrDesc
*MID
) const {
3009 if (SwpDebugResource
)
3010 dbgs() << "canReserveResources:\n";
3013 return DFAResources
->canReserveResources(MID
);
3015 unsigned InsnClass
= MID
->getSchedClass();
3016 const MCSchedClassDesc
*SCDesc
= SM
.getSchedClassDesc(InsnClass
);
3017 if (!SCDesc
->isValid()) {
3019 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3020 dbgs() << "isPseduo:" << MID
->isPseudo() << "\n";
3025 const MCWriteProcResEntry
*I
= STI
->getWriteProcResBegin(SCDesc
);
3026 const MCWriteProcResEntry
*E
= STI
->getWriteProcResEnd(SCDesc
);
3027 for (; I
!= E
; ++I
) {
3030 const MCProcResourceDesc
*ProcResource
=
3031 SM
.getProcResource(I
->ProcResourceIdx
);
3032 unsigned NumUnits
= ProcResource
->NumUnits
;
3034 if (SwpDebugResource
)
3035 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3036 ProcResource
->Name
, I
->ProcResourceIdx
,
3037 ProcResourceCount
[I
->ProcResourceIdx
], NumUnits
,
3040 if (ProcResourceCount
[I
->ProcResourceIdx
] >= NumUnits
)
3043 LLVM_DEBUG(if (SwpDebugResource
) dbgs() << "return true\n\n";);
3047 void ResourceManager::reserveResources(const MCInstrDesc
*MID
) {
3049 if (SwpDebugResource
)
3050 dbgs() << "reserveResources:\n";
3053 return DFAResources
->reserveResources(MID
);
3055 unsigned InsnClass
= MID
->getSchedClass();
3056 const MCSchedClassDesc
*SCDesc
= SM
.getSchedClassDesc(InsnClass
);
3057 if (!SCDesc
->isValid()) {
3059 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3060 dbgs() << "isPseduo:" << MID
->isPseudo() << "\n";
3064 for (const MCWriteProcResEntry
&PRE
:
3065 make_range(STI
->getWriteProcResBegin(SCDesc
),
3066 STI
->getWriteProcResEnd(SCDesc
))) {
3069 ++ProcResourceCount
[PRE
.ProcResourceIdx
];
3071 if (SwpDebugResource
) {
3072 const MCProcResourceDesc
*ProcResource
=
3073 SM
.getProcResource(PRE
.ProcResourceIdx
);
3074 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3075 ProcResource
->Name
, PRE
.ProcResourceIdx
,
3076 ProcResourceCount
[PRE
.ProcResourceIdx
],
3077 ProcResource
->NumUnits
, PRE
.Cycles
);
3082 if (SwpDebugResource
)
3083 dbgs() << "reserveResources: done!\n\n";
3087 bool ResourceManager::canReserveResources(const MachineInstr
&MI
) const {
3088 return canReserveResources(&MI
.getDesc());
3091 void ResourceManager::reserveResources(const MachineInstr
&MI
) {
3092 return reserveResources(&MI
.getDesc());
3095 void ResourceManager::clearResources() {
3097 return DFAResources
->clearResources();
3098 std::fill(ProcResourceCount
.begin(), ProcResourceCount
.end(), 0);