[DAGCombiner] Add target hook function to decide folding (mul (add x, c1), c2)
[llvm-project.git] / llvm / lib / CodeGen / MachinePipeliner.cpp
blobf32c8a2978fe3508929b75c03288001a7eda279d
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/CodeGen/DFAPacketizer.h"
48 #include "llvm/CodeGen/LiveIntervals.h"
49 #include "llvm/CodeGen/MachineBasicBlock.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineMemOperand.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachinePipeliner.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/ModuloSchedule.h"
61 #include "llvm/CodeGen/RegisterPressure.h"
62 #include "llvm/CodeGen/ScheduleDAG.h"
63 #include "llvm/CodeGen/ScheduleDAGMutation.h"
64 #include "llvm/CodeGen/TargetOpcodes.h"
65 #include "llvm/CodeGen/TargetRegisterInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
94 using namespace llvm;
96 #define DEBUG_TYPE "pipeliner"
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112 cl::ZeroOrMore,
113 cl::desc("Enable Software Pipelining"));
115 /// A command line option to enable SWP at -Os.
116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117 cl::desc("Enable SWP at Os."), cl::Hidden,
118 cl::init(false));
120 /// A command line argument to limit minimum initial interval for pipelining.
121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
122 cl::desc("Size limit for the MII."),
123 cl::Hidden, cl::init(27));
125 /// A command line argument to limit the number of stages in the pipeline.
126 static cl::opt<int>
127 SwpMaxStages("pipeliner-max-stages",
128 cl::desc("Maximum stages allowed in the generated scheduled."),
129 cl::Hidden, cl::init(3));
131 /// A command line option to disable the pruning of chain dependences due to
132 /// an unrelated Phi.
133 static cl::opt<bool>
134 SwpPruneDeps("pipeliner-prune-deps",
135 cl::desc("Prune dependences between unrelated Phi nodes."),
136 cl::Hidden, cl::init(true));
138 /// A command line option to disable the pruning of loop carried order
139 /// dependences.
140 static cl::opt<bool>
141 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142 cl::desc("Prune loop carried order dependences."),
143 cl::Hidden, cl::init(true));
145 #ifndef NDEBUG
146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
147 #endif
149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150 cl::ReallyHidden, cl::init(false),
151 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
154 cl::init(false));
155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
156 cl::init(false));
158 static cl::opt<bool> EmitTestAnnotations(
159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
160 cl::desc("Instead of emitting the pipelined code, annotate instructions "
161 "with the generated schedule for feeding into the "
162 "-modulo-schedule-test pass"));
164 static cl::opt<bool> ExperimentalCodeGen(
165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
166 cl::desc(
167 "Use the experimental peeling code generator for software pipelining"));
169 namespace llvm {
171 // A command line option to enable the CopyToPhi DAG mutation.
172 cl::opt<bool>
173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
174 cl::init(true), cl::ZeroOrMore,
175 cl::desc("Enable CopyToPhi DAG Mutation"));
177 } // end namespace llvm
179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
180 char MachinePipeliner::ID = 0;
181 #ifndef NDEBUG
182 int MachinePipeliner::NumTries = 0;
183 #endif
184 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
187 "Modulo Software Pipelining", false, false)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
193 "Modulo Software Pipelining", false, false)
195 /// The "main" function for implementing Swing Modulo Scheduling.
196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
197 if (skipFunction(mf.getFunction()))
198 return false;
200 if (!EnableSWP)
201 return false;
203 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
204 !EnableSWPOptSize.getPosition())
205 return false;
207 if (!mf.getSubtarget().enableMachinePipeliner())
208 return false;
210 // Cannot pipeline loops without instruction itineraries if we are using
211 // DFA for the pipeliner.
212 if (mf.getSubtarget().useDFAforSMS() &&
213 (!mf.getSubtarget().getInstrItineraryData() ||
214 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215 return false;
217 MF = &mf;
218 MLI = &getAnalysis<MachineLoopInfo>();
219 MDT = &getAnalysis<MachineDominatorTree>();
220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
221 TII = MF->getSubtarget().getInstrInfo();
222 RegClassInfo.runOnMachineFunction(*MF);
224 for (auto &L : *MLI)
225 scheduleLoop(*L);
227 return false;
230 /// Attempt to perform the SMS algorithm on the specified loop. This function is
231 /// the main entry point for the algorithm. The function identifies candidate
232 /// loops, calculates the minimum initiation interval, and attempts to schedule
233 /// the loop.
234 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
235 bool Changed = false;
236 for (auto &InnerLoop : L)
237 Changed |= scheduleLoop(*InnerLoop);
239 #ifndef NDEBUG
240 // Stop trying after reaching the limit (if any).
241 int Limit = SwpLoopLimit;
242 if (Limit >= 0) {
243 if (NumTries >= SwpLoopLimit)
244 return Changed;
245 NumTries++;
247 #endif
249 setPragmaPipelineOptions(L);
250 if (!canPipelineLoop(L)) {
251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
252 ORE->emit([&]() {
253 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
254 L.getStartLoc(), L.getHeader())
255 << "Failed to pipeline loop";
258 return Changed;
261 ++NumTrytoPipeline;
263 Changed = swingModuloScheduler(L);
265 return Changed;
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269 // Reset the pragma for the next loop in iteration.
270 disabledByPragma = false;
271 II_setByPragma = 0;
273 MachineBasicBlock *LBLK = L.getTopBlock();
275 if (LBLK == nullptr)
276 return;
278 const BasicBlock *BBLK = LBLK->getBasicBlock();
279 if (BBLK == nullptr)
280 return;
282 const Instruction *TI = BBLK->getTerminator();
283 if (TI == nullptr)
284 return;
286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287 if (LoopID == nullptr)
288 return;
290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
296 if (MD == nullptr)
297 continue;
299 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
301 if (S == nullptr)
302 continue;
304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305 assert(MD->getNumOperands() == 2 &&
306 "Pipeline initiation interval hint metadata should have two operands.");
307 II_setByPragma =
308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310 } else if (S->getString() == "llvm.loop.pipeline.disable") {
311 disabledByPragma = true;
316 /// Return true if the loop can be software pipelined. The algorithm is
317 /// restricted to loops with a single basic block. Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320 if (L.getNumBlocks() != 1) {
321 ORE->emit([&]() {
322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323 L.getStartLoc(), L.getHeader())
324 << "Not a single basic block: "
325 << ore::NV("NumBlocks", L.getNumBlocks());
327 return false;
330 if (disabledByPragma) {
331 ORE->emit([&]() {
332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333 L.getStartLoc(), L.getHeader())
334 << "Disabled by Pragma.";
336 return false;
339 // Check if the branch can't be understood because we can't do pipelining
340 // if that's the case.
341 LI.TBB = nullptr;
342 LI.FBB = nullptr;
343 LI.BrCond.clear();
344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346 NumFailBranch++;
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "The branch can't be understood";
352 return false;
355 LI.LoopInductionVar = nullptr;
356 LI.LoopCompare = nullptr;
357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
359 NumFailLoop++;
360 ORE->emit([&]() {
361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
362 L.getStartLoc(), L.getHeader())
363 << "The loop structure is not supported";
365 return false;
368 if (!L.getLoopPreheader()) {
369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
370 NumFailPreheader++;
371 ORE->emit([&]() {
372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
373 L.getStartLoc(), L.getHeader())
374 << "No loop preheader found";
376 return false;
379 // Remove any subregisters from inputs to phi nodes.
380 preprocessPhiNodes(*L.getHeader());
381 return true;
384 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
385 MachineRegisterInfo &MRI = MF->getRegInfo();
386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
388 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
389 MachineOperand &DefOp = PI.getOperand(0);
390 assert(DefOp.getSubReg() == 0);
391 auto *RC = MRI.getRegClass(DefOp.getReg());
393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
394 MachineOperand &RegOp = PI.getOperand(i);
395 if (RegOp.getSubReg() == 0)
396 continue;
398 // If the operand uses a subregister, replace it with a new register
399 // without subregisters, and generate a copy to the new register.
400 Register NewReg = MRI.createVirtualRegister(RC);
401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
402 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
403 const DebugLoc &DL = PredB.findDebugLoc(At);
404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
405 .addReg(RegOp.getReg(), getRegState(RegOp),
406 RegOp.getSubReg());
407 Slots.insertMachineInstrInMaps(*Copy);
408 RegOp.setReg(NewReg);
409 RegOp.setSubReg(0);
414 /// The SMS algorithm consists of the following main steps:
415 /// 1. Computation and analysis of the dependence graph.
416 /// 2. Ordering of the nodes (instructions).
417 /// 3. Attempt to Schedule the loop.
418 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
422 II_setByPragma);
424 MachineBasicBlock *MBB = L.getHeader();
425 // The kernel should not include any terminator instructions. These
426 // will be added back later.
427 SMS.startBlock(MBB);
429 // Compute the number of 'real' instructions in the basic block by
430 // ignoring terminators.
431 unsigned size = MBB->size();
432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
433 E = MBB->instr_end();
434 I != E; ++I, --size)
437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
438 SMS.schedule();
439 SMS.exitRegion();
441 SMS.finishBlock();
442 return SMS.hasNewSchedule();
445 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
446 AU.addRequired<AAResultsWrapperPass>();
447 AU.addPreserved<AAResultsWrapperPass>();
448 AU.addRequired<MachineLoopInfo>();
449 AU.addRequired<MachineDominatorTree>();
450 AU.addRequired<LiveIntervals>();
451 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
452 MachineFunctionPass::getAnalysisUsage(AU);
455 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
456 if (II_setByPragma > 0)
457 MII = II_setByPragma;
458 else
459 MII = std::max(ResMII, RecMII);
462 void SwingSchedulerDAG::setMAX_II() {
463 if (II_setByPragma > 0)
464 MAX_II = II_setByPragma;
465 else
466 MAX_II = MII + 10;
469 /// We override the schedule function in ScheduleDAGInstrs to implement the
470 /// scheduling part of the Swing Modulo Scheduling algorithm.
471 void SwingSchedulerDAG::schedule() {
472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
473 buildSchedGraph(AA);
474 addLoopCarriedDependences(AA);
475 updatePhiDependences();
476 Topo.InitDAGTopologicalSorting();
477 changeDependences();
478 postprocessDAG();
479 LLVM_DEBUG(dump());
481 NodeSetType NodeSets;
482 findCircuits(NodeSets);
483 NodeSetType Circuits = NodeSets;
485 // Calculate the MII.
486 unsigned ResMII = calculateResMII();
487 unsigned RecMII = calculateRecMII(NodeSets);
489 fuseRecs(NodeSets);
491 // This flag is used for testing and can cause correctness problems.
492 if (SwpIgnoreRecMII)
493 RecMII = 0;
495 setMII(ResMII, RecMII);
496 setMAX_II();
498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
501 // Can't schedule a loop without a valid MII.
502 if (MII == 0) {
503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
504 NumFailZeroMII++;
505 Pass.ORE->emit([&]() {
506 return MachineOptimizationRemarkAnalysis(
507 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
508 << "Invalid Minimal Initiation Interval: 0";
510 return;
513 // Don't pipeline large loops.
514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
516 << ", we don't pipleline large loops\n");
517 NumFailLargeMaxMII++;
518 Pass.ORE->emit([&]() {
519 return MachineOptimizationRemarkAnalysis(
520 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
521 << "Minimal Initiation Interval too large: "
522 << ore::NV("MII", (int)MII) << " > "
523 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
524 << "Refer to -pipeliner-max-mii.";
526 return;
529 computeNodeFunctions(NodeSets);
531 registerPressureFilter(NodeSets);
533 colocateNodeSets(NodeSets);
535 checkNodeSets(NodeSets);
537 LLVM_DEBUG({
538 for (auto &I : NodeSets) {
539 dbgs() << " Rec NodeSet ";
540 I.dump();
544 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
546 groupRemainingNodes(NodeSets);
548 removeDuplicateNodes(NodeSets);
550 LLVM_DEBUG({
551 for (auto &I : NodeSets) {
552 dbgs() << " NodeSet ";
553 I.dump();
557 computeNodeOrder(NodeSets);
559 // check for node order issues
560 checkValidNodeOrder(Circuits);
562 SMSchedule Schedule(Pass.MF);
563 Scheduled = schedulePipeline(Schedule);
565 if (!Scheduled){
566 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
567 NumFailNoSchedule++;
568 Pass.ORE->emit([&]() {
569 return MachineOptimizationRemarkAnalysis(
570 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
571 << "Unable to find schedule";
573 return;
576 unsigned numStages = Schedule.getMaxStageCount();
577 // No need to generate pipeline if there are no overlapped iterations.
578 if (numStages == 0) {
579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
580 NumFailZeroStage++;
581 Pass.ORE->emit([&]() {
582 return MachineOptimizationRemarkAnalysis(
583 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
584 << "No need to pipeline - no overlapped iterations in schedule.";
586 return;
588 // Check that the maximum stage count is less than user-defined limit.
589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
591 << " : too many stages, abort\n");
592 NumFailLargeMaxStage++;
593 Pass.ORE->emit([&]() {
594 return MachineOptimizationRemarkAnalysis(
595 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
596 << "Too many stages in schedule: "
597 << ore::NV("numStages", (int)numStages) << " > "
598 << ore::NV("SwpMaxStages", SwpMaxStages)
599 << ". Refer to -pipeliner-max-stages.";
601 return;
604 Pass.ORE->emit([&]() {
605 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
606 Loop.getHeader())
607 << "Pipelined succesfully!";
610 // Generate the schedule as a ModuloSchedule.
611 DenseMap<MachineInstr *, int> Cycles, Stages;
612 std::vector<MachineInstr *> OrderedInsts;
613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
614 ++Cycle) {
615 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
616 OrderedInsts.push_back(SU->getInstr());
617 Cycles[SU->getInstr()] = Cycle;
618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
622 for (auto &KV : NewMIs) {
623 Cycles[KV.first] = Cycles[KV.second];
624 Stages[KV.first] = Stages[KV.second];
625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
629 std::move(Stages));
630 if (EmitTestAnnotations) {
631 assert(NewInstrChanges.empty() &&
632 "Cannot serialize a schedule with InstrChanges!");
633 ModuloScheduleTestAnnotater MSTI(MF, MS);
634 MSTI.annotate();
635 return;
637 // The experimental code generator can't work if there are InstChanges.
638 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
640 MSE.expand();
641 } else {
642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
643 MSE.expand();
644 MSE.cleanup();
646 ++NumPipelined;
649 /// Clean up after the software pipeliner runs.
650 void SwingSchedulerDAG::finishBlock() {
651 for (auto &KV : NewMIs)
652 MF.DeleteMachineInstr(KV.second);
653 NewMIs.clear();
655 // Call the superclass.
656 ScheduleDAGInstrs::finishBlock();
659 /// Return the register values for the operands of a Phi instruction.
660 /// This function assume the instruction is a Phi.
661 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
662 unsigned &InitVal, unsigned &LoopVal) {
663 assert(Phi.isPHI() && "Expecting a Phi.");
665 InitVal = 0;
666 LoopVal = 0;
667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668 if (Phi.getOperand(i + 1).getMBB() != Loop)
669 InitVal = Phi.getOperand(i).getReg();
670 else
671 LoopVal = Phi.getOperand(i).getReg();
673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
676 /// Return the Phi register value that comes the loop block.
677 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
679 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
680 return Phi.getOperand(i).getReg();
681 return 0;
684 /// Return true if SUb can be reached from SUa following the chain edges.
685 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
686 SmallPtrSet<SUnit *, 8> Visited;
687 SmallVector<SUnit *, 8> Worklist;
688 Worklist.push_back(SUa);
689 while (!Worklist.empty()) {
690 const SUnit *SU = Worklist.pop_back_val();
691 for (auto &SI : SU->Succs) {
692 SUnit *SuccSU = SI.getSUnit();
693 if (SI.getKind() == SDep::Order) {
694 if (Visited.count(SuccSU))
695 continue;
696 if (SuccSU == SUb)
697 return true;
698 Worklist.push_back(SuccSU);
699 Visited.insert(SuccSU);
703 return false;
706 /// Return true if the instruction causes a chain between memory
707 /// references before and after it.
708 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
709 return MI.isCall() || MI.mayRaiseFPException() ||
710 MI.hasUnmodeledSideEffects() ||
711 (MI.hasOrderedMemoryRef() &&
712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
715 /// Return the underlying objects for the memory references of an instruction.
716 /// This function calls the code in ValueTracking, but first checks that the
717 /// instruction has a memory operand.
718 static void getUnderlyingObjects(const MachineInstr *MI,
719 SmallVectorImpl<const Value *> &Objs) {
720 if (!MI->hasOneMemOperand())
721 return;
722 MachineMemOperand *MM = *MI->memoperands_begin();
723 if (!MM->getValue())
724 return;
725 getUnderlyingObjects(MM->getValue(), Objs);
726 for (const Value *V : Objs) {
727 if (!isIdentifiedObject(V)) {
728 Objs.clear();
729 return;
731 Objs.push_back(V);
735 /// Add a chain edge between a load and store if the store can be an
736 /// alias of the load on a subsequent iteration, i.e., a loop carried
737 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
738 /// but that code doesn't create loop carried dependences.
739 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
741 Value *UnknownValue =
742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
743 for (auto &SU : SUnits) {
744 MachineInstr &MI = *SU.getInstr();
745 if (isDependenceBarrier(MI, AA))
746 PendingLoads.clear();
747 else if (MI.mayLoad()) {
748 SmallVector<const Value *, 4> Objs;
749 ::getUnderlyingObjects(&MI, Objs);
750 if (Objs.empty())
751 Objs.push_back(UnknownValue);
752 for (auto V : Objs) {
753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
754 SUs.push_back(&SU);
756 } else if (MI.mayStore()) {
757 SmallVector<const Value *, 4> Objs;
758 ::getUnderlyingObjects(&MI, Objs);
759 if (Objs.empty())
760 Objs.push_back(UnknownValue);
761 for (auto V : Objs) {
762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
763 PendingLoads.find(V);
764 if (I == PendingLoads.end())
765 continue;
766 for (auto Load : I->second) {
767 if (isSuccOrder(Load, &SU))
768 continue;
769 MachineInstr &LdMI = *Load->getInstr();
770 // First, perform the cheaper check that compares the base register.
771 // If they are the same and the load offset is less than the store
772 // offset, then mark the dependence as loop carried potentially.
773 const MachineOperand *BaseOp1, *BaseOp2;
774 int64_t Offset1, Offset2;
775 bool Offset1IsScalable, Offset2IsScalable;
776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
777 Offset1IsScalable, TRI) &&
778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
779 Offset2IsScalable, TRI)) {
780 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
781 Offset1IsScalable == Offset2IsScalable &&
782 (int)Offset1 < (int)Offset2) {
783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
784 "What happened to the chain edge?");
785 SDep Dep(Load, SDep::Barrier);
786 Dep.setLatency(1);
787 SU.addPred(Dep);
788 continue;
791 // Second, the more expensive check that uses alias analysis on the
792 // base registers. If they alias, and the load offset is less than
793 // the store offset, the mark the dependence as loop carried.
794 if (!AA) {
795 SDep Dep(Load, SDep::Barrier);
796 Dep.setLatency(1);
797 SU.addPred(Dep);
798 continue;
800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
801 MachineMemOperand *MMO2 = *MI.memoperands_begin();
802 if (!MMO1->getValue() || !MMO2->getValue()) {
803 SDep Dep(Load, SDep::Barrier);
804 Dep.setLatency(1);
805 SU.addPred(Dep);
806 continue;
808 if (MMO1->getValue() == MMO2->getValue() &&
809 MMO1->getOffset() <= MMO2->getOffset()) {
810 SDep Dep(Load, SDep::Barrier);
811 Dep.setLatency(1);
812 SU.addPred(Dep);
813 continue;
815 if (!AA->isNoAlias(
816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
817 MemoryLocation::getAfter(MMO2->getValue(),
818 MMO2->getAAInfo()))) {
819 SDep Dep(Load, SDep::Barrier);
820 Dep.setLatency(1);
821 SU.addPred(Dep);
829 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
830 /// processes dependences for PHIs. This function adds true dependences
831 /// from a PHI to a use, and a loop carried dependence from the use to the
832 /// PHI. The loop carried dependence is represented as an anti dependence
833 /// edge. This function also removes chain dependences between unrelated
834 /// PHIs.
835 void SwingSchedulerDAG::updatePhiDependences() {
836 SmallVector<SDep, 4> RemoveDeps;
837 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839 // Iterate over each DAG node.
840 for (SUnit &I : SUnits) {
841 RemoveDeps.clear();
842 // Set to true if the instruction has an operand defined by a Phi.
843 unsigned HasPhiUse = 0;
844 unsigned HasPhiDef = 0;
845 MachineInstr *MI = I.getInstr();
846 // Iterate over each operand, and we process the definitions.
847 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
848 MOE = MI->operands_end();
849 MOI != MOE; ++MOI) {
850 if (!MOI->isReg())
851 continue;
852 Register Reg = MOI->getReg();
853 if (MOI->isDef()) {
854 // If the register is used by a Phi, then create an anti dependence.
855 for (MachineRegisterInfo::use_instr_iterator
856 UI = MRI.use_instr_begin(Reg),
857 UE = MRI.use_instr_end();
858 UI != UE; ++UI) {
859 MachineInstr *UseMI = &*UI;
860 SUnit *SU = getSUnit(UseMI);
861 if (SU != nullptr && UseMI->isPHI()) {
862 if (!MI->isPHI()) {
863 SDep Dep(SU, SDep::Anti, Reg);
864 Dep.setLatency(1);
865 I.addPred(Dep);
866 } else {
867 HasPhiDef = Reg;
868 // Add a chain edge to a dependent Phi that isn't an existing
869 // predecessor.
870 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
871 I.addPred(SDep(SU, SDep::Barrier));
875 } else if (MOI->isUse()) {
876 // If the register is defined by a Phi, then create a true dependence.
877 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
878 if (DefMI == nullptr)
879 continue;
880 SUnit *SU = getSUnit(DefMI);
881 if (SU != nullptr && DefMI->isPHI()) {
882 if (!MI->isPHI()) {
883 SDep Dep(SU, SDep::Data, Reg);
884 Dep.setLatency(0);
885 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
886 I.addPred(Dep);
887 } else {
888 HasPhiUse = Reg;
889 // Add a chain edge to a dependent Phi that isn't an existing
890 // predecessor.
891 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
892 I.addPred(SDep(SU, SDep::Barrier));
897 // Remove order dependences from an unrelated Phi.
898 if (!SwpPruneDeps)
899 continue;
900 for (auto &PI : I.Preds) {
901 MachineInstr *PMI = PI.getSUnit()->getInstr();
902 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
903 if (I.getInstr()->isPHI()) {
904 if (PMI->getOperand(0).getReg() == HasPhiUse)
905 continue;
906 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
907 continue;
909 RemoveDeps.push_back(PI);
912 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
913 I.removePred(RemoveDeps[i]);
917 /// Iterate over each DAG node and see if we can change any dependences
918 /// in order to reduce the recurrence MII.
919 void SwingSchedulerDAG::changeDependences() {
920 // See if an instruction can use a value from the previous iteration.
921 // If so, we update the base and offset of the instruction and change
922 // the dependences.
923 for (SUnit &I : SUnits) {
924 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
925 int64_t NewOffset = 0;
926 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
927 NewOffset))
928 continue;
930 // Get the MI and SUnit for the instruction that defines the original base.
931 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
932 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
933 if (!DefMI)
934 continue;
935 SUnit *DefSU = getSUnit(DefMI);
936 if (!DefSU)
937 continue;
938 // Get the MI and SUnit for the instruction that defins the new base.
939 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
940 if (!LastMI)
941 continue;
942 SUnit *LastSU = getSUnit(LastMI);
943 if (!LastSU)
944 continue;
946 if (Topo.IsReachable(&I, LastSU))
947 continue;
949 // Remove the dependence. The value now depends on a prior iteration.
950 SmallVector<SDep, 4> Deps;
951 for (const SDep &P : I.Preds)
952 if (P.getSUnit() == DefSU)
953 Deps.push_back(P);
954 for (int i = 0, e = Deps.size(); i != e; i++) {
955 Topo.RemovePred(&I, Deps[i].getSUnit());
956 I.removePred(Deps[i]);
958 // Remove the chain dependence between the instructions.
959 Deps.clear();
960 for (auto &P : LastSU->Preds)
961 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
962 Deps.push_back(P);
963 for (int i = 0, e = Deps.size(); i != e; i++) {
964 Topo.RemovePred(LastSU, Deps[i].getSUnit());
965 LastSU->removePred(Deps[i]);
968 // Add a dependence between the new instruction and the instruction
969 // that defines the new base.
970 SDep Dep(&I, SDep::Anti, NewBase);
971 Topo.AddPred(LastSU, &I);
972 LastSU->addPred(Dep);
974 // Remember the base and offset information so that we can update the
975 // instruction during code generation.
976 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
980 namespace {
982 // FuncUnitSorter - Comparison operator used to sort instructions by
983 // the number of functional unit choices.
984 struct FuncUnitSorter {
985 const InstrItineraryData *InstrItins;
986 const MCSubtargetInfo *STI;
987 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
989 FuncUnitSorter(const TargetSubtargetInfo &TSI)
990 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
992 // Compute the number of functional unit alternatives needed
993 // at each stage, and take the minimum value. We prioritize the
994 // instructions by the least number of choices first.
995 unsigned minFuncUnits(const MachineInstr *Inst,
996 InstrStage::FuncUnits &F) const {
997 unsigned SchedClass = Inst->getDesc().getSchedClass();
998 unsigned min = UINT_MAX;
999 if (InstrItins && !InstrItins->isEmpty()) {
1000 for (const InstrStage &IS :
1001 make_range(InstrItins->beginStage(SchedClass),
1002 InstrItins->endStage(SchedClass))) {
1003 InstrStage::FuncUnits funcUnits = IS.getUnits();
1004 unsigned numAlternatives = countPopulation(funcUnits);
1005 if (numAlternatives < min) {
1006 min = numAlternatives;
1007 F = funcUnits;
1010 return min;
1012 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1013 const MCSchedClassDesc *SCDesc =
1014 STI->getSchedModel().getSchedClassDesc(SchedClass);
1015 if (!SCDesc->isValid())
1016 // No valid Schedule Class Desc for schedClass, should be
1017 // Pseudo/PostRAPseudo
1018 return min;
1020 for (const MCWriteProcResEntry &PRE :
1021 make_range(STI->getWriteProcResBegin(SCDesc),
1022 STI->getWriteProcResEnd(SCDesc))) {
1023 if (!PRE.Cycles)
1024 continue;
1025 const MCProcResourceDesc *ProcResource =
1026 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1027 unsigned NumUnits = ProcResource->NumUnits;
1028 if (NumUnits < min) {
1029 min = NumUnits;
1030 F = PRE.ProcResourceIdx;
1033 return min;
1035 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1038 // Compute the critical resources needed by the instruction. This
1039 // function records the functional units needed by instructions that
1040 // must use only one functional unit. We use this as a tie breaker
1041 // for computing the resource MII. The instrutions that require
1042 // the same, highly used, functional unit have high priority.
1043 void calcCriticalResources(MachineInstr &MI) {
1044 unsigned SchedClass = MI.getDesc().getSchedClass();
1045 if (InstrItins && !InstrItins->isEmpty()) {
1046 for (const InstrStage &IS :
1047 make_range(InstrItins->beginStage(SchedClass),
1048 InstrItins->endStage(SchedClass))) {
1049 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1050 if (countPopulation(FuncUnits) == 1)
1051 Resources[FuncUnits]++;
1053 return;
1055 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1056 const MCSchedClassDesc *SCDesc =
1057 STI->getSchedModel().getSchedClassDesc(SchedClass);
1058 if (!SCDesc->isValid())
1059 // No valid Schedule Class Desc for schedClass, should be
1060 // Pseudo/PostRAPseudo
1061 return;
1063 for (const MCWriteProcResEntry &PRE :
1064 make_range(STI->getWriteProcResBegin(SCDesc),
1065 STI->getWriteProcResEnd(SCDesc))) {
1066 if (!PRE.Cycles)
1067 continue;
1068 Resources[PRE.ProcResourceIdx]++;
1070 return;
1072 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1075 /// Return true if IS1 has less priority than IS2.
1076 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1077 InstrStage::FuncUnits F1 = 0, F2 = 0;
1078 unsigned MFUs1 = minFuncUnits(IS1, F1);
1079 unsigned MFUs2 = minFuncUnits(IS2, F2);
1080 if (MFUs1 == MFUs2)
1081 return Resources.lookup(F1) < Resources.lookup(F2);
1082 return MFUs1 > MFUs2;
1086 } // end anonymous namespace
1088 /// Calculate the resource constrained minimum initiation interval for the
1089 /// specified loop. We use the DFA to model the resources needed for
1090 /// each instruction, and we ignore dependences. A different DFA is created
1091 /// for each cycle that is required. When adding a new instruction, we attempt
1092 /// to add it to each existing DFA, until a legal space is found. If the
1093 /// instruction cannot be reserved in an existing DFA, we create a new one.
1094 unsigned SwingSchedulerDAG::calculateResMII() {
1096 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1097 SmallVector<ResourceManager*, 8> Resources;
1098 MachineBasicBlock *MBB = Loop.getHeader();
1099 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1101 // Sort the instructions by the number of available choices for scheduling,
1102 // least to most. Use the number of critical resources as the tie breaker.
1103 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1104 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1105 E = MBB->getFirstTerminator();
1106 I != E; ++I)
1107 FUS.calcCriticalResources(*I);
1108 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1109 FuncUnitOrder(FUS);
1111 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1112 E = MBB->getFirstTerminator();
1113 I != E; ++I)
1114 FuncUnitOrder.push(&*I);
1116 while (!FuncUnitOrder.empty()) {
1117 MachineInstr *MI = FuncUnitOrder.top();
1118 FuncUnitOrder.pop();
1119 if (TII->isZeroCost(MI->getOpcode()))
1120 continue;
1121 // Attempt to reserve the instruction in an existing DFA. At least one
1122 // DFA is needed for each cycle.
1123 unsigned NumCycles = getSUnit(MI)->Latency;
1124 unsigned ReservedCycles = 0;
1125 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1126 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1127 LLVM_DEBUG({
1128 dbgs() << "Trying to reserve resource for " << NumCycles
1129 << " cycles for \n";
1130 MI->dump();
1132 for (unsigned C = 0; C < NumCycles; ++C)
1133 while (RI != RE) {
1134 if ((*RI)->canReserveResources(*MI)) {
1135 (*RI)->reserveResources(*MI);
1136 ++ReservedCycles;
1137 break;
1139 RI++;
1141 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1142 << ", NumCycles:" << NumCycles << "\n");
1143 // Add new DFAs, if needed, to reserve resources.
1144 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1145 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1146 << "NewResource created to reserve resources"
1147 << "\n");
1148 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1149 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1150 NewResource->reserveResources(*MI);
1151 Resources.push_back(NewResource);
1154 int Resmii = Resources.size();
1155 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1156 // Delete the memory for each of the DFAs that were created earlier.
1157 for (ResourceManager *RI : Resources) {
1158 ResourceManager *D = RI;
1159 delete D;
1161 Resources.clear();
1162 return Resmii;
1165 /// Calculate the recurrence-constrainted minimum initiation interval.
1166 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1167 /// for each circuit. The II needs to satisfy the inequality
1168 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1169 /// II that satisfies the inequality, and the RecMII is the maximum
1170 /// of those values.
1171 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1172 unsigned RecMII = 0;
1174 for (NodeSet &Nodes : NodeSets) {
1175 if (Nodes.empty())
1176 continue;
1178 unsigned Delay = Nodes.getLatency();
1179 unsigned Distance = 1;
1181 // ii = ceil(delay / distance)
1182 unsigned CurMII = (Delay + Distance - 1) / Distance;
1183 Nodes.setRecMII(CurMII);
1184 if (CurMII > RecMII)
1185 RecMII = CurMII;
1188 return RecMII;
1191 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1192 /// but we do this to find the circuits, and then change them back.
1193 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1194 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1195 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1196 SUnit *SU = &SUnits[i];
1197 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1198 IP != EP; ++IP) {
1199 if (IP->getKind() != SDep::Anti)
1200 continue;
1201 DepsAdded.push_back(std::make_pair(SU, *IP));
1204 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1205 // Remove this anti dependency and add one in the reverse direction.
1206 SUnit *SU = P.first;
1207 SDep &D = P.second;
1208 SUnit *TargetSU = D.getSUnit();
1209 unsigned Reg = D.getReg();
1210 unsigned Lat = D.getLatency();
1211 SU->removePred(D);
1212 SDep Dep(SU, SDep::Anti, Reg);
1213 Dep.setLatency(Lat);
1214 TargetSU->addPred(Dep);
1218 /// Create the adjacency structure of the nodes in the graph.
1219 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1220 SwingSchedulerDAG *DAG) {
1221 BitVector Added(SUnits.size());
1222 DenseMap<int, int> OutputDeps;
1223 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1224 Added.reset();
1225 // Add any successor to the adjacency matrix and exclude duplicates.
1226 for (auto &SI : SUnits[i].Succs) {
1227 // Only create a back-edge on the first and last nodes of a dependence
1228 // chain. This records any chains and adds them later.
1229 if (SI.getKind() == SDep::Output) {
1230 int N = SI.getSUnit()->NodeNum;
1231 int BackEdge = i;
1232 auto Dep = OutputDeps.find(BackEdge);
1233 if (Dep != OutputDeps.end()) {
1234 BackEdge = Dep->second;
1235 OutputDeps.erase(Dep);
1237 OutputDeps[N] = BackEdge;
1239 // Do not process a boundary node, an artificial node.
1240 // A back-edge is processed only if it goes to a Phi.
1241 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1242 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1243 continue;
1244 int N = SI.getSUnit()->NodeNum;
1245 if (!Added.test(N)) {
1246 AdjK[i].push_back(N);
1247 Added.set(N);
1250 // A chain edge between a store and a load is treated as a back-edge in the
1251 // adjacency matrix.
1252 for (auto &PI : SUnits[i].Preds) {
1253 if (!SUnits[i].getInstr()->mayStore() ||
1254 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1255 continue;
1256 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1257 int N = PI.getSUnit()->NodeNum;
1258 if (!Added.test(N)) {
1259 AdjK[i].push_back(N);
1260 Added.set(N);
1265 // Add back-edges in the adjacency matrix for the output dependences.
1266 for (auto &OD : OutputDeps)
1267 if (!Added.test(OD.second)) {
1268 AdjK[OD.first].push_back(OD.second);
1269 Added.set(OD.second);
1273 /// Identify an elementary circuit in the dependence graph starting at the
1274 /// specified node.
1275 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1276 bool HasBackedge) {
1277 SUnit *SV = &SUnits[V];
1278 bool F = false;
1279 Stack.insert(SV);
1280 Blocked.set(V);
1282 for (auto W : AdjK[V]) {
1283 if (NumPaths > MaxPaths)
1284 break;
1285 if (W < S)
1286 continue;
1287 if (W == S) {
1288 if (!HasBackedge)
1289 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1290 F = true;
1291 ++NumPaths;
1292 break;
1293 } else if (!Blocked.test(W)) {
1294 if (circuit(W, S, NodeSets,
1295 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1296 F = true;
1300 if (F)
1301 unblock(V);
1302 else {
1303 for (auto W : AdjK[V]) {
1304 if (W < S)
1305 continue;
1306 if (B[W].count(SV) == 0)
1307 B[W].insert(SV);
1310 Stack.pop_back();
1311 return F;
1314 /// Unblock a node in the circuit finding algorithm.
1315 void SwingSchedulerDAG::Circuits::unblock(int U) {
1316 Blocked.reset(U);
1317 SmallPtrSet<SUnit *, 4> &BU = B[U];
1318 while (!BU.empty()) {
1319 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1320 assert(SI != BU.end() && "Invalid B set.");
1321 SUnit *W = *SI;
1322 BU.erase(W);
1323 if (Blocked.test(W->NodeNum))
1324 unblock(W->NodeNum);
1328 /// Identify all the elementary circuits in the dependence graph using
1329 /// Johnson's circuit algorithm.
1330 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1331 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1332 // but we do this to find the circuits, and then change them back.
1333 swapAntiDependences(SUnits);
1335 Circuits Cir(SUnits, Topo);
1336 // Create the adjacency structure.
1337 Cir.createAdjacencyStructure(this);
1338 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1339 Cir.reset();
1340 Cir.circuit(i, i, NodeSets);
1343 // Change the dependences back so that we've created a DAG again.
1344 swapAntiDependences(SUnits);
1347 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1348 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1349 // additional copies that are needed across iterations. An artificial dependence
1350 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1352 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1353 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1354 // PHI-------True-Dep------> USEOfPhi
1356 // The mutation creates
1357 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1359 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1360 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1361 // late to avoid additional copies across iterations. The possible scheduling
1362 // order would be
1363 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1365 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1366 for (SUnit &SU : DAG->SUnits) {
1367 // Find the COPY/REG_SEQUENCE instruction.
1368 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1369 continue;
1371 // Record the loop carried PHIs.
1372 SmallVector<SUnit *, 4> PHISUs;
1373 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1374 SmallVector<SUnit *, 4> SrcSUs;
1376 for (auto &Dep : SU.Preds) {
1377 SUnit *TmpSU = Dep.getSUnit();
1378 MachineInstr *TmpMI = TmpSU->getInstr();
1379 SDep::Kind DepKind = Dep.getKind();
1380 // Save the loop carried PHI.
1381 if (DepKind == SDep::Anti && TmpMI->isPHI())
1382 PHISUs.push_back(TmpSU);
1383 // Save the source of COPY/REG_SEQUENCE.
1384 // If the source has no pre-decessors, we will end up creating cycles.
1385 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1386 SrcSUs.push_back(TmpSU);
1389 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1390 continue;
1392 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1393 // SUnit to the container.
1394 SmallVector<SUnit *, 8> UseSUs;
1395 // Do not use iterator based loop here as we are updating the container.
1396 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1397 for (auto &Dep : PHISUs[Index]->Succs) {
1398 if (Dep.getKind() != SDep::Data)
1399 continue;
1401 SUnit *TmpSU = Dep.getSUnit();
1402 MachineInstr *TmpMI = TmpSU->getInstr();
1403 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1404 PHISUs.push_back(TmpSU);
1405 continue;
1407 UseSUs.push_back(TmpSU);
1411 if (UseSUs.size() == 0)
1412 continue;
1414 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1415 // Add the artificial dependencies if it does not form a cycle.
1416 for (auto I : UseSUs) {
1417 for (auto Src : SrcSUs) {
1418 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1419 Src->addPred(SDep(I, SDep::Artificial));
1420 SDAG->Topo.AddPred(Src, I);
1427 /// Return true for DAG nodes that we ignore when computing the cost functions.
1428 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1429 /// in the calculation of the ASAP, ALAP, etc functions.
1430 static bool ignoreDependence(const SDep &D, bool isPred) {
1431 if (D.isArtificial())
1432 return true;
1433 return D.getKind() == SDep::Anti && isPred;
1436 /// Compute several functions need to order the nodes for scheduling.
1437 /// ASAP - Earliest time to schedule a node.
1438 /// ALAP - Latest time to schedule a node.
1439 /// MOV - Mobility function, difference between ALAP and ASAP.
1440 /// D - Depth of each node.
1441 /// H - Height of each node.
1442 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1443 ScheduleInfo.resize(SUnits.size());
1445 LLVM_DEBUG({
1446 for (int I : Topo) {
1447 const SUnit &SU = SUnits[I];
1448 dumpNode(SU);
1452 int maxASAP = 0;
1453 // Compute ASAP and ZeroLatencyDepth.
1454 for (int I : Topo) {
1455 int asap = 0;
1456 int zeroLatencyDepth = 0;
1457 SUnit *SU = &SUnits[I];
1458 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1459 EP = SU->Preds.end();
1460 IP != EP; ++IP) {
1461 SUnit *pred = IP->getSUnit();
1462 if (IP->getLatency() == 0)
1463 zeroLatencyDepth =
1464 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1465 if (ignoreDependence(*IP, true))
1466 continue;
1467 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1468 getDistance(pred, SU, *IP) * MII));
1470 maxASAP = std::max(maxASAP, asap);
1471 ScheduleInfo[I].ASAP = asap;
1472 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1475 // Compute ALAP, ZeroLatencyHeight, and MOV.
1476 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1477 E = Topo.rend();
1478 I != E; ++I) {
1479 int alap = maxASAP;
1480 int zeroLatencyHeight = 0;
1481 SUnit *SU = &SUnits[*I];
1482 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1483 ES = SU->Succs.end();
1484 IS != ES; ++IS) {
1485 SUnit *succ = IS->getSUnit();
1486 if (IS->getLatency() == 0)
1487 zeroLatencyHeight =
1488 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1489 if (ignoreDependence(*IS, true))
1490 continue;
1491 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1492 getDistance(SU, succ, *IS) * MII));
1495 ScheduleInfo[*I].ALAP = alap;
1496 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1499 // After computing the node functions, compute the summary for each node set.
1500 for (NodeSet &I : NodeSets)
1501 I.computeNodeSetInfo(this);
1503 LLVM_DEBUG({
1504 for (unsigned i = 0; i < SUnits.size(); i++) {
1505 dbgs() << "\tNode " << i << ":\n";
1506 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1507 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1508 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1509 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1510 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1511 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1512 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1517 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1518 /// as the predecessors of the elements of NodeOrder that are not also in
1519 /// NodeOrder.
1520 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1521 SmallSetVector<SUnit *, 8> &Preds,
1522 const NodeSet *S = nullptr) {
1523 Preds.clear();
1524 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1525 I != E; ++I) {
1526 for (const SDep &Pred : (*I)->Preds) {
1527 if (S && S->count(Pred.getSUnit()) == 0)
1528 continue;
1529 if (ignoreDependence(Pred, true))
1530 continue;
1531 if (NodeOrder.count(Pred.getSUnit()) == 0)
1532 Preds.insert(Pred.getSUnit());
1534 // Back-edges are predecessors with an anti-dependence.
1535 for (const SDep &Succ : (*I)->Succs) {
1536 if (Succ.getKind() != SDep::Anti)
1537 continue;
1538 if (S && S->count(Succ.getSUnit()) == 0)
1539 continue;
1540 if (NodeOrder.count(Succ.getSUnit()) == 0)
1541 Preds.insert(Succ.getSUnit());
1544 return !Preds.empty();
1547 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1548 /// as the successors of the elements of NodeOrder that are not also in
1549 /// NodeOrder.
1550 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1551 SmallSetVector<SUnit *, 8> &Succs,
1552 const NodeSet *S = nullptr) {
1553 Succs.clear();
1554 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1555 I != E; ++I) {
1556 for (SDep &Succ : (*I)->Succs) {
1557 if (S && S->count(Succ.getSUnit()) == 0)
1558 continue;
1559 if (ignoreDependence(Succ, false))
1560 continue;
1561 if (NodeOrder.count(Succ.getSUnit()) == 0)
1562 Succs.insert(Succ.getSUnit());
1564 for (SDep &Pred : (*I)->Preds) {
1565 if (Pred.getKind() != SDep::Anti)
1566 continue;
1567 if (S && S->count(Pred.getSUnit()) == 0)
1568 continue;
1569 if (NodeOrder.count(Pred.getSUnit()) == 0)
1570 Succs.insert(Pred.getSUnit());
1573 return !Succs.empty();
1576 /// Return true if there is a path from the specified node to any of the nodes
1577 /// in DestNodes. Keep track and return the nodes in any path.
1578 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1579 SetVector<SUnit *> &DestNodes,
1580 SetVector<SUnit *> &Exclude,
1581 SmallPtrSet<SUnit *, 8> &Visited) {
1582 if (Cur->isBoundaryNode())
1583 return false;
1584 if (Exclude.contains(Cur))
1585 return false;
1586 if (DestNodes.contains(Cur))
1587 return true;
1588 if (!Visited.insert(Cur).second)
1589 return Path.contains(Cur);
1590 bool FoundPath = false;
1591 for (auto &SI : Cur->Succs)
1592 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1593 for (auto &PI : Cur->Preds)
1594 if (PI.getKind() == SDep::Anti)
1595 FoundPath |=
1596 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1597 if (FoundPath)
1598 Path.insert(Cur);
1599 return FoundPath;
1602 /// Compute the live-out registers for the instructions in a node-set.
1603 /// The live-out registers are those that are defined in the node-set,
1604 /// but not used. Except for use operands of Phis.
1605 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1606 NodeSet &NS) {
1607 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1608 MachineRegisterInfo &MRI = MF.getRegInfo();
1609 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1610 SmallSet<unsigned, 4> Uses;
1611 for (SUnit *SU : NS) {
1612 const MachineInstr *MI = SU->getInstr();
1613 if (MI->isPHI())
1614 continue;
1615 for (const MachineOperand &MO : MI->operands())
1616 if (MO.isReg() && MO.isUse()) {
1617 Register Reg = MO.getReg();
1618 if (Register::isVirtualRegister(Reg))
1619 Uses.insert(Reg);
1620 else if (MRI.isAllocatable(Reg))
1621 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1622 ++Units)
1623 Uses.insert(*Units);
1626 for (SUnit *SU : NS)
1627 for (const MachineOperand &MO : SU->getInstr()->operands())
1628 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1629 Register Reg = MO.getReg();
1630 if (Register::isVirtualRegister(Reg)) {
1631 if (!Uses.count(Reg))
1632 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1633 LaneBitmask::getNone()));
1634 } else if (MRI.isAllocatable(Reg)) {
1635 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1636 ++Units)
1637 if (!Uses.count(*Units))
1638 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1639 LaneBitmask::getNone()));
1642 RPTracker.addLiveRegs(LiveOutRegs);
1645 /// A heuristic to filter nodes in recurrent node-sets if the register
1646 /// pressure of a set is too high.
1647 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1648 for (auto &NS : NodeSets) {
1649 // Skip small node-sets since they won't cause register pressure problems.
1650 if (NS.size() <= 2)
1651 continue;
1652 IntervalPressure RecRegPressure;
1653 RegPressureTracker RecRPTracker(RecRegPressure);
1654 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1655 computeLiveOuts(MF, RecRPTracker, NS);
1656 RecRPTracker.closeBottom();
1658 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1659 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1660 return A->NodeNum > B->NodeNum;
1663 for (auto &SU : SUnits) {
1664 // Since we're computing the register pressure for a subset of the
1665 // instructions in a block, we need to set the tracker for each
1666 // instruction in the node-set. The tracker is set to the instruction
1667 // just after the one we're interested in.
1668 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1669 RecRPTracker.setPos(std::next(CurInstI));
1671 RegPressureDelta RPDelta;
1672 ArrayRef<PressureChange> CriticalPSets;
1673 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1674 CriticalPSets,
1675 RecRegPressure.MaxSetPressure);
1676 if (RPDelta.Excess.isValid()) {
1677 LLVM_DEBUG(
1678 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1679 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1680 << ":" << RPDelta.Excess.getUnitInc());
1681 NS.setExceedPressure(SU);
1682 break;
1684 RecRPTracker.recede();
1689 /// A heuristic to colocate node sets that have the same set of
1690 /// successors.
1691 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1692 unsigned Colocate = 0;
1693 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1694 NodeSet &N1 = NodeSets[i];
1695 SmallSetVector<SUnit *, 8> S1;
1696 if (N1.empty() || !succ_L(N1, S1))
1697 continue;
1698 for (int j = i + 1; j < e; ++j) {
1699 NodeSet &N2 = NodeSets[j];
1700 if (N1.compareRecMII(N2) != 0)
1701 continue;
1702 SmallSetVector<SUnit *, 8> S2;
1703 if (N2.empty() || !succ_L(N2, S2))
1704 continue;
1705 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1706 N1.setColocate(++Colocate);
1707 N2.setColocate(Colocate);
1708 break;
1714 /// Check if the existing node-sets are profitable. If not, then ignore the
1715 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1716 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1717 /// then it's best to try to schedule all instructions together instead of
1718 /// starting with the recurrent node-sets.
1719 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1720 // Look for loops with a large MII.
1721 if (MII < 17)
1722 return;
1723 // Check if the node-set contains only a simple add recurrence.
1724 for (auto &NS : NodeSets) {
1725 if (NS.getRecMII() > 2)
1726 return;
1727 if (NS.getMaxDepth() > MII)
1728 return;
1730 NodeSets.clear();
1731 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1734 /// Add the nodes that do not belong to a recurrence set into groups
1735 /// based upon connected componenets.
1736 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1737 SetVector<SUnit *> NodesAdded;
1738 SmallPtrSet<SUnit *, 8> Visited;
1739 // Add the nodes that are on a path between the previous node sets and
1740 // the current node set.
1741 for (NodeSet &I : NodeSets) {
1742 SmallSetVector<SUnit *, 8> N;
1743 // Add the nodes from the current node set to the previous node set.
1744 if (succ_L(I, N)) {
1745 SetVector<SUnit *> Path;
1746 for (SUnit *NI : N) {
1747 Visited.clear();
1748 computePath(NI, Path, NodesAdded, I, Visited);
1750 if (!Path.empty())
1751 I.insert(Path.begin(), Path.end());
1753 // Add the nodes from the previous node set to the current node set.
1754 N.clear();
1755 if (succ_L(NodesAdded, N)) {
1756 SetVector<SUnit *> Path;
1757 for (SUnit *NI : N) {
1758 Visited.clear();
1759 computePath(NI, Path, I, NodesAdded, Visited);
1761 if (!Path.empty())
1762 I.insert(Path.begin(), Path.end());
1764 NodesAdded.insert(I.begin(), I.end());
1767 // Create a new node set with the connected nodes of any successor of a node
1768 // in a recurrent set.
1769 NodeSet NewSet;
1770 SmallSetVector<SUnit *, 8> N;
1771 if (succ_L(NodesAdded, N))
1772 for (SUnit *I : N)
1773 addConnectedNodes(I, NewSet, NodesAdded);
1774 if (!NewSet.empty())
1775 NodeSets.push_back(NewSet);
1777 // Create a new node set with the connected nodes of any predecessor of a node
1778 // in a recurrent set.
1779 NewSet.clear();
1780 if (pred_L(NodesAdded, N))
1781 for (SUnit *I : N)
1782 addConnectedNodes(I, NewSet, NodesAdded);
1783 if (!NewSet.empty())
1784 NodeSets.push_back(NewSet);
1786 // Create new nodes sets with the connected nodes any remaining node that
1787 // has no predecessor.
1788 for (SUnit &SU : SUnits) {
1789 if (NodesAdded.count(&SU) == 0) {
1790 NewSet.clear();
1791 addConnectedNodes(&SU, NewSet, NodesAdded);
1792 if (!NewSet.empty())
1793 NodeSets.push_back(NewSet);
1798 /// Add the node to the set, and add all of its connected nodes to the set.
1799 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1800 SetVector<SUnit *> &NodesAdded) {
1801 NewSet.insert(SU);
1802 NodesAdded.insert(SU);
1803 for (auto &SI : SU->Succs) {
1804 SUnit *Successor = SI.getSUnit();
1805 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1806 addConnectedNodes(Successor, NewSet, NodesAdded);
1808 for (auto &PI : SU->Preds) {
1809 SUnit *Predecessor = PI.getSUnit();
1810 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1811 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1815 /// Return true if Set1 contains elements in Set2. The elements in common
1816 /// are returned in a different container.
1817 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1818 SmallSetVector<SUnit *, 8> &Result) {
1819 Result.clear();
1820 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1821 SUnit *SU = Set1[i];
1822 if (Set2.count(SU) != 0)
1823 Result.insert(SU);
1825 return !Result.empty();
1828 /// Merge the recurrence node sets that have the same initial node.
1829 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1830 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1831 ++I) {
1832 NodeSet &NI = *I;
1833 for (NodeSetType::iterator J = I + 1; J != E;) {
1834 NodeSet &NJ = *J;
1835 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1836 if (NJ.compareRecMII(NI) > 0)
1837 NI.setRecMII(NJ.getRecMII());
1838 for (SUnit *SU : *J)
1839 I->insert(SU);
1840 NodeSets.erase(J);
1841 E = NodeSets.end();
1842 } else {
1843 ++J;
1849 /// Remove nodes that have been scheduled in previous NodeSets.
1850 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1851 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1852 ++I)
1853 for (NodeSetType::iterator J = I + 1; J != E;) {
1854 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1856 if (J->empty()) {
1857 NodeSets.erase(J);
1858 E = NodeSets.end();
1859 } else {
1860 ++J;
1865 /// Compute an ordered list of the dependence graph nodes, which
1866 /// indicates the order that the nodes will be scheduled. This is a
1867 /// two-level algorithm. First, a partial order is created, which
1868 /// consists of a list of sets ordered from highest to lowest priority.
1869 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1870 SmallSetVector<SUnit *, 8> R;
1871 NodeOrder.clear();
1873 for (auto &Nodes : NodeSets) {
1874 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1875 OrderKind Order;
1876 SmallSetVector<SUnit *, 8> N;
1877 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1878 R.insert(N.begin(), N.end());
1879 Order = BottomUp;
1880 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1881 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1882 R.insert(N.begin(), N.end());
1883 Order = TopDown;
1884 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1885 } else if (isIntersect(N, Nodes, R)) {
1886 // If some of the successors are in the existing node-set, then use the
1887 // top-down ordering.
1888 Order = TopDown;
1889 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1890 } else if (NodeSets.size() == 1) {
1891 for (auto &N : Nodes)
1892 if (N->Succs.size() == 0)
1893 R.insert(N);
1894 Order = BottomUp;
1895 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1896 } else {
1897 // Find the node with the highest ASAP.
1898 SUnit *maxASAP = nullptr;
1899 for (SUnit *SU : Nodes) {
1900 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1901 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1902 maxASAP = SU;
1904 R.insert(maxASAP);
1905 Order = BottomUp;
1906 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1909 while (!R.empty()) {
1910 if (Order == TopDown) {
1911 // Choose the node with the maximum height. If more than one, choose
1912 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1913 // choose the node with the lowest MOV.
1914 while (!R.empty()) {
1915 SUnit *maxHeight = nullptr;
1916 for (SUnit *I : R) {
1917 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1918 maxHeight = I;
1919 else if (getHeight(I) == getHeight(maxHeight) &&
1920 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1921 maxHeight = I;
1922 else if (getHeight(I) == getHeight(maxHeight) &&
1923 getZeroLatencyHeight(I) ==
1924 getZeroLatencyHeight(maxHeight) &&
1925 getMOV(I) < getMOV(maxHeight))
1926 maxHeight = I;
1928 NodeOrder.insert(maxHeight);
1929 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1930 R.remove(maxHeight);
1931 for (const auto &I : maxHeight->Succs) {
1932 if (Nodes.count(I.getSUnit()) == 0)
1933 continue;
1934 if (NodeOrder.contains(I.getSUnit()))
1935 continue;
1936 if (ignoreDependence(I, false))
1937 continue;
1938 R.insert(I.getSUnit());
1940 // Back-edges are predecessors with an anti-dependence.
1941 for (const auto &I : maxHeight->Preds) {
1942 if (I.getKind() != SDep::Anti)
1943 continue;
1944 if (Nodes.count(I.getSUnit()) == 0)
1945 continue;
1946 if (NodeOrder.contains(I.getSUnit()))
1947 continue;
1948 R.insert(I.getSUnit());
1951 Order = BottomUp;
1952 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1953 SmallSetVector<SUnit *, 8> N;
1954 if (pred_L(NodeOrder, N, &Nodes))
1955 R.insert(N.begin(), N.end());
1956 } else {
1957 // Choose the node with the maximum depth. If more than one, choose
1958 // the node with the maximum ZeroLatencyDepth. If still more than one,
1959 // choose the node with the lowest MOV.
1960 while (!R.empty()) {
1961 SUnit *maxDepth = nullptr;
1962 for (SUnit *I : R) {
1963 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1964 maxDepth = I;
1965 else if (getDepth(I) == getDepth(maxDepth) &&
1966 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1967 maxDepth = I;
1968 else if (getDepth(I) == getDepth(maxDepth) &&
1969 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1970 getMOV(I) < getMOV(maxDepth))
1971 maxDepth = I;
1973 NodeOrder.insert(maxDepth);
1974 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1975 R.remove(maxDepth);
1976 if (Nodes.isExceedSU(maxDepth)) {
1977 Order = TopDown;
1978 R.clear();
1979 R.insert(Nodes.getNode(0));
1980 break;
1982 for (const auto &I : maxDepth->Preds) {
1983 if (Nodes.count(I.getSUnit()) == 0)
1984 continue;
1985 if (NodeOrder.contains(I.getSUnit()))
1986 continue;
1987 R.insert(I.getSUnit());
1989 // Back-edges are predecessors with an anti-dependence.
1990 for (const auto &I : maxDepth->Succs) {
1991 if (I.getKind() != SDep::Anti)
1992 continue;
1993 if (Nodes.count(I.getSUnit()) == 0)
1994 continue;
1995 if (NodeOrder.contains(I.getSUnit()))
1996 continue;
1997 R.insert(I.getSUnit());
2000 Order = TopDown;
2001 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
2002 SmallSetVector<SUnit *, 8> N;
2003 if (succ_L(NodeOrder, N, &Nodes))
2004 R.insert(N.begin(), N.end());
2007 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2010 LLVM_DEBUG({
2011 dbgs() << "Node order: ";
2012 for (SUnit *I : NodeOrder)
2013 dbgs() << " " << I->NodeNum << " ";
2014 dbgs() << "\n";
2018 /// Process the nodes in the computed order and create the pipelined schedule
2019 /// of the instructions, if possible. Return true if a schedule is found.
2020 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2022 if (NodeOrder.empty()){
2023 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2024 return false;
2027 bool scheduleFound = false;
2028 // Keep increasing II until a valid schedule is found.
2029 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2030 Schedule.reset();
2031 Schedule.setInitiationInterval(II);
2032 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2034 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2035 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2036 do {
2037 SUnit *SU = *NI;
2039 // Compute the schedule time for the instruction, which is based
2040 // upon the scheduled time for any predecessors/successors.
2041 int EarlyStart = INT_MIN;
2042 int LateStart = INT_MAX;
2043 // These values are set when the size of the schedule window is limited
2044 // due to chain dependences.
2045 int SchedEnd = INT_MAX;
2046 int SchedStart = INT_MIN;
2047 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2048 II, this);
2049 LLVM_DEBUG({
2050 dbgs() << "\n";
2051 dbgs() << "Inst (" << SU->NodeNum << ") ";
2052 SU->getInstr()->dump();
2053 dbgs() << "\n";
2055 LLVM_DEBUG({
2056 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2057 LateStart, SchedEnd, SchedStart);
2060 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2061 SchedStart > LateStart)
2062 scheduleFound = false;
2063 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2064 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2065 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2066 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2067 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2068 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2069 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2070 SchedEnd =
2071 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2072 // When scheduling a Phi it is better to start at the late cycle and go
2073 // backwards. The default order may insert the Phi too far away from
2074 // its first dependence.
2075 if (SU->getInstr()->isPHI())
2076 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2077 else
2078 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2079 } else {
2080 int FirstCycle = Schedule.getFirstCycle();
2081 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2082 FirstCycle + getASAP(SU) + II - 1, II);
2084 // Even if we find a schedule, make sure the schedule doesn't exceed the
2085 // allowable number of stages. We keep trying if this happens.
2086 if (scheduleFound)
2087 if (SwpMaxStages > -1 &&
2088 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2089 scheduleFound = false;
2091 LLVM_DEBUG({
2092 if (!scheduleFound)
2093 dbgs() << "\tCan't schedule\n";
2095 } while (++NI != NE && scheduleFound);
2097 // If a schedule is found, check if it is a valid schedule too.
2098 if (scheduleFound)
2099 scheduleFound = Schedule.isValidSchedule(this);
2102 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2103 << " (II=" << Schedule.getInitiationInterval()
2104 << ")\n");
2106 if (scheduleFound) {
2107 Schedule.finalizeSchedule(this);
2108 Pass.ORE->emit([&]() {
2109 return MachineOptimizationRemarkAnalysis(
2110 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2111 << "Schedule found with Initiation Interval: "
2112 << ore::NV("II", Schedule.getInitiationInterval())
2113 << ", MaxStageCount: "
2114 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2116 } else
2117 Schedule.reset();
2119 return scheduleFound && Schedule.getMaxStageCount() > 0;
2122 /// Return true if we can compute the amount the instruction changes
2123 /// during each iteration. Set Delta to the amount of the change.
2124 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2125 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2126 const MachineOperand *BaseOp;
2127 int64_t Offset;
2128 bool OffsetIsScalable;
2129 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2130 return false;
2132 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2133 if (OffsetIsScalable)
2134 return false;
2136 if (!BaseOp->isReg())
2137 return false;
2139 Register BaseReg = BaseOp->getReg();
2141 MachineRegisterInfo &MRI = MF.getRegInfo();
2142 // Check if there is a Phi. If so, get the definition in the loop.
2143 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2144 if (BaseDef && BaseDef->isPHI()) {
2145 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2146 BaseDef = MRI.getVRegDef(BaseReg);
2148 if (!BaseDef)
2149 return false;
2151 int D = 0;
2152 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2153 return false;
2155 Delta = D;
2156 return true;
2159 /// Check if we can change the instruction to use an offset value from the
2160 /// previous iteration. If so, return true and set the base and offset values
2161 /// so that we can rewrite the load, if necessary.
2162 /// v1 = Phi(v0, v3)
2163 /// v2 = load v1, 0
2164 /// v3 = post_store v1, 4, x
2165 /// This function enables the load to be rewritten as v2 = load v3, 4.
2166 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2167 unsigned &BasePos,
2168 unsigned &OffsetPos,
2169 unsigned &NewBase,
2170 int64_t &Offset) {
2171 // Get the load instruction.
2172 if (TII->isPostIncrement(*MI))
2173 return false;
2174 unsigned BasePosLd, OffsetPosLd;
2175 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2176 return false;
2177 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2179 // Look for the Phi instruction.
2180 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2181 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2182 if (!Phi || !Phi->isPHI())
2183 return false;
2184 // Get the register defined in the loop block.
2185 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2186 if (!PrevReg)
2187 return false;
2189 // Check for the post-increment load/store instruction.
2190 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2191 if (!PrevDef || PrevDef == MI)
2192 return false;
2194 if (!TII->isPostIncrement(*PrevDef))
2195 return false;
2197 unsigned BasePos1 = 0, OffsetPos1 = 0;
2198 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2199 return false;
2201 // Make sure that the instructions do not access the same memory location in
2202 // the next iteration.
2203 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2204 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2205 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2206 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2207 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2208 MF.DeleteMachineInstr(NewMI);
2209 if (!Disjoint)
2210 return false;
2212 // Set the return value once we determine that we return true.
2213 BasePos = BasePosLd;
2214 OffsetPos = OffsetPosLd;
2215 NewBase = PrevReg;
2216 Offset = StoreOffset;
2217 return true;
2220 /// Apply changes to the instruction if needed. The changes are need
2221 /// to improve the scheduling and depend up on the final schedule.
2222 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2223 SMSchedule &Schedule) {
2224 SUnit *SU = getSUnit(MI);
2225 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2226 InstrChanges.find(SU);
2227 if (It != InstrChanges.end()) {
2228 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2229 unsigned BasePos, OffsetPos;
2230 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2231 return;
2232 Register BaseReg = MI->getOperand(BasePos).getReg();
2233 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2234 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2235 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2236 int BaseStageNum = Schedule.stageScheduled(SU);
2237 int BaseCycleNum = Schedule.cycleScheduled(SU);
2238 if (BaseStageNum < DefStageNum) {
2239 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2240 int OffsetDiff = DefStageNum - BaseStageNum;
2241 if (DefCycleNum < BaseCycleNum) {
2242 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2243 if (OffsetDiff > 0)
2244 --OffsetDiff;
2246 int64_t NewOffset =
2247 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2248 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2249 SU->setInstr(NewMI);
2250 MISUnitMap[NewMI] = SU;
2251 NewMIs[MI] = NewMI;
2256 /// Return the instruction in the loop that defines the register.
2257 /// If the definition is a Phi, then follow the Phi operand to
2258 /// the instruction in the loop.
2259 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2260 SmallPtrSet<MachineInstr *, 8> Visited;
2261 MachineInstr *Def = MRI.getVRegDef(Reg);
2262 while (Def->isPHI()) {
2263 if (!Visited.insert(Def).second)
2264 break;
2265 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2266 if (Def->getOperand(i + 1).getMBB() == BB) {
2267 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2268 break;
2271 return Def;
2274 /// Return true for an order or output dependence that is loop carried
2275 /// potentially. A dependence is loop carried if the destination defines a valu
2276 /// that may be used or defined by the source in a subsequent iteration.
2277 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2278 bool isSucc) {
2279 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2280 Dep.isArtificial())
2281 return false;
2283 if (!SwpPruneLoopCarried)
2284 return true;
2286 if (Dep.getKind() == SDep::Output)
2287 return true;
2289 MachineInstr *SI = Source->getInstr();
2290 MachineInstr *DI = Dep.getSUnit()->getInstr();
2291 if (!isSucc)
2292 std::swap(SI, DI);
2293 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2295 // Assume ordered loads and stores may have a loop carried dependence.
2296 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2297 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2298 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2299 return true;
2301 // Only chain dependences between a load and store can be loop carried.
2302 if (!DI->mayStore() || !SI->mayLoad())
2303 return false;
2305 unsigned DeltaS, DeltaD;
2306 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2307 return true;
2309 const MachineOperand *BaseOpS, *BaseOpD;
2310 int64_t OffsetS, OffsetD;
2311 bool OffsetSIsScalable, OffsetDIsScalable;
2312 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2313 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2314 TRI) ||
2315 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2316 TRI))
2317 return true;
2319 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2320 "Expected offsets to be byte offsets");
2322 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2323 return true;
2325 // Check that the base register is incremented by a constant value for each
2326 // iteration.
2327 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2328 if (!Def || !Def->isPHI())
2329 return true;
2330 unsigned InitVal = 0;
2331 unsigned LoopVal = 0;
2332 getPhiRegs(*Def, BB, InitVal, LoopVal);
2333 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2334 int D = 0;
2335 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2336 return true;
2338 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2339 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2341 // This is the main test, which checks the offset values and the loop
2342 // increment value to determine if the accesses may be loop carried.
2343 if (AccessSizeS == MemoryLocation::UnknownSize ||
2344 AccessSizeD == MemoryLocation::UnknownSize)
2345 return true;
2347 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2348 return true;
2350 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2353 void SwingSchedulerDAG::postprocessDAG() {
2354 for (auto &M : Mutations)
2355 M->apply(this);
2358 /// Try to schedule the node at the specified StartCycle and continue
2359 /// until the node is schedule or the EndCycle is reached. This function
2360 /// returns true if the node is scheduled. This routine may search either
2361 /// forward or backward for a place to insert the instruction based upon
2362 /// the relative values of StartCycle and EndCycle.
2363 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2364 bool forward = true;
2365 LLVM_DEBUG({
2366 dbgs() << "Trying to insert node between " << StartCycle << " and "
2367 << EndCycle << " II: " << II << "\n";
2369 if (StartCycle > EndCycle)
2370 forward = false;
2372 // The terminating condition depends on the direction.
2373 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2374 for (int curCycle = StartCycle; curCycle != termCycle;
2375 forward ? ++curCycle : --curCycle) {
2377 // Add the already scheduled instructions at the specified cycle to the
2378 // DFA.
2379 ProcItinResources.clearResources();
2380 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2381 checkCycle <= LastCycle; checkCycle += II) {
2382 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2384 for (SUnit *CI : cycleInstrs) {
2385 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2386 continue;
2387 assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2388 "These instructions have already been scheduled.");
2389 ProcItinResources.reserveResources(*CI->getInstr());
2392 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2393 ProcItinResources.canReserveResources(*SU->getInstr())) {
2394 LLVM_DEBUG({
2395 dbgs() << "\tinsert at cycle " << curCycle << " ";
2396 SU->getInstr()->dump();
2399 ScheduledInstrs[curCycle].push_back(SU);
2400 InstrToCycle.insert(std::make_pair(SU, curCycle));
2401 if (curCycle > LastCycle)
2402 LastCycle = curCycle;
2403 if (curCycle < FirstCycle)
2404 FirstCycle = curCycle;
2405 return true;
2407 LLVM_DEBUG({
2408 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2409 SU->getInstr()->dump();
2412 return false;
2415 // Return the cycle of the earliest scheduled instruction in the chain.
2416 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2417 SmallPtrSet<SUnit *, 8> Visited;
2418 SmallVector<SDep, 8> Worklist;
2419 Worklist.push_back(Dep);
2420 int EarlyCycle = INT_MAX;
2421 while (!Worklist.empty()) {
2422 const SDep &Cur = Worklist.pop_back_val();
2423 SUnit *PrevSU = Cur.getSUnit();
2424 if (Visited.count(PrevSU))
2425 continue;
2426 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2427 if (it == InstrToCycle.end())
2428 continue;
2429 EarlyCycle = std::min(EarlyCycle, it->second);
2430 for (const auto &PI : PrevSU->Preds)
2431 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2432 Worklist.push_back(PI);
2433 Visited.insert(PrevSU);
2435 return EarlyCycle;
2438 // Return the cycle of the latest scheduled instruction in the chain.
2439 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2440 SmallPtrSet<SUnit *, 8> Visited;
2441 SmallVector<SDep, 8> Worklist;
2442 Worklist.push_back(Dep);
2443 int LateCycle = INT_MIN;
2444 while (!Worklist.empty()) {
2445 const SDep &Cur = Worklist.pop_back_val();
2446 SUnit *SuccSU = Cur.getSUnit();
2447 if (Visited.count(SuccSU))
2448 continue;
2449 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2450 if (it == InstrToCycle.end())
2451 continue;
2452 LateCycle = std::max(LateCycle, it->second);
2453 for (const auto &SI : SuccSU->Succs)
2454 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2455 Worklist.push_back(SI);
2456 Visited.insert(SuccSU);
2458 return LateCycle;
2461 /// If an instruction has a use that spans multiple iterations, then
2462 /// return true. These instructions are characterized by having a back-ege
2463 /// to a Phi, which contains a reference to another Phi.
2464 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2465 for (auto &P : SU->Preds)
2466 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2467 for (auto &S : P.getSUnit()->Succs)
2468 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2469 return P.getSUnit();
2470 return nullptr;
2473 /// Compute the scheduling start slot for the instruction. The start slot
2474 /// depends on any predecessor or successor nodes scheduled already.
2475 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2476 int *MinEnd, int *MaxStart, int II,
2477 SwingSchedulerDAG *DAG) {
2478 // Iterate over each instruction that has been scheduled already. The start
2479 // slot computation depends on whether the previously scheduled instruction
2480 // is a predecessor or successor of the specified instruction.
2481 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2483 // Iterate over each instruction in the current cycle.
2484 for (SUnit *I : getInstructions(cycle)) {
2485 // Because we're processing a DAG for the dependences, we recognize
2486 // the back-edge in recurrences by anti dependences.
2487 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2488 const SDep &Dep = SU->Preds[i];
2489 if (Dep.getSUnit() == I) {
2490 if (!DAG->isBackedge(SU, Dep)) {
2491 int EarlyStart = cycle + Dep.getLatency() -
2492 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2493 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2494 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2495 int End = earliestCycleInChain(Dep) + (II - 1);
2496 *MinEnd = std::min(*MinEnd, End);
2498 } else {
2499 int LateStart = cycle - Dep.getLatency() +
2500 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2501 *MinLateStart = std::min(*MinLateStart, LateStart);
2504 // For instruction that requires multiple iterations, make sure that
2505 // the dependent instruction is not scheduled past the definition.
2506 SUnit *BE = multipleIterations(I, DAG);
2507 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2508 !SU->isPred(I))
2509 *MinLateStart = std::min(*MinLateStart, cycle);
2511 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2512 if (SU->Succs[i].getSUnit() == I) {
2513 const SDep &Dep = SU->Succs[i];
2514 if (!DAG->isBackedge(SU, Dep)) {
2515 int LateStart = cycle - Dep.getLatency() +
2516 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2517 *MinLateStart = std::min(*MinLateStart, LateStart);
2518 if (DAG->isLoopCarriedDep(SU, Dep)) {
2519 int Start = latestCycleInChain(Dep) + 1 - II;
2520 *MaxStart = std::max(*MaxStart, Start);
2522 } else {
2523 int EarlyStart = cycle + Dep.getLatency() -
2524 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2525 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2533 /// Order the instructions within a cycle so that the definitions occur
2534 /// before the uses. Returns true if the instruction is added to the start
2535 /// of the list, or false if added to the end.
2536 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2537 std::deque<SUnit *> &Insts) {
2538 MachineInstr *MI = SU->getInstr();
2539 bool OrderBeforeUse = false;
2540 bool OrderAfterDef = false;
2541 bool OrderBeforeDef = false;
2542 unsigned MoveDef = 0;
2543 unsigned MoveUse = 0;
2544 int StageInst1 = stageScheduled(SU);
2546 unsigned Pos = 0;
2547 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2548 ++I, ++Pos) {
2549 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2550 MachineOperand &MO = MI->getOperand(i);
2551 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2552 continue;
2554 Register Reg = MO.getReg();
2555 unsigned BasePos, OffsetPos;
2556 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2557 if (MI->getOperand(BasePos).getReg() == Reg)
2558 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2559 Reg = NewReg;
2560 bool Reads, Writes;
2561 std::tie(Reads, Writes) =
2562 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2563 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2564 OrderBeforeUse = true;
2565 if (MoveUse == 0)
2566 MoveUse = Pos;
2567 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2568 // Add the instruction after the scheduled instruction.
2569 OrderAfterDef = true;
2570 MoveDef = Pos;
2571 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2572 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2573 OrderBeforeUse = true;
2574 if (MoveUse == 0)
2575 MoveUse = Pos;
2576 } else {
2577 OrderAfterDef = true;
2578 MoveDef = Pos;
2580 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2581 OrderBeforeUse = true;
2582 if (MoveUse == 0)
2583 MoveUse = Pos;
2584 if (MoveUse != 0) {
2585 OrderAfterDef = true;
2586 MoveDef = Pos - 1;
2588 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2589 // Add the instruction before the scheduled instruction.
2590 OrderBeforeUse = true;
2591 if (MoveUse == 0)
2592 MoveUse = Pos;
2593 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2594 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2595 if (MoveUse == 0) {
2596 OrderBeforeDef = true;
2597 MoveUse = Pos;
2601 // Check for order dependences between instructions. Make sure the source
2602 // is ordered before the destination.
2603 for (auto &S : SU->Succs) {
2604 if (S.getSUnit() != *I)
2605 continue;
2606 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2607 OrderBeforeUse = true;
2608 if (Pos < MoveUse)
2609 MoveUse = Pos;
2611 // We did not handle HW dependences in previous for loop,
2612 // and we normally set Latency = 0 for Anti deps,
2613 // so may have nodes in same cycle with Anti denpendent on HW regs.
2614 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2615 OrderBeforeUse = true;
2616 if ((MoveUse == 0) || (Pos < MoveUse))
2617 MoveUse = Pos;
2620 for (auto &P : SU->Preds) {
2621 if (P.getSUnit() != *I)
2622 continue;
2623 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2624 OrderAfterDef = true;
2625 MoveDef = Pos;
2630 // A circular dependence.
2631 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2632 OrderBeforeUse = false;
2634 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2635 // to a loop-carried dependence.
2636 if (OrderBeforeDef)
2637 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2639 // The uncommon case when the instruction order needs to be updated because
2640 // there is both a use and def.
2641 if (OrderBeforeUse && OrderAfterDef) {
2642 SUnit *UseSU = Insts.at(MoveUse);
2643 SUnit *DefSU = Insts.at(MoveDef);
2644 if (MoveUse > MoveDef) {
2645 Insts.erase(Insts.begin() + MoveUse);
2646 Insts.erase(Insts.begin() + MoveDef);
2647 } else {
2648 Insts.erase(Insts.begin() + MoveDef);
2649 Insts.erase(Insts.begin() + MoveUse);
2651 orderDependence(SSD, UseSU, Insts);
2652 orderDependence(SSD, SU, Insts);
2653 orderDependence(SSD, DefSU, Insts);
2654 return;
2656 // Put the new instruction first if there is a use in the list. Otherwise,
2657 // put it at the end of the list.
2658 if (OrderBeforeUse)
2659 Insts.push_front(SU);
2660 else
2661 Insts.push_back(SU);
2664 /// Return true if the scheduled Phi has a loop carried operand.
2665 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2666 if (!Phi.isPHI())
2667 return false;
2668 assert(Phi.isPHI() && "Expecting a Phi.");
2669 SUnit *DefSU = SSD->getSUnit(&Phi);
2670 unsigned DefCycle = cycleScheduled(DefSU);
2671 int DefStage = stageScheduled(DefSU);
2673 unsigned InitVal = 0;
2674 unsigned LoopVal = 0;
2675 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2676 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2677 if (!UseSU)
2678 return true;
2679 if (UseSU->getInstr()->isPHI())
2680 return true;
2681 unsigned LoopCycle = cycleScheduled(UseSU);
2682 int LoopStage = stageScheduled(UseSU);
2683 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2686 /// Return true if the instruction is a definition that is loop carried
2687 /// and defines the use on the next iteration.
2688 /// v1 = phi(v2, v3)
2689 /// (Def) v3 = op v1
2690 /// (MO) = v1
2691 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2692 /// register.
2693 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2694 MachineInstr *Def, MachineOperand &MO) {
2695 if (!MO.isReg())
2696 return false;
2697 if (Def->isPHI())
2698 return false;
2699 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2700 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2701 return false;
2702 if (!isLoopCarried(SSD, *Phi))
2703 return false;
2704 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2705 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2706 MachineOperand &DMO = Def->getOperand(i);
2707 if (!DMO.isReg() || !DMO.isDef())
2708 continue;
2709 if (DMO.getReg() == LoopReg)
2710 return true;
2712 return false;
2715 // Check if the generated schedule is valid. This function checks if
2716 // an instruction that uses a physical register is scheduled in a
2717 // different stage than the definition. The pipeliner does not handle
2718 // physical register values that may cross a basic block boundary.
2719 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2720 for (SUnit &SU : SSD->SUnits) {
2721 if (!SU.hasPhysRegDefs)
2722 continue;
2723 int StageDef = stageScheduled(&SU);
2724 assert(StageDef != -1 && "Instruction should have been scheduled.");
2725 for (auto &SI : SU.Succs)
2726 if (SI.isAssignedRegDep())
2727 if (Register::isPhysicalRegister(SI.getReg()))
2728 if (stageScheduled(SI.getSUnit()) != StageDef)
2729 return false;
2731 return true;
2734 /// A property of the node order in swing-modulo-scheduling is
2735 /// that for nodes outside circuits the following holds:
2736 /// none of them is scheduled after both a successor and a
2737 /// predecessor.
2738 /// The method below checks whether the property is met.
2739 /// If not, debug information is printed and statistics information updated.
2740 /// Note that we do not use an assert statement.
2741 /// The reason is that although an invalid node oder may prevent
2742 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2743 /// it does not lead to the generation of incorrect code.
2744 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2746 // a sorted vector that maps each SUnit to its index in the NodeOrder
2747 typedef std::pair<SUnit *, unsigned> UnitIndex;
2748 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2750 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2751 Indices.push_back(std::make_pair(NodeOrder[i], i));
2753 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2754 return std::get<0>(i1) < std::get<0>(i2);
2757 // sort, so that we can perform a binary search
2758 llvm::sort(Indices, CompareKey);
2760 bool Valid = true;
2761 (void)Valid;
2762 // for each SUnit in the NodeOrder, check whether
2763 // it appears after both a successor and a predecessor
2764 // of the SUnit. If this is the case, and the SUnit
2765 // is not part of circuit, then the NodeOrder is not
2766 // valid.
2767 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2768 SUnit *SU = NodeOrder[i];
2769 unsigned Index = i;
2771 bool PredBefore = false;
2772 bool SuccBefore = false;
2774 SUnit *Succ;
2775 SUnit *Pred;
2776 (void)Succ;
2777 (void)Pred;
2779 for (SDep &PredEdge : SU->Preds) {
2780 SUnit *PredSU = PredEdge.getSUnit();
2781 unsigned PredIndex = std::get<1>(
2782 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2783 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2784 PredBefore = true;
2785 Pred = PredSU;
2786 break;
2790 for (SDep &SuccEdge : SU->Succs) {
2791 SUnit *SuccSU = SuccEdge.getSUnit();
2792 // Do not process a boundary node, it was not included in NodeOrder,
2793 // hence not in Indices either, call to std::lower_bound() below will
2794 // return Indices.end().
2795 if (SuccSU->isBoundaryNode())
2796 continue;
2797 unsigned SuccIndex = std::get<1>(
2798 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2799 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2800 SuccBefore = true;
2801 Succ = SuccSU;
2802 break;
2806 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2807 // instructions in circuits are allowed to be scheduled
2808 // after both a successor and predecessor.
2809 bool InCircuit = llvm::any_of(
2810 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2811 if (InCircuit)
2812 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2813 else {
2814 Valid = false;
2815 NumNodeOrderIssues++;
2816 LLVM_DEBUG(dbgs() << "Predecessor ";);
2818 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2819 << " are scheduled before node " << SU->NodeNum
2820 << "\n";);
2824 LLVM_DEBUG({
2825 if (!Valid)
2826 dbgs() << "Invalid node order found!\n";
2830 /// Attempt to fix the degenerate cases when the instruction serialization
2831 /// causes the register lifetimes to overlap. For example,
2832 /// p' = store_pi(p, b)
2833 /// = load p, offset
2834 /// In this case p and p' overlap, which means that two registers are needed.
2835 /// Instead, this function changes the load to use p' and updates the offset.
2836 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2837 unsigned OverlapReg = 0;
2838 unsigned NewBaseReg = 0;
2839 for (SUnit *SU : Instrs) {
2840 MachineInstr *MI = SU->getInstr();
2841 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2842 const MachineOperand &MO = MI->getOperand(i);
2843 // Look for an instruction that uses p. The instruction occurs in the
2844 // same cycle but occurs later in the serialized order.
2845 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2846 // Check that the instruction appears in the InstrChanges structure,
2847 // which contains instructions that can have the offset updated.
2848 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2849 InstrChanges.find(SU);
2850 if (It != InstrChanges.end()) {
2851 unsigned BasePos, OffsetPos;
2852 // Update the base register and adjust the offset.
2853 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2854 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2855 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2856 int64_t NewOffset =
2857 MI->getOperand(OffsetPos).getImm() - It->second.second;
2858 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2859 SU->setInstr(NewMI);
2860 MISUnitMap[NewMI] = SU;
2861 NewMIs[MI] = NewMI;
2864 OverlapReg = 0;
2865 NewBaseReg = 0;
2866 break;
2868 // Look for an instruction of the form p' = op(p), which uses and defines
2869 // two virtual registers that get allocated to the same physical register.
2870 unsigned TiedUseIdx = 0;
2871 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2872 // OverlapReg is p in the example above.
2873 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2874 // NewBaseReg is p' in the example above.
2875 NewBaseReg = MI->getOperand(i).getReg();
2876 break;
2882 /// After the schedule has been formed, call this function to combine
2883 /// the instructions from the different stages/cycles. That is, this
2884 /// function creates a schedule that represents a single iteration.
2885 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2886 // Move all instructions to the first stage from later stages.
2887 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2888 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2889 ++stage) {
2890 std::deque<SUnit *> &cycleInstrs =
2891 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2892 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2893 E = cycleInstrs.rend();
2894 I != E; ++I)
2895 ScheduledInstrs[cycle].push_front(*I);
2899 // Erase all the elements in the later stages. Only one iteration should
2900 // remain in the scheduled list, and it contains all the instructions.
2901 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2902 ScheduledInstrs.erase(cycle);
2904 // Change the registers in instruction as specified in the InstrChanges
2905 // map. We need to use the new registers to create the correct order.
2906 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2907 SUnit *SU = &SSD->SUnits[i];
2908 SSD->applyInstrChange(SU->getInstr(), *this);
2911 // Reorder the instructions in each cycle to fix and improve the
2912 // generated code.
2913 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2914 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2915 std::deque<SUnit *> newOrderPhi;
2916 for (SUnit *SU : cycleInstrs) {
2917 if (SU->getInstr()->isPHI())
2918 newOrderPhi.push_back(SU);
2920 std::deque<SUnit *> newOrderI;
2921 for (SUnit *SU : cycleInstrs) {
2922 if (!SU->getInstr()->isPHI())
2923 orderDependence(SSD, SU, newOrderI);
2925 // Replace the old order with the new order.
2926 cycleInstrs.swap(newOrderPhi);
2927 llvm::append_range(cycleInstrs, newOrderI);
2928 SSD->fixupRegisterOverlaps(cycleInstrs);
2931 LLVM_DEBUG(dump(););
2934 void NodeSet::print(raw_ostream &os) const {
2935 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2936 << " depth " << MaxDepth << " col " << Colocate << "\n";
2937 for (const auto &I : Nodes)
2938 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2939 os << "\n";
2942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2943 /// Print the schedule information to the given output.
2944 void SMSchedule::print(raw_ostream &os) const {
2945 // Iterate over each cycle.
2946 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2947 // Iterate over each instruction in the cycle.
2948 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2949 for (SUnit *CI : cycleInstrs->second) {
2950 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2951 os << "(" << CI->NodeNum << ") ";
2952 CI->getInstr()->print(os);
2953 os << "\n";
2958 /// Utility function used for debugging to print the schedule.
2959 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
2960 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2962 #endif
2964 void ResourceManager::initProcResourceVectors(
2965 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2966 unsigned ProcResourceID = 0;
2968 // We currently limit the resource kinds to 64 and below so that we can use
2969 // uint64_t for Masks
2970 assert(SM.getNumProcResourceKinds() < 64 &&
2971 "Too many kinds of resources, unsupported");
2972 // Create a unique bitmask for every processor resource unit.
2973 // Skip resource at index 0, since it always references 'InvalidUnit'.
2974 Masks.resize(SM.getNumProcResourceKinds());
2975 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2976 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2977 if (Desc.SubUnitsIdxBegin)
2978 continue;
2979 Masks[I] = 1ULL << ProcResourceID;
2980 ProcResourceID++;
2982 // Create a unique bitmask for every processor resource group.
2983 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2984 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2985 if (!Desc.SubUnitsIdxBegin)
2986 continue;
2987 Masks[I] = 1ULL << ProcResourceID;
2988 for (unsigned U = 0; U < Desc.NumUnits; ++U)
2989 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2990 ProcResourceID++;
2992 LLVM_DEBUG({
2993 if (SwpShowResMask) {
2994 dbgs() << "ProcResourceDesc:\n";
2995 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2996 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2997 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2998 ProcResource->Name, I, Masks[I],
2999 ProcResource->NumUnits);
3001 dbgs() << " -----------------\n";
3006 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3008 LLVM_DEBUG({
3009 if (SwpDebugResource)
3010 dbgs() << "canReserveResources:\n";
3012 if (UseDFA)
3013 return DFAResources->canReserveResources(MID);
3015 unsigned InsnClass = MID->getSchedClass();
3016 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3017 if (!SCDesc->isValid()) {
3018 LLVM_DEBUG({
3019 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3020 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3022 return true;
3025 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3026 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3027 for (; I != E; ++I) {
3028 if (!I->Cycles)
3029 continue;
3030 const MCProcResourceDesc *ProcResource =
3031 SM.getProcResource(I->ProcResourceIdx);
3032 unsigned NumUnits = ProcResource->NumUnits;
3033 LLVM_DEBUG({
3034 if (SwpDebugResource)
3035 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3036 ProcResource->Name, I->ProcResourceIdx,
3037 ProcResourceCount[I->ProcResourceIdx], NumUnits,
3038 I->Cycles);
3040 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3041 return false;
3043 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3044 return true;
3047 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3048 LLVM_DEBUG({
3049 if (SwpDebugResource)
3050 dbgs() << "reserveResources:\n";
3052 if (UseDFA)
3053 return DFAResources->reserveResources(MID);
3055 unsigned InsnClass = MID->getSchedClass();
3056 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3057 if (!SCDesc->isValid()) {
3058 LLVM_DEBUG({
3059 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3060 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3062 return;
3064 for (const MCWriteProcResEntry &PRE :
3065 make_range(STI->getWriteProcResBegin(SCDesc),
3066 STI->getWriteProcResEnd(SCDesc))) {
3067 if (!PRE.Cycles)
3068 continue;
3069 ++ProcResourceCount[PRE.ProcResourceIdx];
3070 LLVM_DEBUG({
3071 if (SwpDebugResource) {
3072 const MCProcResourceDesc *ProcResource =
3073 SM.getProcResource(PRE.ProcResourceIdx);
3074 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3075 ProcResource->Name, PRE.ProcResourceIdx,
3076 ProcResourceCount[PRE.ProcResourceIdx],
3077 ProcResource->NumUnits, PRE.Cycles);
3081 LLVM_DEBUG({
3082 if (SwpDebugResource)
3083 dbgs() << "reserveResources: done!\n\n";
3087 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3088 return canReserveResources(&MI.getDesc());
3091 void ResourceManager::reserveResources(const MachineInstr &MI) {
3092 return reserveResources(&MI.getDesc());
3095 void ResourceManager::clearResources() {
3096 if (UseDFA)
3097 return DFAResources->clearResources();
3098 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);