[DAGCombiner] Add target hook function to decide folding (mul (add x, c1), c2)
[llvm-project.git] / llvm / lib / CodeGen / MachineScheduler.cpp
blob4f42a2c8aeffa2c7761ad9c9816c8bb69dd06277
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/MachineValueType.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <limits>
67 #include <memory>
68 #include <string>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
73 using namespace llvm;
75 #define DEBUG_TYPE "machine-scheduler"
77 STATISTIC(NumClustered, "Number of load/store pairs clustered");
79 namespace llvm {
81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
82 cl::desc("Force top-down list scheduling"));
83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
84 cl::desc("Force bottom-up list scheduling"));
85 cl::opt<bool>
86 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
87 cl::desc("Print critical path length to stdout"));
89 cl::opt<bool> VerifyScheduling(
90 "verify-misched", cl::Hidden,
91 cl::desc("Verify machine instrs before and after machine scheduling"));
93 } // end namespace llvm
95 #ifndef NDEBUG
96 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
97 cl::desc("Pop up a window to show MISched dags after they are processed"));
99 /// In some situations a few uninteresting nodes depend on nearly all other
100 /// nodes in the graph, provide a cutoff to hide them.
101 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
102 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
104 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
105 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
107 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
108 cl::desc("Only schedule this function"));
109 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
110 cl::desc("Only schedule this MBB#"));
111 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
112 cl::desc("Print schedule DAGs"));
113 #else
114 static const bool ViewMISchedDAGs = false;
115 static const bool PrintDAGs = false;
116 #endif // NDEBUG
118 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
119 /// size of the ready lists.
120 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
121 cl::desc("Limit ready list to N instructions"), cl::init(256));
123 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
124 cl::desc("Enable register pressure scheduling."), cl::init(true));
126 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
127 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
129 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
130 cl::desc("Enable memop clustering."),
131 cl::init(true));
132 static cl::opt<bool>
133 ForceFastCluster("force-fast-cluster", cl::Hidden,
134 cl::desc("Switch to fast cluster algorithm with the lost "
135 "of some fusion opportunities"),
136 cl::init(false));
137 static cl::opt<unsigned>
138 FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
139 cl::desc("The threshold for fast cluster"),
140 cl::init(1000));
142 // DAG subtrees must have at least this many nodes.
143 static const unsigned MinSubtreeSize = 8;
145 // Pin the vtables to this file.
146 void MachineSchedStrategy::anchor() {}
148 void ScheduleDAGMutation::anchor() {}
150 //===----------------------------------------------------------------------===//
151 // Machine Instruction Scheduling Pass and Registry
152 //===----------------------------------------------------------------------===//
154 MachineSchedContext::MachineSchedContext() {
155 RegClassInfo = new RegisterClassInfo();
158 MachineSchedContext::~MachineSchedContext() {
159 delete RegClassInfo;
162 namespace {
164 /// Base class for a machine scheduler class that can run at any point.
165 class MachineSchedulerBase : public MachineSchedContext,
166 public MachineFunctionPass {
167 public:
168 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
170 void print(raw_ostream &O, const Module* = nullptr) const override;
172 protected:
173 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
176 /// MachineScheduler runs after coalescing and before register allocation.
177 class MachineScheduler : public MachineSchedulerBase {
178 public:
179 MachineScheduler();
181 void getAnalysisUsage(AnalysisUsage &AU) const override;
183 bool runOnMachineFunction(MachineFunction&) override;
185 static char ID; // Class identification, replacement for typeinfo
187 protected:
188 ScheduleDAGInstrs *createMachineScheduler();
191 /// PostMachineScheduler runs after shortly before code emission.
192 class PostMachineScheduler : public MachineSchedulerBase {
193 public:
194 PostMachineScheduler();
196 void getAnalysisUsage(AnalysisUsage &AU) const override;
198 bool runOnMachineFunction(MachineFunction&) override;
200 static char ID; // Class identification, replacement for typeinfo
202 protected:
203 ScheduleDAGInstrs *createPostMachineScheduler();
206 } // end anonymous namespace
208 char MachineScheduler::ID = 0;
210 char &llvm::MachineSchedulerID = MachineScheduler::ID;
212 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
213 "Machine Instruction Scheduler", false, false)
214 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
216 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
220 "Machine Instruction Scheduler", false, false)
222 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
223 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
226 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
227 AU.setPreservesCFG();
228 AU.addRequired<MachineDominatorTree>();
229 AU.addRequired<MachineLoopInfo>();
230 AU.addRequired<AAResultsWrapperPass>();
231 AU.addRequired<TargetPassConfig>();
232 AU.addRequired<SlotIndexes>();
233 AU.addPreserved<SlotIndexes>();
234 AU.addRequired<LiveIntervals>();
235 AU.addPreserved<LiveIntervals>();
236 MachineFunctionPass::getAnalysisUsage(AU);
239 char PostMachineScheduler::ID = 0;
241 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
243 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
244 "PostRA Machine Instruction Scheduler", false, false)
245 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
246 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
247 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
248 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
249 "PostRA Machine Instruction Scheduler", false, false)
251 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
252 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
255 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
256 AU.setPreservesCFG();
257 AU.addRequired<MachineDominatorTree>();
258 AU.addRequired<MachineLoopInfo>();
259 AU.addRequired<AAResultsWrapperPass>();
260 AU.addRequired<TargetPassConfig>();
261 MachineFunctionPass::getAnalysisUsage(AU);
264 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
265 MachineSchedRegistry::Registry;
267 /// A dummy default scheduler factory indicates whether the scheduler
268 /// is overridden on the command line.
269 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
270 return nullptr;
273 /// MachineSchedOpt allows command line selection of the scheduler.
274 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
275 RegisterPassParser<MachineSchedRegistry>>
276 MachineSchedOpt("misched",
277 cl::init(&useDefaultMachineSched), cl::Hidden,
278 cl::desc("Machine instruction scheduler to use"));
280 static MachineSchedRegistry
281 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
282 useDefaultMachineSched);
284 static cl::opt<bool> EnableMachineSched(
285 "enable-misched",
286 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
287 cl::Hidden);
289 static cl::opt<bool> EnablePostRAMachineSched(
290 "enable-post-misched",
291 cl::desc("Enable the post-ra machine instruction scheduling pass."),
292 cl::init(true), cl::Hidden);
294 /// Decrement this iterator until reaching the top or a non-debug instr.
295 static MachineBasicBlock::const_iterator
296 priorNonDebug(MachineBasicBlock::const_iterator I,
297 MachineBasicBlock::const_iterator Beg) {
298 assert(I != Beg && "reached the top of the region, cannot decrement");
299 while (--I != Beg) {
300 if (!I->isDebugOrPseudoInstr())
301 break;
303 return I;
306 /// Non-const version.
307 static MachineBasicBlock::iterator
308 priorNonDebug(MachineBasicBlock::iterator I,
309 MachineBasicBlock::const_iterator Beg) {
310 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
311 .getNonConstIterator();
314 /// If this iterator is a debug value, increment until reaching the End or a
315 /// non-debug instruction.
316 static MachineBasicBlock::const_iterator
317 nextIfDebug(MachineBasicBlock::const_iterator I,
318 MachineBasicBlock::const_iterator End) {
319 for(; I != End; ++I) {
320 if (!I->isDebugOrPseudoInstr())
321 break;
323 return I;
326 /// Non-const version.
327 static MachineBasicBlock::iterator
328 nextIfDebug(MachineBasicBlock::iterator I,
329 MachineBasicBlock::const_iterator End) {
330 return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
331 .getNonConstIterator();
334 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
335 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
336 // Select the scheduler, or set the default.
337 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
338 if (Ctor != useDefaultMachineSched)
339 return Ctor(this);
341 // Get the default scheduler set by the target for this function.
342 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
343 if (Scheduler)
344 return Scheduler;
346 // Default to GenericScheduler.
347 return createGenericSchedLive(this);
350 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
351 /// the caller. We don't have a command line option to override the postRA
352 /// scheduler. The Target must configure it.
353 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
354 // Get the postRA scheduler set by the target for this function.
355 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
356 if (Scheduler)
357 return Scheduler;
359 // Default to GenericScheduler.
360 return createGenericSchedPostRA(this);
363 /// Top-level MachineScheduler pass driver.
365 /// Visit blocks in function order. Divide each block into scheduling regions
366 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
367 /// consistent with the DAG builder, which traverses the interior of the
368 /// scheduling regions bottom-up.
370 /// This design avoids exposing scheduling boundaries to the DAG builder,
371 /// simplifying the DAG builder's support for "special" target instructions.
372 /// At the same time the design allows target schedulers to operate across
373 /// scheduling boundaries, for example to bundle the boundary instructions
374 /// without reordering them. This creates complexity, because the target
375 /// scheduler must update the RegionBegin and RegionEnd positions cached by
376 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
377 /// design would be to split blocks at scheduling boundaries, but LLVM has a
378 /// general bias against block splitting purely for implementation simplicity.
379 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
380 if (skipFunction(mf.getFunction()))
381 return false;
383 if (EnableMachineSched.getNumOccurrences()) {
384 if (!EnableMachineSched)
385 return false;
386 } else if (!mf.getSubtarget().enableMachineScheduler())
387 return false;
389 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
391 // Initialize the context of the pass.
392 MF = &mf;
393 MLI = &getAnalysis<MachineLoopInfo>();
394 MDT = &getAnalysis<MachineDominatorTree>();
395 PassConfig = &getAnalysis<TargetPassConfig>();
396 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
398 LIS = &getAnalysis<LiveIntervals>();
400 if (VerifyScheduling) {
401 LLVM_DEBUG(LIS->dump());
402 MF->verify(this, "Before machine scheduling.");
404 RegClassInfo->runOnMachineFunction(*MF);
406 // Instantiate the selected scheduler for this target, function, and
407 // optimization level.
408 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
409 scheduleRegions(*Scheduler, false);
411 LLVM_DEBUG(LIS->dump());
412 if (VerifyScheduling)
413 MF->verify(this, "After machine scheduling.");
414 return true;
417 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
418 if (skipFunction(mf.getFunction()))
419 return false;
421 if (EnablePostRAMachineSched.getNumOccurrences()) {
422 if (!EnablePostRAMachineSched)
423 return false;
424 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
425 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
426 return false;
428 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
430 // Initialize the context of the pass.
431 MF = &mf;
432 MLI = &getAnalysis<MachineLoopInfo>();
433 PassConfig = &getAnalysis<TargetPassConfig>();
434 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
436 if (VerifyScheduling)
437 MF->verify(this, "Before post machine scheduling.");
439 // Instantiate the selected scheduler for this target, function, and
440 // optimization level.
441 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
442 scheduleRegions(*Scheduler, true);
444 if (VerifyScheduling)
445 MF->verify(this, "After post machine scheduling.");
446 return true;
449 /// Return true of the given instruction should not be included in a scheduling
450 /// region.
452 /// MachineScheduler does not currently support scheduling across calls. To
453 /// handle calls, the DAG builder needs to be modified to create register
454 /// anti/output dependencies on the registers clobbered by the call's regmask
455 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
456 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
457 /// the boundary, but there would be no benefit to postRA scheduling across
458 /// calls this late anyway.
459 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
460 MachineBasicBlock *MBB,
461 MachineFunction *MF,
462 const TargetInstrInfo *TII) {
463 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
466 /// A region of an MBB for scheduling.
467 namespace {
468 struct SchedRegion {
469 /// RegionBegin is the first instruction in the scheduling region, and
470 /// RegionEnd is either MBB->end() or the scheduling boundary after the
471 /// last instruction in the scheduling region. These iterators cannot refer
472 /// to instructions outside of the identified scheduling region because
473 /// those may be reordered before scheduling this region.
474 MachineBasicBlock::iterator RegionBegin;
475 MachineBasicBlock::iterator RegionEnd;
476 unsigned NumRegionInstrs;
478 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
479 unsigned N) :
480 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
482 } // end anonymous namespace
484 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
486 static void
487 getSchedRegions(MachineBasicBlock *MBB,
488 MBBRegionsVector &Regions,
489 bool RegionsTopDown) {
490 MachineFunction *MF = MBB->getParent();
491 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
493 MachineBasicBlock::iterator I = nullptr;
494 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
495 RegionEnd != MBB->begin(); RegionEnd = I) {
497 // Avoid decrementing RegionEnd for blocks with no terminator.
498 if (RegionEnd != MBB->end() ||
499 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
500 --RegionEnd;
503 // The next region starts above the previous region. Look backward in the
504 // instruction stream until we find the nearest boundary.
505 unsigned NumRegionInstrs = 0;
506 I = RegionEnd;
507 for (;I != MBB->begin(); --I) {
508 MachineInstr &MI = *std::prev(I);
509 if (isSchedBoundary(&MI, &*MBB, MF, TII))
510 break;
511 if (!MI.isDebugOrPseudoInstr()) {
512 // MBB::size() uses instr_iterator to count. Here we need a bundle to
513 // count as a single instruction.
514 ++NumRegionInstrs;
518 // It's possible we found a scheduling region that only has debug
519 // instructions. Don't bother scheduling these.
520 if (NumRegionInstrs != 0)
521 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
524 if (RegionsTopDown)
525 std::reverse(Regions.begin(), Regions.end());
528 /// Main driver for both MachineScheduler and PostMachineScheduler.
529 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
530 bool FixKillFlags) {
531 // Visit all machine basic blocks.
533 // TODO: Visit blocks in global postorder or postorder within the bottom-up
534 // loop tree. Then we can optionally compute global RegPressure.
535 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
536 MBB != MBBEnd; ++MBB) {
538 Scheduler.startBlock(&*MBB);
540 #ifndef NDEBUG
541 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
542 continue;
543 if (SchedOnlyBlock.getNumOccurrences()
544 && (int)SchedOnlyBlock != MBB->getNumber())
545 continue;
546 #endif
548 // Break the block into scheduling regions [I, RegionEnd). RegionEnd
549 // points to the scheduling boundary at the bottom of the region. The DAG
550 // does not include RegionEnd, but the region does (i.e. the next
551 // RegionEnd is above the previous RegionBegin). If the current block has
552 // no terminator then RegionEnd == MBB->end() for the bottom region.
554 // All the regions of MBB are first found and stored in MBBRegions, which
555 // will be processed (MBB) top-down if initialized with true.
557 // The Scheduler may insert instructions during either schedule() or
558 // exitRegion(), even for empty regions. So the local iterators 'I' and
559 // 'RegionEnd' are invalid across these calls. Instructions must not be
560 // added to other regions than the current one without updating MBBRegions.
562 MBBRegionsVector MBBRegions;
563 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
564 for (MBBRegionsVector::iterator R = MBBRegions.begin();
565 R != MBBRegions.end(); ++R) {
566 MachineBasicBlock::iterator I = R->RegionBegin;
567 MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
568 unsigned NumRegionInstrs = R->NumRegionInstrs;
570 // Notify the scheduler of the region, even if we may skip scheduling
571 // it. Perhaps it still needs to be bundled.
572 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
574 // Skip empty scheduling regions (0 or 1 schedulable instructions).
575 if (I == RegionEnd || I == std::prev(RegionEnd)) {
576 // Close the current region. Bundle the terminator if needed.
577 // This invalidates 'RegionEnd' and 'I'.
578 Scheduler.exitRegion();
579 continue;
581 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
582 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
583 << " " << MBB->getName() << "\n From: " << *I
584 << " To: ";
585 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
586 else dbgs() << "End";
587 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
588 if (DumpCriticalPathLength) {
589 errs() << MF->getName();
590 errs() << ":%bb. " << MBB->getNumber();
591 errs() << " " << MBB->getName() << " \n";
594 // Schedule a region: possibly reorder instructions.
595 // This invalidates the original region iterators.
596 Scheduler.schedule();
598 // Close the current region.
599 Scheduler.exitRegion();
601 Scheduler.finishBlock();
602 // FIXME: Ideally, no further passes should rely on kill flags. However,
603 // thumb2 size reduction is currently an exception, so the PostMIScheduler
604 // needs to do this.
605 if (FixKillFlags)
606 Scheduler.fixupKills(*MBB);
608 Scheduler.finalizeSchedule();
611 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
612 // unimplemented
615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
616 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
617 dbgs() << "Queue " << Name << ": ";
618 for (const SUnit *SU : Queue)
619 dbgs() << SU->NodeNum << " ";
620 dbgs() << "\n";
622 #endif
624 //===----------------------------------------------------------------------===//
625 // ScheduleDAGMI - Basic machine instruction scheduling. This is
626 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
627 // virtual registers.
628 // ===----------------------------------------------------------------------===/
630 // Provide a vtable anchor.
631 ScheduleDAGMI::~ScheduleDAGMI() = default;
633 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
634 /// NumPredsLeft reaches zero, release the successor node.
636 /// FIXME: Adjust SuccSU height based on MinLatency.
637 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
638 SUnit *SuccSU = SuccEdge->getSUnit();
640 if (SuccEdge->isWeak()) {
641 --SuccSU->WeakPredsLeft;
642 if (SuccEdge->isCluster())
643 NextClusterSucc = SuccSU;
644 return;
646 #ifndef NDEBUG
647 if (SuccSU->NumPredsLeft == 0) {
648 dbgs() << "*** Scheduling failed! ***\n";
649 dumpNode(*SuccSU);
650 dbgs() << " has been released too many times!\n";
651 llvm_unreachable(nullptr);
653 #endif
654 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
655 // CurrCycle may have advanced since then.
656 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
657 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
659 --SuccSU->NumPredsLeft;
660 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
661 SchedImpl->releaseTopNode(SuccSU);
664 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
665 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
666 for (SDep &Succ : SU->Succs)
667 releaseSucc(SU, &Succ);
670 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
671 /// NumSuccsLeft reaches zero, release the predecessor node.
673 /// FIXME: Adjust PredSU height based on MinLatency.
674 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
675 SUnit *PredSU = PredEdge->getSUnit();
677 if (PredEdge->isWeak()) {
678 --PredSU->WeakSuccsLeft;
679 if (PredEdge->isCluster())
680 NextClusterPred = PredSU;
681 return;
683 #ifndef NDEBUG
684 if (PredSU->NumSuccsLeft == 0) {
685 dbgs() << "*** Scheduling failed! ***\n";
686 dumpNode(*PredSU);
687 dbgs() << " has been released too many times!\n";
688 llvm_unreachable(nullptr);
690 #endif
691 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
692 // CurrCycle may have advanced since then.
693 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
694 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
696 --PredSU->NumSuccsLeft;
697 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
698 SchedImpl->releaseBottomNode(PredSU);
701 /// releasePredecessors - Call releasePred on each of SU's predecessors.
702 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
703 for (SDep &Pred : SU->Preds)
704 releasePred(SU, &Pred);
707 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
708 ScheduleDAGInstrs::startBlock(bb);
709 SchedImpl->enterMBB(bb);
712 void ScheduleDAGMI::finishBlock() {
713 SchedImpl->leaveMBB();
714 ScheduleDAGInstrs::finishBlock();
717 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
718 /// crossing a scheduling boundary. [begin, end) includes all instructions in
719 /// the region, including the boundary itself and single-instruction regions
720 /// that don't get scheduled.
721 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
722 MachineBasicBlock::iterator begin,
723 MachineBasicBlock::iterator end,
724 unsigned regioninstrs)
726 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
728 SchedImpl->initPolicy(begin, end, regioninstrs);
731 /// This is normally called from the main scheduler loop but may also be invoked
732 /// by the scheduling strategy to perform additional code motion.
733 void ScheduleDAGMI::moveInstruction(
734 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
735 // Advance RegionBegin if the first instruction moves down.
736 if (&*RegionBegin == MI)
737 ++RegionBegin;
739 // Update the instruction stream.
740 BB->splice(InsertPos, BB, MI);
742 // Update LiveIntervals
743 if (LIS)
744 LIS->handleMove(*MI, /*UpdateFlags=*/true);
746 // Recede RegionBegin if an instruction moves above the first.
747 if (RegionBegin == InsertPos)
748 RegionBegin = MI;
751 bool ScheduleDAGMI::checkSchedLimit() {
752 #ifndef NDEBUG
753 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
754 CurrentTop = CurrentBottom;
755 return false;
757 ++NumInstrsScheduled;
758 #endif
759 return true;
762 /// Per-region scheduling driver, called back from
763 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
764 /// does not consider liveness or register pressure. It is useful for PostRA
765 /// scheduling and potentially other custom schedulers.
766 void ScheduleDAGMI::schedule() {
767 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
768 LLVM_DEBUG(SchedImpl->dumpPolicy());
770 // Build the DAG.
771 buildSchedGraph(AA);
773 postprocessDAG();
775 SmallVector<SUnit*, 8> TopRoots, BotRoots;
776 findRootsAndBiasEdges(TopRoots, BotRoots);
778 LLVM_DEBUG(dump());
779 if (PrintDAGs) dump();
780 if (ViewMISchedDAGs) viewGraph();
782 // Initialize the strategy before modifying the DAG.
783 // This may initialize a DFSResult to be used for queue priority.
784 SchedImpl->initialize(this);
786 // Initialize ready queues now that the DAG and priority data are finalized.
787 initQueues(TopRoots, BotRoots);
789 bool IsTopNode = false;
790 while (true) {
791 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
792 SUnit *SU = SchedImpl->pickNode(IsTopNode);
793 if (!SU) break;
795 assert(!SU->isScheduled && "Node already scheduled");
796 if (!checkSchedLimit())
797 break;
799 MachineInstr *MI = SU->getInstr();
800 if (IsTopNode) {
801 assert(SU->isTopReady() && "node still has unscheduled dependencies");
802 if (&*CurrentTop == MI)
803 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
804 else
805 moveInstruction(MI, CurrentTop);
806 } else {
807 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
808 MachineBasicBlock::iterator priorII =
809 priorNonDebug(CurrentBottom, CurrentTop);
810 if (&*priorII == MI)
811 CurrentBottom = priorII;
812 else {
813 if (&*CurrentTop == MI)
814 CurrentTop = nextIfDebug(++CurrentTop, priorII);
815 moveInstruction(MI, CurrentBottom);
816 CurrentBottom = MI;
819 // Notify the scheduling strategy before updating the DAG.
820 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
821 // runs, it can then use the accurate ReadyCycle time to determine whether
822 // newly released nodes can move to the readyQ.
823 SchedImpl->schedNode(SU, IsTopNode);
825 updateQueues(SU, IsTopNode);
827 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
829 placeDebugValues();
831 LLVM_DEBUG({
832 dbgs() << "*** Final schedule for "
833 << printMBBReference(*begin()->getParent()) << " ***\n";
834 dumpSchedule();
835 dbgs() << '\n';
839 /// Apply each ScheduleDAGMutation step in order.
840 void ScheduleDAGMI::postprocessDAG() {
841 for (auto &m : Mutations)
842 m->apply(this);
845 void ScheduleDAGMI::
846 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
847 SmallVectorImpl<SUnit*> &BotRoots) {
848 for (SUnit &SU : SUnits) {
849 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
851 // Order predecessors so DFSResult follows the critical path.
852 SU.biasCriticalPath();
854 // A SUnit is ready to top schedule if it has no predecessors.
855 if (!SU.NumPredsLeft)
856 TopRoots.push_back(&SU);
857 // A SUnit is ready to bottom schedule if it has no successors.
858 if (!SU.NumSuccsLeft)
859 BotRoots.push_back(&SU);
861 ExitSU.biasCriticalPath();
864 /// Identify DAG roots and setup scheduler queues.
865 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
866 ArrayRef<SUnit*> BotRoots) {
867 NextClusterSucc = nullptr;
868 NextClusterPred = nullptr;
870 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
872 // Nodes with unreleased weak edges can still be roots.
873 // Release top roots in forward order.
874 for (SUnit *SU : TopRoots)
875 SchedImpl->releaseTopNode(SU);
877 // Release bottom roots in reverse order so the higher priority nodes appear
878 // first. This is more natural and slightly more efficient.
879 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
880 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
881 SchedImpl->releaseBottomNode(*I);
884 releaseSuccessors(&EntrySU);
885 releasePredecessors(&ExitSU);
887 SchedImpl->registerRoots();
889 // Advance past initial DebugValues.
890 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
891 CurrentBottom = RegionEnd;
894 /// Update scheduler queues after scheduling an instruction.
895 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
896 // Release dependent instructions for scheduling.
897 if (IsTopNode)
898 releaseSuccessors(SU);
899 else
900 releasePredecessors(SU);
902 SU->isScheduled = true;
905 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
906 void ScheduleDAGMI::placeDebugValues() {
907 // If first instruction was a DBG_VALUE then put it back.
908 if (FirstDbgValue) {
909 BB->splice(RegionBegin, BB, FirstDbgValue);
910 RegionBegin = FirstDbgValue;
913 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
914 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
915 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
916 MachineInstr *DbgValue = P.first;
917 MachineBasicBlock::iterator OrigPrevMI = P.second;
918 if (&*RegionBegin == DbgValue)
919 ++RegionBegin;
920 BB->splice(++OrigPrevMI, BB, DbgValue);
921 if (OrigPrevMI == std::prev(RegionEnd))
922 RegionEnd = DbgValue;
924 DbgValues.clear();
925 FirstDbgValue = nullptr;
928 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
929 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
930 for (MachineInstr &MI : *this) {
931 if (SUnit *SU = getSUnit(&MI))
932 dumpNode(*SU);
933 else
934 dbgs() << "Missing SUnit\n";
937 #endif
939 //===----------------------------------------------------------------------===//
940 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
941 // preservation.
942 //===----------------------------------------------------------------------===//
944 ScheduleDAGMILive::~ScheduleDAGMILive() {
945 delete DFSResult;
948 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
949 const MachineInstr &MI = *SU.getInstr();
950 for (const MachineOperand &MO : MI.operands()) {
951 if (!MO.isReg())
952 continue;
953 if (!MO.readsReg())
954 continue;
955 if (TrackLaneMasks && !MO.isUse())
956 continue;
958 Register Reg = MO.getReg();
959 if (!Register::isVirtualRegister(Reg))
960 continue;
962 // Ignore re-defs.
963 if (TrackLaneMasks) {
964 bool FoundDef = false;
965 for (const MachineOperand &MO2 : MI.operands()) {
966 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
967 FoundDef = true;
968 break;
971 if (FoundDef)
972 continue;
975 // Record this local VReg use.
976 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
977 for (; UI != VRegUses.end(); ++UI) {
978 if (UI->SU == &SU)
979 break;
981 if (UI == VRegUses.end())
982 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
986 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
987 /// crossing a scheduling boundary. [begin, end) includes all instructions in
988 /// the region, including the boundary itself and single-instruction regions
989 /// that don't get scheduled.
990 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
991 MachineBasicBlock::iterator begin,
992 MachineBasicBlock::iterator end,
993 unsigned regioninstrs)
995 // ScheduleDAGMI initializes SchedImpl's per-region policy.
996 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
998 // For convenience remember the end of the liveness region.
999 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1001 SUPressureDiffs.clear();
1003 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1004 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1006 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1007 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1010 // Setup the register pressure trackers for the top scheduled and bottom
1011 // scheduled regions.
1012 void ScheduleDAGMILive::initRegPressure() {
1013 VRegUses.clear();
1014 VRegUses.setUniverse(MRI.getNumVirtRegs());
1015 for (SUnit &SU : SUnits)
1016 collectVRegUses(SU);
1018 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1019 ShouldTrackLaneMasks, false);
1020 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1021 ShouldTrackLaneMasks, false);
1023 // Close the RPTracker to finalize live ins.
1024 RPTracker.closeRegion();
1026 LLVM_DEBUG(RPTracker.dump());
1028 // Initialize the live ins and live outs.
1029 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1030 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1032 // Close one end of the tracker so we can call
1033 // getMaxUpward/DownwardPressureDelta before advancing across any
1034 // instructions. This converts currently live regs into live ins/outs.
1035 TopRPTracker.closeTop();
1036 BotRPTracker.closeBottom();
1038 BotRPTracker.initLiveThru(RPTracker);
1039 if (!BotRPTracker.getLiveThru().empty()) {
1040 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1041 LLVM_DEBUG(dbgs() << "Live Thru: ";
1042 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1045 // For each live out vreg reduce the pressure change associated with other
1046 // uses of the same vreg below the live-out reaching def.
1047 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1049 // Account for liveness generated by the region boundary.
1050 if (LiveRegionEnd != RegionEnd) {
1051 SmallVector<RegisterMaskPair, 8> LiveUses;
1052 BotRPTracker.recede(&LiveUses);
1053 updatePressureDiffs(LiveUses);
1056 LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1057 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1058 dbgs() << "Bottom Pressure:\n";
1059 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1061 assert((BotRPTracker.getPos() == RegionEnd ||
1062 (RegionEnd->isDebugInstr() &&
1063 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1064 "Can't find the region bottom");
1066 // Cache the list of excess pressure sets in this region. This will also track
1067 // the max pressure in the scheduled code for these sets.
1068 RegionCriticalPSets.clear();
1069 const std::vector<unsigned> &RegionPressure =
1070 RPTracker.getPressure().MaxSetPressure;
1071 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1072 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1073 if (RegionPressure[i] > Limit) {
1074 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1075 << " Actual " << RegionPressure[i] << "\n");
1076 RegionCriticalPSets.push_back(PressureChange(i));
1079 LLVM_DEBUG(dbgs() << "Excess PSets: ";
1080 for (const PressureChange &RCPS
1081 : RegionCriticalPSets) dbgs()
1082 << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1083 dbgs() << "\n");
1086 void ScheduleDAGMILive::
1087 updateScheduledPressure(const SUnit *SU,
1088 const std::vector<unsigned> &NewMaxPressure) {
1089 const PressureDiff &PDiff = getPressureDiff(SU);
1090 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1091 for (const PressureChange &PC : PDiff) {
1092 if (!PC.isValid())
1093 break;
1094 unsigned ID = PC.getPSet();
1095 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1096 ++CritIdx;
1097 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1098 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1099 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1100 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1102 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1103 if (NewMaxPressure[ID] >= Limit - 2) {
1104 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
1105 << NewMaxPressure[ID]
1106 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1107 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1108 << " livethru)\n");
1113 /// Update the PressureDiff array for liveness after scheduling this
1114 /// instruction.
1115 void ScheduleDAGMILive::updatePressureDiffs(
1116 ArrayRef<RegisterMaskPair> LiveUses) {
1117 for (const RegisterMaskPair &P : LiveUses) {
1118 Register Reg = P.RegUnit;
1119 /// FIXME: Currently assuming single-use physregs.
1120 if (!Register::isVirtualRegister(Reg))
1121 continue;
1123 if (ShouldTrackLaneMasks) {
1124 // If the register has just become live then other uses won't change
1125 // this fact anymore => decrement pressure.
1126 // If the register has just become dead then other uses make it come
1127 // back to life => increment pressure.
1128 bool Decrement = P.LaneMask.any();
1130 for (const VReg2SUnit &V2SU
1131 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1132 SUnit &SU = *V2SU.SU;
1133 if (SU.isScheduled || &SU == &ExitSU)
1134 continue;
1136 PressureDiff &PDiff = getPressureDiff(&SU);
1137 PDiff.addPressureChange(Reg, Decrement, &MRI);
1138 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "
1139 << printReg(Reg, TRI) << ':'
1140 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1141 dbgs() << " to "; PDiff.dump(*TRI););
1143 } else {
1144 assert(P.LaneMask.any());
1145 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1146 // This may be called before CurrentBottom has been initialized. However,
1147 // BotRPTracker must have a valid position. We want the value live into the
1148 // instruction or live out of the block, so ask for the previous
1149 // instruction's live-out.
1150 const LiveInterval &LI = LIS->getInterval(Reg);
1151 VNInfo *VNI;
1152 MachineBasicBlock::const_iterator I =
1153 nextIfDebug(BotRPTracker.getPos(), BB->end());
1154 if (I == BB->end())
1155 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1156 else {
1157 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1158 VNI = LRQ.valueIn();
1160 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1161 assert(VNI && "No live value at use.");
1162 for (const VReg2SUnit &V2SU
1163 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1164 SUnit *SU = V2SU.SU;
1165 // If this use comes before the reaching def, it cannot be a last use,
1166 // so decrease its pressure change.
1167 if (!SU->isScheduled && SU != &ExitSU) {
1168 LiveQueryResult LRQ =
1169 LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1170 if (LRQ.valueIn() == VNI) {
1171 PressureDiff &PDiff = getPressureDiff(SU);
1172 PDiff.addPressureChange(Reg, true, &MRI);
1173 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1174 << *SU->getInstr();
1175 dbgs() << " to "; PDiff.dump(*TRI););
1183 void ScheduleDAGMILive::dump() const {
1184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1185 if (EntrySU.getInstr() != nullptr)
1186 dumpNodeAll(EntrySU);
1187 for (const SUnit &SU : SUnits) {
1188 dumpNodeAll(SU);
1189 if (ShouldTrackPressure) {
1190 dbgs() << " Pressure Diff : ";
1191 getPressureDiff(&SU).dump(*TRI);
1193 dbgs() << " Single Issue : ";
1194 if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1195 SchedModel.mustEndGroup(SU.getInstr()))
1196 dbgs() << "true;";
1197 else
1198 dbgs() << "false;";
1199 dbgs() << '\n';
1201 if (ExitSU.getInstr() != nullptr)
1202 dumpNodeAll(ExitSU);
1203 #endif
1206 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1207 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1208 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1210 /// This is a skeletal driver, with all the functionality pushed into helpers,
1211 /// so that it can be easily extended by experimental schedulers. Generally,
1212 /// implementing MachineSchedStrategy should be sufficient to implement a new
1213 /// scheduling algorithm. However, if a scheduler further subclasses
1214 /// ScheduleDAGMILive then it will want to override this virtual method in order
1215 /// to update any specialized state.
1216 void ScheduleDAGMILive::schedule() {
1217 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1218 LLVM_DEBUG(SchedImpl->dumpPolicy());
1219 buildDAGWithRegPressure();
1221 postprocessDAG();
1223 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1224 findRootsAndBiasEdges(TopRoots, BotRoots);
1226 // Initialize the strategy before modifying the DAG.
1227 // This may initialize a DFSResult to be used for queue priority.
1228 SchedImpl->initialize(this);
1230 LLVM_DEBUG(dump());
1231 if (PrintDAGs) dump();
1232 if (ViewMISchedDAGs) viewGraph();
1234 // Initialize ready queues now that the DAG and priority data are finalized.
1235 initQueues(TopRoots, BotRoots);
1237 bool IsTopNode = false;
1238 while (true) {
1239 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1240 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1241 if (!SU) break;
1243 assert(!SU->isScheduled && "Node already scheduled");
1244 if (!checkSchedLimit())
1245 break;
1247 scheduleMI(SU, IsTopNode);
1249 if (DFSResult) {
1250 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1251 if (!ScheduledTrees.test(SubtreeID)) {
1252 ScheduledTrees.set(SubtreeID);
1253 DFSResult->scheduleTree(SubtreeID);
1254 SchedImpl->scheduleTree(SubtreeID);
1258 // Notify the scheduling strategy after updating the DAG.
1259 SchedImpl->schedNode(SU, IsTopNode);
1261 updateQueues(SU, IsTopNode);
1263 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1265 placeDebugValues();
1267 LLVM_DEBUG({
1268 dbgs() << "*** Final schedule for "
1269 << printMBBReference(*begin()->getParent()) << " ***\n";
1270 dumpSchedule();
1271 dbgs() << '\n';
1275 /// Build the DAG and setup three register pressure trackers.
1276 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1277 if (!ShouldTrackPressure) {
1278 RPTracker.reset();
1279 RegionCriticalPSets.clear();
1280 buildSchedGraph(AA);
1281 return;
1284 // Initialize the register pressure tracker used by buildSchedGraph.
1285 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1286 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1288 // Account for liveness generate by the region boundary.
1289 if (LiveRegionEnd != RegionEnd)
1290 RPTracker.recede();
1292 // Build the DAG, and compute current register pressure.
1293 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1295 // Initialize top/bottom trackers after computing region pressure.
1296 initRegPressure();
1299 void ScheduleDAGMILive::computeDFSResult() {
1300 if (!DFSResult)
1301 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1302 DFSResult->clear();
1303 ScheduledTrees.clear();
1304 DFSResult->resize(SUnits.size());
1305 DFSResult->compute(SUnits);
1306 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1309 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1310 /// only provides the critical path for single block loops. To handle loops that
1311 /// span blocks, we could use the vreg path latencies provided by
1312 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1313 /// available for use in the scheduler.
1315 /// The cyclic path estimation identifies a def-use pair that crosses the back
1316 /// edge and considers the depth and height of the nodes. For example, consider
1317 /// the following instruction sequence where each instruction has unit latency
1318 /// and defines an eponymous virtual register:
1320 /// a->b(a,c)->c(b)->d(c)->exit
1322 /// The cyclic critical path is a two cycles: b->c->b
1323 /// The acyclic critical path is four cycles: a->b->c->d->exit
1324 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1325 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1326 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1327 /// LiveInDepth = depth(b) = len(a->b) = 1
1329 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1330 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1331 /// CyclicCriticalPath = min(2, 2) = 2
1333 /// This could be relevant to PostRA scheduling, but is currently implemented
1334 /// assuming LiveIntervals.
1335 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1336 // This only applies to single block loop.
1337 if (!BB->isSuccessor(BB))
1338 return 0;
1340 unsigned MaxCyclicLatency = 0;
1341 // Visit each live out vreg def to find def/use pairs that cross iterations.
1342 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1343 Register Reg = P.RegUnit;
1344 if (!Register::isVirtualRegister(Reg))
1345 continue;
1346 const LiveInterval &LI = LIS->getInterval(Reg);
1347 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1348 if (!DefVNI)
1349 continue;
1351 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1352 const SUnit *DefSU = getSUnit(DefMI);
1353 if (!DefSU)
1354 continue;
1356 unsigned LiveOutHeight = DefSU->getHeight();
1357 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1358 // Visit all local users of the vreg def.
1359 for (const VReg2SUnit &V2SU
1360 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1361 SUnit *SU = V2SU.SU;
1362 if (SU == &ExitSU)
1363 continue;
1365 // Only consider uses of the phi.
1366 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1367 if (!LRQ.valueIn()->isPHIDef())
1368 continue;
1370 // Assume that a path spanning two iterations is a cycle, which could
1371 // overestimate in strange cases. This allows cyclic latency to be
1372 // estimated as the minimum slack of the vreg's depth or height.
1373 unsigned CyclicLatency = 0;
1374 if (LiveOutDepth > SU->getDepth())
1375 CyclicLatency = LiveOutDepth - SU->getDepth();
1377 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1378 if (LiveInHeight > LiveOutHeight) {
1379 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1380 CyclicLatency = LiveInHeight - LiveOutHeight;
1381 } else
1382 CyclicLatency = 0;
1384 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1385 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1386 if (CyclicLatency > MaxCyclicLatency)
1387 MaxCyclicLatency = CyclicLatency;
1390 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1391 return MaxCyclicLatency;
1394 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1395 /// the Top RP tracker in case the region beginning has changed.
1396 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1397 ArrayRef<SUnit*> BotRoots) {
1398 ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1399 if (ShouldTrackPressure) {
1400 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1401 TopRPTracker.setPos(CurrentTop);
1405 /// Move an instruction and update register pressure.
1406 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1407 // Move the instruction to its new location in the instruction stream.
1408 MachineInstr *MI = SU->getInstr();
1410 if (IsTopNode) {
1411 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1412 if (&*CurrentTop == MI)
1413 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1414 else {
1415 moveInstruction(MI, CurrentTop);
1416 TopRPTracker.setPos(MI);
1419 if (ShouldTrackPressure) {
1420 // Update top scheduled pressure.
1421 RegisterOperands RegOpers;
1422 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1423 if (ShouldTrackLaneMasks) {
1424 // Adjust liveness and add missing dead+read-undef flags.
1425 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1426 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1427 } else {
1428 // Adjust for missing dead-def flags.
1429 RegOpers.detectDeadDefs(*MI, *LIS);
1432 TopRPTracker.advance(RegOpers);
1433 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1434 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1435 TopRPTracker.getRegSetPressureAtPos(), TRI););
1437 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1439 } else {
1440 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1441 MachineBasicBlock::iterator priorII =
1442 priorNonDebug(CurrentBottom, CurrentTop);
1443 if (&*priorII == MI)
1444 CurrentBottom = priorII;
1445 else {
1446 if (&*CurrentTop == MI) {
1447 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1448 TopRPTracker.setPos(CurrentTop);
1450 moveInstruction(MI, CurrentBottom);
1451 CurrentBottom = MI;
1452 BotRPTracker.setPos(CurrentBottom);
1454 if (ShouldTrackPressure) {
1455 RegisterOperands RegOpers;
1456 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1457 if (ShouldTrackLaneMasks) {
1458 // Adjust liveness and add missing dead+read-undef flags.
1459 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1460 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1461 } else {
1462 // Adjust for missing dead-def flags.
1463 RegOpers.detectDeadDefs(*MI, *LIS);
1466 if (BotRPTracker.getPos() != CurrentBottom)
1467 BotRPTracker.recedeSkipDebugValues();
1468 SmallVector<RegisterMaskPair, 8> LiveUses;
1469 BotRPTracker.recede(RegOpers, &LiveUses);
1470 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1471 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1472 BotRPTracker.getRegSetPressureAtPos(), TRI););
1474 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1475 updatePressureDiffs(LiveUses);
1480 //===----------------------------------------------------------------------===//
1481 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1482 //===----------------------------------------------------------------------===//
1484 namespace {
1486 /// Post-process the DAG to create cluster edges between neighboring
1487 /// loads or between neighboring stores.
1488 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1489 struct MemOpInfo {
1490 SUnit *SU;
1491 SmallVector<const MachineOperand *, 4> BaseOps;
1492 int64_t Offset;
1493 unsigned Width;
1495 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1496 int64_t Offset, unsigned Width)
1497 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1498 Width(Width) {}
1500 static bool Compare(const MachineOperand *const &A,
1501 const MachineOperand *const &B) {
1502 if (A->getType() != B->getType())
1503 return A->getType() < B->getType();
1504 if (A->isReg())
1505 return A->getReg() < B->getReg();
1506 if (A->isFI()) {
1507 const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1508 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1509 bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1510 TargetFrameLowering::StackGrowsDown;
1511 return StackGrowsDown ? A->getIndex() > B->getIndex()
1512 : A->getIndex() < B->getIndex();
1515 llvm_unreachable("MemOpClusterMutation only supports register or frame "
1516 "index bases.");
1519 bool operator<(const MemOpInfo &RHS) const {
1520 // FIXME: Don't compare everything twice. Maybe use C++20 three way
1521 // comparison instead when it's available.
1522 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1523 RHS.BaseOps.begin(), RHS.BaseOps.end(),
1524 Compare))
1525 return true;
1526 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1527 BaseOps.begin(), BaseOps.end(), Compare))
1528 return false;
1529 if (Offset != RHS.Offset)
1530 return Offset < RHS.Offset;
1531 return SU->NodeNum < RHS.SU->NodeNum;
1535 const TargetInstrInfo *TII;
1536 const TargetRegisterInfo *TRI;
1537 bool IsLoad;
1539 public:
1540 BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1541 const TargetRegisterInfo *tri, bool IsLoad)
1542 : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1544 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1546 protected:
1547 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1548 ScheduleDAGInstrs *DAG);
1549 void collectMemOpRecords(std::vector<SUnit> &SUnits,
1550 SmallVectorImpl<MemOpInfo> &MemOpRecords);
1551 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1552 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1555 class StoreClusterMutation : public BaseMemOpClusterMutation {
1556 public:
1557 StoreClusterMutation(const TargetInstrInfo *tii,
1558 const TargetRegisterInfo *tri)
1559 : BaseMemOpClusterMutation(tii, tri, false) {}
1562 class LoadClusterMutation : public BaseMemOpClusterMutation {
1563 public:
1564 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1565 : BaseMemOpClusterMutation(tii, tri, true) {}
1568 } // end anonymous namespace
1570 namespace llvm {
1572 std::unique_ptr<ScheduleDAGMutation>
1573 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1574 const TargetRegisterInfo *TRI) {
1575 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1576 : nullptr;
1579 std::unique_ptr<ScheduleDAGMutation>
1580 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1581 const TargetRegisterInfo *TRI) {
1582 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1583 : nullptr;
1586 } // end namespace llvm
1588 // Sorting all the loads/stores first, then for each load/store, checking the
1589 // following load/store one by one, until reach the first non-dependent one and
1590 // call target hook to see if they can cluster.
1591 // If FastCluster is enabled, we assume that, all the loads/stores have been
1592 // preprocessed and now, they didn't have dependencies on each other.
1593 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1594 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1595 ScheduleDAGInstrs *DAG) {
1596 // Keep track of the current cluster length and bytes for each SUnit.
1597 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1599 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1600 // cluster mem ops collected within `MemOpRecords` array.
1601 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1602 // Decision to cluster mem ops is taken based on target dependent logic
1603 auto MemOpa = MemOpRecords[Idx];
1605 // Seek for the next load/store to do the cluster.
1606 unsigned NextIdx = Idx + 1;
1607 for (; NextIdx < End; ++NextIdx)
1608 // Skip if MemOpb has been clustered already or has dependency with
1609 // MemOpa.
1610 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1611 (FastCluster ||
1612 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1613 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1614 break;
1615 if (NextIdx == End)
1616 continue;
1618 auto MemOpb = MemOpRecords[NextIdx];
1619 unsigned ClusterLength = 2;
1620 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1621 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1622 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1623 CurrentClusterBytes =
1624 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1627 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1628 CurrentClusterBytes))
1629 continue;
1631 SUnit *SUa = MemOpa.SU;
1632 SUnit *SUb = MemOpb.SU;
1633 if (SUa->NodeNum > SUb->NodeNum)
1634 std::swap(SUa, SUb);
1636 // FIXME: Is this check really required?
1637 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1638 continue;
1640 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1641 << SUb->NodeNum << ")\n");
1642 ++NumClustered;
1644 if (IsLoad) {
1645 // Copy successor edges from SUa to SUb. Interleaving computation
1646 // dependent on SUa can prevent load combining due to register reuse.
1647 // Predecessor edges do not need to be copied from SUb to SUa since
1648 // nearby loads should have effectively the same inputs.
1649 for (const SDep &Succ : SUa->Succs) {
1650 if (Succ.getSUnit() == SUb)
1651 continue;
1652 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum
1653 << ")\n");
1654 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1656 } else {
1657 // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1658 // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1659 // do not need to be copied from SUa to SUb since no one will depend
1660 // on stores.
1661 // Notice that, we don't need to care about the memory dependency as
1662 // we won't try to cluster them if they have any memory dependency.
1663 for (const SDep &Pred : SUb->Preds) {
1664 if (Pred.getSUnit() == SUa)
1665 continue;
1666 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum
1667 << ")\n");
1668 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1672 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1673 CurrentClusterBytes};
1675 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength
1676 << ", Curr cluster bytes: " << CurrentClusterBytes
1677 << "\n");
1681 void BaseMemOpClusterMutation::collectMemOpRecords(
1682 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1683 for (auto &SU : SUnits) {
1684 if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1685 (!IsLoad && !SU.getInstr()->mayStore()))
1686 continue;
1688 const MachineInstr &MI = *SU.getInstr();
1689 SmallVector<const MachineOperand *, 4> BaseOps;
1690 int64_t Offset;
1691 bool OffsetIsScalable;
1692 unsigned Width;
1693 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1694 OffsetIsScalable, Width, TRI)) {
1695 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1697 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1698 << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1699 << ", Width: " << Width << "\n");
1701 #ifndef NDEBUG
1702 for (auto *Op : BaseOps)
1703 assert(Op);
1704 #endif
1708 bool BaseMemOpClusterMutation::groupMemOps(
1709 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1710 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1711 bool FastCluster =
1712 ForceFastCluster ||
1713 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1715 for (const auto &MemOp : MemOps) {
1716 unsigned ChainPredID = DAG->SUnits.size();
1717 if (FastCluster) {
1718 for (const SDep &Pred : MemOp.SU->Preds) {
1719 // We only want to cluster the mem ops that have the same ctrl(non-data)
1720 // pred so that they didn't have ctrl dependency for each other. But for
1721 // store instrs, we can still cluster them if the pred is load instr.
1722 if ((Pred.isCtrl() &&
1723 (IsLoad ||
1724 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1725 !Pred.isArtificial()) {
1726 ChainPredID = Pred.getSUnit()->NodeNum;
1727 break;
1730 } else
1731 ChainPredID = 0;
1733 Groups[ChainPredID].push_back(MemOp);
1735 return FastCluster;
1738 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1739 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1740 // Collect all the clusterable loads/stores
1741 SmallVector<MemOpInfo, 32> MemOpRecords;
1742 collectMemOpRecords(DAG->SUnits, MemOpRecords);
1744 if (MemOpRecords.size() < 2)
1745 return;
1747 // Put the loads/stores without dependency into the same group with some
1748 // heuristic if the DAG is too complex to avoid compiling time blow up.
1749 // Notice that, some fusion pair could be lost with this.
1750 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1751 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1753 for (auto &Group : Groups) {
1754 // Sorting the loads/stores, so that, we can stop the cluster as early as
1755 // possible.
1756 llvm::sort(Group.second);
1758 // Trying to cluster all the neighboring loads/stores.
1759 clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1763 //===----------------------------------------------------------------------===//
1764 // CopyConstrain - DAG post-processing to encourage copy elimination.
1765 //===----------------------------------------------------------------------===//
1767 namespace {
1769 /// Post-process the DAG to create weak edges from all uses of a copy to
1770 /// the one use that defines the copy's source vreg, most likely an induction
1771 /// variable increment.
1772 class CopyConstrain : public ScheduleDAGMutation {
1773 // Transient state.
1774 SlotIndex RegionBeginIdx;
1776 // RegionEndIdx is the slot index of the last non-debug instruction in the
1777 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1778 SlotIndex RegionEndIdx;
1780 public:
1781 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1783 void apply(ScheduleDAGInstrs *DAGInstrs) override;
1785 protected:
1786 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1789 } // end anonymous namespace
1791 namespace llvm {
1793 std::unique_ptr<ScheduleDAGMutation>
1794 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1795 const TargetRegisterInfo *TRI) {
1796 return std::make_unique<CopyConstrain>(TII, TRI);
1799 } // end namespace llvm
1801 /// constrainLocalCopy handles two possibilities:
1802 /// 1) Local src:
1803 /// I0: = dst
1804 /// I1: src = ...
1805 /// I2: = dst
1806 /// I3: dst = src (copy)
1807 /// (create pred->succ edges I0->I1, I2->I1)
1809 /// 2) Local copy:
1810 /// I0: dst = src (copy)
1811 /// I1: = dst
1812 /// I2: src = ...
1813 /// I3: = dst
1814 /// (create pred->succ edges I1->I2, I3->I2)
1816 /// Although the MachineScheduler is currently constrained to single blocks,
1817 /// this algorithm should handle extended blocks. An EBB is a set of
1818 /// contiguously numbered blocks such that the previous block in the EBB is
1819 /// always the single predecessor.
1820 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1821 LiveIntervals *LIS = DAG->getLIS();
1822 MachineInstr *Copy = CopySU->getInstr();
1824 // Check for pure vreg copies.
1825 const MachineOperand &SrcOp = Copy->getOperand(1);
1826 Register SrcReg = SrcOp.getReg();
1827 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1828 return;
1830 const MachineOperand &DstOp = Copy->getOperand(0);
1831 Register DstReg = DstOp.getReg();
1832 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1833 return;
1835 // Check if either the dest or source is local. If it's live across a back
1836 // edge, it's not local. Note that if both vregs are live across the back
1837 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1838 // If both the copy's source and dest are local live intervals, then we
1839 // should treat the dest as the global for the purpose of adding
1840 // constraints. This adds edges from source's other uses to the copy.
1841 unsigned LocalReg = SrcReg;
1842 unsigned GlobalReg = DstReg;
1843 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1844 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1845 LocalReg = DstReg;
1846 GlobalReg = SrcReg;
1847 LocalLI = &LIS->getInterval(LocalReg);
1848 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1849 return;
1851 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1853 // Find the global segment after the start of the local LI.
1854 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1855 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1856 // local live range. We could create edges from other global uses to the local
1857 // start, but the coalescer should have already eliminated these cases, so
1858 // don't bother dealing with it.
1859 if (GlobalSegment == GlobalLI->end())
1860 return;
1862 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1863 // returned the next global segment. But if GlobalSegment overlaps with
1864 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1865 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1866 if (GlobalSegment->contains(LocalLI->beginIndex()))
1867 ++GlobalSegment;
1869 if (GlobalSegment == GlobalLI->end())
1870 return;
1872 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1873 if (GlobalSegment != GlobalLI->begin()) {
1874 // Two address defs have no hole.
1875 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1876 GlobalSegment->start)) {
1877 return;
1879 // If the prior global segment may be defined by the same two-address
1880 // instruction that also defines LocalLI, then can't make a hole here.
1881 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1882 LocalLI->beginIndex())) {
1883 return;
1885 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1886 // it would be a disconnected component in the live range.
1887 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1888 "Disconnected LRG within the scheduling region.");
1890 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1891 if (!GlobalDef)
1892 return;
1894 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1895 if (!GlobalSU)
1896 return;
1898 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1899 // constraining the uses of the last local def to precede GlobalDef.
1900 SmallVector<SUnit*,8> LocalUses;
1901 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1902 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1903 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1904 for (const SDep &Succ : LastLocalSU->Succs) {
1905 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1906 continue;
1907 if (Succ.getSUnit() == GlobalSU)
1908 continue;
1909 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1910 return;
1911 LocalUses.push_back(Succ.getSUnit());
1913 // Open the top of the GlobalLI hole by constraining any earlier global uses
1914 // to precede the start of LocalLI.
1915 SmallVector<SUnit*,8> GlobalUses;
1916 MachineInstr *FirstLocalDef =
1917 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1918 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1919 for (const SDep &Pred : GlobalSU->Preds) {
1920 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1921 continue;
1922 if (Pred.getSUnit() == FirstLocalSU)
1923 continue;
1924 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1925 return;
1926 GlobalUses.push_back(Pred.getSUnit());
1928 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1929 // Add the weak edges.
1930 for (SUnit *LU : LocalUses) {
1931 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("
1932 << GlobalSU->NodeNum << ")\n");
1933 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
1935 for (SUnit *GU : GlobalUses) {
1936 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("
1937 << FirstLocalSU->NodeNum << ")\n");
1938 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
1942 /// Callback from DAG postProcessing to create weak edges to encourage
1943 /// copy elimination.
1944 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1945 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1946 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1948 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1949 if (FirstPos == DAG->end())
1950 return;
1951 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1952 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1953 *priorNonDebug(DAG->end(), DAG->begin()));
1955 for (SUnit &SU : DAG->SUnits) {
1956 if (!SU.getInstr()->isCopy())
1957 continue;
1959 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1963 //===----------------------------------------------------------------------===//
1964 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1965 // and possibly other custom schedulers.
1966 //===----------------------------------------------------------------------===//
1968 static const unsigned InvalidCycle = ~0U;
1970 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1972 /// Given a Count of resource usage and a Latency value, return true if a
1973 /// SchedBoundary becomes resource limited.
1974 /// If we are checking after scheduling a node, we should return true when
1975 /// we just reach the resource limit.
1976 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1977 unsigned Latency, bool AfterSchedNode) {
1978 int ResCntFactor = (int)(Count - (Latency * LFactor));
1979 if (AfterSchedNode)
1980 return ResCntFactor >= (int)LFactor;
1981 else
1982 return ResCntFactor > (int)LFactor;
1985 void SchedBoundary::reset() {
1986 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1987 // Destroying and reconstructing it is very expensive though. So keep
1988 // invalid, placeholder HazardRecs.
1989 if (HazardRec && HazardRec->isEnabled()) {
1990 delete HazardRec;
1991 HazardRec = nullptr;
1993 Available.clear();
1994 Pending.clear();
1995 CheckPending = false;
1996 CurrCycle = 0;
1997 CurrMOps = 0;
1998 MinReadyCycle = std::numeric_limits<unsigned>::max();
1999 ExpectedLatency = 0;
2000 DependentLatency = 0;
2001 RetiredMOps = 0;
2002 MaxExecutedResCount = 0;
2003 ZoneCritResIdx = 0;
2004 IsResourceLimited = false;
2005 ReservedCycles.clear();
2006 ReservedCyclesIndex.clear();
2007 ResourceGroupSubUnitMasks.clear();
2008 #ifndef NDEBUG
2009 // Track the maximum number of stall cycles that could arise either from the
2010 // latency of a DAG edge or the number of cycles that a processor resource is
2011 // reserved (SchedBoundary::ReservedCycles).
2012 MaxObservedStall = 0;
2013 #endif
2014 // Reserve a zero-count for invalid CritResIdx.
2015 ExecutedResCounts.resize(1);
2016 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2019 void SchedRemainder::
2020 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2021 reset();
2022 if (!SchedModel->hasInstrSchedModel())
2023 return;
2024 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2025 for (SUnit &SU : DAG->SUnits) {
2026 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2027 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2028 * SchedModel->getMicroOpFactor();
2029 for (TargetSchedModel::ProcResIter
2030 PI = SchedModel->getWriteProcResBegin(SC),
2031 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2032 unsigned PIdx = PI->ProcResourceIdx;
2033 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2034 RemainingCounts[PIdx] += (Factor * PI->Cycles);
2039 void SchedBoundary::
2040 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2041 reset();
2042 DAG = dag;
2043 SchedModel = smodel;
2044 Rem = rem;
2045 if (SchedModel->hasInstrSchedModel()) {
2046 unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2047 ReservedCyclesIndex.resize(ResourceCount);
2048 ExecutedResCounts.resize(ResourceCount);
2049 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2050 unsigned NumUnits = 0;
2052 for (unsigned i = 0; i < ResourceCount; ++i) {
2053 ReservedCyclesIndex[i] = NumUnits;
2054 NumUnits += SchedModel->getProcResource(i)->NumUnits;
2055 if (isUnbufferedGroup(i)) {
2056 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2057 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2058 U != UE; ++U)
2059 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2063 ReservedCycles.resize(NumUnits, InvalidCycle);
2067 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2068 /// these "soft stalls" differently than the hard stall cycles based on CPU
2069 /// resources and computed by checkHazard(). A fully in-order model
2070 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2071 /// available for scheduling until they are ready. However, a weaker in-order
2072 /// model may use this for heuristics. For example, if a processor has in-order
2073 /// behavior when reading certain resources, this may come into play.
2074 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2075 if (!SU->isUnbuffered)
2076 return 0;
2078 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2079 if (ReadyCycle > CurrCycle)
2080 return ReadyCycle - CurrCycle;
2081 return 0;
2084 /// Compute the next cycle at which the given processor resource unit
2085 /// can be scheduled.
2086 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2087 unsigned Cycles) {
2088 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2089 // If this resource has never been used, always return cycle zero.
2090 if (NextUnreserved == InvalidCycle)
2091 return 0;
2092 // For bottom-up scheduling add the cycles needed for the current operation.
2093 if (!isTop())
2094 NextUnreserved += Cycles;
2095 return NextUnreserved;
2098 /// Compute the next cycle at which the given processor resource can be
2099 /// scheduled. Returns the next cycle and the index of the processor resource
2100 /// instance in the reserved cycles vector.
2101 std::pair<unsigned, unsigned>
2102 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2103 unsigned Cycles) {
2105 unsigned MinNextUnreserved = InvalidCycle;
2106 unsigned InstanceIdx = 0;
2107 unsigned StartIndex = ReservedCyclesIndex[PIdx];
2108 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2109 assert(NumberOfInstances > 0 &&
2110 "Cannot have zero instances of a ProcResource");
2112 if (isUnbufferedGroup(PIdx)) {
2113 // If any subunits are used by the instruction, report that the resource
2114 // group is available at 0, effectively removing the group record from
2115 // hazarding and basing the hazarding decisions on the subunit records.
2116 // Otherwise, choose the first available instance from among the subunits.
2117 // Specifications which assign cycles to both the subunits and the group or
2118 // which use an unbuffered group with buffered subunits will appear to
2119 // schedule strangely. In the first case, the additional cycles for the
2120 // group will be ignored. In the second, the group will be ignored
2121 // entirely.
2122 for (const MCWriteProcResEntry &PE :
2123 make_range(SchedModel->getWriteProcResBegin(SC),
2124 SchedModel->getWriteProcResEnd(SC)))
2125 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2126 return std::make_pair(0u, StartIndex);
2128 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2129 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2130 unsigned NextUnreserved, NextInstanceIdx;
2131 std::tie(NextUnreserved, NextInstanceIdx) =
2132 getNextResourceCycle(SC, SubUnits[I], Cycles);
2133 if (MinNextUnreserved > NextUnreserved) {
2134 InstanceIdx = NextInstanceIdx;
2135 MinNextUnreserved = NextUnreserved;
2138 return std::make_pair(MinNextUnreserved, InstanceIdx);
2141 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2142 ++I) {
2143 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2144 if (MinNextUnreserved > NextUnreserved) {
2145 InstanceIdx = I;
2146 MinNextUnreserved = NextUnreserved;
2149 return std::make_pair(MinNextUnreserved, InstanceIdx);
2152 /// Does this SU have a hazard within the current instruction group.
2154 /// The scheduler supports two modes of hazard recognition. The first is the
2155 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2156 /// supports highly complicated in-order reservation tables
2157 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2159 /// The second is a streamlined mechanism that checks for hazards based on
2160 /// simple counters that the scheduler itself maintains. It explicitly checks
2161 /// for instruction dispatch limitations, including the number of micro-ops that
2162 /// can dispatch per cycle.
2164 /// TODO: Also check whether the SU must start a new group.
2165 bool SchedBoundary::checkHazard(SUnit *SU) {
2166 if (HazardRec->isEnabled()
2167 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2168 return true;
2171 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2172 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2173 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
2174 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2175 return true;
2178 if (CurrMOps > 0 &&
2179 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2180 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2181 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "
2182 << (isTop() ? "begin" : "end") << " group\n");
2183 return true;
2186 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2187 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2188 for (const MCWriteProcResEntry &PE :
2189 make_range(SchedModel->getWriteProcResBegin(SC),
2190 SchedModel->getWriteProcResEnd(SC))) {
2191 unsigned ResIdx = PE.ProcResourceIdx;
2192 unsigned Cycles = PE.Cycles;
2193 unsigned NRCycle, InstanceIdx;
2194 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles);
2195 if (NRCycle > CurrCycle) {
2196 #ifndef NDEBUG
2197 MaxObservedStall = std::max(Cycles, MaxObservedStall);
2198 #endif
2199 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
2200 << SchedModel->getResourceName(ResIdx)
2201 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'
2202 << "=" << NRCycle << "c\n");
2203 return true;
2207 return false;
2210 // Find the unscheduled node in ReadySUs with the highest latency.
2211 unsigned SchedBoundary::
2212 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2213 SUnit *LateSU = nullptr;
2214 unsigned RemLatency = 0;
2215 for (SUnit *SU : ReadySUs) {
2216 unsigned L = getUnscheduledLatency(SU);
2217 if (L > RemLatency) {
2218 RemLatency = L;
2219 LateSU = SU;
2222 if (LateSU) {
2223 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2224 << LateSU->NodeNum << ") " << RemLatency << "c\n");
2226 return RemLatency;
2229 // Count resources in this zone and the remaining unscheduled
2230 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2231 // resource index, or zero if the zone is issue limited.
2232 unsigned SchedBoundary::
2233 getOtherResourceCount(unsigned &OtherCritIdx) {
2234 OtherCritIdx = 0;
2235 if (!SchedModel->hasInstrSchedModel())
2236 return 0;
2238 unsigned OtherCritCount = Rem->RemIssueCount
2239 + (RetiredMOps * SchedModel->getMicroOpFactor());
2240 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
2241 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2242 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2243 PIdx != PEnd; ++PIdx) {
2244 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2245 if (OtherCount > OtherCritCount) {
2246 OtherCritCount = OtherCount;
2247 OtherCritIdx = PIdx;
2250 if (OtherCritIdx) {
2251 LLVM_DEBUG(
2252 dbgs() << " " << Available.getName() << " + Remain CritRes: "
2253 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2254 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2256 return OtherCritCount;
2259 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2260 unsigned Idx) {
2261 assert(SU->getInstr() && "Scheduled SUnit must have instr");
2263 #ifndef NDEBUG
2264 // ReadyCycle was been bumped up to the CurrCycle when this node was
2265 // scheduled, but CurrCycle may have been eagerly advanced immediately after
2266 // scheduling, so may now be greater than ReadyCycle.
2267 if (ReadyCycle > CurrCycle)
2268 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2269 #endif
2271 if (ReadyCycle < MinReadyCycle)
2272 MinReadyCycle = ReadyCycle;
2274 // Check for interlocks first. For the purpose of other heuristics, an
2275 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2276 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2277 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2278 checkHazard(SU) || (Available.size() >= ReadyListLimit);
2280 if (!HazardDetected) {
2281 Available.push(SU);
2283 if (InPQueue)
2284 Pending.remove(Pending.begin() + Idx);
2285 return;
2288 if (!InPQueue)
2289 Pending.push(SU);
2292 /// Move the boundary of scheduled code by one cycle.
2293 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2294 if (SchedModel->getMicroOpBufferSize() == 0) {
2295 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2296 "MinReadyCycle uninitialized");
2297 if (MinReadyCycle > NextCycle)
2298 NextCycle = MinReadyCycle;
2300 // Update the current micro-ops, which will issue in the next cycle.
2301 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2302 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2304 // Decrement DependentLatency based on the next cycle.
2305 if ((NextCycle - CurrCycle) > DependentLatency)
2306 DependentLatency = 0;
2307 else
2308 DependentLatency -= (NextCycle - CurrCycle);
2310 if (!HazardRec->isEnabled()) {
2311 // Bypass HazardRec virtual calls.
2312 CurrCycle = NextCycle;
2313 } else {
2314 // Bypass getHazardType calls in case of long latency.
2315 for (; CurrCycle != NextCycle; ++CurrCycle) {
2316 if (isTop())
2317 HazardRec->AdvanceCycle();
2318 else
2319 HazardRec->RecedeCycle();
2322 CheckPending = true;
2323 IsResourceLimited =
2324 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2325 getScheduledLatency(), true);
2327 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2328 << '\n');
2331 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2332 ExecutedResCounts[PIdx] += Count;
2333 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2334 MaxExecutedResCount = ExecutedResCounts[PIdx];
2337 /// Add the given processor resource to this scheduled zone.
2339 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2340 /// during which this resource is consumed.
2342 /// \return the next cycle at which the instruction may execute without
2343 /// oversubscribing resources.
2344 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2345 unsigned Cycles, unsigned NextCycle) {
2346 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2347 unsigned Count = Factor * Cycles;
2348 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"
2349 << Cycles << "x" << Factor << "u\n");
2351 // Update Executed resources counts.
2352 incExecutedResources(PIdx, Count);
2353 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2354 Rem->RemainingCounts[PIdx] -= Count;
2356 // Check if this resource exceeds the current critical resource. If so, it
2357 // becomes the critical resource.
2358 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2359 ZoneCritResIdx = PIdx;
2360 LLVM_DEBUG(dbgs() << " *** Critical resource "
2361 << SchedModel->getResourceName(PIdx) << ": "
2362 << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2363 << "c\n");
2365 // For reserved resources, record the highest cycle using the resource.
2366 unsigned NextAvailable, InstanceIdx;
2367 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles);
2368 if (NextAvailable > CurrCycle) {
2369 LLVM_DEBUG(dbgs() << " Resource conflict: "
2370 << SchedModel->getResourceName(PIdx)
2371 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'
2372 << " reserved until @" << NextAvailable << "\n");
2374 return NextAvailable;
2377 /// Move the boundary of scheduled code by one SUnit.
2378 void SchedBoundary::bumpNode(SUnit *SU) {
2379 // Update the reservation table.
2380 if (HazardRec->isEnabled()) {
2381 if (!isTop() && SU->isCall) {
2382 // Calls are scheduled with their preceding instructions. For bottom-up
2383 // scheduling, clear the pipeline state before emitting.
2384 HazardRec->Reset();
2386 HazardRec->EmitInstruction(SU);
2387 // Scheduling an instruction may have made pending instructions available.
2388 CheckPending = true;
2390 // checkHazard should prevent scheduling multiple instructions per cycle that
2391 // exceed the issue width.
2392 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2393 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2394 assert(
2395 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2396 "Cannot schedule this instruction's MicroOps in the current cycle.");
2398 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2399 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2401 unsigned NextCycle = CurrCycle;
2402 switch (SchedModel->getMicroOpBufferSize()) {
2403 case 0:
2404 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2405 break;
2406 case 1:
2407 if (ReadyCycle > NextCycle) {
2408 NextCycle = ReadyCycle;
2409 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2411 break;
2412 default:
2413 // We don't currently model the OOO reorder buffer, so consider all
2414 // scheduled MOps to be "retired". We do loosely model in-order resource
2415 // latency. If this instruction uses an in-order resource, account for any
2416 // likely stall cycles.
2417 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2418 NextCycle = ReadyCycle;
2419 break;
2421 RetiredMOps += IncMOps;
2423 // Update resource counts and critical resource.
2424 if (SchedModel->hasInstrSchedModel()) {
2425 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2426 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2427 Rem->RemIssueCount -= DecRemIssue;
2428 if (ZoneCritResIdx) {
2429 // Scale scheduled micro-ops for comparing with the critical resource.
2430 unsigned ScaledMOps =
2431 RetiredMOps * SchedModel->getMicroOpFactor();
2433 // If scaled micro-ops are now more than the previous critical resource by
2434 // a full cycle, then micro-ops issue becomes critical.
2435 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2436 >= (int)SchedModel->getLatencyFactor()) {
2437 ZoneCritResIdx = 0;
2438 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2439 << ScaledMOps / SchedModel->getLatencyFactor()
2440 << "c\n");
2443 for (TargetSchedModel::ProcResIter
2444 PI = SchedModel->getWriteProcResBegin(SC),
2445 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2446 unsigned RCycle =
2447 countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle);
2448 if (RCycle > NextCycle)
2449 NextCycle = RCycle;
2451 if (SU->hasReservedResource) {
2452 // For reserved resources, record the highest cycle using the resource.
2453 // For top-down scheduling, this is the cycle in which we schedule this
2454 // instruction plus the number of cycles the operations reserves the
2455 // resource. For bottom-up is it simply the instruction's cycle.
2456 for (TargetSchedModel::ProcResIter
2457 PI = SchedModel->getWriteProcResBegin(SC),
2458 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2459 unsigned PIdx = PI->ProcResourceIdx;
2460 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2461 unsigned ReservedUntil, InstanceIdx;
2462 std::tie(ReservedUntil, InstanceIdx) =
2463 getNextResourceCycle(SC, PIdx, 0);
2464 if (isTop()) {
2465 ReservedCycles[InstanceIdx] =
2466 std::max(ReservedUntil, NextCycle + PI->Cycles);
2467 } else
2468 ReservedCycles[InstanceIdx] = NextCycle;
2473 // Update ExpectedLatency and DependentLatency.
2474 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2475 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2476 if (SU->getDepth() > TopLatency) {
2477 TopLatency = SU->getDepth();
2478 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("
2479 << SU->NodeNum << ") " << TopLatency << "c\n");
2481 if (SU->getHeight() > BotLatency) {
2482 BotLatency = SU->getHeight();
2483 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("
2484 << SU->NodeNum << ") " << BotLatency << "c\n");
2486 // If we stall for any reason, bump the cycle.
2487 if (NextCycle > CurrCycle)
2488 bumpCycle(NextCycle);
2489 else
2490 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2491 // resource limited. If a stall occurred, bumpCycle does this.
2492 IsResourceLimited =
2493 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2494 getScheduledLatency(), true);
2496 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2497 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2498 // one cycle. Since we commonly reach the max MOps here, opportunistically
2499 // bump the cycle to avoid uselessly checking everything in the readyQ.
2500 CurrMOps += IncMOps;
2502 // Bump the cycle count for issue group constraints.
2503 // This must be done after NextCycle has been adjust for all other stalls.
2504 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2505 // currCycle to X.
2506 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) ||
2507 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2508 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")
2509 << " group\n");
2510 bumpCycle(++NextCycle);
2513 while (CurrMOps >= SchedModel->getIssueWidth()) {
2514 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "
2515 << CurrCycle << '\n');
2516 bumpCycle(++NextCycle);
2518 LLVM_DEBUG(dumpScheduledState());
2521 /// Release pending ready nodes in to the available queue. This makes them
2522 /// visible to heuristics.
2523 void SchedBoundary::releasePending() {
2524 // If the available queue is empty, it is safe to reset MinReadyCycle.
2525 if (Available.empty())
2526 MinReadyCycle = std::numeric_limits<unsigned>::max();
2528 // Check to see if any of the pending instructions are ready to issue. If
2529 // so, add them to the available queue.
2530 for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2531 SUnit *SU = *(Pending.begin() + I);
2532 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2534 if (ReadyCycle < MinReadyCycle)
2535 MinReadyCycle = ReadyCycle;
2537 if (Available.size() >= ReadyListLimit)
2538 break;
2540 releaseNode(SU, ReadyCycle, true, I);
2541 if (E != Pending.size()) {
2542 --I;
2543 --E;
2546 CheckPending = false;
2549 /// Remove SU from the ready set for this boundary.
2550 void SchedBoundary::removeReady(SUnit *SU) {
2551 if (Available.isInQueue(SU))
2552 Available.remove(Available.find(SU));
2553 else {
2554 assert(Pending.isInQueue(SU) && "bad ready count");
2555 Pending.remove(Pending.find(SU));
2559 /// If this queue only has one ready candidate, return it. As a side effect,
2560 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2561 /// one node is ready. If multiple instructions are ready, return NULL.
2562 SUnit *SchedBoundary::pickOnlyChoice() {
2563 if (CheckPending)
2564 releasePending();
2566 // Defer any ready instrs that now have a hazard.
2567 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2568 if (checkHazard(*I)) {
2569 Pending.push(*I);
2570 I = Available.remove(I);
2571 continue;
2573 ++I;
2575 for (unsigned i = 0; Available.empty(); ++i) {
2576 // FIXME: Re-enable assert once PR20057 is resolved.
2577 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2578 // "permanent hazard");
2579 (void)i;
2580 bumpCycle(CurrCycle + 1);
2581 releasePending();
2584 LLVM_DEBUG(Pending.dump());
2585 LLVM_DEBUG(Available.dump());
2587 if (Available.size() == 1)
2588 return *Available.begin();
2589 return nullptr;
2592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2593 // This is useful information to dump after bumpNode.
2594 // Note that the Queue contents are more useful before pickNodeFromQueue.
2595 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2596 unsigned ResFactor;
2597 unsigned ResCount;
2598 if (ZoneCritResIdx) {
2599 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2600 ResCount = getResourceCount(ZoneCritResIdx);
2601 } else {
2602 ResFactor = SchedModel->getMicroOpFactor();
2603 ResCount = RetiredMOps * ResFactor;
2605 unsigned LFactor = SchedModel->getLatencyFactor();
2606 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2607 << " Retired: " << RetiredMOps;
2608 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2609 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2610 << ResCount / ResFactor << " "
2611 << SchedModel->getResourceName(ZoneCritResIdx)
2612 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2613 << (IsResourceLimited ? " - Resource" : " - Latency")
2614 << " limited.\n";
2616 #endif
2618 //===----------------------------------------------------------------------===//
2619 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2620 //===----------------------------------------------------------------------===//
2622 void GenericSchedulerBase::SchedCandidate::
2623 initResourceDelta(const ScheduleDAGMI *DAG,
2624 const TargetSchedModel *SchedModel) {
2625 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2626 return;
2628 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2629 for (TargetSchedModel::ProcResIter
2630 PI = SchedModel->getWriteProcResBegin(SC),
2631 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2632 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2633 ResDelta.CritResources += PI->Cycles;
2634 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2635 ResDelta.DemandedResources += PI->Cycles;
2639 /// Compute remaining latency. We need this both to determine whether the
2640 /// overall schedule has become latency-limited and whether the instructions
2641 /// outside this zone are resource or latency limited.
2643 /// The "dependent" latency is updated incrementally during scheduling as the
2644 /// max height/depth of scheduled nodes minus the cycles since it was
2645 /// scheduled:
2646 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2648 /// The "independent" latency is the max ready queue depth:
2649 /// ILat = max N.depth for N in Available|Pending
2651 /// RemainingLatency is the greater of independent and dependent latency.
2653 /// These computations are expensive, especially in DAGs with many edges, so
2654 /// only do them if necessary.
2655 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2656 unsigned RemLatency = CurrZone.getDependentLatency();
2657 RemLatency = std::max(RemLatency,
2658 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2659 RemLatency = std::max(RemLatency,
2660 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2661 return RemLatency;
2664 /// Returns true if the current cycle plus remaning latency is greater than
2665 /// the critical path in the scheduling region.
2666 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2667 SchedBoundary &CurrZone,
2668 bool ComputeRemLatency,
2669 unsigned &RemLatency) const {
2670 // The current cycle is already greater than the critical path, so we are
2671 // already latency limited and don't need to compute the remaining latency.
2672 if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2673 return true;
2675 // If we haven't scheduled anything yet, then we aren't latency limited.
2676 if (CurrZone.getCurrCycle() == 0)
2677 return false;
2679 if (ComputeRemLatency)
2680 RemLatency = computeRemLatency(CurrZone);
2682 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2685 /// Set the CandPolicy given a scheduling zone given the current resources and
2686 /// latencies inside and outside the zone.
2687 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2688 SchedBoundary &CurrZone,
2689 SchedBoundary *OtherZone) {
2690 // Apply preemptive heuristics based on the total latency and resources
2691 // inside and outside this zone. Potential stalls should be considered before
2692 // following this policy.
2694 // Compute the critical resource outside the zone.
2695 unsigned OtherCritIdx = 0;
2696 unsigned OtherCount =
2697 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2699 bool OtherResLimited = false;
2700 unsigned RemLatency = 0;
2701 bool RemLatencyComputed = false;
2702 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2703 RemLatency = computeRemLatency(CurrZone);
2704 RemLatencyComputed = true;
2705 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2706 OtherCount, RemLatency, false);
2709 // Schedule aggressively for latency in PostRA mode. We don't check for
2710 // acyclic latency during PostRA, and highly out-of-order processors will
2711 // skip PostRA scheduling.
2712 if (!OtherResLimited &&
2713 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2714 RemLatency))) {
2715 Policy.ReduceLatency |= true;
2716 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()
2717 << " RemainingLatency " << RemLatency << " + "
2718 << CurrZone.getCurrCycle() << "c > CritPath "
2719 << Rem.CriticalPath << "\n");
2721 // If the same resource is limiting inside and outside the zone, do nothing.
2722 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2723 return;
2725 LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2726 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2727 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2728 } if (OtherResLimited) dbgs()
2729 << " RemainingLimit: "
2730 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2731 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2732 << " Latency limited both directions.\n");
2734 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2735 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2737 if (OtherResLimited)
2738 Policy.DemandResIdx = OtherCritIdx;
2741 #ifndef NDEBUG
2742 const char *GenericSchedulerBase::getReasonStr(
2743 GenericSchedulerBase::CandReason Reason) {
2744 switch (Reason) {
2745 case NoCand: return "NOCAND ";
2746 case Only1: return "ONLY1 ";
2747 case PhysReg: return "PHYS-REG ";
2748 case RegExcess: return "REG-EXCESS";
2749 case RegCritical: return "REG-CRIT ";
2750 case Stall: return "STALL ";
2751 case Cluster: return "CLUSTER ";
2752 case Weak: return "WEAK ";
2753 case RegMax: return "REG-MAX ";
2754 case ResourceReduce: return "RES-REDUCE";
2755 case ResourceDemand: return "RES-DEMAND";
2756 case TopDepthReduce: return "TOP-DEPTH ";
2757 case TopPathReduce: return "TOP-PATH ";
2758 case BotHeightReduce:return "BOT-HEIGHT";
2759 case BotPathReduce: return "BOT-PATH ";
2760 case NextDefUse: return "DEF-USE ";
2761 case NodeOrder: return "ORDER ";
2763 llvm_unreachable("Unknown reason!");
2766 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2767 PressureChange P;
2768 unsigned ResIdx = 0;
2769 unsigned Latency = 0;
2770 switch (Cand.Reason) {
2771 default:
2772 break;
2773 case RegExcess:
2774 P = Cand.RPDelta.Excess;
2775 break;
2776 case RegCritical:
2777 P = Cand.RPDelta.CriticalMax;
2778 break;
2779 case RegMax:
2780 P = Cand.RPDelta.CurrentMax;
2781 break;
2782 case ResourceReduce:
2783 ResIdx = Cand.Policy.ReduceResIdx;
2784 break;
2785 case ResourceDemand:
2786 ResIdx = Cand.Policy.DemandResIdx;
2787 break;
2788 case TopDepthReduce:
2789 Latency = Cand.SU->getDepth();
2790 break;
2791 case TopPathReduce:
2792 Latency = Cand.SU->getHeight();
2793 break;
2794 case BotHeightReduce:
2795 Latency = Cand.SU->getHeight();
2796 break;
2797 case BotPathReduce:
2798 Latency = Cand.SU->getDepth();
2799 break;
2801 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2802 if (P.isValid())
2803 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2804 << ":" << P.getUnitInc() << " ";
2805 else
2806 dbgs() << " ";
2807 if (ResIdx)
2808 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2809 else
2810 dbgs() << " ";
2811 if (Latency)
2812 dbgs() << " " << Latency << " cycles ";
2813 else
2814 dbgs() << " ";
2815 dbgs() << '\n';
2817 #endif
2819 namespace llvm {
2820 /// Return true if this heuristic determines order.
2821 /// TODO: Consider refactor return type of these functions as integer or enum,
2822 /// as we may need to differentiate whether TryCand is better than Cand.
2823 bool tryLess(int TryVal, int CandVal,
2824 GenericSchedulerBase::SchedCandidate &TryCand,
2825 GenericSchedulerBase::SchedCandidate &Cand,
2826 GenericSchedulerBase::CandReason Reason) {
2827 if (TryVal < CandVal) {
2828 TryCand.Reason = Reason;
2829 return true;
2831 if (TryVal > CandVal) {
2832 if (Cand.Reason > Reason)
2833 Cand.Reason = Reason;
2834 return true;
2836 return false;
2839 bool tryGreater(int TryVal, int CandVal,
2840 GenericSchedulerBase::SchedCandidate &TryCand,
2841 GenericSchedulerBase::SchedCandidate &Cand,
2842 GenericSchedulerBase::CandReason Reason) {
2843 if (TryVal > CandVal) {
2844 TryCand.Reason = Reason;
2845 return true;
2847 if (TryVal < CandVal) {
2848 if (Cand.Reason > Reason)
2849 Cand.Reason = Reason;
2850 return true;
2852 return false;
2855 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2856 GenericSchedulerBase::SchedCandidate &Cand,
2857 SchedBoundary &Zone) {
2858 if (Zone.isTop()) {
2859 // Prefer the candidate with the lesser depth, but only if one of them has
2860 // depth greater than the total latency scheduled so far, otherwise either
2861 // of them could be scheduled now with no stall.
2862 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
2863 Zone.getScheduledLatency()) {
2864 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2865 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2866 return true;
2868 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2869 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2870 return true;
2871 } else {
2872 // Prefer the candidate with the lesser height, but only if one of them has
2873 // height greater than the total latency scheduled so far, otherwise either
2874 // of them could be scheduled now with no stall.
2875 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
2876 Zone.getScheduledLatency()) {
2877 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2878 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2879 return true;
2881 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2882 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2883 return true;
2885 return false;
2887 } // end namespace llvm
2889 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2890 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2891 << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2894 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2895 tracePick(Cand.Reason, Cand.AtTop);
2898 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2899 assert(dag->hasVRegLiveness() &&
2900 "(PreRA)GenericScheduler needs vreg liveness");
2901 DAG = static_cast<ScheduleDAGMILive*>(dag);
2902 SchedModel = DAG->getSchedModel();
2903 TRI = DAG->TRI;
2905 if (RegionPolicy.ComputeDFSResult)
2906 DAG->computeDFSResult();
2908 Rem.init(DAG, SchedModel);
2909 Top.init(DAG, SchedModel, &Rem);
2910 Bot.init(DAG, SchedModel, &Rem);
2912 // Initialize resource counts.
2914 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2915 // are disabled, then these HazardRecs will be disabled.
2916 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2917 if (!Top.HazardRec) {
2918 Top.HazardRec =
2919 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2920 Itin, DAG);
2922 if (!Bot.HazardRec) {
2923 Bot.HazardRec =
2924 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2925 Itin, DAG);
2927 TopCand.SU = nullptr;
2928 BotCand.SU = nullptr;
2931 /// Initialize the per-region scheduling policy.
2932 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2933 MachineBasicBlock::iterator End,
2934 unsigned NumRegionInstrs) {
2935 const MachineFunction &MF = *Begin->getMF();
2936 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2938 // Avoid setting up the register pressure tracker for small regions to save
2939 // compile time. As a rough heuristic, only track pressure when the number of
2940 // schedulable instructions exceeds half the integer register file.
2941 RegionPolicy.ShouldTrackPressure = true;
2942 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2943 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2944 if (TLI->isTypeLegal(LegalIntVT)) {
2945 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2946 TLI->getRegClassFor(LegalIntVT));
2947 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2951 // For generic targets, we default to bottom-up, because it's simpler and more
2952 // compile-time optimizations have been implemented in that direction.
2953 RegionPolicy.OnlyBottomUp = true;
2955 // Allow the subtarget to override default policy.
2956 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2958 // After subtarget overrides, apply command line options.
2959 if (!EnableRegPressure) {
2960 RegionPolicy.ShouldTrackPressure = false;
2961 RegionPolicy.ShouldTrackLaneMasks = false;
2964 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2965 // e.g. -misched-bottomup=false allows scheduling in both directions.
2966 assert((!ForceTopDown || !ForceBottomUp) &&
2967 "-misched-topdown incompatible with -misched-bottomup");
2968 if (ForceBottomUp.getNumOccurrences() > 0) {
2969 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2970 if (RegionPolicy.OnlyBottomUp)
2971 RegionPolicy.OnlyTopDown = false;
2973 if (ForceTopDown.getNumOccurrences() > 0) {
2974 RegionPolicy.OnlyTopDown = ForceTopDown;
2975 if (RegionPolicy.OnlyTopDown)
2976 RegionPolicy.OnlyBottomUp = false;
2980 void GenericScheduler::dumpPolicy() const {
2981 // Cannot completely remove virtual function even in release mode.
2982 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2983 dbgs() << "GenericScheduler RegionPolicy: "
2984 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2985 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2986 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2987 << "\n";
2988 #endif
2991 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2992 /// critical path by more cycles than it takes to drain the instruction buffer.
2993 /// We estimate an upper bounds on in-flight instructions as:
2995 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2996 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2997 /// InFlightResources = InFlightIterations * LoopResources
2999 /// TODO: Check execution resources in addition to IssueCount.
3000 void GenericScheduler::checkAcyclicLatency() {
3001 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3002 return;
3004 // Scaled number of cycles per loop iteration.
3005 unsigned IterCount =
3006 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3007 Rem.RemIssueCount);
3008 // Scaled acyclic critical path.
3009 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3010 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3011 unsigned InFlightCount =
3012 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3013 unsigned BufferLimit =
3014 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3016 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3018 LLVM_DEBUG(
3019 dbgs() << "IssueCycles="
3020 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3021 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3022 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3023 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3024 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3025 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n");
3028 void GenericScheduler::registerRoots() {
3029 Rem.CriticalPath = DAG->ExitSU.getDepth();
3031 // Some roots may not feed into ExitSU. Check all of them in case.
3032 for (const SUnit *SU : Bot.Available) {
3033 if (SU->getDepth() > Rem.CriticalPath)
3034 Rem.CriticalPath = SU->getDepth();
3036 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3037 if (DumpCriticalPathLength) {
3038 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3041 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3042 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3043 checkAcyclicLatency();
3047 namespace llvm {
3048 bool tryPressure(const PressureChange &TryP,
3049 const PressureChange &CandP,
3050 GenericSchedulerBase::SchedCandidate &TryCand,
3051 GenericSchedulerBase::SchedCandidate &Cand,
3052 GenericSchedulerBase::CandReason Reason,
3053 const TargetRegisterInfo *TRI,
3054 const MachineFunction &MF) {
3055 // If one candidate decreases and the other increases, go with it.
3056 // Invalid candidates have UnitInc==0.
3057 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3058 Reason)) {
3059 return true;
3061 // Do not compare the magnitude of pressure changes between top and bottom
3062 // boundary.
3063 if (Cand.AtTop != TryCand.AtTop)
3064 return false;
3066 // If both candidates affect the same set in the same boundary, go with the
3067 // smallest increase.
3068 unsigned TryPSet = TryP.getPSetOrMax();
3069 unsigned CandPSet = CandP.getPSetOrMax();
3070 if (TryPSet == CandPSet) {
3071 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3072 Reason);
3075 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3076 std::numeric_limits<int>::max();
3078 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3079 std::numeric_limits<int>::max();
3081 // If the candidates are decreasing pressure, reverse priority.
3082 if (TryP.getUnitInc() < 0)
3083 std::swap(TryRank, CandRank);
3084 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3087 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3088 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3091 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3092 /// their physreg def/use.
3094 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3095 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3096 /// with the operation that produces or consumes the physreg. We'll do this when
3097 /// regalloc has support for parallel copies.
3098 int biasPhysReg(const SUnit *SU, bool isTop) {
3099 const MachineInstr *MI = SU->getInstr();
3101 if (MI->isCopy()) {
3102 unsigned ScheduledOper = isTop ? 1 : 0;
3103 unsigned UnscheduledOper = isTop ? 0 : 1;
3104 // If we have already scheduled the physreg produce/consumer, immediately
3105 // schedule the copy.
3106 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
3107 return 1;
3108 // If the physreg is at the boundary, defer it. Otherwise schedule it
3109 // immediately to free the dependent. We can hoist the copy later.
3110 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3111 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
3112 return AtBoundary ? -1 : 1;
3115 if (MI->isMoveImmediate()) {
3116 // If we have a move immediate and all successors have been assigned, bias
3117 // towards scheduling this later. Make sure all register defs are to
3118 // physical registers.
3119 bool DoBias = true;
3120 for (const MachineOperand &Op : MI->defs()) {
3121 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
3122 DoBias = false;
3123 break;
3127 if (DoBias)
3128 return isTop ? -1 : 1;
3131 return 0;
3133 } // end namespace llvm
3135 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3136 bool AtTop,
3137 const RegPressureTracker &RPTracker,
3138 RegPressureTracker &TempTracker) {
3139 Cand.SU = SU;
3140 Cand.AtTop = AtTop;
3141 if (DAG->isTrackingPressure()) {
3142 if (AtTop) {
3143 TempTracker.getMaxDownwardPressureDelta(
3144 Cand.SU->getInstr(),
3145 Cand.RPDelta,
3146 DAG->getRegionCriticalPSets(),
3147 DAG->getRegPressure().MaxSetPressure);
3148 } else {
3149 if (VerifyScheduling) {
3150 TempTracker.getMaxUpwardPressureDelta(
3151 Cand.SU->getInstr(),
3152 &DAG->getPressureDiff(Cand.SU),
3153 Cand.RPDelta,
3154 DAG->getRegionCriticalPSets(),
3155 DAG->getRegPressure().MaxSetPressure);
3156 } else {
3157 RPTracker.getUpwardPressureDelta(
3158 Cand.SU->getInstr(),
3159 DAG->getPressureDiff(Cand.SU),
3160 Cand.RPDelta,
3161 DAG->getRegionCriticalPSets(),
3162 DAG->getRegPressure().MaxSetPressure);
3166 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3167 << " Try SU(" << Cand.SU->NodeNum << ") "
3168 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3169 << Cand.RPDelta.Excess.getUnitInc() << "\n");
3172 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3173 /// hierarchical. This may be more efficient than a graduated cost model because
3174 /// we don't need to evaluate all aspects of the model for each node in the
3175 /// queue. But it's really done to make the heuristics easier to debug and
3176 /// statistically analyze.
3178 /// \param Cand provides the policy and current best candidate.
3179 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3180 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3181 /// if Cand is from a different zone than TryCand.
3182 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3183 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3184 SchedCandidate &TryCand,
3185 SchedBoundary *Zone) const {
3186 // Initialize the candidate if needed.
3187 if (!Cand.isValid()) {
3188 TryCand.Reason = NodeOrder;
3189 return true;
3192 // Bias PhysReg Defs and copies to their uses and defined respectively.
3193 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3194 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3195 return TryCand.Reason != NoCand;
3197 // Avoid exceeding the target's limit.
3198 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3199 Cand.RPDelta.Excess,
3200 TryCand, Cand, RegExcess, TRI,
3201 DAG->MF))
3202 return TryCand.Reason != NoCand;
3204 // Avoid increasing the max critical pressure in the scheduled region.
3205 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3206 Cand.RPDelta.CriticalMax,
3207 TryCand, Cand, RegCritical, TRI,
3208 DAG->MF))
3209 return TryCand.Reason != NoCand;
3211 // We only compare a subset of features when comparing nodes between
3212 // Top and Bottom boundary. Some properties are simply incomparable, in many
3213 // other instances we should only override the other boundary if something
3214 // is a clear good pick on one boundary. Skip heuristics that are more
3215 // "tie-breaking" in nature.
3216 bool SameBoundary = Zone != nullptr;
3217 if (SameBoundary) {
3218 // For loops that are acyclic path limited, aggressively schedule for
3219 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3220 // heuristics to take precedence.
3221 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3222 tryLatency(TryCand, Cand, *Zone))
3223 return TryCand.Reason != NoCand;
3225 // Prioritize instructions that read unbuffered resources by stall cycles.
3226 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3227 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3228 return TryCand.Reason != NoCand;
3231 // Keep clustered nodes together to encourage downstream peephole
3232 // optimizations which may reduce resource requirements.
3234 // This is a best effort to set things up for a post-RA pass. Optimizations
3235 // like generating loads of multiple registers should ideally be done within
3236 // the scheduler pass by combining the loads during DAG postprocessing.
3237 const SUnit *CandNextClusterSU =
3238 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3239 const SUnit *TryCandNextClusterSU =
3240 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3241 if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3242 Cand.SU == CandNextClusterSU,
3243 TryCand, Cand, Cluster))
3244 return TryCand.Reason != NoCand;
3246 if (SameBoundary) {
3247 // Weak edges are for clustering and other constraints.
3248 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3249 getWeakLeft(Cand.SU, Cand.AtTop),
3250 TryCand, Cand, Weak))
3251 return TryCand.Reason != NoCand;
3254 // Avoid increasing the max pressure of the entire region.
3255 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3256 Cand.RPDelta.CurrentMax,
3257 TryCand, Cand, RegMax, TRI,
3258 DAG->MF))
3259 return TryCand.Reason != NoCand;
3261 if (SameBoundary) {
3262 // Avoid critical resource consumption and balance the schedule.
3263 TryCand.initResourceDelta(DAG, SchedModel);
3264 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3265 TryCand, Cand, ResourceReduce))
3266 return TryCand.Reason != NoCand;
3267 if (tryGreater(TryCand.ResDelta.DemandedResources,
3268 Cand.ResDelta.DemandedResources,
3269 TryCand, Cand, ResourceDemand))
3270 return TryCand.Reason != NoCand;
3272 // Avoid serializing long latency dependence chains.
3273 // For acyclic path limited loops, latency was already checked above.
3274 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3275 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3276 return TryCand.Reason != NoCand;
3278 // Fall through to original instruction order.
3279 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3280 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3281 TryCand.Reason = NodeOrder;
3282 return true;
3286 return false;
3289 /// Pick the best candidate from the queue.
3291 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3292 /// DAG building. To adjust for the current scheduling location we need to
3293 /// maintain the number of vreg uses remaining to be top-scheduled.
3294 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3295 const CandPolicy &ZonePolicy,
3296 const RegPressureTracker &RPTracker,
3297 SchedCandidate &Cand) {
3298 // getMaxPressureDelta temporarily modifies the tracker.
3299 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3301 ReadyQueue &Q = Zone.Available;
3302 for (SUnit *SU : Q) {
3304 SchedCandidate TryCand(ZonePolicy);
3305 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3306 // Pass SchedBoundary only when comparing nodes from the same boundary.
3307 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3308 if (tryCandidate(Cand, TryCand, ZoneArg)) {
3309 // Initialize resource delta if needed in case future heuristics query it.
3310 if (TryCand.ResDelta == SchedResourceDelta())
3311 TryCand.initResourceDelta(DAG, SchedModel);
3312 Cand.setBest(TryCand);
3313 LLVM_DEBUG(traceCandidate(Cand));
3318 /// Pick the best candidate node from either the top or bottom queue.
3319 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3320 // Schedule as far as possible in the direction of no choice. This is most
3321 // efficient, but also provides the best heuristics for CriticalPSets.
3322 if (SUnit *SU = Bot.pickOnlyChoice()) {
3323 IsTopNode = false;
3324 tracePick(Only1, false);
3325 return SU;
3327 if (SUnit *SU = Top.pickOnlyChoice()) {
3328 IsTopNode = true;
3329 tracePick(Only1, true);
3330 return SU;
3332 // Set the bottom-up policy based on the state of the current bottom zone and
3333 // the instructions outside the zone, including the top zone.
3334 CandPolicy BotPolicy;
3335 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3336 // Set the top-down policy based on the state of the current top zone and
3337 // the instructions outside the zone, including the bottom zone.
3338 CandPolicy TopPolicy;
3339 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3341 // See if BotCand is still valid (because we previously scheduled from Top).
3342 LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3343 if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3344 BotCand.Policy != BotPolicy) {
3345 BotCand.reset(CandPolicy());
3346 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3347 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3348 } else {
3349 LLVM_DEBUG(traceCandidate(BotCand));
3350 #ifndef NDEBUG
3351 if (VerifyScheduling) {
3352 SchedCandidate TCand;
3353 TCand.reset(CandPolicy());
3354 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3355 assert(TCand.SU == BotCand.SU &&
3356 "Last pick result should correspond to re-picking right now");
3358 #endif
3361 // Check if the top Q has a better candidate.
3362 LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3363 if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3364 TopCand.Policy != TopPolicy) {
3365 TopCand.reset(CandPolicy());
3366 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3367 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3368 } else {
3369 LLVM_DEBUG(traceCandidate(TopCand));
3370 #ifndef NDEBUG
3371 if (VerifyScheduling) {
3372 SchedCandidate TCand;
3373 TCand.reset(CandPolicy());
3374 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3375 assert(TCand.SU == TopCand.SU &&
3376 "Last pick result should correspond to re-picking right now");
3378 #endif
3381 // Pick best from BotCand and TopCand.
3382 assert(BotCand.isValid());
3383 assert(TopCand.isValid());
3384 SchedCandidate Cand = BotCand;
3385 TopCand.Reason = NoCand;
3386 if (tryCandidate(Cand, TopCand, nullptr)) {
3387 Cand.setBest(TopCand);
3388 LLVM_DEBUG(traceCandidate(Cand));
3391 IsTopNode = Cand.AtTop;
3392 tracePick(Cand);
3393 return Cand.SU;
3396 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3397 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3398 if (DAG->top() == DAG->bottom()) {
3399 assert(Top.Available.empty() && Top.Pending.empty() &&
3400 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3401 return nullptr;
3403 SUnit *SU;
3404 do {
3405 if (RegionPolicy.OnlyTopDown) {
3406 SU = Top.pickOnlyChoice();
3407 if (!SU) {
3408 CandPolicy NoPolicy;
3409 TopCand.reset(NoPolicy);
3410 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3411 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3412 tracePick(TopCand);
3413 SU = TopCand.SU;
3415 IsTopNode = true;
3416 } else if (RegionPolicy.OnlyBottomUp) {
3417 SU = Bot.pickOnlyChoice();
3418 if (!SU) {
3419 CandPolicy NoPolicy;
3420 BotCand.reset(NoPolicy);
3421 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3422 assert(BotCand.Reason != NoCand && "failed to find a candidate");
3423 tracePick(BotCand);
3424 SU = BotCand.SU;
3426 IsTopNode = false;
3427 } else {
3428 SU = pickNodeBidirectional(IsTopNode);
3430 } while (SU->isScheduled);
3432 if (SU->isTopReady())
3433 Top.removeReady(SU);
3434 if (SU->isBottomReady())
3435 Bot.removeReady(SU);
3437 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3438 << *SU->getInstr());
3439 return SU;
3442 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3443 MachineBasicBlock::iterator InsertPos = SU->getInstr();
3444 if (!isTop)
3445 ++InsertPos;
3446 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3448 // Find already scheduled copies with a single physreg dependence and move
3449 // them just above the scheduled instruction.
3450 for (SDep &Dep : Deps) {
3451 if (Dep.getKind() != SDep::Data ||
3452 !Register::isPhysicalRegister(Dep.getReg()))
3453 continue;
3454 SUnit *DepSU = Dep.getSUnit();
3455 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3456 continue;
3457 MachineInstr *Copy = DepSU->getInstr();
3458 if (!Copy->isCopy() && !Copy->isMoveImmediate())
3459 continue;
3460 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";
3461 DAG->dumpNode(*Dep.getSUnit()));
3462 DAG->moveInstruction(Copy, InsertPos);
3466 /// Update the scheduler's state after scheduling a node. This is the same node
3467 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3468 /// update it's state based on the current cycle before MachineSchedStrategy
3469 /// does.
3471 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3472 /// them here. See comments in biasPhysReg.
3473 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3474 if (IsTopNode) {
3475 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3476 Top.bumpNode(SU);
3477 if (SU->hasPhysRegUses)
3478 reschedulePhysReg(SU, true);
3479 } else {
3480 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3481 Bot.bumpNode(SU);
3482 if (SU->hasPhysRegDefs)
3483 reschedulePhysReg(SU, false);
3487 /// Create the standard converging machine scheduler. This will be used as the
3488 /// default scheduler if the target does not set a default.
3489 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3490 ScheduleDAGMILive *DAG =
3491 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3492 // Register DAG post-processors.
3494 // FIXME: extend the mutation API to allow earlier mutations to instantiate
3495 // data and pass it to later mutations. Have a single mutation that gathers
3496 // the interesting nodes in one pass.
3497 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3498 return DAG;
3501 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3502 return createGenericSchedLive(C);
3505 static MachineSchedRegistry
3506 GenericSchedRegistry("converge", "Standard converging scheduler.",
3507 createConvergingSched);
3509 //===----------------------------------------------------------------------===//
3510 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3511 //===----------------------------------------------------------------------===//
3513 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3514 DAG = Dag;
3515 SchedModel = DAG->getSchedModel();
3516 TRI = DAG->TRI;
3518 Rem.init(DAG, SchedModel);
3519 Top.init(DAG, SchedModel, &Rem);
3520 BotRoots.clear();
3522 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3523 // or are disabled, then these HazardRecs will be disabled.
3524 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3525 if (!Top.HazardRec) {
3526 Top.HazardRec =
3527 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3528 Itin, DAG);
3532 void PostGenericScheduler::registerRoots() {
3533 Rem.CriticalPath = DAG->ExitSU.getDepth();
3535 // Some roots may not feed into ExitSU. Check all of them in case.
3536 for (const SUnit *SU : BotRoots) {
3537 if (SU->getDepth() > Rem.CriticalPath)
3538 Rem.CriticalPath = SU->getDepth();
3540 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3541 if (DumpCriticalPathLength) {
3542 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3546 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3548 /// \param Cand provides the policy and current best candidate.
3549 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3550 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3551 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3552 SchedCandidate &TryCand) {
3553 // Initialize the candidate if needed.
3554 if (!Cand.isValid()) {
3555 TryCand.Reason = NodeOrder;
3556 return true;
3559 // Prioritize instructions that read unbuffered resources by stall cycles.
3560 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3561 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3562 return TryCand.Reason != NoCand;
3564 // Keep clustered nodes together.
3565 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3566 Cand.SU == DAG->getNextClusterSucc(),
3567 TryCand, Cand, Cluster))
3568 return TryCand.Reason != NoCand;
3570 // Avoid critical resource consumption and balance the schedule.
3571 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3572 TryCand, Cand, ResourceReduce))
3573 return TryCand.Reason != NoCand;
3574 if (tryGreater(TryCand.ResDelta.DemandedResources,
3575 Cand.ResDelta.DemandedResources,
3576 TryCand, Cand, ResourceDemand))
3577 return TryCand.Reason != NoCand;
3579 // Avoid serializing long latency dependence chains.
3580 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3581 return TryCand.Reason != NoCand;
3584 // Fall through to original instruction order.
3585 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3586 TryCand.Reason = NodeOrder;
3587 return true;
3590 return false;
3593 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3594 ReadyQueue &Q = Top.Available;
3595 for (SUnit *SU : Q) {
3596 SchedCandidate TryCand(Cand.Policy);
3597 TryCand.SU = SU;
3598 TryCand.AtTop = true;
3599 TryCand.initResourceDelta(DAG, SchedModel);
3600 if (tryCandidate(Cand, TryCand)) {
3601 Cand.setBest(TryCand);
3602 LLVM_DEBUG(traceCandidate(Cand));
3607 /// Pick the next node to schedule.
3608 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3609 if (DAG->top() == DAG->bottom()) {
3610 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3611 return nullptr;
3613 SUnit *SU;
3614 do {
3615 SU = Top.pickOnlyChoice();
3616 if (SU) {
3617 tracePick(Only1, true);
3618 } else {
3619 CandPolicy NoPolicy;
3620 SchedCandidate TopCand(NoPolicy);
3621 // Set the top-down policy based on the state of the current top zone and
3622 // the instructions outside the zone, including the bottom zone.
3623 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3624 pickNodeFromQueue(TopCand);
3625 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3626 tracePick(TopCand);
3627 SU = TopCand.SU;
3629 } while (SU->isScheduled);
3631 IsTopNode = true;
3632 Top.removeReady(SU);
3634 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3635 << *SU->getInstr());
3636 return SU;
3639 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3640 /// scheduled/remaining flags in the DAG nodes.
3641 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3642 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3643 Top.bumpNode(SU);
3646 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3647 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3648 /*RemoveKillFlags=*/true);
3651 //===----------------------------------------------------------------------===//
3652 // ILP Scheduler. Currently for experimental analysis of heuristics.
3653 //===----------------------------------------------------------------------===//
3655 namespace {
3657 /// Order nodes by the ILP metric.
3658 struct ILPOrder {
3659 const SchedDFSResult *DFSResult = nullptr;
3660 const BitVector *ScheduledTrees = nullptr;
3661 bool MaximizeILP;
3663 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3665 /// Apply a less-than relation on node priority.
3667 /// (Return true if A comes after B in the Q.)
3668 bool operator()(const SUnit *A, const SUnit *B) const {
3669 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3670 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3671 if (SchedTreeA != SchedTreeB) {
3672 // Unscheduled trees have lower priority.
3673 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3674 return ScheduledTrees->test(SchedTreeB);
3676 // Trees with shallower connections have have lower priority.
3677 if (DFSResult->getSubtreeLevel(SchedTreeA)
3678 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3679 return DFSResult->getSubtreeLevel(SchedTreeA)
3680 < DFSResult->getSubtreeLevel(SchedTreeB);
3683 if (MaximizeILP)
3684 return DFSResult->getILP(A) < DFSResult->getILP(B);
3685 else
3686 return DFSResult->getILP(A) > DFSResult->getILP(B);
3690 /// Schedule based on the ILP metric.
3691 class ILPScheduler : public MachineSchedStrategy {
3692 ScheduleDAGMILive *DAG = nullptr;
3693 ILPOrder Cmp;
3695 std::vector<SUnit*> ReadyQ;
3697 public:
3698 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3700 void initialize(ScheduleDAGMI *dag) override {
3701 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3702 DAG = static_cast<ScheduleDAGMILive*>(dag);
3703 DAG->computeDFSResult();
3704 Cmp.DFSResult = DAG->getDFSResult();
3705 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3706 ReadyQ.clear();
3709 void registerRoots() override {
3710 // Restore the heap in ReadyQ with the updated DFS results.
3711 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3714 /// Implement MachineSchedStrategy interface.
3715 /// -----------------------------------------
3717 /// Callback to select the highest priority node from the ready Q.
3718 SUnit *pickNode(bool &IsTopNode) override {
3719 if (ReadyQ.empty()) return nullptr;
3720 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3721 SUnit *SU = ReadyQ.back();
3722 ReadyQ.pop_back();
3723 IsTopNode = false;
3724 LLVM_DEBUG(dbgs() << "Pick node "
3725 << "SU(" << SU->NodeNum << ") "
3726 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3727 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3728 << " @"
3729 << DAG->getDFSResult()->getSubtreeLevel(
3730 DAG->getDFSResult()->getSubtreeID(SU))
3731 << '\n'
3732 << "Scheduling " << *SU->getInstr());
3733 return SU;
3736 /// Scheduler callback to notify that a new subtree is scheduled.
3737 void scheduleTree(unsigned SubtreeID) override {
3738 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3741 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3742 /// DFSResults, and resort the priority Q.
3743 void schedNode(SUnit *SU, bool IsTopNode) override {
3744 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3747 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3749 void releaseBottomNode(SUnit *SU) override {
3750 ReadyQ.push_back(SU);
3751 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3755 } // end anonymous namespace
3757 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3758 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3760 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3761 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3764 static MachineSchedRegistry ILPMaxRegistry(
3765 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3766 static MachineSchedRegistry ILPMinRegistry(
3767 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3769 //===----------------------------------------------------------------------===//
3770 // Machine Instruction Shuffler for Correctness Testing
3771 //===----------------------------------------------------------------------===//
3773 #ifndef NDEBUG
3774 namespace {
3776 /// Apply a less-than relation on the node order, which corresponds to the
3777 /// instruction order prior to scheduling. IsReverse implements greater-than.
3778 template<bool IsReverse>
3779 struct SUnitOrder {
3780 bool operator()(SUnit *A, SUnit *B) const {
3781 if (IsReverse)
3782 return A->NodeNum > B->NodeNum;
3783 else
3784 return A->NodeNum < B->NodeNum;
3788 /// Reorder instructions as much as possible.
3789 class InstructionShuffler : public MachineSchedStrategy {
3790 bool IsAlternating;
3791 bool IsTopDown;
3793 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3794 // gives nodes with a higher number higher priority causing the latest
3795 // instructions to be scheduled first.
3796 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3797 TopQ;
3799 // When scheduling bottom-up, use greater-than as the queue priority.
3800 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3801 BottomQ;
3803 public:
3804 InstructionShuffler(bool alternate, bool topdown)
3805 : IsAlternating(alternate), IsTopDown(topdown) {}
3807 void initialize(ScheduleDAGMI*) override {
3808 TopQ.clear();
3809 BottomQ.clear();
3812 /// Implement MachineSchedStrategy interface.
3813 /// -----------------------------------------
3815 SUnit *pickNode(bool &IsTopNode) override {
3816 SUnit *SU;
3817 if (IsTopDown) {
3818 do {
3819 if (TopQ.empty()) return nullptr;
3820 SU = TopQ.top();
3821 TopQ.pop();
3822 } while (SU->isScheduled);
3823 IsTopNode = true;
3824 } else {
3825 do {
3826 if (BottomQ.empty()) return nullptr;
3827 SU = BottomQ.top();
3828 BottomQ.pop();
3829 } while (SU->isScheduled);
3830 IsTopNode = false;
3832 if (IsAlternating)
3833 IsTopDown = !IsTopDown;
3834 return SU;
3837 void schedNode(SUnit *SU, bool IsTopNode) override {}
3839 void releaseTopNode(SUnit *SU) override {
3840 TopQ.push(SU);
3842 void releaseBottomNode(SUnit *SU) override {
3843 BottomQ.push(SU);
3847 } // end anonymous namespace
3849 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3850 bool Alternate = !ForceTopDown && !ForceBottomUp;
3851 bool TopDown = !ForceBottomUp;
3852 assert((TopDown || !ForceTopDown) &&
3853 "-misched-topdown incompatible with -misched-bottomup");
3854 return new ScheduleDAGMILive(
3855 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3858 static MachineSchedRegistry ShufflerRegistry(
3859 "shuffle", "Shuffle machine instructions alternating directions",
3860 createInstructionShuffler);
3861 #endif // !NDEBUG
3863 //===----------------------------------------------------------------------===//
3864 // GraphWriter support for ScheduleDAGMILive.
3865 //===----------------------------------------------------------------------===//
3867 #ifndef NDEBUG
3868 namespace llvm {
3870 template<> struct GraphTraits<
3871 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3873 template<>
3874 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3875 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3877 static std::string getGraphName(const ScheduleDAG *G) {
3878 return std::string(G->MF.getName());
3881 static bool renderGraphFromBottomUp() {
3882 return true;
3885 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
3886 if (ViewMISchedCutoff == 0)
3887 return false;
3888 return (Node->Preds.size() > ViewMISchedCutoff
3889 || Node->Succs.size() > ViewMISchedCutoff);
3892 /// If you want to override the dot attributes printed for a particular
3893 /// edge, override this method.
3894 static std::string getEdgeAttributes(const SUnit *Node,
3895 SUnitIterator EI,
3896 const ScheduleDAG *Graph) {
3897 if (EI.isArtificialDep())
3898 return "color=cyan,style=dashed";
3899 if (EI.isCtrlDep())
3900 return "color=blue,style=dashed";
3901 return "";
3904 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3905 std::string Str;
3906 raw_string_ostream SS(Str);
3907 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3908 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3909 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3910 SS << "SU:" << SU->NodeNum;
3911 if (DFS)
3912 SS << " I:" << DFS->getNumInstrs(SU);
3913 return SS.str();
3916 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3917 return G->getGraphNodeLabel(SU);
3920 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3921 std::string Str("shape=Mrecord");
3922 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3923 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3924 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3925 if (DFS) {
3926 Str += ",style=filled,fillcolor=\"#";
3927 Str += DOT::getColorString(DFS->getSubtreeID(N));
3928 Str += '"';
3930 return Str;
3934 } // end namespace llvm
3935 #endif // NDEBUG
3937 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3938 /// rendered using 'dot'.
3939 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3940 #ifndef NDEBUG
3941 ViewGraph(this, Name, false, Title);
3942 #else
3943 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3944 << "systems with Graphviz or gv!\n";
3945 #endif // NDEBUG
3948 /// Out-of-line implementation with no arguments is handy for gdb.
3949 void ScheduleDAGMI::viewGraph() {
3950 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());