1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10 // both before and after the DAG is legalized.
12 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13 // primarily intended to handle simplification opportunities that are implicit
14 // in the LLVM IR and exposed by the various codegen lowering phases.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/IntervalMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
80 #define DEBUG_TYPE "dagcombine"
82 STATISTIC(NodesCombined
, "Number of dag nodes combined");
83 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
84 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
85 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
86 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
87 STATISTIC(SlicedLoads
, "Number of load sliced");
88 STATISTIC(NumFPLogicOpsConv
, "Number of logic ops converted to fp ops");
91 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
92 cl::desc("Enable DAG combiner's use of IR alias analysis"));
95 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
96 cl::desc("Enable DAG combiner's use of TBAA"));
99 static cl::opt
<std::string
>
100 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
101 cl::desc("Only use DAG-combiner alias analysis in this"
105 /// Hidden option to stress test load slicing, i.e., when this option
106 /// is enabled, load slicing bypasses most of its profitability guards.
108 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
109 cl::desc("Bypass the profitability model of load slicing"),
113 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
114 cl::desc("DAG combiner may split indexing from loads"));
117 EnableStoreMerging("combiner-store-merging", cl::Hidden
, cl::init(true),
118 cl::desc("DAG combiner enable merging multiple stores "
119 "into a wider store"));
121 static cl::opt
<unsigned> TokenFactorInlineLimit(
122 "combiner-tokenfactor-inline-limit", cl::Hidden
, cl::init(2048),
123 cl::desc("Limit the number of operands to inline for Token Factors"));
125 static cl::opt
<unsigned> StoreMergeDependenceLimit(
126 "combiner-store-merge-dependence-limit", cl::Hidden
, cl::init(10),
127 cl::desc("Limit the number of times for the same StoreNode and RootNode "
128 "to bail out in store merging dependence check"));
130 static cl::opt
<bool> EnableReduceLoadOpStoreWidth(
131 "combiner-reduce-load-op-store-width", cl::Hidden
, cl::init(true),
132 cl::desc("DAG cominber enable reducing the width of load/op/store "
135 static cl::opt
<bool> EnableShrinkLoadReplaceStoreWithStore(
136 "combiner-shrink-load-replace-store-with-store", cl::Hidden
, cl::init(true),
137 cl::desc("DAG cominber enable load/<replace bytes>/store with "
138 "a narrower store"));
144 const TargetLowering
&TLI
;
145 const SelectionDAGTargetInfo
*STI
;
147 CodeGenOpt::Level OptLevel
;
148 bool LegalDAG
= false;
149 bool LegalOperations
= false;
150 bool LegalTypes
= false;
152 bool DisableGenericCombines
;
154 /// Worklist of all of the nodes that need to be simplified.
156 /// This must behave as a stack -- new nodes to process are pushed onto the
157 /// back and when processing we pop off of the back.
159 /// The worklist will not contain duplicates but may contain null entries
160 /// due to nodes being deleted from the underlying DAG.
161 SmallVector
<SDNode
*, 64> Worklist
;
163 /// Mapping from an SDNode to its position on the worklist.
165 /// This is used to find and remove nodes from the worklist (by nulling
166 /// them) when they are deleted from the underlying DAG. It relies on
167 /// stable indices of nodes within the worklist.
168 DenseMap
<SDNode
*, unsigned> WorklistMap
;
169 /// This records all nodes attempted to add to the worklist since we
170 /// considered a new worklist entry. As we keep do not add duplicate nodes
171 /// in the worklist, this is different from the tail of the worklist.
172 SmallSetVector
<SDNode
*, 32> PruningList
;
174 /// Set of nodes which have been combined (at least once).
176 /// This is used to allow us to reliably add any operands of a DAG node
177 /// which have not yet been combined to the worklist.
178 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
180 /// Map from candidate StoreNode to the pair of RootNode and count.
181 /// The count is used to track how many times we have seen the StoreNode
182 /// with the same RootNode bail out in dependence check. If we have seen
183 /// the bail out for the same pair many times over a limit, we won't
184 /// consider the StoreNode with the same RootNode as store merging
186 DenseMap
<SDNode
*, std::pair
<SDNode
*, unsigned>> StoreRootCountMap
;
188 // AA - Used for DAG load/store alias analysis.
191 /// When an instruction is simplified, add all users of the instruction to
192 /// the work lists because they might get more simplified now.
193 void AddUsersToWorklist(SDNode
*N
) {
194 for (SDNode
*Node
: N
->uses())
198 /// Convenient shorthand to add a node and all of its user to the worklist.
199 void AddToWorklistWithUsers(SDNode
*N
) {
200 AddUsersToWorklist(N
);
204 // Prune potentially dangling nodes. This is called after
205 // any visit to a node, but should also be called during a visit after any
206 // failed combine which may have created a DAG node.
207 void clearAddedDanglingWorklistEntries() {
208 // Check any nodes added to the worklist to see if they are prunable.
209 while (!PruningList
.empty()) {
210 auto *N
= PruningList
.pop_back_val();
212 recursivelyDeleteUnusedNodes(N
);
216 SDNode
*getNextWorklistEntry() {
217 // Before we do any work, remove nodes that are not in use.
218 clearAddedDanglingWorklistEntries();
220 // The Worklist holds the SDNodes in order, but it may contain null
222 while (!N
&& !Worklist
.empty()) {
223 N
= Worklist
.pop_back_val();
227 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
228 (void)GoodWorklistEntry
;
229 assert(GoodWorklistEntry
&&
230 "Found a worklist entry without a corresponding map entry!");
235 /// Call the node-specific routine that folds each particular type of node.
236 SDValue
visit(SDNode
*N
);
239 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
240 : DAG(D
), TLI(D
.getTargetLoweringInfo()),
241 STI(D
.getSubtarget().getSelectionDAGInfo()),
242 Level(BeforeLegalizeTypes
), OptLevel(OL
), AA(AA
) {
243 ForCodeSize
= DAG
.shouldOptForSize();
244 DisableGenericCombines
= STI
&& STI
->disableGenericCombines(OptLevel
);
246 MaximumLegalStoreInBits
= 0;
247 // We use the minimum store size here, since that's all we can guarantee
248 // for the scalable vector types.
249 for (MVT VT
: MVT::all_valuetypes())
250 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
251 TLI
.isTypeLegal(EVT(VT
)) &&
252 VT
.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits
)
253 MaximumLegalStoreInBits
= VT
.getSizeInBits().getKnownMinSize();
256 void ConsiderForPruning(SDNode
*N
) {
257 // Mark this for potential pruning.
258 PruningList
.insert(N
);
261 /// Add to the worklist making sure its instance is at the back (next to be
263 void AddToWorklist(SDNode
*N
) {
264 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
265 "Deleted Node added to Worklist");
267 // Skip handle nodes as they can't usefully be combined and confuse the
268 // zero-use deletion strategy.
269 if (N
->getOpcode() == ISD::HANDLENODE
)
272 ConsiderForPruning(N
);
274 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
275 Worklist
.push_back(N
);
278 /// Remove all instances of N from the worklist.
279 void removeFromWorklist(SDNode
*N
) {
280 CombinedNodes
.erase(N
);
281 PruningList
.remove(N
);
282 StoreRootCountMap
.erase(N
);
284 auto It
= WorklistMap
.find(N
);
285 if (It
== WorklistMap
.end())
286 return; // Not in the worklist.
288 // Null out the entry rather than erasing it to avoid a linear operation.
289 Worklist
[It
->second
] = nullptr;
290 WorklistMap
.erase(It
);
293 void deleteAndRecombine(SDNode
*N
);
294 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
296 /// Replaces all uses of the results of one DAG node with new values.
297 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
300 /// Replaces all uses of the results of one DAG node with new values.
301 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
302 return CombineTo(N
, &Res
, 1, AddTo
);
305 /// Replaces all uses of the results of one DAG node with new values.
306 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
308 SDValue To
[] = { Res0
, Res1
};
309 return CombineTo(N
, To
, 2, AddTo
);
312 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
315 unsigned MaximumLegalStoreInBits
;
317 /// Check the specified integer node value to see if it can be simplified or
318 /// if things it uses can be simplified by bit propagation.
319 /// If so, return true.
320 bool SimplifyDemandedBits(SDValue Op
) {
321 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
322 APInt DemandedBits
= APInt::getAllOnesValue(BitWidth
);
323 return SimplifyDemandedBits(Op
, DemandedBits
);
326 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
) {
327 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
329 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
, 0, false))
333 AddToWorklist(Op
.getNode());
335 CommitTargetLoweringOpt(TLO
);
339 /// Check the specified vector node value to see if it can be simplified or
340 /// if things it uses can be simplified as it only uses some of the
341 /// elements. If so, return true.
342 bool SimplifyDemandedVectorElts(SDValue Op
) {
343 // TODO: For now just pretend it cannot be simplified.
344 if (Op
.getValueType().isScalableVector())
347 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
348 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
349 return SimplifyDemandedVectorElts(Op
, DemandedElts
);
352 bool SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
353 const APInt
&DemandedElts
,
354 bool AssumeSingleUse
= false);
355 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&DemandedElts
,
356 bool AssumeSingleUse
= false);
358 bool CombineToPreIndexedLoadStore(SDNode
*N
);
359 bool CombineToPostIndexedLoadStore(SDNode
*N
);
360 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
361 bool SliceUpLoad(SDNode
*N
);
363 // Scalars have size 0 to distinguish from singleton vectors.
364 SDValue
ForwardStoreValueToDirectLoad(LoadSDNode
*LD
);
365 bool getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
);
366 bool extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
);
368 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
371 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
372 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
373 /// \param EltNo index of the vector element to load.
374 /// \param OriginalLoad load that EVE came from to be replaced.
375 /// \returns EVE on success SDValue() on failure.
376 SDValue
scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
378 LoadSDNode
*OriginalLoad
);
379 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
380 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
381 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
382 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
383 SDValue
PromoteIntBinOp(SDValue Op
);
384 SDValue
PromoteIntShiftOp(SDValue Op
);
385 SDValue
PromoteExtend(SDValue Op
);
386 bool PromoteLoad(SDValue Op
);
388 /// Call the node-specific routine that knows how to fold each
389 /// particular type of node. If that doesn't do anything, try the
390 /// target-specific DAG combines.
391 SDValue
combine(SDNode
*N
);
393 // Visitation implementation - Implement dag node combining for different
394 // node types. The semantics are as follows:
396 // SDValue.getNode() == 0 - No change was made
397 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
398 // otherwise - N should be replaced by the returned Operand.
400 SDValue
visitTokenFactor(SDNode
*N
);
401 SDValue
visitMERGE_VALUES(SDNode
*N
);
402 SDValue
visitADD(SDNode
*N
);
403 SDValue
visitADDLike(SDNode
*N
);
404 SDValue
visitADDLikeCommutative(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
405 SDValue
visitSUB(SDNode
*N
);
406 SDValue
visitADDSAT(SDNode
*N
);
407 SDValue
visitSUBSAT(SDNode
*N
);
408 SDValue
visitADDC(SDNode
*N
);
409 SDValue
visitADDO(SDNode
*N
);
410 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
411 SDValue
visitSUBC(SDNode
*N
);
412 SDValue
visitSUBO(SDNode
*N
);
413 SDValue
visitADDE(SDNode
*N
);
414 SDValue
visitADDCARRY(SDNode
*N
);
415 SDValue
visitSADDO_CARRY(SDNode
*N
);
416 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
417 SDValue
visitSUBE(SDNode
*N
);
418 SDValue
visitSUBCARRY(SDNode
*N
);
419 SDValue
visitSSUBO_CARRY(SDNode
*N
);
420 SDValue
visitMUL(SDNode
*N
);
421 SDValue
visitMULFIX(SDNode
*N
);
422 SDValue
useDivRem(SDNode
*N
);
423 SDValue
visitSDIV(SDNode
*N
);
424 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
425 SDValue
visitUDIV(SDNode
*N
);
426 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
427 SDValue
visitREM(SDNode
*N
);
428 SDValue
visitMULHU(SDNode
*N
);
429 SDValue
visitMULHS(SDNode
*N
);
430 SDValue
visitSMUL_LOHI(SDNode
*N
);
431 SDValue
visitUMUL_LOHI(SDNode
*N
);
432 SDValue
visitMULO(SDNode
*N
);
433 SDValue
visitIMINMAX(SDNode
*N
);
434 SDValue
visitAND(SDNode
*N
);
435 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
436 SDValue
visitOR(SDNode
*N
);
437 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
438 SDValue
visitXOR(SDNode
*N
);
439 SDValue
SimplifyVBinOp(SDNode
*N
);
440 SDValue
visitSHL(SDNode
*N
);
441 SDValue
visitSRA(SDNode
*N
);
442 SDValue
visitSRL(SDNode
*N
);
443 SDValue
visitFunnelShift(SDNode
*N
);
444 SDValue
visitRotate(SDNode
*N
);
445 SDValue
visitABS(SDNode
*N
);
446 SDValue
visitBSWAP(SDNode
*N
);
447 SDValue
visitBITREVERSE(SDNode
*N
);
448 SDValue
visitCTLZ(SDNode
*N
);
449 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
450 SDValue
visitCTTZ(SDNode
*N
);
451 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
452 SDValue
visitCTPOP(SDNode
*N
);
453 SDValue
visitSELECT(SDNode
*N
);
454 SDValue
visitVSELECT(SDNode
*N
);
455 SDValue
visitSELECT_CC(SDNode
*N
);
456 SDValue
visitSETCC(SDNode
*N
);
457 SDValue
visitSETCCCARRY(SDNode
*N
);
458 SDValue
visitSIGN_EXTEND(SDNode
*N
);
459 SDValue
visitZERO_EXTEND(SDNode
*N
);
460 SDValue
visitANY_EXTEND(SDNode
*N
);
461 SDValue
visitAssertExt(SDNode
*N
);
462 SDValue
visitAssertAlign(SDNode
*N
);
463 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
464 SDValue
visitEXTEND_VECTOR_INREG(SDNode
*N
);
465 SDValue
visitTRUNCATE(SDNode
*N
);
466 SDValue
visitBITCAST(SDNode
*N
);
467 SDValue
visitFREEZE(SDNode
*N
);
468 SDValue
visitBUILD_PAIR(SDNode
*N
);
469 SDValue
visitFADD(SDNode
*N
);
470 SDValue
visitSTRICT_FADD(SDNode
*N
);
471 SDValue
visitFSUB(SDNode
*N
);
472 SDValue
visitFMUL(SDNode
*N
);
473 SDValue
visitFMA(SDNode
*N
);
474 SDValue
visitFDIV(SDNode
*N
);
475 SDValue
visitFREM(SDNode
*N
);
476 SDValue
visitFSQRT(SDNode
*N
);
477 SDValue
visitFCOPYSIGN(SDNode
*N
);
478 SDValue
visitFPOW(SDNode
*N
);
479 SDValue
visitSINT_TO_FP(SDNode
*N
);
480 SDValue
visitUINT_TO_FP(SDNode
*N
);
481 SDValue
visitFP_TO_SINT(SDNode
*N
);
482 SDValue
visitFP_TO_UINT(SDNode
*N
);
483 SDValue
visitFP_ROUND(SDNode
*N
);
484 SDValue
visitFP_EXTEND(SDNode
*N
);
485 SDValue
visitFNEG(SDNode
*N
);
486 SDValue
visitFABS(SDNode
*N
);
487 SDValue
visitFCEIL(SDNode
*N
);
488 SDValue
visitFTRUNC(SDNode
*N
);
489 SDValue
visitFFLOOR(SDNode
*N
);
490 SDValue
visitFMINNUM(SDNode
*N
);
491 SDValue
visitFMAXNUM(SDNode
*N
);
492 SDValue
visitFMINIMUM(SDNode
*N
);
493 SDValue
visitFMAXIMUM(SDNode
*N
);
494 SDValue
visitBRCOND(SDNode
*N
);
495 SDValue
visitBR_CC(SDNode
*N
);
496 SDValue
visitLOAD(SDNode
*N
);
498 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
499 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
501 SDValue
visitSTORE(SDNode
*N
);
502 SDValue
visitLIFETIME_END(SDNode
*N
);
503 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
504 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
505 SDValue
visitBUILD_VECTOR(SDNode
*N
);
506 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
507 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
508 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
509 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
510 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
511 SDValue
visitMLOAD(SDNode
*N
);
512 SDValue
visitMSTORE(SDNode
*N
);
513 SDValue
visitMGATHER(SDNode
*N
);
514 SDValue
visitMSCATTER(SDNode
*N
);
515 SDValue
visitFP_TO_FP16(SDNode
*N
);
516 SDValue
visitFP16_TO_FP(SDNode
*N
);
517 SDValue
visitVECREDUCE(SDNode
*N
);
519 SDValue
visitFADDForFMACombine(SDNode
*N
);
520 SDValue
visitFSUBForFMACombine(SDNode
*N
);
521 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
523 SDValue
XformToShuffleWithZero(SDNode
*N
);
524 bool reassociationCanBreakAddressingModePattern(unsigned Opc
,
525 const SDLoc
&DL
, SDValue N0
,
527 SDValue
reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
529 SDValue
reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
530 SDValue N1
, SDNodeFlags Flags
);
532 SDValue
visitShiftByConstant(SDNode
*N
);
534 SDValue
foldSelectOfConstants(SDNode
*N
);
535 SDValue
foldVSelectOfConstants(SDNode
*N
);
536 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
537 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
538 SDValue
hoistLogicOpWithSameOpcodeHands(SDNode
*N
);
539 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
540 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
541 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
542 bool NotExtCompare
= false);
543 SDValue
convertSelectOfFPConstantsToLoadOffset(
544 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
546 SDValue
foldSignChangeInBitcast(SDNode
*N
);
547 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
548 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
549 SDValue
foldSelectOfBinops(SDNode
*N
);
550 SDValue
foldSextSetcc(SDNode
*N
);
551 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
553 SDValue
foldSubToUSubSat(EVT DstVT
, SDNode
*N
);
554 SDValue
unfoldMaskedMerge(SDNode
*N
);
555 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
556 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
557 const SDLoc
&DL
, bool foldBooleans
);
558 SDValue
rebuildSetCC(SDValue N
);
560 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
561 SDValue
&CC
, bool MatchStrict
= false) const;
562 bool isOneUseSetCC(SDValue N
) const;
564 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
566 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
567 SDValue
CombineExtLoad(SDNode
*N
);
568 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
569 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
570 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
571 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
572 SDValue
BuildSDIV(SDNode
*N
);
573 SDValue
BuildSDIVPow2(SDNode
*N
);
574 SDValue
BuildUDIV(SDNode
*N
);
575 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
576 SDValue
BuildDivEstimate(SDValue N
, SDValue Op
, SDNodeFlags Flags
);
577 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
578 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
579 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
580 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
581 SDNodeFlags Flags
, bool Reciprocal
);
582 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
583 SDNodeFlags Flags
, bool Reciprocal
);
584 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
585 bool DemandHighBits
= true);
586 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
587 SDValue
MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
588 SDValue InnerPos
, SDValue InnerNeg
,
589 unsigned PosOpcode
, unsigned NegOpcode
,
591 SDValue
MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
, SDValue Neg
,
592 SDValue InnerPos
, SDValue InnerNeg
,
593 unsigned PosOpcode
, unsigned NegOpcode
,
595 SDValue
MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
596 SDValue
MatchLoadCombine(SDNode
*N
);
597 SDValue
mergeTruncStores(StoreSDNode
*N
);
598 SDValue
ReduceLoadWidth(SDNode
*N
);
599 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
600 SDValue
splitMergedValStore(StoreSDNode
*ST
);
601 SDValue
TransformFPLoadStorePair(SDNode
*N
);
602 SDValue
convertBuildVecZextToZext(SDNode
*N
);
603 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
604 SDValue
reduceBuildVecTruncToBitCast(SDNode
*N
);
605 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
606 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
607 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
608 SDValue VecIn2
, unsigned LeftIdx
,
610 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
612 /// Walk up chain skipping non-aliasing memory nodes,
613 /// looking for aliasing nodes and adding them to the Aliases vector.
614 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
615 SmallVectorImpl
<SDValue
> &Aliases
);
617 /// Return true if there is any possibility that the two addresses overlap.
618 bool isAlias(SDNode
*Op0
, SDNode
*Op1
) const;
620 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
621 /// chain (aliasing node.)
622 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
624 /// Try to replace a store and any possibly adjacent stores on
625 /// consecutive chains with better chains. Return true only if St is
628 /// Notice that other chains may still be replaced even if the function
630 bool findBetterNeighborChains(StoreSDNode
*St
);
632 // Helper for findBetterNeighborChains. Walk up store chain add additional
633 // chained stores that do not overlap and can be parallelized.
634 bool parallelizeChainedStores(StoreSDNode
*St
);
636 /// Holds a pointer to an LSBaseSDNode as well as information on where it
637 /// is located in a sequence of memory operations connected by a chain.
639 // Ptr to the mem node.
640 LSBaseSDNode
*MemNode
;
642 // Offset from the base ptr.
643 int64_t OffsetFromBase
;
645 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
646 : MemNode(N
), OffsetFromBase(Offset
) {}
649 // Classify the origin of a stored value.
650 enum class StoreSource
{ Unknown
, Constant
, Extract
, Load
};
651 StoreSource
getStoreSource(SDValue StoreVal
) {
652 switch (StoreVal
.getOpcode()) {
654 case ISD::ConstantFP
:
655 return StoreSource::Constant
;
656 case ISD::EXTRACT_VECTOR_ELT
:
657 case ISD::EXTRACT_SUBVECTOR
:
658 return StoreSource::Extract
;
660 return StoreSource::Load
;
662 return StoreSource::Unknown
;
666 /// This is a helper function for visitMUL to check the profitability
667 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
668 /// MulNode is the original multiply, AddNode is (add x, c1),
669 /// and ConstNode is c2.
670 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
674 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
675 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
676 /// the type of the loaded value to be extended.
677 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
678 EVT LoadResultTy
, EVT
&ExtVT
);
680 /// Helper function to calculate whether the given Load/Store can have its
681 /// width reduced to ExtVT.
682 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
683 EVT
&MemVT
, unsigned ShAmt
= 0);
685 /// Used by BackwardsPropagateMask to find suitable loads.
686 bool SearchForAndLoads(SDNode
*N
, SmallVectorImpl
<LoadSDNode
*> &Loads
,
687 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
688 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
689 /// Attempt to propagate a given AND node back to load leaves so that they
690 /// can be combined into narrow loads.
691 bool BackwardsPropagateMask(SDNode
*N
);
693 /// Helper function for mergeConsecutiveStores which merges the component
695 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
698 /// This is a helper function for mergeConsecutiveStores. When the source
699 /// elements of the consecutive stores are all constants or all extracted
700 /// vector elements, try to merge them into one larger store introducing
701 /// bitcasts if necessary. \return True if a merged store was created.
702 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
703 EVT MemVT
, unsigned NumStores
,
704 bool IsConstantSrc
, bool UseVector
,
707 /// This is a helper function for mergeConsecutiveStores. Stores that
708 /// potentially may be merged with St are placed in StoreNodes. RootNode is
709 /// a chain predecessor to all store candidates.
710 void getStoreMergeCandidates(StoreSDNode
*St
,
711 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
714 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
715 /// have indirect dependency through their operands. RootNode is the
716 /// predecessor to all stores calculated by getStoreMergeCandidates and is
717 /// used to prune the dependency check. \return True if safe to merge.
718 bool checkMergeStoreCandidatesForDependencies(
719 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
722 /// This is a helper function for mergeConsecutiveStores. Given a list of
723 /// store candidates, find the first N that are consecutive in memory.
724 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
725 unsigned getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
726 int64_t ElementSizeBytes
) const;
728 /// This is a helper function for mergeConsecutiveStores. It is used for
729 /// store chains that are composed entirely of constant values.
730 bool tryStoreMergeOfConstants(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
731 unsigned NumConsecutiveStores
,
732 EVT MemVT
, SDNode
*Root
, bool AllowVectors
);
734 /// This is a helper function for mergeConsecutiveStores. It is used for
735 /// store chains that are composed entirely of extracted vector elements.
736 /// When extracting multiple vector elements, try to store them in one
737 /// vector store rather than a sequence of scalar stores.
738 bool tryStoreMergeOfExtracts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
739 unsigned NumConsecutiveStores
, EVT MemVT
,
742 /// This is a helper function for mergeConsecutiveStores. It is used for
743 /// store chains that are composed entirely of loaded values.
744 bool tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
745 unsigned NumConsecutiveStores
, EVT MemVT
,
746 SDNode
*Root
, bool AllowVectors
,
747 bool IsNonTemporalStore
, bool IsNonTemporalLoad
);
749 /// Merge consecutive store operations into a wide store.
750 /// This optimization uses wide integers or vectors when possible.
751 /// \return true if stores were merged.
752 bool mergeConsecutiveStores(StoreSDNode
*St
);
754 /// Try to transform a truncation where C is a constant:
755 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
757 /// \p N needs to be a truncation and its first operand an AND. Other
758 /// requirements are checked by the function (e.g. that trunc is
759 /// single-use) and if missed an empty SDValue is returned.
760 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
762 /// Helper function to determine whether the target supports operation
763 /// given by \p Opcode for type \p VT, that is, whether the operation
764 /// is legal or custom before legalizing operations, and whether is
765 /// legal (but not custom) after legalization.
766 bool hasOperation(unsigned Opcode
, EVT VT
) {
767 return TLI
.isOperationLegalOrCustom(Opcode
, VT
, LegalOperations
);
771 /// Runs the dag combiner on all nodes in the work list
772 void Run(CombineLevel AtLevel
);
774 SelectionDAG
&getDAG() const { return DAG
; }
776 /// Returns a type large enough to hold any valid shift amount - before type
777 /// legalization these can be huge.
778 EVT
getShiftAmountTy(EVT LHSTy
) {
779 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
780 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
783 /// This method returns true if we are running before type legalization or
784 /// if the specified VT is legal.
785 bool isTypeLegal(const EVT
&VT
) {
786 if (!LegalTypes
) return true;
787 return TLI
.isTypeLegal(VT
);
790 /// Convenience wrapper around TargetLowering::getSetCCResultType
791 EVT
getSetCCResultType(EVT VT
) const {
792 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
795 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
796 SDValue OrigLoad
, SDValue ExtLoad
,
797 ISD::NodeType ExtType
);
800 /// This class is a DAGUpdateListener that removes any deleted
801 /// nodes from the worklist.
802 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
806 explicit WorklistRemover(DAGCombiner
&dc
)
807 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
809 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
810 DC
.removeFromWorklist(N
);
814 class WorklistInserter
: public SelectionDAG::DAGUpdateListener
{
818 explicit WorklistInserter(DAGCombiner
&dc
)
819 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
821 // FIXME: Ideally we could add N to the worklist, but this causes exponential
822 // compile time costs in large DAGs, e.g. Halide.
823 void NodeInserted(SDNode
*N
) override
{ DC
.ConsiderForPruning(N
); }
826 } // end anonymous namespace
828 //===----------------------------------------------------------------------===//
829 // TargetLowering::DAGCombinerInfo implementation
830 //===----------------------------------------------------------------------===//
832 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
833 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
836 SDValue
TargetLowering::DAGCombinerInfo::
837 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
838 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
841 SDValue
TargetLowering::DAGCombinerInfo::
842 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
843 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
846 SDValue
TargetLowering::DAGCombinerInfo::
847 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
848 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
851 bool TargetLowering::DAGCombinerInfo::
852 recursivelyDeleteUnusedNodes(SDNode
*N
) {
853 return ((DAGCombiner
*)DC
)->recursivelyDeleteUnusedNodes(N
);
856 void TargetLowering::DAGCombinerInfo::
857 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
858 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
861 //===----------------------------------------------------------------------===//
863 //===----------------------------------------------------------------------===//
865 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
866 removeFromWorklist(N
);
868 // If the operands of this node are only used by the node, they will now be
869 // dead. Make sure to re-visit them and recursively delete dead nodes.
870 for (const SDValue
&Op
: N
->ops())
871 // For an operand generating multiple values, one of the values may
872 // become dead allowing further simplification (e.g. split index
873 // arithmetic from an indexed load).
874 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
875 AddToWorklist(Op
.getNode());
880 // APInts must be the same size for most operations, this helper
881 // function zero extends the shorter of the pair so that they match.
882 // We provide an Offset so that we can create bitwidths that won't overflow.
883 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
884 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
885 LHS
= LHS
.zextOrSelf(Bits
);
886 RHS
= RHS
.zextOrSelf(Bits
);
889 // Return true if this node is a setcc, or is a select_cc
890 // that selects between the target values used for true and false, making it
891 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
892 // the appropriate nodes based on the type of node we are checking. This
893 // simplifies life a bit for the callers.
894 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
895 SDValue
&CC
, bool MatchStrict
) const {
896 if (N
.getOpcode() == ISD::SETCC
) {
897 LHS
= N
.getOperand(0);
898 RHS
= N
.getOperand(1);
899 CC
= N
.getOperand(2);
904 (N
.getOpcode() == ISD::STRICT_FSETCC
||
905 N
.getOpcode() == ISD::STRICT_FSETCCS
)) {
906 LHS
= N
.getOperand(1);
907 RHS
= N
.getOperand(2);
908 CC
= N
.getOperand(3);
912 if (N
.getOpcode() != ISD::SELECT_CC
||
913 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
914 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
917 if (TLI
.getBooleanContents(N
.getValueType()) ==
918 TargetLowering::UndefinedBooleanContent
)
921 LHS
= N
.getOperand(0);
922 RHS
= N
.getOperand(1);
923 CC
= N
.getOperand(4);
927 /// Return true if this is a SetCC-equivalent operation with only one use.
928 /// If this is true, it allows the users to invert the operation for free when
929 /// it is profitable to do so.
930 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
932 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
937 static bool isConstantSplatVectorMaskForType(SDNode
*N
, EVT ScalarTy
) {
938 if (!ScalarTy
.isSimple())
941 uint64_t MaskForTy
= 0ULL;
942 switch (ScalarTy
.getSimpleVT().SimpleTy
) {
947 MaskForTy
= 0xFFFFULL
;
950 MaskForTy
= 0xFFFFFFFFULL
;
958 if (ISD::isConstantSplatVector(N
, Val
))
959 return Val
.getLimitedValue() == MaskForTy
;
964 // Determines if it is a constant integer or a splat/build vector of constant
965 // integers (and undefs).
966 // Do not permit build vector implicit truncation.
967 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
968 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
969 return !(Const
->isOpaque() && NoOpaques
);
970 if (N
.getOpcode() != ISD::BUILD_VECTOR
&& N
.getOpcode() != ISD::SPLAT_VECTOR
)
972 unsigned BitWidth
= N
.getScalarValueSizeInBits();
973 for (const SDValue
&Op
: N
->op_values()) {
976 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
977 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
978 (Const
->isOpaque() && NoOpaques
))
984 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
986 static bool isAnyConstantBuildVector(SDValue V
, bool NoOpaques
= false) {
987 if (V
.getOpcode() != ISD::BUILD_VECTOR
)
989 return isConstantOrConstantVector(V
, NoOpaques
) ||
990 ISD::isBuildVectorOfConstantFPSDNodes(V
.getNode());
993 // Determine if this an indexed load with an opaque target constant index.
994 static bool canSplitIdx(LoadSDNode
*LD
) {
995 return MaySplitLoadIndex
&&
996 (LD
->getOperand(2).getOpcode() != ISD::TargetConstant
||
997 !cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque());
1000 bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc
,
1004 // Currently this only tries to ensure we don't undo the GEP splits done by
1005 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1006 // we check if the following transformation would be problematic:
1007 // (load/store (add, (add, x, offset1), offset2)) ->
1008 // (load/store (add, x, offset1+offset2)).
1010 if (Opc
!= ISD::ADD
|| N0
.getOpcode() != ISD::ADD
)
1016 auto *C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
1017 auto *C2
= dyn_cast
<ConstantSDNode
>(N1
);
1021 const APInt
&C1APIntVal
= C1
->getAPIntValue();
1022 const APInt
&C2APIntVal
= C2
->getAPIntValue();
1023 if (C1APIntVal
.getBitWidth() > 64 || C2APIntVal
.getBitWidth() > 64)
1026 const APInt CombinedValueIntVal
= C1APIntVal
+ C2APIntVal
;
1027 if (CombinedValueIntVal
.getBitWidth() > 64)
1029 const int64_t CombinedValue
= CombinedValueIntVal
.getSExtValue();
1031 for (SDNode
*Node
: N0
->uses()) {
1032 auto LoadStore
= dyn_cast
<MemSDNode
>(Node
);
1034 // Is x[offset2] already not a legal addressing mode? If so then
1035 // reassociating the constants breaks nothing (we test offset2 because
1036 // that's the one we hope to fold into the load or store).
1037 TargetLoweringBase::AddrMode AM
;
1038 AM
.HasBaseReg
= true;
1039 AM
.BaseOffs
= C2APIntVal
.getSExtValue();
1040 EVT VT
= LoadStore
->getMemoryVT();
1041 unsigned AS
= LoadStore
->getAddressSpace();
1042 Type
*AccessTy
= VT
.getTypeForEVT(*DAG
.getContext());
1043 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1046 // Would x[offset1+offset2] still be a legal addressing mode?
1047 AM
.BaseOffs
= CombinedValue
;
1048 if (!TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
, AccessTy
, AS
))
1056 // Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
1057 // such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
1058 SDValue
DAGCombiner::reassociateOpsCommutative(unsigned Opc
, const SDLoc
&DL
,
1059 SDValue N0
, SDValue N1
) {
1060 EVT VT
= N0
.getValueType();
1062 if (N0
.getOpcode() != Opc
)
1065 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
1066 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
1067 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1068 if (SDValue OpNode
=
1069 DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, {N0
.getOperand(1), N1
}))
1070 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
1073 if (N0
.hasOneUse()) {
1074 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1075 // iff (op x, c1) has one use
1076 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
1077 if (!OpNode
.getNode())
1079 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
1085 // Try to reassociate commutative binops.
1086 SDValue
DAGCombiner::reassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
1087 SDValue N1
, SDNodeFlags Flags
) {
1088 assert(TLI
.isCommutativeBinOp(Opc
) && "Operation not commutative.");
1090 // Floating-point reassociation is not allowed without loose FP math.
1091 if (N0
.getValueType().isFloatingPoint() ||
1092 N1
.getValueType().isFloatingPoint())
1093 if (!Flags
.hasAllowReassociation() || !Flags
.hasNoSignedZeros())
1096 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N0
, N1
))
1098 if (SDValue Combined
= reassociateOpsCommutative(Opc
, DL
, N1
, N0
))
1103 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
1105 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
1107 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
1108 To
[0].getNode()->dump(&DAG
);
1109 dbgs() << " and " << NumTo
- 1 << " other values\n");
1110 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1111 assert((!To
[i
].getNode() ||
1112 N
->getValueType(i
) == To
[i
].getValueType()) &&
1113 "Cannot combine value to value of different type!");
1115 WorklistRemover
DeadNodes(*this);
1116 DAG
.ReplaceAllUsesWith(N
, To
);
1118 // Push the new nodes and any users onto the worklist
1119 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1120 if (To
[i
].getNode()) {
1121 AddToWorklist(To
[i
].getNode());
1122 AddUsersToWorklist(To
[i
].getNode());
1127 // Finally, if the node is now dead, remove it from the graph. The node
1128 // may not be dead if the replacement process recursively simplified to
1129 // something else needing this node.
1131 deleteAndRecombine(N
);
1132 return SDValue(N
, 0);
1136 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1137 // Replace the old value with the new one.
1139 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1140 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1143 // Replace all uses. If any nodes become isomorphic to other nodes and
1144 // are deleted, make sure to remove them from our worklist.
1145 WorklistRemover
DeadNodes(*this);
1146 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1148 // Push the new node and any (possibly new) users onto the worklist.
1149 AddToWorklistWithUsers(TLO
.New
.getNode());
1151 // Finally, if the node is now dead, remove it from the graph. The node
1152 // may not be dead if the replacement process recursively simplified to
1153 // something else needing this node.
1154 if (TLO
.Old
.getNode()->use_empty())
1155 deleteAndRecombine(TLO
.Old
.getNode());
1158 /// Check the specified integer node value to see if it can be simplified or if
1159 /// things it uses can be simplified by bit propagation. If so, return true.
1160 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
1161 const APInt
&DemandedElts
,
1162 bool AssumeSingleUse
) {
1163 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1165 if (!TLI
.SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, 0,
1169 // Revisit the node.
1170 AddToWorklist(Op
.getNode());
1172 CommitTargetLoweringOpt(TLO
);
1176 /// Check the specified vector node value to see if it can be simplified or
1177 /// if things it uses can be simplified as it only uses some of the elements.
1178 /// If so, return true.
1179 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
,
1180 const APInt
&DemandedElts
,
1181 bool AssumeSingleUse
) {
1182 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1183 APInt KnownUndef
, KnownZero
;
1184 if (!TLI
.SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
,
1185 TLO
, 0, AssumeSingleUse
))
1188 // Revisit the node.
1189 AddToWorklist(Op
.getNode());
1191 CommitTargetLoweringOpt(TLO
);
1195 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1197 EVT VT
= Load
->getValueType(0);
1198 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1200 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1201 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1202 WorklistRemover
DeadNodes(*this);
1203 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1204 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1205 deleteAndRecombine(Load
);
1206 AddToWorklist(Trunc
.getNode());
1209 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1212 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1213 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1214 EVT MemVT
= LD
->getMemoryVT();
1215 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1216 : LD
->getExtensionType();
1218 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1219 LD
->getChain(), LD
->getBasePtr(),
1220 MemVT
, LD
->getMemOperand());
1223 unsigned Opc
= Op
.getOpcode();
1226 case ISD::AssertSext
:
1227 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1228 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1230 case ISD::AssertZext
:
1231 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1232 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1234 case ISD::Constant
: {
1236 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1237 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1241 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1243 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1246 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1247 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1249 EVT OldVT
= Op
.getValueType();
1251 bool Replace
= false;
1252 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1253 if (!NewOp
.getNode())
1255 AddToWorklist(NewOp
.getNode());
1258 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1259 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1260 DAG
.getValueType(OldVT
));
1263 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1264 EVT OldVT
= Op
.getValueType();
1266 bool Replace
= false;
1267 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1268 if (!NewOp
.getNode())
1270 AddToWorklist(NewOp
.getNode());
1273 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1274 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1277 /// Promote the specified integer binary operation if the target indicates it is
1278 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1279 /// i32 since i16 instructions are longer.
1280 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1281 if (!LegalOperations
)
1284 EVT VT
= Op
.getValueType();
1285 if (VT
.isVector() || !VT
.isInteger())
1288 // If operation type is 'undesirable', e.g. i16 on x86, consider
1290 unsigned Opc
= Op
.getOpcode();
1291 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1295 // Consult target whether it is a good idea to promote this operation and
1296 // what's the right type to promote it to.
1297 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1298 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1300 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1302 bool Replace0
= false;
1303 SDValue N0
= Op
.getOperand(0);
1304 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1306 bool Replace1
= false;
1307 SDValue N1
= Op
.getOperand(1);
1308 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1312 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1314 // We are always replacing N0/N1's use in N and only need additional
1315 // replacements if there are additional uses.
1316 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1317 // (SDValue) here because the node may reference multiple values
1318 // (for example, the chain value of a load node).
1319 Replace0
&= !N0
->hasOneUse();
1320 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1322 // Combine Op here so it is preserved past replacements.
1323 CombineTo(Op
.getNode(), RV
);
1325 // If operands have a use ordering, make sure we deal with
1326 // predecessor first.
1327 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1329 std::swap(NN0
, NN1
);
1333 AddToWorklist(NN0
.getNode());
1334 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1337 AddToWorklist(NN1
.getNode());
1338 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1345 /// Promote the specified integer shift operation if the target indicates it is
1346 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1347 /// i32 since i16 instructions are longer.
1348 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1349 if (!LegalOperations
)
1352 EVT VT
= Op
.getValueType();
1353 if (VT
.isVector() || !VT
.isInteger())
1356 // If operation type is 'undesirable', e.g. i16 on x86, consider
1358 unsigned Opc
= Op
.getOpcode();
1359 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1363 // Consult target whether it is a good idea to promote this operation and
1364 // what's the right type to promote it to.
1365 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1366 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1368 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1370 bool Replace
= false;
1371 SDValue N0
= Op
.getOperand(0);
1372 SDValue N1
= Op
.getOperand(1);
1373 if (Opc
== ISD::SRA
)
1374 N0
= SExtPromoteOperand(N0
, PVT
);
1375 else if (Opc
== ISD::SRL
)
1376 N0
= ZExtPromoteOperand(N0
, PVT
);
1378 N0
= PromoteOperand(N0
, PVT
, Replace
);
1385 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1388 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1390 // Deal with Op being deleted.
1391 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1397 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1398 if (!LegalOperations
)
1401 EVT VT
= Op
.getValueType();
1402 if (VT
.isVector() || !VT
.isInteger())
1405 // If operation type is 'undesirable', e.g. i16 on x86, consider
1407 unsigned Opc
= Op
.getOpcode();
1408 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1412 // Consult target whether it is a good idea to promote this operation and
1413 // what's the right type to promote it to.
1414 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1415 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1416 // fold (aext (aext x)) -> (aext x)
1417 // fold (aext (zext x)) -> (zext x)
1418 // fold (aext (sext x)) -> (sext x)
1419 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1420 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1425 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1426 if (!LegalOperations
)
1429 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1432 EVT VT
= Op
.getValueType();
1433 if (VT
.isVector() || !VT
.isInteger())
1436 // If operation type is 'undesirable', e.g. i16 on x86, consider
1438 unsigned Opc
= Op
.getOpcode();
1439 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1443 // Consult target whether it is a good idea to promote this operation and
1444 // what's the right type to promote it to.
1445 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1446 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1449 SDNode
*N
= Op
.getNode();
1450 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1451 EVT MemVT
= LD
->getMemoryVT();
1452 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1453 : LD
->getExtensionType();
1454 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1455 LD
->getChain(), LD
->getBasePtr(),
1456 MemVT
, LD
->getMemOperand());
1457 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1459 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1460 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1461 WorklistRemover
DeadNodes(*this);
1462 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1463 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1464 deleteAndRecombine(N
);
1465 AddToWorklist(Result
.getNode());
1471 /// Recursively delete a node which has no uses and any operands for
1472 /// which it is the only use.
1474 /// Note that this both deletes the nodes and removes them from the worklist.
1475 /// It also adds any nodes who have had a user deleted to the worklist as they
1476 /// may now have only one use and subject to other combines.
1477 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1478 if (!N
->use_empty())
1481 SmallSetVector
<SDNode
*, 16> Nodes
;
1484 N
= Nodes
.pop_back_val();
1488 if (N
->use_empty()) {
1489 for (const SDValue
&ChildN
: N
->op_values())
1490 Nodes
.insert(ChildN
.getNode());
1492 removeFromWorklist(N
);
1497 } while (!Nodes
.empty());
1501 //===----------------------------------------------------------------------===//
1502 // Main DAG Combiner implementation
1503 //===----------------------------------------------------------------------===//
1505 void DAGCombiner::Run(CombineLevel AtLevel
) {
1506 // set the instance variables, so that the various visit routines may use it.
1508 LegalDAG
= Level
>= AfterLegalizeDAG
;
1509 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1510 LegalTypes
= Level
>= AfterLegalizeTypes
;
1512 WorklistInserter
AddNodes(*this);
1514 // Add all the dag nodes to the worklist.
1515 for (SDNode
&Node
: DAG
.allnodes())
1516 AddToWorklist(&Node
);
1518 // Create a dummy node (which is not added to allnodes), that adds a reference
1519 // to the root node, preventing it from being deleted, and tracking any
1520 // changes of the root.
1521 HandleSDNode
Dummy(DAG
.getRoot());
1523 // While we have a valid worklist entry node, try to combine it.
1524 while (SDNode
*N
= getNextWorklistEntry()) {
1525 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1526 // N is deleted from the DAG, since they too may now be dead or may have a
1527 // reduced number of uses, allowing other xforms.
1528 if (recursivelyDeleteUnusedNodes(N
))
1531 WorklistRemover
DeadNodes(*this);
1533 // If this combine is running after legalizing the DAG, re-legalize any
1534 // nodes pulled off the worklist.
1536 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1537 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1539 for (SDNode
*LN
: UpdatedNodes
)
1540 AddToWorklistWithUsers(LN
);
1546 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1548 // Add any operands of the new node which have not yet been combined to the
1549 // worklist as well. Because the worklist uniques things already, this
1550 // won't repeatedly process the same operand.
1551 CombinedNodes
.insert(N
);
1552 for (const SDValue
&ChildN
: N
->op_values())
1553 if (!CombinedNodes
.count(ChildN
.getNode()))
1554 AddToWorklist(ChildN
.getNode());
1556 SDValue RV
= combine(N
);
1563 // If we get back the same node we passed in, rather than a new node or
1564 // zero, we know that the node must have defined multiple values and
1565 // CombineTo was used. Since CombineTo takes care of the worklist
1566 // mechanics for us, we have no work to do in this case.
1567 if (RV
.getNode() == N
)
1570 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1571 RV
.getOpcode() != ISD::DELETED_NODE
&&
1572 "Node was deleted but visit returned new node!");
1574 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1576 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1577 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1579 assert(N
->getValueType(0) == RV
.getValueType() &&
1580 N
->getNumValues() == 1 && "Type mismatch");
1581 DAG
.ReplaceAllUsesWith(N
, &RV
);
1584 // Push the new node and any users onto the worklist. Omit this if the
1585 // new node is the EntryToken (e.g. if a store managed to get optimized
1586 // out), because re-visiting the EntryToken and its users will not uncover
1587 // any additional opportunities, but there may be a large number of such
1588 // users, potentially causing compile time explosion.
1589 if (RV
.getOpcode() != ISD::EntryToken
) {
1590 AddToWorklist(RV
.getNode());
1591 AddUsersToWorklist(RV
.getNode());
1594 // Finally, if the node is now dead, remove it from the graph. The node
1595 // may not be dead if the replacement process recursively simplified to
1596 // something else needing this node. This will also take care of adding any
1597 // operands which have lost a user to the worklist.
1598 recursivelyDeleteUnusedNodes(N
);
1601 // If the root changed (e.g. it was a dead load, update the root).
1602 DAG
.setRoot(Dummy
.getValue());
1603 DAG
.RemoveDeadNodes();
1606 SDValue
DAGCombiner::visit(SDNode
*N
) {
1607 switch (N
->getOpcode()) {
1609 case ISD::TokenFactor
: return visitTokenFactor(N
);
1610 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1611 case ISD::ADD
: return visitADD(N
);
1612 case ISD::SUB
: return visitSUB(N
);
1614 case ISD::UADDSAT
: return visitADDSAT(N
);
1616 case ISD::USUBSAT
: return visitSUBSAT(N
);
1617 case ISD::ADDC
: return visitADDC(N
);
1619 case ISD::UADDO
: return visitADDO(N
);
1620 case ISD::SUBC
: return visitSUBC(N
);
1622 case ISD::USUBO
: return visitSUBO(N
);
1623 case ISD::ADDE
: return visitADDE(N
);
1624 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1625 case ISD::SADDO_CARRY
: return visitSADDO_CARRY(N
);
1626 case ISD::SUBE
: return visitSUBE(N
);
1627 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1628 case ISD::SSUBO_CARRY
: return visitSSUBO_CARRY(N
);
1630 case ISD::SMULFIXSAT
:
1632 case ISD::UMULFIXSAT
: return visitMULFIX(N
);
1633 case ISD::MUL
: return visitMUL(N
);
1634 case ISD::SDIV
: return visitSDIV(N
);
1635 case ISD::UDIV
: return visitUDIV(N
);
1637 case ISD::UREM
: return visitREM(N
);
1638 case ISD::MULHU
: return visitMULHU(N
);
1639 case ISD::MULHS
: return visitMULHS(N
);
1640 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1641 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1643 case ISD::UMULO
: return visitMULO(N
);
1647 case ISD::UMAX
: return visitIMINMAX(N
);
1648 case ISD::AND
: return visitAND(N
);
1649 case ISD::OR
: return visitOR(N
);
1650 case ISD::XOR
: return visitXOR(N
);
1651 case ISD::SHL
: return visitSHL(N
);
1652 case ISD::SRA
: return visitSRA(N
);
1653 case ISD::SRL
: return visitSRL(N
);
1655 case ISD::ROTL
: return visitRotate(N
);
1657 case ISD::FSHR
: return visitFunnelShift(N
);
1658 case ISD::ABS
: return visitABS(N
);
1659 case ISD::BSWAP
: return visitBSWAP(N
);
1660 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1661 case ISD::CTLZ
: return visitCTLZ(N
);
1662 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1663 case ISD::CTTZ
: return visitCTTZ(N
);
1664 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1665 case ISD::CTPOP
: return visitCTPOP(N
);
1666 case ISD::SELECT
: return visitSELECT(N
);
1667 case ISD::VSELECT
: return visitVSELECT(N
);
1668 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1669 case ISD::SETCC
: return visitSETCC(N
);
1670 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1671 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1672 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1673 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1674 case ISD::AssertSext
:
1675 case ISD::AssertZext
: return visitAssertExt(N
);
1676 case ISD::AssertAlign
: return visitAssertAlign(N
);
1677 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1678 case ISD::SIGN_EXTEND_VECTOR_INREG
:
1679 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitEXTEND_VECTOR_INREG(N
);
1680 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1681 case ISD::BITCAST
: return visitBITCAST(N
);
1682 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1683 case ISD::FADD
: return visitFADD(N
);
1684 case ISD::STRICT_FADD
: return visitSTRICT_FADD(N
);
1685 case ISD::FSUB
: return visitFSUB(N
);
1686 case ISD::FMUL
: return visitFMUL(N
);
1687 case ISD::FMA
: return visitFMA(N
);
1688 case ISD::FDIV
: return visitFDIV(N
);
1689 case ISD::FREM
: return visitFREM(N
);
1690 case ISD::FSQRT
: return visitFSQRT(N
);
1691 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1692 case ISD::FPOW
: return visitFPOW(N
);
1693 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1694 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1695 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1696 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1697 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1698 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1699 case ISD::FNEG
: return visitFNEG(N
);
1700 case ISD::FABS
: return visitFABS(N
);
1701 case ISD::FFLOOR
: return visitFFLOOR(N
);
1702 case ISD::FMINNUM
: return visitFMINNUM(N
);
1703 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1704 case ISD::FMINIMUM
: return visitFMINIMUM(N
);
1705 case ISD::FMAXIMUM
: return visitFMAXIMUM(N
);
1706 case ISD::FCEIL
: return visitFCEIL(N
);
1707 case ISD::FTRUNC
: return visitFTRUNC(N
);
1708 case ISD::BRCOND
: return visitBRCOND(N
);
1709 case ISD::BR_CC
: return visitBR_CC(N
);
1710 case ISD::LOAD
: return visitLOAD(N
);
1711 case ISD::STORE
: return visitSTORE(N
);
1712 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1713 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1714 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1715 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1716 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1717 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1718 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1719 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1720 case ISD::MGATHER
: return visitMGATHER(N
);
1721 case ISD::MLOAD
: return visitMLOAD(N
);
1722 case ISD::MSCATTER
: return visitMSCATTER(N
);
1723 case ISD::MSTORE
: return visitMSTORE(N
);
1724 case ISD::LIFETIME_END
: return visitLIFETIME_END(N
);
1725 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1726 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1727 case ISD::FREEZE
: return visitFREEZE(N
);
1728 case ISD::VECREDUCE_FADD
:
1729 case ISD::VECREDUCE_FMUL
:
1730 case ISD::VECREDUCE_ADD
:
1731 case ISD::VECREDUCE_MUL
:
1732 case ISD::VECREDUCE_AND
:
1733 case ISD::VECREDUCE_OR
:
1734 case ISD::VECREDUCE_XOR
:
1735 case ISD::VECREDUCE_SMAX
:
1736 case ISD::VECREDUCE_SMIN
:
1737 case ISD::VECREDUCE_UMAX
:
1738 case ISD::VECREDUCE_UMIN
:
1739 case ISD::VECREDUCE_FMAX
:
1740 case ISD::VECREDUCE_FMIN
: return visitVECREDUCE(N
);
1745 SDValue
DAGCombiner::combine(SDNode
*N
) {
1747 if (!DisableGenericCombines
)
1750 // If nothing happened, try a target-specific DAG combine.
1751 if (!RV
.getNode()) {
1752 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1753 "Node was deleted but visit returned NULL!");
1755 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1756 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1758 // Expose the DAG combiner to the target combiner impls.
1759 TargetLowering::DAGCombinerInfo
1760 DagCombineInfo(DAG
, Level
, false, this);
1762 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1766 // If nothing happened still, try promoting the operation.
1767 if (!RV
.getNode()) {
1768 switch (N
->getOpcode()) {
1776 RV
= PromoteIntBinOp(SDValue(N
, 0));
1781 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1783 case ISD::SIGN_EXTEND
:
1784 case ISD::ZERO_EXTEND
:
1785 case ISD::ANY_EXTEND
:
1786 RV
= PromoteExtend(SDValue(N
, 0));
1789 if (PromoteLoad(SDValue(N
, 0)))
1795 // If N is a commutative binary node, try to eliminate it if the commuted
1796 // version is already present in the DAG.
1797 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1798 N
->getNumValues() == 1) {
1799 SDValue N0
= N
->getOperand(0);
1800 SDValue N1
= N
->getOperand(1);
1802 // Constant operands are canonicalized to RHS.
1803 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1804 SDValue Ops
[] = {N1
, N0
};
1805 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1808 return SDValue(CSENode
, 0);
1815 /// Given a node, return its input chain if it has one, otherwise return a null
1817 static SDValue
getInputChainForNode(SDNode
*N
) {
1818 if (unsigned NumOps
= N
->getNumOperands()) {
1819 if (N
->getOperand(0).getValueType() == MVT::Other
)
1820 return N
->getOperand(0);
1821 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1822 return N
->getOperand(NumOps
-1);
1823 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1824 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1825 return N
->getOperand(i
);
1830 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1831 // If N has two operands, where one has an input chain equal to the other,
1832 // the 'other' chain is redundant.
1833 if (N
->getNumOperands() == 2) {
1834 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1835 return N
->getOperand(0);
1836 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1837 return N
->getOperand(1);
1840 // Don't simplify token factors if optnone.
1841 if (OptLevel
== CodeGenOpt::None
)
1844 // Don't simplify the token factor if the node itself has too many operands.
1845 if (N
->getNumOperands() > TokenFactorInlineLimit
)
1848 // If the sole user is a token factor, we should make sure we have a
1849 // chance to merge them together. This prevents TF chains from inhibiting
1851 if (N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::TokenFactor
)
1852 AddToWorklist(*(N
->use_begin()));
1854 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1855 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1856 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1857 bool Changed
= false; // If we should replace this token factor.
1859 // Start out with this token factor.
1862 // Iterate through token factors. The TFs grows when new token factors are
1864 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1865 // Limit number of nodes to inline, to avoid quadratic compile times.
1866 // We have to add the outstanding Token Factors to Ops, otherwise we might
1867 // drop Ops from the resulting Token Factors.
1868 if (Ops
.size() > TokenFactorInlineLimit
) {
1869 for (unsigned j
= i
; j
< TFs
.size(); j
++)
1870 Ops
.emplace_back(TFs
[j
], 0);
1871 // Drop unprocessed Token Factors from TFs, so we do not add them to the
1872 // combiner worklist later.
1877 SDNode
*TF
= TFs
[i
];
1878 // Check each of the operands.
1879 for (const SDValue
&Op
: TF
->op_values()) {
1880 switch (Op
.getOpcode()) {
1881 case ISD::EntryToken
:
1882 // Entry tokens don't need to be added to the list. They are
1887 case ISD::TokenFactor
:
1888 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1889 // Queue up for processing.
1890 TFs
.push_back(Op
.getNode());
1897 // Only add if it isn't already in the list.
1898 if (SeenOps
.insert(Op
.getNode()).second
)
1907 // Re-visit inlined Token Factors, to clean them up in case they have been
1908 // removed. Skip the first Token Factor, as this is the current node.
1909 for (unsigned i
= 1, e
= TFs
.size(); i
< e
; i
++)
1910 AddToWorklist(TFs
[i
]);
1912 // Remove Nodes that are chained to another node in the list. Do so
1913 // by walking up chains breath-first stopping when we've seen
1914 // another operand. In general we must climb to the EntryNode, but we can exit
1915 // early if we find all remaining work is associated with just one operand as
1916 // no further pruning is possible.
1918 // List of nodes to search through and original Ops from which they originate.
1919 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1920 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1921 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1922 bool DidPruneOps
= false;
1924 unsigned NumLeftToConsider
= 0;
1925 for (const SDValue
&Op
: Ops
) {
1926 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1927 OpWorkCount
.push_back(1);
1930 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1931 // If this is an Op, we can remove the op from the list. Remark any
1932 // search associated with it as from the current OpNumber.
1933 if (SeenOps
.contains(Op
)) {
1936 unsigned OrigOpNumber
= 0;
1937 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
1939 assert((OrigOpNumber
!= Ops
.size()) &&
1940 "expected to find TokenFactor Operand");
1941 // Re-mark worklist from OrigOpNumber to OpNumber
1942 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
1943 if (Worklist
[i
].second
== OrigOpNumber
) {
1944 Worklist
[i
].second
= OpNumber
;
1947 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
1948 OpWorkCount
[OrigOpNumber
] = 0;
1949 NumLeftToConsider
--;
1951 // Add if it's a new chain
1952 if (SeenChains
.insert(Op
).second
) {
1953 OpWorkCount
[OpNumber
]++;
1954 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
1958 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
1959 // We need at least be consider at least 2 Ops to prune.
1960 if (NumLeftToConsider
<= 1)
1962 auto CurNode
= Worklist
[i
].first
;
1963 auto CurOpNumber
= Worklist
[i
].second
;
1964 assert((OpWorkCount
[CurOpNumber
] > 0) &&
1965 "Node should not appear in worklist");
1966 switch (CurNode
->getOpcode()) {
1967 case ISD::EntryToken
:
1968 // Hitting EntryToken is the only way for the search to terminate without
1970 // another operand's search. Prevent us from marking this operand
1972 NumLeftToConsider
++;
1974 case ISD::TokenFactor
:
1975 for (const SDValue
&Op
: CurNode
->op_values())
1976 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
1978 case ISD::LIFETIME_START
:
1979 case ISD::LIFETIME_END
:
1980 case ISD::CopyFromReg
:
1981 case ISD::CopyToReg
:
1982 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
1985 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
1986 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
1989 OpWorkCount
[CurOpNumber
]--;
1990 if (OpWorkCount
[CurOpNumber
] == 0)
1991 NumLeftToConsider
--;
1994 // If we've changed things around then replace token factor.
1998 // The entry token is the only possible outcome.
1999 Result
= DAG
.getEntryNode();
2002 SmallVector
<SDValue
, 8> PrunedOps
;
2004 for (const SDValue
&Op
: Ops
) {
2005 if (SeenChains
.count(Op
.getNode()) == 0)
2006 PrunedOps
.push_back(Op
);
2008 Result
= DAG
.getTokenFactor(SDLoc(N
), PrunedOps
);
2010 Result
= DAG
.getTokenFactor(SDLoc(N
), Ops
);
2018 /// MERGE_VALUES can always be eliminated.
2019 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
2020 WorklistRemover
DeadNodes(*this);
2021 // Replacing results may cause a different MERGE_VALUES to suddenly
2022 // be CSE'd with N, and carry its uses with it. Iterate until no
2023 // uses remain, to ensure that the node can be safely deleted.
2024 // First add the users of this node to the work list so that they
2025 // can be tried again once they have new operands.
2026 AddUsersToWorklist(N
);
2028 // Do as a single replacement to avoid rewalking use lists.
2029 SmallVector
<SDValue
, 8> Ops
;
2030 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
2031 Ops
.push_back(N
->getOperand(i
));
2032 DAG
.ReplaceAllUsesWith(N
, Ops
.data());
2033 } while (!N
->use_empty());
2034 deleteAndRecombine(N
);
2035 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2038 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2039 /// ConstantSDNode pointer else nullptr.
2040 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
2041 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
2042 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
2045 /// Return true if 'Use' is a load or a store that uses N as its base pointer
2046 /// and that N may be folded in the load / store addressing mode.
2047 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
, SelectionDAG
&DAG
,
2048 const TargetLowering
&TLI
) {
2052 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
2053 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2055 VT
= LD
->getMemoryVT();
2056 AS
= LD
->getAddressSpace();
2057 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
2058 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2060 VT
= ST
->getMemoryVT();
2061 AS
= ST
->getAddressSpace();
2062 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(Use
)) {
2063 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
2065 VT
= LD
->getMemoryVT();
2066 AS
= LD
->getAddressSpace();
2067 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(Use
)) {
2068 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
2070 VT
= ST
->getMemoryVT();
2071 AS
= ST
->getAddressSpace();
2075 TargetLowering::AddrMode AM
;
2076 if (N
->getOpcode() == ISD::ADD
) {
2077 AM
.HasBaseReg
= true;
2078 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2081 AM
.BaseOffs
= Offset
->getSExtValue();
2085 } else if (N
->getOpcode() == ISD::SUB
) {
2086 AM
.HasBaseReg
= true;
2087 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2090 AM
.BaseOffs
= -Offset
->getSExtValue();
2097 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
2098 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
2101 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
2102 assert(TLI
.isBinOp(BO
->getOpcode()) && BO
->getNumValues() == 1 &&
2103 "Unexpected binary operator");
2105 // Don't do this unless the old select is going away. We want to eliminate the
2106 // binary operator, not replace a binop with a select.
2107 // TODO: Handle ISD::SELECT_CC.
2108 unsigned SelOpNo
= 0;
2109 SDValue Sel
= BO
->getOperand(0);
2110 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
2112 Sel
= BO
->getOperand(1);
2115 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
2118 SDValue CT
= Sel
.getOperand(1);
2119 if (!isConstantOrConstantVector(CT
, true) &&
2120 !DAG
.isConstantFPBuildVectorOrConstantFP(CT
))
2123 SDValue CF
= Sel
.getOperand(2);
2124 if (!isConstantOrConstantVector(CF
, true) &&
2125 !DAG
.isConstantFPBuildVectorOrConstantFP(CF
))
2128 // Bail out if any constants are opaque because we can't constant fold those.
2129 // The exception is "and" and "or" with either 0 or -1 in which case we can
2130 // propagate non constant operands into select. I.e.:
2131 // and (select Cond, 0, -1), X --> select Cond, 0, X
2132 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2133 auto BinOpcode
= BO
->getOpcode();
2134 bool CanFoldNonConst
=
2135 (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
2136 (isNullOrNullSplat(CT
) || isAllOnesOrAllOnesSplat(CT
)) &&
2137 (isNullOrNullSplat(CF
) || isAllOnesOrAllOnesSplat(CF
));
2139 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
2140 if (!CanFoldNonConst
&&
2141 !isConstantOrConstantVector(CBO
, true) &&
2142 !DAG
.isConstantFPBuildVectorOrConstantFP(CBO
))
2145 EVT VT
= BO
->getValueType(0);
2147 // We have a select-of-constants followed by a binary operator with a
2148 // constant. Eliminate the binop by pulling the constant math into the select.
2149 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
2151 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
2152 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
2153 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
2154 !isConstantOrConstantVector(NewCT
, true) &&
2155 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCT
))
2158 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
2159 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
2160 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
2161 !isConstantOrConstantVector(NewCF
, true) &&
2162 !DAG
.isConstantFPBuildVectorOrConstantFP(NewCF
))
2165 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
2166 SelectOp
->setFlags(BO
->getFlags());
2170 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
2171 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2172 "Expecting add or sub");
2174 // Match a constant operand and a zext operand for the math instruction:
2177 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2178 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2179 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2180 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
2181 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
2184 // Match the zext operand as a setcc of a boolean.
2185 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
2186 Z
.getOperand(0).getValueType() != MVT::i1
)
2189 // Match the compare as: setcc (X & 1), 0, eq.
2190 SDValue SetCC
= Z
.getOperand(0);
2191 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
2192 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
2193 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
2194 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
2197 // We are adding/subtracting a constant and an inverted low bit. Turn that
2198 // into a subtract/add of the low bit with incremented/decremented constant:
2199 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2200 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2201 EVT VT
= C
.getValueType();
2203 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
2204 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
2205 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
2206 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2209 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2210 /// a shift and add with a different constant.
2211 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2212 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2213 "Expecting add or sub");
2215 // We need a constant operand for the add/sub, and the other operand is a
2216 // logical shift right: add (srl), C or sub C, (srl).
2217 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2218 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2219 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2220 if (!DAG
.isConstantIntBuildVectorOrConstantInt(ConstantOp
) ||
2221 ShiftOp
.getOpcode() != ISD::SRL
)
2224 // The shift must be of a 'not' value.
2225 SDValue Not
= ShiftOp
.getOperand(0);
2226 if (!Not
.hasOneUse() || !isBitwiseNot(Not
))
2229 // The shift must be moving the sign bit to the least-significant-bit.
2230 EVT VT
= ShiftOp
.getValueType();
2231 SDValue ShAmt
= ShiftOp
.getOperand(1);
2232 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2233 if (!ShAmtC
|| ShAmtC
->getAPIntValue() != (VT
.getScalarSizeInBits() - 1))
2236 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2237 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2238 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2240 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2241 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2243 DAG
.FoldConstantArithmetic(IsAdd
? ISD::ADD
: ISD::SUB
, DL
, VT
,
2244 {ConstantOp
, DAG
.getConstant(1, DL
, VT
)}))
2245 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, NewC
);
2249 /// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2250 /// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2251 /// are no common bits set in the operands).
2252 SDValue
DAGCombiner::visitADDLike(SDNode
*N
) {
2253 SDValue N0
= N
->getOperand(0);
2254 SDValue N1
= N
->getOperand(1);
2255 EVT VT
= N0
.getValueType();
2259 if (VT
.isVector()) {
2260 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2263 // fold (add x, 0) -> x, vector edition
2264 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2266 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
2270 // fold (add x, undef) -> undef
2277 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2278 // canonicalize constant to RHS
2279 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2280 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2281 // fold (add c1, c2) -> c1+c2
2282 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
, N1
});
2285 // fold (add x, 0) -> x
2286 if (isNullConstant(N1
))
2289 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2290 // fold ((A-c1)+c2) -> (A+(c2-c1))
2291 if (N0
.getOpcode() == ISD::SUB
&&
2292 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true)) {
2294 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N1
, N0
.getOperand(1)});
2295 assert(Sub
&& "Constant folding failed");
2296 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Sub
);
2299 // fold ((c1-A)+c2) -> (c1+c2)-A
2300 if (N0
.getOpcode() == ISD::SUB
&&
2301 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2303 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N1
, N0
.getOperand(0)});
2304 assert(Add
&& "Constant folding failed");
2305 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2308 // add (sext i1 X), 1 -> zext (not i1 X)
2309 // We don't transform this pattern:
2310 // add (zext i1 X), -1 -> sext (not i1 X)
2311 // because most (?) targets generate better code for the zext form.
2312 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2313 isOneOrOneSplat(N1
)) {
2314 SDValue X
= N0
.getOperand(0);
2315 if ((!LegalOperations
||
2316 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2317 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2318 X
.getScalarValueSizeInBits() == 1) {
2319 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2320 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2324 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
2325 // equivalent to (add x, c0).
2326 if (N0
.getOpcode() == ISD::OR
&&
2327 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2328 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2329 if (SDValue Add0
= DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
,
2330 {N1
, N0
.getOperand(1)}))
2331 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2335 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2339 if (!reassociationCanBreakAddressingModePattern(ISD::ADD
, DL
, N0
, N1
)) {
2340 if (SDValue RADD
= reassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2343 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2344 // equivalent to (add x, c).
2345 auto ReassociateAddOr
= [&](SDValue N0
, SDValue N1
) {
2346 if (N0
.getOpcode() == ISD::OR
&& N0
.hasOneUse() &&
2347 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaque */ true) &&
2348 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2349 return DAG
.getNode(ISD::ADD
, DL
, VT
,
2350 DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(0)),
2355 if (SDValue Add
= ReassociateAddOr(N0
, N1
))
2357 if (SDValue Add
= ReassociateAddOr(N1
, N0
))
2360 // fold ((0-A) + B) -> B-A
2361 if (N0
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N0
.getOperand(0)))
2362 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2364 // fold (A + (0-B)) -> A-B
2365 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
2366 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2368 // fold (A+(B-A)) -> B
2369 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2370 return N1
.getOperand(0);
2372 // fold ((B-A)+A) -> B
2373 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2374 return N0
.getOperand(0);
2376 // fold ((A-B)+(C-A)) -> (C-B)
2377 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2378 N0
.getOperand(0) == N1
.getOperand(1))
2379 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2382 // fold ((A-B)+(B-C)) -> (A-C)
2383 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
&&
2384 N0
.getOperand(1) == N1
.getOperand(0))
2385 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2388 // fold (A+(B-(A+C))) to (B-C)
2389 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2390 N0
== N1
.getOperand(1).getOperand(0))
2391 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2392 N1
.getOperand(1).getOperand(1));
2394 // fold (A+(B-(C+A))) to (B-C)
2395 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2396 N0
== N1
.getOperand(1).getOperand(1))
2397 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2398 N1
.getOperand(1).getOperand(0));
2400 // fold (A+((B-A)+or-C)) to (B+or-C)
2401 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2402 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2403 N0
== N1
.getOperand(0).getOperand(1))
2404 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2407 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2408 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2409 SDValue N00
= N0
.getOperand(0);
2410 SDValue N01
= N0
.getOperand(1);
2411 SDValue N10
= N1
.getOperand(0);
2412 SDValue N11
= N1
.getOperand(1);
2414 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2415 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2416 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2417 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2420 // fold (add (umax X, C), -C) --> (usubsat X, C)
2421 if (N0
.getOpcode() == ISD::UMAX
&& hasOperation(ISD::USUBSAT
, VT
)) {
2422 auto MatchUSUBSAT
= [](ConstantSDNode
*Max
, ConstantSDNode
*Op
) {
2423 return (!Max
&& !Op
) ||
2424 (Max
&& Op
&& Max
->getAPIntValue() == (-Op
->getAPIntValue()));
2426 if (ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchUSUBSAT
,
2427 /*AllowUndefs*/ true))
2428 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, N0
.getOperand(0),
2432 if (SimplifyDemandedBits(SDValue(N
, 0)))
2433 return SDValue(N
, 0);
2435 if (isOneOrOneSplat(N1
)) {
2436 // fold (add (xor a, -1), 1) -> (sub 0, a)
2437 if (isBitwiseNot(N0
))
2438 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2441 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
2442 if (N0
.getOpcode() == ISD::ADD
) {
2445 if (isBitwiseNot(N0
.getOperand(0))) {
2446 A
= N0
.getOperand(1);
2447 Xor
= N0
.getOperand(0);
2448 } else if (isBitwiseNot(N0
.getOperand(1))) {
2449 A
= N0
.getOperand(0);
2450 Xor
= N0
.getOperand(1);
2454 return DAG
.getNode(ISD::SUB
, DL
, VT
, A
, Xor
.getOperand(0));
2458 // add (add x, y), 1
2459 // And if the target does not like this form then turn into:
2460 // sub y, (xor x, -1)
2461 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2462 N0
.getOpcode() == ISD::ADD
) {
2463 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2464 DAG
.getAllOnesConstant(DL
, VT
));
2465 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(1), Not
);
2469 // (x - y) + -1 -> add (xor y, -1), x
2470 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2471 isAllOnesOrAllOnesSplat(N1
)) {
2472 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1), N1
);
2473 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
2476 if (SDValue Combined
= visitADDLikeCommutative(N0
, N1
, N
))
2479 if (SDValue Combined
= visitADDLikeCommutative(N1
, N0
, N
))
2485 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2486 SDValue N0
= N
->getOperand(0);
2487 SDValue N1
= N
->getOperand(1);
2488 EVT VT
= N0
.getValueType();
2491 if (SDValue Combined
= visitADDLike(N
))
2494 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2497 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2500 // fold (a+b) -> (a|b) iff a and b share no bits.
2501 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2502 DAG
.haveNoCommonBitsSet(N0
, N1
))
2503 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2505 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
2506 if (N0
.getOpcode() == ISD::VSCALE
&& N1
.getOpcode() == ISD::VSCALE
) {
2507 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2508 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2509 return DAG
.getVScale(DL
, VT
, C0
+ C1
);
2512 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
2513 if ((N0
.getOpcode() == ISD::ADD
) &&
2514 (N0
.getOperand(1).getOpcode() == ISD::VSCALE
) &&
2515 (N1
.getOpcode() == ISD::VSCALE
)) {
2516 const APInt
&VS0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2517 const APInt
&VS1
= N1
->getConstantOperandAPInt(0);
2518 SDValue VS
= DAG
.getVScale(DL
, VT
, VS0
+ VS1
);
2519 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), VS
);
2522 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
2523 if (N0
.getOpcode() == ISD::STEP_VECTOR
&&
2524 N1
.getOpcode() == ISD::STEP_VECTOR
) {
2525 const APInt
&C0
= N0
->getConstantOperandAPInt(0);
2526 const APInt
&C1
= N1
->getConstantOperandAPInt(0);
2527 APInt NewStep
= C0
+ C1
;
2528 return DAG
.getStepVector(DL
, VT
, NewStep
);
2531 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
2532 if ((N0
.getOpcode() == ISD::ADD
) &&
2533 (N0
.getOperand(1).getOpcode() == ISD::STEP_VECTOR
) &&
2534 (N1
.getOpcode() == ISD::STEP_VECTOR
)) {
2535 const APInt
&SV0
= N0
.getOperand(1)->getConstantOperandAPInt(0);
2536 const APInt
&SV1
= N1
->getConstantOperandAPInt(0);
2537 APInt NewStep
= SV0
+ SV1
;
2538 SDValue SV
= DAG
.getStepVector(DL
, VT
, NewStep
);
2539 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), SV
);
2545 SDValue
DAGCombiner::visitADDSAT(SDNode
*N
) {
2546 unsigned Opcode
= N
->getOpcode();
2547 SDValue N0
= N
->getOperand(0);
2548 SDValue N1
= N
->getOperand(1);
2549 EVT VT
= N0
.getValueType();
2553 if (VT
.isVector()) {
2554 // TODO SimplifyVBinOp
2556 // fold (add_sat x, 0) -> x, vector edition
2557 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
2559 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
2563 // fold (add_sat x, undef) -> -1
2564 if (N0
.isUndef() || N1
.isUndef())
2565 return DAG
.getAllOnesConstant(DL
, VT
);
2567 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2568 // canonicalize constant to RHS
2569 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2570 return DAG
.getNode(Opcode
, DL
, VT
, N1
, N0
);
2571 // fold (add_sat c1, c2) -> c3
2572 return DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
});
2575 // fold (add_sat x, 0) -> x
2576 if (isNullConstant(N1
))
2579 // If it cannot overflow, transform into an add.
2580 if (Opcode
== ISD::UADDSAT
)
2581 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2582 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
2587 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2588 bool Masked
= false;
2590 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2592 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2593 V
= V
.getOperand(0);
2597 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2599 V
= V
.getOperand(0);
2606 // If this is not a carry, return.
2607 if (V
.getResNo() != 1)
2610 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2611 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2614 EVT VT
= V
.getNode()->getValueType(0);
2615 if (!TLI
.isOperationLegalOrCustom(V
.getOpcode(), VT
))
2618 // If the result is masked, then no matter what kind of bool it is we can
2619 // return. If it isn't, then we need to make sure the bool type is either 0 or
2620 // 1 and not other values.
2622 TLI
.getBooleanContents(V
.getValueType()) ==
2623 TargetLoweringBase::ZeroOrOneBooleanContent
)
2629 /// Given the operands of an add/sub operation, see if the 2nd operand is a
2630 /// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
2631 /// the opcode and bypass the mask operation.
2632 static SDValue
foldAddSubMasked1(bool IsAdd
, SDValue N0
, SDValue N1
,
2633 SelectionDAG
&DAG
, const SDLoc
&DL
) {
2634 if (N1
.getOpcode() != ISD::AND
|| !isOneOrOneSplat(N1
->getOperand(1)))
2637 EVT VT
= N0
.getValueType();
2638 if (DAG
.ComputeNumSignBits(N1
.getOperand(0)) != VT
.getScalarSizeInBits())
2641 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
2642 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
2643 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
2646 /// Helper for doing combines based on N0 and N1 being added to each other.
2647 SDValue
DAGCombiner::visitADDLikeCommutative(SDValue N0
, SDValue N1
,
2648 SDNode
*LocReference
) {
2649 EVT VT
= N0
.getValueType();
2650 SDLoc
DL(LocReference
);
2652 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2653 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2654 isNullOrNullSplat(N1
.getOperand(0).getOperand(0)))
2655 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2656 DAG
.getNode(ISD::SHL
, DL
, VT
,
2657 N1
.getOperand(0).getOperand(1),
2660 if (SDValue V
= foldAddSubMasked1(true, N0
, N1
, DAG
, DL
))
2664 // add (add x, 1), y
2665 // And if the target does not like this form then turn into:
2666 // sub y, (xor x, -1)
2667 if (!TLI
.preferIncOfAddToSubOfNot(VT
) && N0
.hasOneUse() &&
2668 N0
.getOpcode() == ISD::ADD
&& isOneOrOneSplat(N0
.getOperand(1))) {
2669 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(0),
2670 DAG
.getAllOnesConstant(DL
, VT
));
2671 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, Not
);
2674 // Hoist one-use subtraction by non-opaque constant:
2675 // (x - C) + y -> (x + y) - C
2676 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
2677 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2678 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
2679 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), N1
);
2680 return DAG
.getNode(ISD::SUB
, DL
, VT
, Add
, N0
.getOperand(1));
2682 // Hoist one-use subtraction from non-opaque constant:
2683 // (C - x) + y -> (y - x) + C
2684 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
2685 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
2686 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2687 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(0));
2690 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
2691 // rather than 'add 0/-1' (the zext should get folded).
2692 // add (sext i1 Y), X --> sub X, (zext i1 Y)
2693 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2694 N0
.getOperand(0).getScalarValueSizeInBits() == 1 &&
2695 TLI
.getBooleanContents(VT
) == TargetLowering::ZeroOrOneBooleanContent
) {
2696 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2697 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2700 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2701 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2702 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2703 if (TN
->getVT() == MVT::i1
) {
2704 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2705 DAG
.getConstant(1, DL
, VT
));
2706 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2710 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2711 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2713 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2714 N0
, N1
.getOperand(0), N1
.getOperand(2));
2716 // (add X, Carry) -> (addcarry X, 0, Carry)
2717 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2718 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2719 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2720 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2721 DAG
.getConstant(0, DL
, VT
), Carry
);
2726 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2727 SDValue N0
= N
->getOperand(0);
2728 SDValue N1
= N
->getOperand(1);
2729 EVT VT
= N0
.getValueType();
2732 // If the flag result is dead, turn this into an ADD.
2733 if (!N
->hasAnyUseOfValue(1))
2734 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2735 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2737 // canonicalize constant to RHS.
2738 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2739 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2741 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2743 // fold (addc x, 0) -> x + no carry out
2744 if (isNullConstant(N1
))
2745 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2748 // If it cannot overflow, transform into an add.
2749 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2750 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2751 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2757 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
2758 * then the flip also occurs if computing the inverse is the same cost.
2759 * This function returns an empty SDValue in case it cannot flip the boolean
2760 * without increasing the cost of the computation. If you want to flip a boolean
2761 * no matter what, use DAG.getLogicalNOT.
2763 static SDValue
extractBooleanFlip(SDValue V
, SelectionDAG
&DAG
,
2764 const TargetLowering
&TLI
,
2766 if (Force
&& isa
<ConstantSDNode
>(V
))
2767 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2769 if (V
.getOpcode() != ISD::XOR
)
2772 ConstantSDNode
*Const
= isConstOrConstSplat(V
.getOperand(1), false);
2776 EVT VT
= V
.getValueType();
2778 bool IsFlip
= false;
2779 switch(TLI
.getBooleanContents(VT
)) {
2780 case TargetLowering::ZeroOrOneBooleanContent
:
2781 IsFlip
= Const
->isOne();
2783 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2784 IsFlip
= Const
->isAllOnesValue();
2786 case TargetLowering::UndefinedBooleanContent
:
2787 IsFlip
= (Const
->getAPIntValue() & 0x01) == 1;
2792 return V
.getOperand(0);
2794 return DAG
.getLogicalNOT(SDLoc(V
), V
, V
.getValueType());
2798 SDValue
DAGCombiner::visitADDO(SDNode
*N
) {
2799 SDValue N0
= N
->getOperand(0);
2800 SDValue N1
= N
->getOperand(1);
2801 EVT VT
= N0
.getValueType();
2802 bool IsSigned
= (ISD::SADDO
== N
->getOpcode());
2804 EVT CarryVT
= N
->getValueType(1);
2807 // If the flag result is dead, turn this into an ADD.
2808 if (!N
->hasAnyUseOfValue(1))
2809 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2810 DAG
.getUNDEF(CarryVT
));
2812 // canonicalize constant to RHS.
2813 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2814 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2815 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
2817 // fold (addo x, 0) -> x + no carry out
2818 if (isNullOrNullSplat(N1
))
2819 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2822 // If it cannot overflow, transform into an add.
2823 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2824 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2825 DAG
.getConstant(0, DL
, CarryVT
));
2827 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2828 if (isBitwiseNot(N0
) && isOneOrOneSplat(N1
)) {
2829 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2830 DAG
.getConstant(0, DL
, VT
), N0
.getOperand(0));
2832 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
2835 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2838 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2845 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2846 EVT VT
= N0
.getValueType();
2850 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2851 // If Y + 1 cannot overflow.
2852 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2853 SDValue Y
= N1
.getOperand(0);
2854 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2855 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2856 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2860 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2861 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2862 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2863 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2864 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2869 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2870 SDValue N0
= N
->getOperand(0);
2871 SDValue N1
= N
->getOperand(1);
2872 SDValue CarryIn
= N
->getOperand(2);
2874 // canonicalize constant to RHS
2875 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2876 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2878 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2881 // fold (adde x, y, false) -> (addc x, y)
2882 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2883 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2888 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2889 SDValue N0
= N
->getOperand(0);
2890 SDValue N1
= N
->getOperand(1);
2891 SDValue CarryIn
= N
->getOperand(2);
2894 // canonicalize constant to RHS
2895 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2896 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2898 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2900 // fold (addcarry x, y, false) -> (uaddo x, y)
2901 if (isNullConstant(CarryIn
)) {
2902 if (!LegalOperations
||
2903 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2904 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2907 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2908 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2909 EVT VT
= N0
.getValueType();
2910 EVT CarryVT
= CarryIn
.getValueType();
2911 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2912 AddToWorklist(CarryExt
.getNode());
2913 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2914 DAG
.getConstant(1, DL
, VT
)),
2915 DAG
.getConstant(0, DL
, CarryVT
));
2918 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2921 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2927 SDValue
DAGCombiner::visitSADDO_CARRY(SDNode
*N
) {
2928 SDValue N0
= N
->getOperand(0);
2929 SDValue N1
= N
->getOperand(1);
2930 SDValue CarryIn
= N
->getOperand(2);
2933 // canonicalize constant to RHS
2934 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2935 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2937 return DAG
.getNode(ISD::SADDO_CARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2939 // fold (saddo_carry x, y, false) -> (saddo x, y)
2940 if (isNullConstant(CarryIn
)) {
2941 if (!LegalOperations
||
2942 TLI
.isOperationLegalOrCustom(ISD::SADDO
, N
->getValueType(0)))
2943 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
, N1
);
2950 * If we are facing some sort of diamond carry propapagtion pattern try to
2951 * break it up to generate something like:
2952 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2954 * The end result is usually an increase in operation required, but because the
2955 * carry is now linearized, other tranforms can kick in and optimize the DAG.
2957 * Patterns typically look something like
2962 * | (addcarry *, 0, Z)
2966 * (addcarry X, *, *)
2968 * But numerous variation exist. Our goal is to identify A, B, X and Z and
2969 * produce a combine with a single path for carry propagation.
2971 static SDValue
combineADDCARRYDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
2972 SDValue X
, SDValue Carry0
, SDValue Carry1
,
2974 if (Carry1
.getResNo() != 1 || Carry0
.getResNo() != 1)
2976 if (Carry1
.getOpcode() != ISD::UADDO
)
2982 * First look for a suitable Z. It will present itself in the form of
2983 * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
2985 if (Carry0
.getOpcode() == ISD::ADDCARRY
&&
2986 isNullConstant(Carry0
.getOperand(1))) {
2987 Z
= Carry0
.getOperand(2);
2988 } else if (Carry0
.getOpcode() == ISD::UADDO
&&
2989 isOneConstant(Carry0
.getOperand(1))) {
2990 EVT VT
= Combiner
.getSetCCResultType(Carry0
.getValueType());
2991 Z
= DAG
.getConstant(1, SDLoc(Carry0
.getOperand(1)), VT
);
2993 // We couldn't find a suitable Z.
2998 auto cancelDiamond
= [&](SDValue A
,SDValue B
) {
3000 SDValue NewY
= DAG
.getNode(ISD::ADDCARRY
, DL
, Carry0
->getVTList(), A
, B
, Z
);
3001 Combiner
.AddToWorklist(NewY
.getNode());
3002 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), X
,
3003 DAG
.getConstant(0, DL
, X
.getValueType()),
3012 * (addcarry *, 0, Z)
3014 if (Carry0
.getOperand(0) == Carry1
.getValue(0)) {
3015 return cancelDiamond(Carry1
.getOperand(0), Carry1
.getOperand(1));
3019 * (addcarry A, 0, Z)
3025 if (Carry1
.getOperand(0) == Carry0
.getValue(0)) {
3026 return cancelDiamond(Carry0
.getOperand(0), Carry1
.getOperand(1));
3029 if (Carry1
.getOperand(1) == Carry0
.getValue(0)) {
3030 return cancelDiamond(Carry1
.getOperand(0), Carry0
.getOperand(0));
3036 // If we are facing some sort of diamond carry/borrow in/out pattern try to
3037 // match patterns like:
3039 // (uaddo A, B) CarryIn
3042 // PartialSum PartialCarryOutX /
3044 // | ____|____________/
3046 // (uaddo *, *) \________
3049 // | PartialCarryOutY |
3052 // AddCarrySum | ______/
3054 // CarryOut = (or *, *)
3056 // And generate ADDCARRY (or SUBCARRY) with two result values:
3058 // {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
3060 // Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
3061 // a single path for carry/borrow out propagation:
3062 static SDValue
combineCarryDiamond(DAGCombiner
&Combiner
, SelectionDAG
&DAG
,
3063 const TargetLowering
&TLI
, SDValue Carry0
,
3064 SDValue Carry1
, SDNode
*N
) {
3065 if (Carry0
.getResNo() != 1 || Carry1
.getResNo() != 1)
3067 unsigned Opcode
= Carry0
.getOpcode();
3068 if (Opcode
!= Carry1
.getOpcode())
3070 if (Opcode
!= ISD::UADDO
&& Opcode
!= ISD::USUBO
)
3073 // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
3074 // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
3075 // the above ASCII art.)
3076 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3077 Carry1
.getOperand(1) != Carry0
.getValue(0))
3078 std::swap(Carry0
, Carry1
);
3079 if (Carry1
.getOperand(0) != Carry0
.getValue(0) &&
3080 Carry1
.getOperand(1) != Carry0
.getValue(0))
3083 // The carry in value must be on the righthand side for subtraction.
3084 unsigned CarryInOperandNum
=
3085 Carry1
.getOperand(0) == Carry0
.getValue(0) ? 1 : 0;
3086 if (Opcode
== ISD::USUBO
&& CarryInOperandNum
!= 1)
3088 SDValue CarryIn
= Carry1
.getOperand(CarryInOperandNum
);
3090 unsigned NewOp
= Opcode
== ISD::UADDO
? ISD::ADDCARRY
: ISD::SUBCARRY
;
3091 if (!TLI
.isOperationLegalOrCustom(NewOp
, Carry0
.getValue(0).getValueType()))
3094 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3095 // TODO: make getAsCarry() aware of how partial carries are merged.
3096 if (CarryIn
.getOpcode() != ISD::ZERO_EXTEND
)
3098 CarryIn
= CarryIn
.getOperand(0);
3099 if (CarryIn
.getValueType() != MVT::i1
)
3104 DAG
.getNode(NewOp
, DL
, Carry1
->getVTList(), Carry0
.getOperand(0),
3105 Carry0
.getOperand(1), CarryIn
);
3107 // Please note that because we have proven that the result of the UADDO/USUBO
3108 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3109 // therefore prove that if the first UADDO/USUBO overflows, the second
3110 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3113 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3114 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3116 // This is important because it means that OR and XOR can be used to merge
3117 // carry flags; and that AND can return a constant zero.
3119 // TODO: match other operations that can merge flags (ADD, etc)
3120 DAG
.ReplaceAllUsesOfValueWith(Carry1
.getValue(0), Merged
.getValue(0));
3121 if (N
->getOpcode() == ISD::AND
)
3122 return DAG
.getConstant(0, DL
, MVT::i1
);
3123 return Merged
.getValue(1);
3126 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
3128 // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
3129 if (isBitwiseNot(N0
))
3130 if (SDValue NotC
= extractBooleanFlip(CarryIn
, DAG
, TLI
, true)) {
3132 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(), N1
,
3133 N0
.getOperand(0), NotC
);
3135 N
, Sub
, DAG
.getLogicalNOT(DL
, Sub
.getValue(1), Sub
->getValueType(1)));
3138 // Iff the flag result is dead:
3139 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
3140 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3141 // or the dependency between the instructions.
3142 if ((N0
.getOpcode() == ISD::ADD
||
3143 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0 &&
3144 N0
.getValue(1) != CarryIn
)) &&
3145 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
3146 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
3147 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
3150 * When one of the addcarry argument is itself a carry, we may be facing
3151 * a diamond carry propagation. In which case we try to transform the DAG
3152 * to ensure linear carry propagation if that is possible.
3154 if (auto Y
= getAsCarry(TLI
, N1
)) {
3155 // Because both are carries, Y and Z can be swapped.
3156 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, Y
, CarryIn
, N
))
3158 if (auto R
= combineADDCARRYDiamond(*this, DAG
, N0
, CarryIn
, Y
, N
))
3165 // Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3166 // clamp/truncation if necessary.
3167 static SDValue
getTruncatedUSUBSAT(EVT DstVT
, EVT SrcVT
, SDValue LHS
,
3168 SDValue RHS
, SelectionDAG
&DAG
,
3170 assert(DstVT
.getScalarSizeInBits() <= SrcVT
.getScalarSizeInBits() &&
3171 "Illegal truncation");
3174 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3176 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3178 APInt UpperBits
= APInt::getBitsSetFrom(SrcVT
.getScalarSizeInBits(),
3179 DstVT
.getScalarSizeInBits());
3180 if (!DAG
.MaskedValueIsZero(LHS
, UpperBits
))
3184 DAG
.getConstant(APInt::getLowBitsSet(SrcVT
.getScalarSizeInBits(),
3185 DstVT
.getScalarSizeInBits()),
3187 RHS
= DAG
.getNode(ISD::UMIN
, DL
, SrcVT
, RHS
, SatLimit
);
3188 RHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, RHS
);
3189 LHS
= DAG
.getNode(ISD::TRUNCATE
, DL
, DstVT
, LHS
);
3190 return DAG
.getNode(ISD::USUBSAT
, DL
, DstVT
, LHS
, RHS
);
3193 // Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3194 // usubsat(a,b), optionally as a truncated type.
3195 SDValue
DAGCombiner::foldSubToUSubSat(EVT DstVT
, SDNode
*N
) {
3196 if (N
->getOpcode() != ISD::SUB
||
3197 !(!LegalOperations
|| hasOperation(ISD::USUBSAT
, DstVT
)))
3200 EVT SubVT
= N
->getValueType(0);
3201 SDValue Op0
= N
->getOperand(0);
3202 SDValue Op1
= N
->getOperand(1);
3204 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3205 // they may be converted to usubsat(a,b).
3206 if (Op0
.getOpcode() == ISD::UMAX
&& Op0
.hasOneUse()) {
3207 SDValue MaxLHS
= Op0
.getOperand(0);
3208 SDValue MaxRHS
= Op0
.getOperand(1);
3210 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxRHS
, Op1
, DAG
, SDLoc(N
));
3212 return getTruncatedUSUBSAT(DstVT
, SubVT
, MaxLHS
, Op1
, DAG
, SDLoc(N
));
3215 if (Op1
.getOpcode() == ISD::UMIN
&& Op1
.hasOneUse()) {
3216 SDValue MinLHS
= Op1
.getOperand(0);
3217 SDValue MinRHS
= Op1
.getOperand(1);
3219 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinRHS
, DAG
, SDLoc(N
));
3221 return getTruncatedUSUBSAT(DstVT
, SubVT
, Op0
, MinLHS
, DAG
, SDLoc(N
));
3224 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3225 if (Op1
.getOpcode() == ISD::TRUNCATE
&&
3226 Op1
.getOperand(0).getOpcode() == ISD::UMIN
&&
3227 Op1
.getOperand(0).hasOneUse()) {
3228 SDValue MinLHS
= Op1
.getOperand(0).getOperand(0);
3229 SDValue MinRHS
= Op1
.getOperand(0).getOperand(1);
3230 if (MinLHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinLHS
.getOperand(0) == Op0
)
3231 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinLHS
, MinRHS
,
3233 if (MinRHS
.getOpcode() == ISD::ZERO_EXTEND
&& MinRHS
.getOperand(0) == Op0
)
3234 return getTruncatedUSUBSAT(DstVT
, MinLHS
.getValueType(), MinRHS
, MinLHS
,
3241 // Since it may not be valid to emit a fold to zero for vector initializers
3242 // check if we can before folding.
3243 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
3244 SelectionDAG
&DAG
, bool LegalOperations
) {
3246 return DAG
.getConstant(0, DL
, VT
);
3247 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
3248 return DAG
.getConstant(0, DL
, VT
);
3252 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
3253 SDValue N0
= N
->getOperand(0);
3254 SDValue N1
= N
->getOperand(1);
3255 EVT VT
= N0
.getValueType();
3259 if (VT
.isVector()) {
3260 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3263 // fold (sub x, 0) -> x, vector edition
3264 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3268 // fold (sub x, x) -> 0
3269 // FIXME: Refactor this and xor and other similar operations together.
3271 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
3273 // fold (sub c1, c2) -> c3
3274 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N1
}))
3277 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3280 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3282 // fold (sub x, c) -> (add x, -c)
3284 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3285 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3288 if (isNullOrNullSplat(N0
)) {
3289 unsigned BitWidth
= VT
.getScalarSizeInBits();
3290 // Right-shifting everything out but the sign bit followed by negation is
3291 // the same as flipping arithmetic/logical shift type without the negation:
3292 // -(X >>u 31) -> (X >>s 31)
3293 // -(X >>s 31) -> (X >>u 31)
3294 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
3295 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
3296 if (ShiftAmt
&& ShiftAmt
->getAPIntValue() == (BitWidth
- 1)) {
3297 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
3298 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
3299 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
3303 // 0 - X --> 0 if the sub is NUW.
3304 if (N
->getFlags().hasNoUnsignedWrap())
3307 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
3308 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
3309 // N1 must be 0 because negating the minimum signed value is undefined.
3310 if (N
->getFlags().hasNoSignedWrap())
3313 // 0 - X --> X if X is 0 or the minimum signed value.
3317 // Convert 0 - abs(x).
3319 if (N1
->getOpcode() == ISD::ABS
&&
3320 !TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
) &&
3321 TLI
.expandABS(N1
.getNode(), Result
, DAG
, true))
3324 // Fold neg(splat(neg(x)) -> splat(x)
3325 if (VT
.isVector()) {
3326 SDValue N1S
= DAG
.getSplatValue(N1
, true);
3327 if (N1S
&& N1S
.getOpcode() == ISD::SUB
&&
3328 isNullConstant(N1S
.getOperand(0))) {
3329 if (VT
.isScalableVector())
3330 return DAG
.getSplatVector(VT
, DL
, N1S
.getOperand(1));
3331 return DAG
.getSplatBuildVector(VT
, DL
, N1S
.getOperand(1));
3336 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
3337 if (isAllOnesOrAllOnesSplat(N0
))
3338 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
3340 // fold (A - (0-B)) -> A+B
3341 if (N1
.getOpcode() == ISD::SUB
&& isNullOrNullSplat(N1
.getOperand(0)))
3342 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
3344 // fold A-(A-B) -> B
3345 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
3346 return N1
.getOperand(1);
3348 // fold (A+B)-A -> B
3349 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
3350 return N0
.getOperand(1);
3352 // fold (A+B)-B -> A
3353 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
3354 return N0
.getOperand(0);
3356 // fold (A+C1)-C2 -> A+(C1-C2)
3357 if (N0
.getOpcode() == ISD::ADD
&&
3358 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3359 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3361 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(1), N1
});
3362 assert(NewC
&& "Constant folding failed");
3363 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), NewC
);
3366 // fold C2-(A+C1) -> (C2-C1)-A
3367 if (N1
.getOpcode() == ISD::ADD
) {
3368 SDValue N11
= N1
.getOperand(1);
3369 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
3370 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
3371 SDValue NewC
= DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
, N11
});
3372 assert(NewC
&& "Constant folding failed");
3373 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
3377 // fold (A-C1)-C2 -> A-(C1+C2)
3378 if (N0
.getOpcode() == ISD::SUB
&&
3379 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3380 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3382 DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, {N0
.getOperand(1), N1
});
3383 assert(NewC
&& "Constant folding failed");
3384 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), NewC
);
3387 // fold (c1-A)-c2 -> (c1-c2)-A
3388 if (N0
.getOpcode() == ISD::SUB
&&
3389 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3390 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaques */ true)) {
3392 DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, {N0
.getOperand(0), N1
});
3393 assert(NewC
&& "Constant folding failed");
3394 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N0
.getOperand(1));
3397 // fold ((A+(B+or-C))-B) -> A+or-C
3398 if (N0
.getOpcode() == ISD::ADD
&&
3399 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
3400 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
3401 N0
.getOperand(1).getOperand(0) == N1
)
3402 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
3403 N0
.getOperand(1).getOperand(1));
3405 // fold ((A+(C+B))-B) -> A+C
3406 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
3407 N0
.getOperand(1).getOperand(1) == N1
)
3408 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
3409 N0
.getOperand(1).getOperand(0));
3411 // fold ((A-(B-C))-C) -> A-B
3412 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
3413 N0
.getOperand(1).getOperand(1) == N1
)
3414 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
3415 N0
.getOperand(1).getOperand(0));
3417 // fold (A-(B-C)) -> A+(C-B)
3418 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
3419 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3420 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
3423 // A - (A & B) -> A & (~B)
3424 if (N1
.getOpcode() == ISD::AND
) {
3425 SDValue A
= N1
.getOperand(0);
3426 SDValue B
= N1
.getOperand(1);
3430 (N1
.hasOneUse() || isConstantOrConstantVector(B
, /*NoOpaques=*/true))) {
3432 DAG
.getNode(ISD::XOR
, DL
, VT
, B
, DAG
.getAllOnesConstant(DL
, VT
));
3433 return DAG
.getNode(ISD::AND
, DL
, VT
, A
, InvB
);
3437 // fold (X - (-Y * Z)) -> (X + (Y * Z))
3438 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
3439 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
3440 isNullOrNullSplat(N1
.getOperand(0).getOperand(0))) {
3441 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3442 N1
.getOperand(0).getOperand(1),
3444 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3446 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
3447 isNullOrNullSplat(N1
.getOperand(1).getOperand(0))) {
3448 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
3450 N1
.getOperand(1).getOperand(1));
3451 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
3455 // If either operand of a sub is undef, the result is undef
3461 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
3464 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
3467 if (SDValue V
= foldAddSubMasked1(false, N0
, N1
, DAG
, SDLoc(N
)))
3470 if (SDValue V
= foldSubToUSubSat(VT
, N
))
3473 // (x - y) - 1 -> add (xor y, -1), x
3474 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&& isOneOrOneSplat(N1
)) {
3475 SDValue Xor
= DAG
.getNode(ISD::XOR
, DL
, VT
, N0
.getOperand(1),
3476 DAG
.getAllOnesConstant(DL
, VT
));
3477 return DAG
.getNode(ISD::ADD
, DL
, VT
, Xor
, N0
.getOperand(0));
3481 // sub y, (xor x, -1)
3482 // And if the target does not like this form then turn into:
3483 // add (add x, y), 1
3484 if (TLI
.preferIncOfAddToSubOfNot(VT
) && N1
.hasOneUse() && isBitwiseNot(N1
)) {
3485 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(0));
3486 return DAG
.getNode(ISD::ADD
, DL
, VT
, Add
, DAG
.getConstant(1, DL
, VT
));
3489 // Hoist one-use addition by non-opaque constant:
3490 // (x + C) - y -> (x - y) + C
3491 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::ADD
&&
3492 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3493 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3494 return DAG
.getNode(ISD::ADD
, DL
, VT
, Sub
, N0
.getOperand(1));
3496 // y - (x + C) -> (y - x) - C
3497 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::ADD
&&
3498 isConstantOrConstantVector(N1
.getOperand(1), /*NoOpaques=*/true)) {
3499 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(0));
3500 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N1
.getOperand(1));
3502 // (x - C) - y -> (x - y) - C
3503 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3504 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3505 isConstantOrConstantVector(N0
.getOperand(1), /*NoOpaques=*/true)) {
3506 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), N1
);
3507 return DAG
.getNode(ISD::SUB
, DL
, VT
, Sub
, N0
.getOperand(1));
3509 // (C - x) - y -> C - (x + y)
3510 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::SUB
&&
3511 isConstantOrConstantVector(N0
.getOperand(0), /*NoOpaques=*/true)) {
3512 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1), N1
);
3513 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0), Add
);
3516 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
3517 // rather than 'sub 0/1' (the sext should get folded).
3518 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
3519 if (N1
.getOpcode() == ISD::ZERO_EXTEND
&&
3520 N1
.getOperand(0).getScalarValueSizeInBits() == 1 &&
3521 TLI
.getBooleanContents(VT
) ==
3522 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
3523 SDValue SExt
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N1
.getOperand(0));
3524 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SExt
);
3527 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
3528 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
3529 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
3530 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
3531 SDValue S0
= N1
.getOperand(0);
3532 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
))
3533 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
3534 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
3535 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
3539 // If the relocation model supports it, consider symbol offsets.
3540 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
3541 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
3542 // fold (sub Sym, c) -> Sym-c
3543 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
3544 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
3546 (uint64_t)N1C
->getSExtValue());
3547 // fold (sub Sym+c1, Sym+c2) -> c1-c2
3548 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
3549 if (GA
->getGlobal() == GB
->getGlobal())
3550 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
3554 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
3555 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
3556 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
3557 if (TN
->getVT() == MVT::i1
) {
3558 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
3559 DAG
.getConstant(1, DL
, VT
));
3560 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
3564 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
3565 if (N1
.getOpcode() == ISD::VSCALE
) {
3566 const APInt
&IntVal
= N1
.getConstantOperandAPInt(0);
3567 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, DAG
.getVScale(DL
, VT
, -IntVal
));
3570 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
3571 if (N1
.getOpcode() == ISD::STEP_VECTOR
&& N1
.hasOneUse()) {
3572 APInt NewStep
= -N1
.getConstantOperandAPInt(0);
3573 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
3574 DAG
.getStepVector(DL
, VT
, NewStep
));
3577 // Prefer an add for more folding potential and possibly better codegen:
3578 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
3579 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
3580 SDValue ShAmt
= N1
.getOperand(1);
3581 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
3583 ShAmtC
->getAPIntValue() == (N1
.getScalarValueSizeInBits() - 1)) {
3584 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
3585 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
3589 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
)) {
3590 // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
3591 if (SDValue Carry
= getAsCarry(TLI
, N0
)) {
3593 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3594 SDValue NegX
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, X
);
3595 return DAG
.getNode(ISD::ADDCARRY
, DL
,
3596 DAG
.getVTList(VT
, Carry
.getValueType()), NegX
, Zero
,
3604 SDValue
DAGCombiner::visitSUBSAT(SDNode
*N
) {
3605 SDValue N0
= N
->getOperand(0);
3606 SDValue N1
= N
->getOperand(1);
3607 EVT VT
= N0
.getValueType();
3611 if (VT
.isVector()) {
3612 // TODO SimplifyVBinOp
3614 // fold (sub_sat x, 0) -> x, vector edition
3615 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
3619 // fold (sub_sat x, undef) -> 0
3620 if (N0
.isUndef() || N1
.isUndef())
3621 return DAG
.getConstant(0, DL
, VT
);
3623 // fold (sub_sat x, x) -> 0
3625 return DAG
.getConstant(0, DL
, VT
);
3627 // fold (sub_sat c1, c2) -> c3
3628 if (SDValue C
= DAG
.FoldConstantArithmetic(N
->getOpcode(), DL
, VT
, {N0
, N1
}))
3631 // fold (sub_sat x, 0) -> x
3632 if (isNullConstant(N1
))
3638 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
3639 SDValue N0
= N
->getOperand(0);
3640 SDValue N1
= N
->getOperand(1);
3641 EVT VT
= N0
.getValueType();
3644 // If the flag result is dead, turn this into an SUB.
3645 if (!N
->hasAnyUseOfValue(1))
3646 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3647 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3649 // fold (subc x, x) -> 0 + no borrow
3651 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3652 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3654 // fold (subc x, 0) -> x + no borrow
3655 if (isNullConstant(N1
))
3656 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3658 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3659 if (isAllOnesConstant(N0
))
3660 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3661 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
3666 SDValue
DAGCombiner::visitSUBO(SDNode
*N
) {
3667 SDValue N0
= N
->getOperand(0);
3668 SDValue N1
= N
->getOperand(1);
3669 EVT VT
= N0
.getValueType();
3670 bool IsSigned
= (ISD::SSUBO
== N
->getOpcode());
3672 EVT CarryVT
= N
->getValueType(1);
3675 // If the flag result is dead, turn this into an SUB.
3676 if (!N
->hasAnyUseOfValue(1))
3677 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
3678 DAG
.getUNDEF(CarryVT
));
3680 // fold (subo x, x) -> 0 + no borrow
3682 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
3683 DAG
.getConstant(0, DL
, CarryVT
));
3685 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3687 // fold (subox, c) -> (addo x, -c)
3688 if (IsSigned
&& N1C
&& !N1C
->getAPIntValue().isMinSignedValue()) {
3689 return DAG
.getNode(ISD::SADDO
, DL
, N
->getVTList(), N0
,
3690 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
3693 // fold (subo x, 0) -> x + no borrow
3694 if (isNullOrNullSplat(N1
))
3695 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
3697 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
3698 if (!IsSigned
&& isAllOnesOrAllOnesSplat(N0
))
3699 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
3700 DAG
.getConstant(0, DL
, CarryVT
));
3705 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
3706 SDValue N0
= N
->getOperand(0);
3707 SDValue N1
= N
->getOperand(1);
3708 SDValue CarryIn
= N
->getOperand(2);
3710 // fold (sube x, y, false) -> (subc x, y)
3711 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
3712 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3717 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
3718 SDValue N0
= N
->getOperand(0);
3719 SDValue N1
= N
->getOperand(1);
3720 SDValue CarryIn
= N
->getOperand(2);
3722 // fold (subcarry x, y, false) -> (usubo x, y)
3723 if (isNullConstant(CarryIn
)) {
3724 if (!LegalOperations
||
3725 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
3726 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3732 SDValue
DAGCombiner::visitSSUBO_CARRY(SDNode
*N
) {
3733 SDValue N0
= N
->getOperand(0);
3734 SDValue N1
= N
->getOperand(1);
3735 SDValue CarryIn
= N
->getOperand(2);
3737 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
3738 if (isNullConstant(CarryIn
)) {
3739 if (!LegalOperations
||
3740 TLI
.isOperationLegalOrCustom(ISD::SSUBO
, N
->getValueType(0)))
3741 return DAG
.getNode(ISD::SSUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
3747 // Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
3749 SDValue
DAGCombiner::visitMULFIX(SDNode
*N
) {
3750 SDValue N0
= N
->getOperand(0);
3751 SDValue N1
= N
->getOperand(1);
3752 SDValue Scale
= N
->getOperand(2);
3753 EVT VT
= N0
.getValueType();
3755 // fold (mulfix x, undef, scale) -> 0
3756 if (N0
.isUndef() || N1
.isUndef())
3757 return DAG
.getConstant(0, SDLoc(N
), VT
);
3759 // Canonicalize constant to RHS (vector doesn't have to splat)
3760 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3761 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3762 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
, Scale
);
3764 // fold (mulfix x, 0, scale) -> 0
3765 if (isNullConstant(N1
))
3766 return DAG
.getConstant(0, SDLoc(N
), VT
);
3771 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
3772 SDValue N0
= N
->getOperand(0);
3773 SDValue N1
= N
->getOperand(1);
3774 EVT VT
= N0
.getValueType();
3776 // fold (mul x, undef) -> 0
3777 if (N0
.isUndef() || N1
.isUndef())
3778 return DAG
.getConstant(0, SDLoc(N
), VT
);
3780 bool N1IsConst
= false;
3781 bool N1IsOpaqueConst
= false;
3785 if (VT
.isVector()) {
3786 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3789 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
3790 assert((!N1IsConst
||
3791 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
3792 "Splat APInt should be element width");
3794 N1IsConst
= isa
<ConstantSDNode
>(N1
);
3796 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
3797 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
3801 // fold (mul c1, c2) -> c1*c2
3802 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
, {N0
, N1
}))
3805 // canonicalize constant to RHS (vector doesn't have to splat)
3806 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3807 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3808 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
3810 // fold (mul x, 0) -> 0
3811 if (N1IsConst
&& ConstValue1
.isNullValue())
3814 // fold (mul x, 1) -> x
3815 if (N1IsConst
&& ConstValue1
.isOneValue())
3818 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3821 // fold (mul x, -1) -> 0-x
3822 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
3824 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3825 DAG
.getConstant(0, DL
, VT
), N0
);
3828 // fold (mul x, (1 << c)) -> x << c
3829 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3830 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
3831 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
3833 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3834 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3835 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3836 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
3839 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
3840 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
3841 unsigned Log2Val
= (-ConstValue1
).logBase2();
3843 // FIXME: If the input is something that is easily negated (e.g. a
3844 // single-use add), we should put the negate there.
3845 return DAG
.getNode(ISD::SUB
, DL
, VT
,
3846 DAG
.getConstant(0, DL
, VT
),
3847 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3848 DAG
.getConstant(Log2Val
, DL
,
3849 getShiftAmountTy(N0
.getValueType()))));
3852 // Try to transform:
3853 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
3854 // mul x, (2^N + 1) --> add (shl x, N), x
3855 // mul x, (2^N - 1) --> sub (shl x, N), x
3856 // Examples: x * 33 --> (x << 5) + x
3857 // x * 15 --> (x << 4) - x
3858 // x * -33 --> -((x << 5) + x)
3859 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
3860 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
3861 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
3862 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
3863 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
3864 // x * 0xf800 --> (x << 16) - (x << 11)
3865 // x * -0x8800 --> -((x << 15) + (x << 11))
3866 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
3867 if (N1IsConst
&& TLI
.decomposeMulByConstant(*DAG
.getContext(), VT
, N1
)) {
3868 // TODO: We could handle more general decomposition of any constant by
3869 // having the target set a limit on number of ops and making a
3870 // callback to determine that sequence (similar to sqrt expansion).
3871 unsigned MathOp
= ISD::DELETED_NODE
;
3872 APInt MulC
= ConstValue1
.abs();
3873 // The constant `2` should be treated as (2^0 + 1).
3874 unsigned TZeros
= MulC
== 2 ? 0 : MulC
.countTrailingZeros();
3875 MulC
.lshrInPlace(TZeros
);
3876 if ((MulC
- 1).isPowerOf2())
3878 else if ((MulC
+ 1).isPowerOf2())
3881 if (MathOp
!= ISD::DELETED_NODE
) {
3883 MathOp
== ISD::ADD
? (MulC
- 1).logBase2() : (MulC
+ 1).logBase2();
3885 assert(ShAmt
< VT
.getScalarSizeInBits() &&
3886 "multiply-by-constant generated out of bounds shift");
3889 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, DAG
.getConstant(ShAmt
, DL
, VT
));
3891 TZeros
? DAG
.getNode(MathOp
, DL
, VT
, Shl
,
3892 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
3893 DAG
.getConstant(TZeros
, DL
, VT
)))
3894 : DAG
.getNode(MathOp
, DL
, VT
, Shl
, N0
);
3895 if (ConstValue1
.isNegative())
3896 R
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), R
);
3901 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
3902 if (N0
.getOpcode() == ISD::SHL
&&
3903 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
3904 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
3905 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
3906 if (isConstantOrConstantVector(C3
))
3907 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
3910 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
3913 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
3915 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
3916 if (N0
.getOpcode() == ISD::SHL
&&
3917 isConstantOrConstantVector(N0
.getOperand(1)) &&
3918 N0
.getNode()->hasOneUse()) {
3920 } else if (N1
.getOpcode() == ISD::SHL
&&
3921 isConstantOrConstantVector(N1
.getOperand(1)) &&
3922 N1
.getNode()->hasOneUse()) {
3927 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
3928 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
3932 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
3933 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
3934 N0
.getOpcode() == ISD::ADD
&&
3935 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
3936 isMulAddWithConstProfitable(N
, N0
, N1
))
3937 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
3938 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
3939 N0
.getOperand(0), N1
),
3940 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
3941 N0
.getOperand(1), N1
));
3943 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
3944 if (N0
.getOpcode() == ISD::VSCALE
)
3945 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N1
)) {
3946 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3947 const APInt
&C1
= NC1
->getAPIntValue();
3948 return DAG
.getVScale(SDLoc(N
), VT
, C0
* C1
);
3951 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
3953 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
3954 if (ISD::isConstantSplatVector(N1
.getNode(), MulVal
)) {
3955 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
3956 APInt NewStep
= C0
* MulVal
;
3957 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
3960 // Fold ((mul x, 0/undef) -> 0,
3961 // (mul x, 1) -> x) -> x)
3963 // We can replace vectors with '0' and '1' factors with a clearing mask.
3964 if (VT
.isFixedLengthVector()) {
3965 unsigned NumElts
= VT
.getVectorNumElements();
3966 SmallBitVector ClearMask
;
3967 ClearMask
.reserve(NumElts
);
3968 auto IsClearMask
= [&ClearMask
](ConstantSDNode
*V
) {
3969 if (!V
|| V
->isNullValue()) {
3970 ClearMask
.push_back(true);
3973 ClearMask
.push_back(false);
3976 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::AND
, VT
)) &&
3977 ISD::matchUnaryPredicate(N1
, IsClearMask
, /*AllowUndefs*/ true)) {
3978 assert(N1
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown constant vector");
3980 EVT LegalSVT
= N1
.getOperand(0).getValueType();
3981 SDValue Zero
= DAG
.getConstant(0, DL
, LegalSVT
);
3982 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, LegalSVT
);
3983 SmallVector
<SDValue
, 16> Mask(NumElts
, AllOnes
);
3984 for (unsigned I
= 0; I
!= NumElts
; ++I
)
3987 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, DAG
.getBuildVector(VT
, DL
, Mask
));
3992 if (SDValue RMUL
= reassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
3998 /// Return true if divmod libcall is available.
3999 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
4000 const TargetLowering
&TLI
) {
4002 EVT NodeType
= Node
->getValueType(0);
4003 if (!NodeType
.isSimple())
4005 switch (NodeType
.getSimpleVT().SimpleTy
) {
4006 default: return false; // No libcall for vector types.
4007 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
4008 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
4009 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
4010 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
4011 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
4014 return TLI
.getLibcallName(LC
) != nullptr;
4017 /// Issue divrem if both quotient and remainder are needed.
4018 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
4019 if (Node
->use_empty())
4020 return SDValue(); // This is a dead node, leave it alone.
4022 unsigned Opcode
= Node
->getOpcode();
4023 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
4024 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
4026 // DivMod lib calls can still work on non-legal types if using lib-calls.
4027 EVT VT
= Node
->getValueType(0);
4028 if (VT
.isVector() || !VT
.isInteger())
4031 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
4034 // If DIVREM is going to get expanded into a libcall,
4035 // but there is no libcall available, then don't combine.
4036 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
4037 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
4040 // If div is legal, it's better to do the normal expansion
4041 unsigned OtherOpcode
= 0;
4042 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
4043 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
4044 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
4047 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4048 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
4052 SDValue Op0
= Node
->getOperand(0);
4053 SDValue Op1
= Node
->getOperand(1);
4055 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
4056 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
4058 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
4061 // Convert the other matching node(s), too;
4062 // otherwise, the DIVREM may get target-legalized into something
4063 // target-specific that we won't be able to recognize.
4064 unsigned UserOpc
= User
->getOpcode();
4065 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
4066 User
->getOperand(0) == Op0
&&
4067 User
->getOperand(1) == Op1
) {
4069 if (UserOpc
== OtherOpcode
) {
4070 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
4071 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
4072 } else if (UserOpc
== DivRemOpc
) {
4073 combined
= SDValue(User
, 0);
4075 assert(UserOpc
== Opcode
);
4079 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
4080 CombineTo(User
, combined
);
4081 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
4082 CombineTo(User
, combined
.getValue(1));
4088 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
4089 SDValue N0
= N
->getOperand(0);
4090 SDValue N1
= N
->getOperand(1);
4091 EVT VT
= N
->getValueType(0);
4094 unsigned Opc
= N
->getOpcode();
4095 bool IsDiv
= (ISD::SDIV
== Opc
) || (ISD::UDIV
== Opc
);
4096 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4098 // X / undef -> undef
4099 // X % undef -> undef
4102 // NOTE: This includes vectors where any divisor element is zero/undef.
4103 if (DAG
.isUndef(Opc
, {N0
, N1
}))
4104 return DAG
.getUNDEF(VT
);
4109 return DAG
.getConstant(0, DL
, VT
);
4113 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4114 if (N0C
&& N0C
->isNullValue())
4120 return DAG
.getConstant(IsDiv
? 1 : 0, DL
, VT
);
4124 // If this is a boolean op (single-bit element type), we can't have
4125 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
4126 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
4128 if ((N1C
&& N1C
->isOne()) || (VT
.getScalarType() == MVT::i1
))
4129 return IsDiv
? N0
: DAG
.getConstant(0, DL
, VT
);
4134 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
4135 SDValue N0
= N
->getOperand(0);
4136 SDValue N1
= N
->getOperand(1);
4137 EVT VT
= N
->getValueType(0);
4138 EVT CCVT
= getSetCCResultType(VT
);
4142 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4147 // fold (sdiv c1, c2) -> c1/c2
4148 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4149 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, {N0
, N1
}))
4152 // fold (sdiv X, -1) -> 0-X
4153 if (N1C
&& N1C
->isAllOnesValue())
4154 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
4156 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
4157 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
4158 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4159 DAG
.getConstant(1, DL
, VT
),
4160 DAG
.getConstant(0, DL
, VT
));
4162 if (SDValue V
= simplifyDivRem(N
, DAG
))
4165 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4168 // If we know the sign bits of both operands are zero, strength reduce to a
4169 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
4170 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4171 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
4173 if (SDValue V
= visitSDIVLike(N0
, N1
, N
)) {
4174 // If the corresponding remainder node exists, update its users with
4175 // (Dividend - (Quotient * Divisor).
4176 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::SREM
, N
->getVTList(),
4178 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4179 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4180 AddToWorklist(Mul
.getNode());
4181 AddToWorklist(Sub
.getNode());
4182 CombineTo(RemNode
, Sub
);
4187 // sdiv, srem -> sdivrem
4188 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4189 // true. Otherwise, we break the simplification logic in visitREM().
4190 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4191 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4192 if (SDValue DivRem
= useDivRem(N
))
4198 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4200 EVT VT
= N
->getValueType(0);
4201 EVT CCVT
= getSetCCResultType(VT
);
4202 unsigned BitWidth
= VT
.getScalarSizeInBits();
4204 // Helper for determining whether a value is a power-2 constant scalar or a
4205 // vector of such elements.
4206 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
4207 if (C
->isNullValue() || C
->isOpaque())
4209 if (C
->getAPIntValue().isPowerOf2())
4211 if ((-C
->getAPIntValue()).isPowerOf2())
4216 // fold (sdiv X, pow2) -> simple ops after legalize
4217 // FIXME: We check for the exact bit here because the generic lowering gives
4218 // better results in that case. The target-specific lowering should learn how
4219 // to handle exact sdivs efficiently.
4220 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
4221 // Target-specific implementation of sdiv x, pow2.
4222 if (SDValue Res
= BuildSDIVPow2(N
))
4225 // Create constants that are functions of the shift amount value.
4226 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
4227 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
4228 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
4229 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
4230 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
4231 if (!isConstantOrConstantVector(Inexact
))
4234 // Splat the sign bit into the register
4235 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
4236 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
4237 AddToWorklist(Sign
.getNode());
4239 // Add (N0 < 0) ? abs2 - 1 : 0;
4240 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
4241 AddToWorklist(Srl
.getNode());
4242 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
4243 AddToWorklist(Add
.getNode());
4244 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
4245 AddToWorklist(Sra
.getNode());
4247 // Special case: (sdiv X, 1) -> X
4248 // Special Case: (sdiv X, -1) -> 0-X
4249 SDValue One
= DAG
.getConstant(1, DL
, VT
);
4250 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
4251 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
4252 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
4253 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
4254 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
4256 // If dividing by a positive value, we're done. Otherwise, the result must
4258 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4259 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
4261 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
4262 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
4263 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
4267 // If integer divide is expensive and we satisfy the requirements, emit an
4268 // alternate sequence. Targets may check function attributes for size/speed
4270 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4271 if (isConstantOrConstantVector(N1
) &&
4272 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4273 if (SDValue Op
= BuildSDIV(N
))
4279 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
4280 SDValue N0
= N
->getOperand(0);
4281 SDValue N1
= N
->getOperand(1);
4282 EVT VT
= N
->getValueType(0);
4283 EVT CCVT
= getSetCCResultType(VT
);
4287 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4292 // fold (udiv c1, c2) -> c1/c2
4293 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4294 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
, {N0
, N1
}))
4297 // fold (udiv X, -1) -> select(X == -1, 1, 0)
4298 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4299 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4300 DAG
.getConstant(1, DL
, VT
),
4301 DAG
.getConstant(0, DL
, VT
));
4303 if (SDValue V
= simplifyDivRem(N
, DAG
))
4306 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4309 if (SDValue V
= visitUDIVLike(N0
, N1
, N
)) {
4310 // If the corresponding remainder node exists, update its users with
4311 // (Dividend - (Quotient * Divisor).
4312 if (SDNode
*RemNode
= DAG
.getNodeIfExists(ISD::UREM
, N
->getVTList(),
4314 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, V
, N1
);
4315 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4316 AddToWorklist(Mul
.getNode());
4317 AddToWorklist(Sub
.getNode());
4318 CombineTo(RemNode
, Sub
);
4323 // sdiv, srem -> sdivrem
4324 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
4325 // true. Otherwise, we break the simplification logic in visitREM().
4326 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4327 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4328 if (SDValue DivRem
= useDivRem(N
))
4334 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4336 EVT VT
= N
->getValueType(0);
4338 // fold (udiv x, (1 << c)) -> x >>u c
4339 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4340 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4341 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4342 AddToWorklist(LogBase2
.getNode());
4344 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4345 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
4346 AddToWorklist(Trunc
.getNode());
4347 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4350 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
4351 if (N1
.getOpcode() == ISD::SHL
) {
4352 SDValue N10
= N1
.getOperand(0);
4353 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
4354 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
4355 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
4356 AddToWorklist(LogBase2
.getNode());
4358 EVT ADDVT
= N1
.getOperand(1).getValueType();
4359 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
4360 AddToWorklist(Trunc
.getNode());
4361 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
4362 AddToWorklist(Add
.getNode());
4363 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
4367 // fold (udiv x, c) -> alternate
4368 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4369 if (isConstantOrConstantVector(N1
) &&
4370 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4371 if (SDValue Op
= BuildUDIV(N
))
4377 // handles ISD::SREM and ISD::UREM
4378 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
4379 unsigned Opcode
= N
->getOpcode();
4380 SDValue N0
= N
->getOperand(0);
4381 SDValue N1
= N
->getOperand(1);
4382 EVT VT
= N
->getValueType(0);
4383 EVT CCVT
= getSetCCResultType(VT
);
4385 bool isSigned
= (Opcode
== ISD::SREM
);
4388 // fold (rem c1, c2) -> c1%c2
4389 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4390 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, {N0
, N1
}))
4393 // fold (urem X, -1) -> select(X == -1, 0, x)
4394 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
4395 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
4396 DAG
.getConstant(0, DL
, VT
), N0
);
4398 if (SDValue V
= simplifyDivRem(N
, DAG
))
4401 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4405 // If we know the sign bits of both operands are zero, strength reduce to a
4406 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
4407 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
4408 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
4410 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
4411 // fold (urem x, pow2) -> (and x, pow2-1)
4412 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4413 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4414 AddToWorklist(Add
.getNode());
4415 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4417 if (N1
.getOpcode() == ISD::SHL
&&
4418 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
4419 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
4420 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
4421 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
4422 AddToWorklist(Add
.getNode());
4423 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
4427 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4429 // If X/C can be simplified by the division-by-constant logic, lower
4430 // X%C to the equivalent of X-X/C*C.
4431 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
4432 // speculative DIV must not cause a DIVREM conversion. We guard against this
4433 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
4434 // combine will not return a DIVREM. Regardless, checking cheapness here
4435 // makes sense since the simplification results in fatter code.
4436 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
4437 SDValue OptimizedDiv
=
4438 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
4439 if (OptimizedDiv
.getNode()) {
4440 // If the equivalent Div node also exists, update its users.
4441 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
4442 if (SDNode
*DivNode
= DAG
.getNodeIfExists(DivOpcode
, N
->getVTList(),
4444 CombineTo(DivNode
, OptimizedDiv
);
4445 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
4446 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
4447 AddToWorklist(OptimizedDiv
.getNode());
4448 AddToWorklist(Mul
.getNode());
4453 // sdiv, srem -> sdivrem
4454 if (SDValue DivRem
= useDivRem(N
))
4455 return DivRem
.getValue(1);
4460 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
4461 SDValue N0
= N
->getOperand(0);
4462 SDValue N1
= N
->getOperand(1);
4463 EVT VT
= N
->getValueType(0);
4466 if (VT
.isVector()) {
4467 // fold (mulhs x, 0) -> 0
4468 // do not return N0/N1, because undef node may exist.
4469 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4470 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4471 return DAG
.getConstant(0, DL
, VT
);
4474 // fold (mulhs c1, c2)
4475 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHS
, DL
, VT
, {N0
, N1
}))
4478 // canonicalize constant to RHS.
4479 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4480 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4481 return DAG
.getNode(ISD::MULHS
, DL
, N
->getVTList(), N1
, N0
);
4483 // fold (mulhs x, 0) -> 0
4484 if (isNullConstant(N1
))
4486 // fold (mulhs x, 1) -> (sra x, size(x)-1)
4487 if (isOneConstant(N1
))
4488 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
4489 DAG
.getConstant(N0
.getScalarValueSizeInBits() - 1, DL
,
4490 getShiftAmountTy(N0
.getValueType())));
4492 // fold (mulhs x, undef) -> 0
4493 if (N0
.isUndef() || N1
.isUndef())
4494 return DAG
.getConstant(0, DL
, VT
);
4496 // If the type twice as wide is legal, transform the mulhs to a wider multiply
4498 if (!TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
) && VT
.isSimple() &&
4500 MVT Simple
= VT
.getSimpleVT();
4501 unsigned SimpleSize
= Simple
.getSizeInBits();
4502 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4503 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4504 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
4505 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
4506 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4507 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4508 DAG
.getConstant(SimpleSize
, DL
,
4509 getShiftAmountTy(N1
.getValueType())));
4510 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4517 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
4518 SDValue N0
= N
->getOperand(0);
4519 SDValue N1
= N
->getOperand(1);
4520 EVT VT
= N
->getValueType(0);
4523 if (VT
.isVector()) {
4524 // fold (mulhu x, 0) -> 0
4525 // do not return N0/N1, because undef node may exist.
4526 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()) ||
4527 ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
4528 return DAG
.getConstant(0, DL
, VT
);
4531 // fold (mulhu c1, c2)
4532 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::MULHU
, DL
, VT
, {N0
, N1
}))
4535 // canonicalize constant to RHS.
4536 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4537 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4538 return DAG
.getNode(ISD::MULHU
, DL
, N
->getVTList(), N1
, N0
);
4540 // fold (mulhu x, 0) -> 0
4541 if (isNullConstant(N1
))
4543 // fold (mulhu x, 1) -> 0
4544 if (isOneConstant(N1
))
4545 return DAG
.getConstant(0, DL
, N0
.getValueType());
4546 // fold (mulhu x, undef) -> 0
4547 if (N0
.isUndef() || N1
.isUndef())
4548 return DAG
.getConstant(0, DL
, VT
);
4550 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
4551 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
4552 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
4553 unsigned NumEltBits
= VT
.getScalarSizeInBits();
4554 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
4555 SDValue SRLAmt
= DAG
.getNode(
4556 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
4557 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
4558 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
4559 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
4562 // If the type twice as wide is legal, transform the mulhu to a wider multiply
4564 if (!TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
) && VT
.isSimple() &&
4566 MVT Simple
= VT
.getSimpleVT();
4567 unsigned SimpleSize
= Simple
.getSizeInBits();
4568 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4569 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4570 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
4571 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
4572 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
4573 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
4574 DAG
.getConstant(SimpleSize
, DL
,
4575 getShiftAmountTy(N1
.getValueType())));
4576 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
4580 // Simplify the operands using demanded-bits information.
4581 // We don't have demanded bits support for MULHU so this just enables constant
4582 // folding based on known bits.
4583 if (SimplifyDemandedBits(SDValue(N
, 0)))
4584 return SDValue(N
, 0);
4589 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
4590 /// give the opcodes for the two computations that are being performed. Return
4591 /// true if a simplification was made.
4592 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
4594 // If the high half is not needed, just compute the low half.
4595 bool HiExists
= N
->hasAnyUseOfValue(1);
4596 if (!HiExists
&& (!LegalOperations
||
4597 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
4598 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4599 return CombineTo(N
, Res
, Res
);
4602 // If the low half is not needed, just compute the high half.
4603 bool LoExists
= N
->hasAnyUseOfValue(0);
4604 if (!LoExists
&& (!LegalOperations
||
4605 TLI
.isOperationLegalOrCustom(HiOp
, N
->getValueType(1)))) {
4606 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4607 return CombineTo(N
, Res
, Res
);
4610 // If both halves are used, return as it is.
4611 if (LoExists
&& HiExists
)
4614 // If the two computed results can be simplified separately, separate them.
4616 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
4617 AddToWorklist(Lo
.getNode());
4618 SDValue LoOpt
= combine(Lo
.getNode());
4619 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
4620 (!LegalOperations
||
4621 TLI
.isOperationLegalOrCustom(LoOpt
.getOpcode(), LoOpt
.getValueType())))
4622 return CombineTo(N
, LoOpt
, LoOpt
);
4626 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
4627 AddToWorklist(Hi
.getNode());
4628 SDValue HiOpt
= combine(Hi
.getNode());
4629 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
4630 (!LegalOperations
||
4631 TLI
.isOperationLegalOrCustom(HiOpt
.getOpcode(), HiOpt
.getValueType())))
4632 return CombineTo(N
, HiOpt
, HiOpt
);
4638 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
4639 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
4642 EVT VT
= N
->getValueType(0);
4645 // If the type is twice as wide is legal, transform the mulhu to a wider
4646 // multiply plus a shift.
4647 if (VT
.isSimple() && !VT
.isVector()) {
4648 MVT Simple
= VT
.getSimpleVT();
4649 unsigned SimpleSize
= Simple
.getSizeInBits();
4650 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4651 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4652 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4653 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4654 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4655 // Compute the high part as N1.
4656 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4657 DAG
.getConstant(SimpleSize
, DL
,
4658 getShiftAmountTy(Lo
.getValueType())));
4659 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4660 // Compute the low part as N0.
4661 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4662 return CombineTo(N
, Lo
, Hi
);
4669 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
4670 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
4673 EVT VT
= N
->getValueType(0);
4676 // (umul_lohi N0, 0) -> (0, 0)
4677 if (isNullConstant(N
->getOperand(1))) {
4678 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4679 return CombineTo(N
, Zero
, Zero
);
4682 // (umul_lohi N0, 1) -> (N0, 0)
4683 if (isOneConstant(N
->getOperand(1))) {
4684 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
4685 return CombineTo(N
, N
->getOperand(0), Zero
);
4688 // If the type is twice as wide is legal, transform the mulhu to a wider
4689 // multiply plus a shift.
4690 if (VT
.isSimple() && !VT
.isVector()) {
4691 MVT Simple
= VT
.getSimpleVT();
4692 unsigned SimpleSize
= Simple
.getSizeInBits();
4693 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
4694 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
4695 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
4696 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
4697 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
4698 // Compute the high part as N1.
4699 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
4700 DAG
.getConstant(SimpleSize
, DL
,
4701 getShiftAmountTy(Lo
.getValueType())));
4702 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
4703 // Compute the low part as N0.
4704 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
4705 return CombineTo(N
, Lo
, Hi
);
4712 SDValue
DAGCombiner::visitMULO(SDNode
*N
) {
4713 SDValue N0
= N
->getOperand(0);
4714 SDValue N1
= N
->getOperand(1);
4715 EVT VT
= N0
.getValueType();
4716 bool IsSigned
= (ISD::SMULO
== N
->getOpcode());
4718 EVT CarryVT
= N
->getValueType(1);
4721 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
4722 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4724 // fold operation with constant operands.
4725 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
4726 // multiple results.
4730 IsSigned
? N0C
->getAPIntValue().smul_ov(N1C
->getAPIntValue(), Overflow
)
4731 : N0C
->getAPIntValue().umul_ov(N1C
->getAPIntValue(), Overflow
);
4732 return CombineTo(N
, DAG
.getConstant(Result
, DL
, VT
),
4733 DAG
.getBoolConstant(Overflow
, DL
, CarryVT
, CarryVT
));
4736 // canonicalize constant to RHS.
4737 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4738 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4739 return DAG
.getNode(N
->getOpcode(), DL
, N
->getVTList(), N1
, N0
);
4741 // fold (mulo x, 0) -> 0 + no carry out
4742 if (isNullOrNullSplat(N1
))
4743 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
4744 DAG
.getConstant(0, DL
, CarryVT
));
4746 // (mulo x, 2) -> (addo x, x)
4747 if (N1C
&& N1C
->getAPIntValue() == 2)
4748 return DAG
.getNode(IsSigned
? ISD::SADDO
: ISD::UADDO
, DL
,
4749 N
->getVTList(), N0
, N0
);
4752 // A 1 bit SMULO overflows if both inputs are 1.
4753 if (VT
.getScalarSizeInBits() == 1) {
4754 SDValue And
= DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
4755 return CombineTo(N
, And
,
4756 DAG
.getSetCC(DL
, CarryVT
, And
,
4757 DAG
.getConstant(0, DL
, VT
), ISD::SETNE
));
4760 // Multiplying n * m significant bits yields a result of n + m significant
4761 // bits. If the total number of significant bits does not exceed the
4762 // result bit width (minus 1), there is no overflow.
4763 unsigned SignBits
= DAG
.ComputeNumSignBits(N0
);
4765 SignBits
+= DAG
.ComputeNumSignBits(N1
);
4766 if (SignBits
> VT
.getScalarSizeInBits() + 1)
4767 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4768 DAG
.getConstant(0, DL
, CarryVT
));
4770 KnownBits N1Known
= DAG
.computeKnownBits(N1
);
4771 KnownBits N0Known
= DAG
.computeKnownBits(N0
);
4773 (void)N0Known
.getMaxValue().umul_ov(N1Known
.getMaxValue(), Overflow
);
4775 return CombineTo(N
, DAG
.getNode(ISD::MUL
, DL
, VT
, N0
, N1
),
4776 DAG
.getConstant(0, DL
, CarryVT
));
4782 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
4783 SDValue N0
= N
->getOperand(0);
4784 SDValue N1
= N
->getOperand(1);
4785 EVT VT
= N0
.getValueType();
4786 unsigned Opcode
= N
->getOpcode();
4790 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4793 // fold operation with constant operands.
4794 if (SDValue C
= DAG
.FoldConstantArithmetic(Opcode
, SDLoc(N
), VT
, {N0
, N1
}))
4797 // canonicalize constant to RHS
4798 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4799 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4800 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
4802 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
4803 // Only do this if the current op isn't legal and the flipped is.
4804 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
4805 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
4806 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
4809 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
4810 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
4811 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
4812 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
4813 default: llvm_unreachable("Unknown MINMAX opcode");
4815 if (TLI
.isOperationLegal(AltOpcode
, VT
))
4816 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
4819 // Simplify the operands using demanded-bits information.
4820 if (SimplifyDemandedBits(SDValue(N
, 0)))
4821 return SDValue(N
, 0);
4826 /// If this is a bitwise logic instruction and both operands have the same
4827 /// opcode, try to sink the other opcode after the logic instruction.
4828 SDValue
DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode
*N
) {
4829 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
4830 EVT VT
= N0
.getValueType();
4831 unsigned LogicOpcode
= N
->getOpcode();
4832 unsigned HandOpcode
= N0
.getOpcode();
4833 assert((LogicOpcode
== ISD::AND
|| LogicOpcode
== ISD::OR
||
4834 LogicOpcode
== ISD::XOR
) && "Expected logic opcode");
4835 assert(HandOpcode
== N1
.getOpcode() && "Bad input!");
4837 // Bail early if none of these transforms apply.
4838 if (N0
.getNumOperands() == 0)
4841 // FIXME: We should check number of uses of the operands to not increase
4842 // the instruction count for all transforms.
4844 // Handle size-changing casts.
4845 SDValue X
= N0
.getOperand(0);
4846 SDValue Y
= N1
.getOperand(0);
4847 EVT XVT
= X
.getValueType();
4849 if (HandOpcode
== ISD::ANY_EXTEND
|| HandOpcode
== ISD::ZERO_EXTEND
||
4850 HandOpcode
== ISD::SIGN_EXTEND
) {
4851 // If both operands have other uses, this transform would create extra
4852 // instructions without eliminating anything.
4853 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4855 // We need matching integer source types.
4856 if (XVT
!= Y
.getValueType())
4858 // Don't create an illegal op during or after legalization. Don't ever
4859 // create an unsupported vector op.
4860 if ((VT
.isVector() || LegalOperations
) &&
4861 !TLI
.isOperationLegalOrCustom(LogicOpcode
, XVT
))
4863 // Avoid infinite looping with PromoteIntBinOp.
4864 // TODO: Should we apply desirable/legal constraints to all opcodes?
4865 if (HandOpcode
== ISD::ANY_EXTEND
&& LegalTypes
&&
4866 !TLI
.isTypeDesirableForOp(LogicOpcode
, XVT
))
4868 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
4869 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4870 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4873 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
4874 if (HandOpcode
== ISD::TRUNCATE
) {
4875 // If both operands have other uses, this transform would create extra
4876 // instructions without eliminating anything.
4877 if (!N0
.hasOneUse() && !N1
.hasOneUse())
4879 // We need matching source types.
4880 if (XVT
!= Y
.getValueType())
4882 // Don't create an illegal op during or after legalization.
4883 if (LegalOperations
&& !TLI
.isOperationLegal(LogicOpcode
, XVT
))
4885 // Be extra careful sinking truncate. If it's free, there's no benefit in
4886 // widening a binop. Also, don't create a logic op on an illegal type.
4887 if (TLI
.isZExtFree(VT
, XVT
) && TLI
.isTruncateFree(XVT
, VT
))
4889 if (!TLI
.isTypeLegal(XVT
))
4891 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4892 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4895 // For binops SHL/SRL/SRA/AND:
4896 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
4897 if ((HandOpcode
== ISD::SHL
|| HandOpcode
== ISD::SRL
||
4898 HandOpcode
== ISD::SRA
|| HandOpcode
== ISD::AND
) &&
4899 N0
.getOperand(1) == N1
.getOperand(1)) {
4900 // If either operand has other uses, this transform is not an improvement.
4901 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4903 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4904 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
, N0
.getOperand(1));
4907 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
4908 if (HandOpcode
== ISD::BSWAP
) {
4909 // If either operand has other uses, this transform is not an improvement.
4910 if (!N0
.hasOneUse() || !N1
.hasOneUse())
4912 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4913 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4916 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
4917 // Only perform this optimization up until type legalization, before
4918 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
4919 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
4920 // we don't want to undo this promotion.
4921 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
4923 if ((HandOpcode
== ISD::BITCAST
|| HandOpcode
== ISD::SCALAR_TO_VECTOR
) &&
4924 Level
<= AfterLegalizeTypes
) {
4925 // Input types must be integer and the same.
4926 if (XVT
.isInteger() && XVT
== Y
.getValueType() &&
4927 !(VT
.isVector() && TLI
.isTypeLegal(VT
) &&
4928 !XVT
.isVector() && !TLI
.isTypeLegal(XVT
))) {
4929 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, XVT
, X
, Y
);
4930 return DAG
.getNode(HandOpcode
, DL
, VT
, Logic
);
4934 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
4935 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
4936 // If both shuffles use the same mask, and both shuffle within a single
4937 // vector, then it is worthwhile to move the swizzle after the operation.
4938 // The type-legalizer generates this pattern when loading illegal
4939 // vector types from memory. In many cases this allows additional shuffle
4941 // There are other cases where moving the shuffle after the xor/and/or
4942 // is profitable even if shuffles don't perform a swizzle.
4943 // If both shuffles use the same mask, and both shuffles have the same first
4944 // or second operand, then it might still be profitable to move the shuffle
4945 // after the xor/and/or operation.
4946 if (HandOpcode
== ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
4947 auto *SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
4948 auto *SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
4949 assert(X
.getValueType() == Y
.getValueType() &&
4950 "Inputs to shuffles are not the same type");
4952 // Check that both shuffles use the same mask. The masks are known to be of
4953 // the same length because the result vector type is the same.
4954 // Check also that shuffles have only one use to avoid introducing extra
4956 if (!SVN0
->hasOneUse() || !SVN1
->hasOneUse() ||
4957 !SVN0
->getMask().equals(SVN1
->getMask()))
4960 // Don't try to fold this node if it requires introducing a
4961 // build vector of all zeros that might be illegal at this stage.
4962 SDValue ShOp
= N0
.getOperand(1);
4963 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4964 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4966 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
4967 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
4968 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
,
4969 N0
.getOperand(0), N1
.getOperand(0));
4970 return DAG
.getVectorShuffle(VT
, DL
, Logic
, ShOp
, SVN0
->getMask());
4973 // Don't try to fold this node if it requires introducing a
4974 // build vector of all zeros that might be illegal at this stage.
4975 ShOp
= N0
.getOperand(0);
4976 if (LogicOpcode
== ISD::XOR
&& !ShOp
.isUndef())
4977 ShOp
= tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
4979 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
4980 if (N0
.getOperand(0) == N1
.getOperand(0) && ShOp
.getNode()) {
4981 SDValue Logic
= DAG
.getNode(LogicOpcode
, DL
, VT
, N0
.getOperand(1),
4983 return DAG
.getVectorShuffle(VT
, DL
, ShOp
, Logic
, SVN0
->getMask());
4990 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
4991 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
4993 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
4994 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
4995 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
4998 assert(N0
.getValueType() == N1
.getValueType() &&
4999 "Unexpected operand types for bitwise logic op");
5000 assert(LL
.getValueType() == LR
.getValueType() &&
5001 RL
.getValueType() == RR
.getValueType() &&
5002 "Unexpected operand types for setcc");
5004 // If we're here post-legalization or the logic op type is not i1, the logic
5005 // op type must match a setcc result type. Also, all folds require new
5006 // operations on the left and right operands, so those types must match.
5007 EVT VT
= N0
.getValueType();
5008 EVT OpVT
= LL
.getValueType();
5009 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
5010 if (VT
!= getSetCCResultType(OpVT
))
5012 if (OpVT
!= RL
.getValueType())
5015 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
5016 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
5017 bool IsInteger
= OpVT
.isInteger();
5018 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
5019 bool IsZero
= isNullOrNullSplat(LR
);
5020 bool IsNeg1
= isAllOnesOrAllOnesSplat(LR
);
5023 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
5024 // All sign bits clear?
5025 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5027 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
5028 // Any sign bits set?
5029 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5031 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
5032 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
5033 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
5034 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
5035 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
5036 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
5037 AddToWorklist(Or
.getNode());
5038 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
5042 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
5043 // All sign bits set?
5044 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
5046 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
5047 // Any sign bits clear?
5048 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
5050 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
5051 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
5052 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
5053 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
5054 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
5055 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
5056 AddToWorklist(And
.getNode());
5057 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
5061 // TODO: What is the 'or' equivalent of this fold?
5062 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
5063 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
5064 IsInteger
&& CC0
== ISD::SETNE
&&
5065 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
5066 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
5067 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
5068 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
5069 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
5070 AddToWorklist(Add
.getNode());
5071 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
5074 // Try more general transforms if the predicates match and the only user of
5075 // the compares is the 'and' or 'or'.
5076 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
5077 N0
.hasOneUse() && N1
.hasOneUse()) {
5078 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
5079 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
5080 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
5081 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
5082 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
5083 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
5084 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5085 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
5088 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
5089 // TODO - support non-uniform vector amounts.
5090 if ((IsAnd
&& CC1
== ISD::SETNE
) || (!IsAnd
&& CC1
== ISD::SETEQ
)) {
5091 // Match a shared variable operand and 2 non-opaque constant operands.
5092 ConstantSDNode
*C0
= isConstOrConstSplat(LR
);
5093 ConstantSDNode
*C1
= isConstOrConstSplat(RR
);
5094 if (LL
== RL
&& C0
&& C1
&& !C0
->isOpaque() && !C1
->isOpaque()) {
5096 APIntOps::umax(C0
->getAPIntValue(), C1
->getAPIntValue());
5098 APIntOps::umin(C0
->getAPIntValue(), C1
->getAPIntValue());
5099 // The difference of the constants must be a single bit.
5100 if ((CMax
- CMin
).isPowerOf2()) {
5101 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
5102 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
5103 SDValue Max
= DAG
.getNode(ISD::UMAX
, DL
, OpVT
, LR
, RR
);
5104 SDValue Min
= DAG
.getNode(ISD::UMIN
, DL
, OpVT
, LR
, RR
);
5105 SDValue Offset
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, LL
, Min
);
5106 SDValue Diff
= DAG
.getNode(ISD::SUB
, DL
, OpVT
, Max
, Min
);
5107 SDValue Mask
= DAG
.getNOT(DL
, Diff
, OpVT
);
5108 SDValue And
= DAG
.getNode(ISD::AND
, DL
, OpVT
, Offset
, Mask
);
5109 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
5110 return DAG
.getSetCC(DL
, VT
, And
, Zero
, CC0
);
5116 // Canonicalize equivalent operands to LL == RL.
5117 if (LL
== RR
&& LR
== RL
) {
5118 CC1
= ISD::getSetCCSwappedOperands(CC1
);
5122 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5123 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
5124 if (LL
== RL
&& LR
== RR
) {
5125 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, OpVT
)
5126 : ISD::getSetCCOrOperation(CC0
, CC1
, OpVT
);
5127 if (NewCC
!= ISD::SETCC_INVALID
&&
5128 (!LegalOperations
||
5129 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
5130 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
5131 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
5137 /// This contains all DAGCombine rules which reduce two values combined by
5138 /// an And operation to a single value. This makes them reusable in the context
5139 /// of visitSELECT(). Rules involving constants are not included as
5140 /// visitSELECT() already handles those cases.
5141 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
5142 EVT VT
= N1
.getValueType();
5145 // fold (and x, undef) -> 0
5146 if (N0
.isUndef() || N1
.isUndef())
5147 return DAG
.getConstant(0, DL
, VT
);
5149 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
5152 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
5153 VT
.getSizeInBits() <= 64) {
5154 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5155 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
5156 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
5157 // immediate for an add, but it is legal if its top c2 bits are set,
5158 // transform the ADD so the immediate doesn't need to be materialized
5160 APInt ADDC
= ADDI
->getAPIntValue();
5161 APInt SRLC
= SRLI
->getAPIntValue();
5162 if (ADDC
.getMinSignedBits() <= 64 &&
5163 SRLC
.ult(VT
.getSizeInBits()) &&
5164 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5165 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
5166 SRLC
.getZExtValue());
5167 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
5169 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
5172 DAG
.getNode(ISD::ADD
, DL0
, VT
,
5173 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
5174 CombineTo(N0
.getNode(), NewAdd
);
5175 // Return N so it doesn't get rechecked!
5176 return SDValue(N
, 0);
5184 // Reduce bit extract of low half of an integer to the narrower type.
5185 // (and (srl i64:x, K), KMask) ->
5186 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
5187 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
5188 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
5189 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
5190 unsigned Size
= VT
.getSizeInBits();
5191 const APInt
&AndMask
= CAnd
->getAPIntValue();
5192 unsigned ShiftBits
= CShift
->getZExtValue();
5194 // Bail out, this node will probably disappear anyway.
5198 unsigned MaskBits
= AndMask
.countTrailingOnes();
5199 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
5201 if (AndMask
.isMask() &&
5202 // Required bits must not span the two halves of the integer and
5203 // must fit in the half size type.
5204 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
5205 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
5206 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
5207 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
5208 TLI
.isTruncateFree(VT
, HalfVT
) &&
5209 TLI
.isZExtFree(HalfVT
, VT
)) {
5210 // The isNarrowingProfitable is to avoid regressions on PPC and
5211 // AArch64 which match a few 64-bit bit insert / bit extract patterns
5212 // on downstream users of this. Those patterns could probably be
5213 // extended to handle extensions mixed in.
5216 assert(MaskBits
<= Size
);
5218 // Extracting the highest bit of the low half.
5219 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
5220 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
5223 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
5224 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
5225 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
5226 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
5227 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
5236 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
5237 EVT LoadResultTy
, EVT
&ExtVT
) {
5238 if (!AndC
->getAPIntValue().isMask())
5241 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
5243 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5244 EVT LoadedVT
= LoadN
->getMemoryVT();
5246 if (ExtVT
== LoadedVT
&&
5247 (!LegalOperations
||
5248 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
5249 // ZEXTLOAD will match without needing to change the size of the value being
5254 // Do not change the width of a volatile or atomic loads.
5255 if (!LoadN
->isSimple())
5258 // Do not generate loads of non-round integer types since these can
5259 // be expensive (and would be wrong if the type is not byte sized).
5260 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
5263 if (LegalOperations
&&
5264 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
5267 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
5273 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
5274 ISD::LoadExtType ExtType
, EVT
&MemVT
,
5278 // Only allow byte offsets.
5282 // Do not generate loads of non-round integer types since these can
5283 // be expensive (and would be wrong if the type is not byte sized).
5284 if (!MemVT
.isRound())
5287 // Don't change the width of a volatile or atomic loads.
5288 if (!LDST
->isSimple())
5291 EVT LdStMemVT
= LDST
->getMemoryVT();
5293 // Bail out when changing the scalable property, since we can't be sure that
5294 // we're actually narrowing here.
5295 if (LdStMemVT
.isScalableVector() != MemVT
.isScalableVector())
5298 // Verify that we are actually reducing a load width here.
5299 if (LdStMemVT
.bitsLT(MemVT
))
5302 // Ensure that this isn't going to produce an unsupported memory access.
5304 assert(ShAmt
% 8 == 0 && "ShAmt is byte offset");
5305 const unsigned ByteShAmt
= ShAmt
/ 8;
5306 const Align LDSTAlign
= LDST
->getAlign();
5307 const Align NarrowAlign
= commonAlignment(LDSTAlign
, ByteShAmt
);
5308 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
5309 LDST
->getAddressSpace(), NarrowAlign
,
5310 LDST
->getMemOperand()->getFlags()))
5314 // It's not possible to generate a constant of extended or untyped type.
5315 EVT PtrType
= LDST
->getBasePtr().getValueType();
5316 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
5319 if (isa
<LoadSDNode
>(LDST
)) {
5320 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
5321 // Don't transform one with multiple uses, this would require adding a new
5323 if (!SDValue(Load
, 0).hasOneUse())
5326 if (LegalOperations
&&
5327 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
5330 // For the transform to be legal, the load must produce only two values
5331 // (the value loaded and the chain). Don't transform a pre-increment
5332 // load, for example, which produces an extra value. Otherwise the
5333 // transformation is not equivalent, and the downstream logic to replace
5334 // uses gets things wrong.
5335 if (Load
->getNumValues() > 2)
5338 // If the load that we're shrinking is an extload and we're not just
5339 // discarding the extension we can't simply shrink the load. Bail.
5340 // TODO: It would be possible to merge the extensions in some cases.
5341 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
5342 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5345 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
5348 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
5349 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
5350 // Can't write outside the original store
5351 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
5354 if (LegalOperations
&&
5355 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
5361 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
5362 SmallVectorImpl
<LoadSDNode
*> &Loads
,
5363 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
5364 ConstantSDNode
*Mask
,
5365 SDNode
*&NodeToMask
) {
5366 // Recursively search for the operands, looking for loads which can be
5368 for (SDValue Op
: N
->op_values()) {
5369 if (Op
.getValueType().isVector())
5372 // Some constants may need fixing up later if they are too large.
5373 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
5374 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
5375 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
5376 NodesWithConsts
.insert(N
);
5380 if (!Op
.hasOneUse())
5383 switch(Op
.getOpcode()) {
5385 auto *Load
= cast
<LoadSDNode
>(Op
);
5387 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
5388 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
5390 // ZEXTLOAD is already small enough.
5391 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
5392 ExtVT
.bitsGE(Load
->getMemoryVT()))
5395 // Use LE to convert equal sized loads to zext.
5396 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
5397 Loads
.push_back(Load
);
5403 case ISD::ZERO_EXTEND
:
5404 case ISD::AssertZext
: {
5405 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
5406 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
5407 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
5408 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
5409 Op
.getOperand(0).getValueType();
5411 // We can accept extending nodes if the mask is wider or an equal
5412 // width to the original type.
5413 if (ExtVT
.bitsGE(VT
))
5420 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
5426 // Allow one node which will masked along with any loads found.
5430 // Also ensure that the node to be masked only produces one data result.
5431 NodeToMask
= Op
.getNode();
5432 if (NodeToMask
->getNumValues() > 1) {
5433 bool HasValue
= false;
5434 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
5435 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
5436 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
5438 NodeToMask
= nullptr;
5444 assert(HasValue
&& "Node to be masked has no data result?");
5450 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
) {
5451 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
5455 if (!Mask
->getAPIntValue().isMask())
5458 // No need to do anything if the and directly uses a load.
5459 if (isa
<LoadSDNode
>(N
->getOperand(0)))
5462 SmallVector
<LoadSDNode
*, 8> Loads
;
5463 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
5464 SDNode
*FixupNode
= nullptr;
5465 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
5466 if (Loads
.size() == 0)
5469 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
5470 SDValue MaskOp
= N
->getOperand(1);
5472 // If it exists, fixup the single node we allow in the tree that needs
5475 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
5476 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
5477 FixupNode
->getValueType(0),
5478 SDValue(FixupNode
, 0), MaskOp
);
5479 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
5480 if (And
.getOpcode() == ISD ::AND
)
5481 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
5484 // Narrow any constants that need it.
5485 for (auto *LogicN
: NodesWithConsts
) {
5486 SDValue Op0
= LogicN
->getOperand(0);
5487 SDValue Op1
= LogicN
->getOperand(1);
5489 if (isa
<ConstantSDNode
>(Op0
))
5490 std::swap(Op0
, Op1
);
5492 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
5495 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
5498 // Create narrow loads.
5499 for (auto *Load
: Loads
) {
5500 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
5501 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
5502 SDValue(Load
, 0), MaskOp
);
5503 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
5504 if (And
.getOpcode() == ISD ::AND
)
5506 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
5507 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
5509 "Shouldn't be masking the load if it can't be narrowed");
5510 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
5512 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
5519 // x & (-1 'logical shift' y)
5521 // (x 'opposite logical shift' y) 'logical shift' y
5522 // if it is better for performance.
5523 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
5524 assert(N
->getOpcode() == ISD::AND
);
5526 SDValue N0
= N
->getOperand(0);
5527 SDValue N1
= N
->getOperand(1);
5529 // Do we actually prefer shifts over mask?
5530 if (!TLI
.shouldFoldMaskToVariableShiftPair(N0
))
5533 // Try to match (-1 '[outer] logical shift' y)
5534 unsigned OuterShift
;
5535 unsigned InnerShift
; // The opposite direction to the OuterShift.
5536 SDValue Y
; // Shift amount.
5537 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
5540 OuterShift
= M
->getOpcode();
5541 if (OuterShift
== ISD::SHL
)
5542 InnerShift
= ISD::SRL
;
5543 else if (OuterShift
== ISD::SRL
)
5544 InnerShift
= ISD::SHL
;
5547 if (!isAllOnesConstant(M
->getOperand(0)))
5549 Y
= M
->getOperand(1);
5556 else if (matchMask(N0
))
5562 EVT VT
= N
->getValueType(0);
5564 // tmp = x 'opposite logical shift' y
5565 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
5566 // ret = tmp 'logical shift' y
5567 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
5572 /// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
5573 /// For a target with a bit test, this is expected to become test + set and save
5574 /// at least 1 instruction.
5575 static SDValue
combineShiftAnd1ToBitTest(SDNode
*And
, SelectionDAG
&DAG
) {
5576 assert(And
->getOpcode() == ISD::AND
&& "Expected an 'and' op");
5578 // This is probably not worthwhile without a supported type.
5579 EVT VT
= And
->getValueType(0);
5580 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5581 if (!TLI
.isTypeLegal(VT
))
5584 // Look through an optional extension and find a 'not'.
5585 // TODO: Should we favor test+set even without the 'not' op?
5586 SDValue Not
= And
->getOperand(0), And1
= And
->getOperand(1);
5587 if (Not
.getOpcode() == ISD::ANY_EXTEND
)
5588 Not
= Not
.getOperand(0);
5589 if (!isBitwiseNot(Not
) || !Not
.hasOneUse() || !isOneConstant(And1
))
5592 // Look though an optional truncation. The source operand may not be the same
5593 // type as the original 'and', but that is ok because we are masking off
5594 // everything but the low bit.
5595 SDValue Srl
= Not
.getOperand(0);
5596 if (Srl
.getOpcode() == ISD::TRUNCATE
)
5597 Srl
= Srl
.getOperand(0);
5599 // Match a shift-right by constant.
5600 if (Srl
.getOpcode() != ISD::SRL
|| !Srl
.hasOneUse() ||
5601 !isa
<ConstantSDNode
>(Srl
.getOperand(1)))
5604 // We might have looked through casts that make this transform invalid.
5605 // TODO: If the source type is wider than the result type, do the mask and
5606 // compare in the source type.
5607 const APInt
&ShiftAmt
= Srl
.getConstantOperandAPInt(1);
5608 unsigned VTBitWidth
= VT
.getSizeInBits();
5609 if (ShiftAmt
.uge(VTBitWidth
))
5612 // Turn this into a bit-test pattern using mask op + setcc:
5613 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
5615 SDValue X
= DAG
.getZExtOrTrunc(Srl
.getOperand(0), DL
, VT
);
5616 EVT CCVT
= TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5617 SDValue Mask
= DAG
.getConstant(
5618 APInt::getOneBitSet(VTBitWidth
, ShiftAmt
.getZExtValue()), DL
, VT
);
5619 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, Mask
);
5620 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
5621 SDValue Setcc
= DAG
.getSetCC(DL
, CCVT
, NewAnd
, Zero
, ISD::SETEQ
);
5622 return DAG
.getZExtOrTrunc(Setcc
, DL
, VT
);
5625 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
5626 SDValue N0
= N
->getOperand(0);
5627 SDValue N1
= N
->getOperand(1);
5628 EVT VT
= N1
.getValueType();
5635 if (VT
.isVector()) {
5636 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5639 // fold (and x, 0) -> 0, vector edition
5640 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
5641 // do not return N0, because undef node may exist in N0
5642 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
5643 SDLoc(N
), N0
.getValueType());
5644 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
5645 // do not return N1, because undef node may exist in N1
5646 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
5647 SDLoc(N
), N1
.getValueType());
5649 // fold (and x, -1) -> x, vector edition
5650 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
5652 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
5655 // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
5656 auto *MLoad
= dyn_cast
<MaskedLoadSDNode
>(N0
);
5657 auto *BVec
= dyn_cast
<BuildVectorSDNode
>(N1
);
5658 if (MLoad
&& BVec
&& MLoad
->getExtensionType() == ISD::EXTLOAD
&&
5659 N0
.hasOneUse() && N1
.hasOneUse()) {
5660 EVT LoadVT
= MLoad
->getMemoryVT();
5662 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ExtVT
, LoadVT
)) {
5663 // For this AND to be a zero extension of the masked load the elements
5664 // of the BuildVec must mask the bottom bits of the extended element
5666 if (ConstantSDNode
*Splat
= BVec
->getConstantSplatNode()) {
5667 uint64_t ElementSize
=
5668 LoadVT
.getVectorElementType().getScalarSizeInBits();
5669 if (Splat
->getAPIntValue().isMask(ElementSize
)) {
5670 return DAG
.getMaskedLoad(
5671 ExtVT
, SDLoc(N
), MLoad
->getChain(), MLoad
->getBasePtr(),
5672 MLoad
->getOffset(), MLoad
->getMask(), MLoad
->getPassThru(),
5673 LoadVT
, MLoad
->getMemOperand(), MLoad
->getAddressingMode(),
5674 ISD::ZEXTLOAD
, MLoad
->isExpandingLoad());
5681 // fold (and c1, c2) -> c1&c2
5682 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
5683 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, {N0
, N1
}))
5686 // canonicalize constant to RHS
5687 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5688 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5689 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
5691 // fold (and x, -1) -> x
5692 if (isAllOnesConstant(N1
))
5695 // if (and x, c) is known to be zero, return 0
5696 unsigned BitWidth
= VT
.getScalarSizeInBits();
5697 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
5698 APInt::getAllOnesValue(BitWidth
)))
5699 return DAG
.getConstant(0, SDLoc(N
), VT
);
5701 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5705 if (SDValue RAND
= reassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5708 // Try to convert a constant mask AND into a shuffle clear mask.
5710 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
5713 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
5716 // fold (and (or x, C), D) -> D if (C & D) == D
5717 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5718 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
5720 if (N0
.getOpcode() == ISD::OR
&&
5721 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
5723 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
5724 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
5725 SDValue N0Op0
= N0
.getOperand(0);
5726 APInt Mask
= ~N1C
->getAPIntValue();
5727 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
5728 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
5729 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
5730 N0
.getValueType(), N0Op0
);
5732 // Replace uses of the AND with uses of the Zero extend node.
5735 // We actually want to replace all uses of the any_extend with the
5736 // zero_extend, to avoid duplicating things. This will later cause this
5737 // AND to be folded.
5738 CombineTo(N0
.getNode(), Zext
);
5739 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5743 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
5744 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
5745 // already be zero by virtue of the width of the base type of the load.
5747 // the 'X' node here can either be nothing or an extract_vector_elt to catch
5749 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
5750 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
5751 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
5752 N0
.getOperand(0).getResNo() == 0) ||
5753 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
5754 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
5755 N0
: N0
.getOperand(0) );
5757 // Get the constant (if applicable) the zero'th operand is being ANDed with.
5758 // This can be a pure constant or a vector splat, in which case we treat the
5759 // vector as a scalar and use the splat value.
5760 APInt Constant
= APInt::getNullValue(1);
5761 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
5762 Constant
= C
->getAPIntValue();
5763 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
5764 APInt SplatValue
, SplatUndef
;
5765 unsigned SplatBitSize
;
5767 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
5768 SplatBitSize
, HasAnyUndefs
);
5770 // Undef bits can contribute to a possible optimisation if set, so
5772 SplatValue
|= SplatUndef
;
5774 // The splat value may be something like "0x00FFFFFF", which means 0 for
5775 // the first vector value and FF for the rest, repeating. We need a mask
5776 // that will apply equally to all members of the vector, so AND all the
5777 // lanes of the constant together.
5778 unsigned EltBitWidth
= Vector
->getValueType(0).getScalarSizeInBits();
5780 // If the splat value has been compressed to a bitlength lower
5781 // than the size of the vector lane, we need to re-expand it to
5783 if (EltBitWidth
> SplatBitSize
)
5784 for (SplatValue
= SplatValue
.zextOrTrunc(EltBitWidth
);
5785 SplatBitSize
< EltBitWidth
; SplatBitSize
= SplatBitSize
* 2)
5786 SplatValue
|= SplatValue
.shl(SplatBitSize
);
5788 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
5789 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
5790 if ((SplatBitSize
% EltBitWidth
) == 0) {
5791 Constant
= APInt::getAllOnesValue(EltBitWidth
);
5792 for (unsigned i
= 0, n
= (SplatBitSize
/ EltBitWidth
); i
< n
; ++i
)
5793 Constant
&= SplatValue
.extractBits(EltBitWidth
, i
* EltBitWidth
);
5798 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
5799 // actually legal and isn't going to get expanded, else this is a false
5801 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
5802 Load
->getValueType(0),
5803 Load
->getMemoryVT());
5805 // Resize the constant to the same size as the original memory access before
5806 // extension. If it is still the AllOnesValue then this AND is completely
5808 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
5811 switch (Load
->getExtensionType()) {
5812 default: B
= false; break;
5813 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
5815 case ISD::NON_EXTLOAD
: B
= true; break;
5818 if (B
&& Constant
.isAllOnesValue()) {
5819 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
5820 // preserve semantics once we get rid of the AND.
5821 SDValue
NewLoad(Load
, 0);
5823 // Fold the AND away. NewLoad may get replaced immediately.
5824 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
5826 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
5827 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
5828 Load
->getValueType(0), SDLoc(Load
),
5829 Load
->getChain(), Load
->getBasePtr(),
5830 Load
->getOffset(), Load
->getMemoryVT(),
5831 Load
->getMemOperand());
5832 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
5833 if (Load
->getNumValues() == 3) {
5834 // PRE/POST_INC loads have 3 values.
5835 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
5836 NewLoad
.getValue(2) };
5837 CombineTo(Load
, To
, 3, true);
5839 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
5843 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5847 // fold (and (masked_gather x)) -> (zext_masked_gather x)
5848 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
5849 EVT MemVT
= GN0
->getMemoryVT();
5850 EVT ScalarVT
= MemVT
.getScalarType();
5852 if (SDValue(GN0
, 0).hasOneUse() &&
5853 isConstantSplatVectorMaskForType(N1
.getNode(), ScalarVT
) &&
5854 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
5855 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
5856 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
5858 SDValue ZExtLoad
= DAG
.getMaskedGather(
5859 DAG
.getVTList(VT
, MVT::Other
), MemVT
, SDLoc(N
), Ops
,
5860 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::ZEXTLOAD
);
5862 CombineTo(N
, ZExtLoad
);
5863 AddToWorklist(ZExtLoad
.getNode());
5864 // Avoid recheck of N.
5865 return SDValue(N
, 0);
5869 // fold (and (load x), 255) -> (zextload x, i8)
5870 // fold (and (extload x, i16), 255) -> (zextload x, i8)
5871 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
5872 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
5873 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
5874 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
5875 if (SDValue Res
= ReduceLoadWidth(N
)) {
5876 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
5877 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
5879 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 0), Res
);
5880 return SDValue(N
, 0);
5885 // Attempt to propagate the AND back up to the leaves which, if they're
5886 // loads, can be combined to narrow loads and the AND node can be removed.
5887 // Perform after legalization so that extend nodes will already be
5888 // combined into the loads.
5889 if (BackwardsPropagateMask(N
))
5890 return SDValue(N
, 0);
5893 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
5896 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
5897 if (N0
.getOpcode() == N1
.getOpcode())
5898 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
5901 // Masking the negated extension of a boolean is just the zero-extended
5903 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
5904 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
5906 // Note: the SimplifyDemandedBits fold below can make an information-losing
5907 // transform, and then we have no way to find this better fold.
5908 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
5909 if (isNullOrNullSplat(N0
.getOperand(0))) {
5910 SDValue SubRHS
= N0
.getOperand(1);
5911 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
5912 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5914 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
5915 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
5916 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
5920 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
5921 // fold (and (sra)) -> (and (srl)) when possible.
5922 if (SimplifyDemandedBits(SDValue(N
, 0)))
5923 return SDValue(N
, 0);
5925 // fold (zext_inreg (extload x)) -> (zextload x)
5926 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
5927 if (ISD::isUNINDEXEDLoad(N0
.getNode()) &&
5928 (ISD::isEXTLoad(N0
.getNode()) ||
5929 (ISD::isSEXTLoad(N0
.getNode()) && N0
.hasOneUse()))) {
5930 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
5931 EVT MemVT
= LN0
->getMemoryVT();
5932 // If we zero all the possible extended bits, then we can turn this into
5933 // a zextload if we are running before legalize or the operation is legal.
5934 unsigned ExtBitSize
= N1
.getScalarValueSizeInBits();
5935 unsigned MemBitSize
= MemVT
.getScalarSizeInBits();
5936 APInt ExtBits
= APInt::getHighBitsSet(ExtBitSize
, ExtBitSize
- MemBitSize
);
5937 if (DAG
.MaskedValueIsZero(N1
, ExtBits
) &&
5938 ((!LegalOperations
&& LN0
->isSimple()) ||
5939 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
5941 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
, LN0
->getChain(),
5942 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
5944 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
5945 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
5949 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
5950 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
5951 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
5952 N0
.getOperand(1), false))
5956 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
5959 if (TLI
.hasBitTest(N0
, N1
))
5960 if (SDValue V
= combineShiftAnd1ToBitTest(N
, DAG
))
5963 // Recognize the following pattern:
5965 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
5967 // where bitmask is a mask that clears the upper bits of AndVT. The
5968 // number of bits in bitmask must be a power of two.
5969 auto IsAndZeroExtMask
= [](SDValue LHS
, SDValue RHS
) {
5970 if (LHS
->getOpcode() != ISD::SIGN_EXTEND
)
5973 auto *C
= dyn_cast
<ConstantSDNode
>(RHS
);
5977 if (!C
->getAPIntValue().isMask(
5978 LHS
.getOperand(0).getValueType().getFixedSizeInBits()))
5984 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
5985 if (IsAndZeroExtMask(N0
, N1
))
5986 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, N0
.getOperand(0));
5991 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
5992 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
5993 bool DemandHighBits
) {
5994 if (!LegalOperations
)
5997 EVT VT
= N
->getValueType(0);
5998 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
6000 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
6003 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
6004 bool LookPassAnd0
= false;
6005 bool LookPassAnd1
= false;
6006 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
6008 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
6010 if (N0
.getOpcode() == ISD::AND
) {
6011 if (!N0
.getNode()->hasOneUse())
6013 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6014 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
6015 // This is needed for X86.
6016 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
6017 N01C
->getZExtValue() != 0xFFFF))
6019 N0
= N0
.getOperand(0);
6020 LookPassAnd0
= true;
6023 if (N1
.getOpcode() == ISD::AND
) {
6024 if (!N1
.getNode()->hasOneUse())
6026 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6027 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
6029 N1
= N1
.getOperand(0);
6030 LookPassAnd1
= true;
6033 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
6035 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
6037 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
6040 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6041 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
6044 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
6047 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
6048 SDValue N00
= N0
->getOperand(0);
6049 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
6050 if (!N00
.getNode()->hasOneUse())
6052 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
6053 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
6055 N00
= N00
.getOperand(0);
6056 LookPassAnd0
= true;
6059 SDValue N10
= N1
->getOperand(0);
6060 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
6061 if (!N10
.getNode()->hasOneUse())
6063 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
6064 // Also allow 0xFFFF since the bits will be shifted out. This is needed
6066 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
6067 N101C
->getZExtValue() != 0xFFFF))
6069 N10
= N10
.getOperand(0);
6070 LookPassAnd1
= true;
6076 // Make sure everything beyond the low halfword gets set to zero since the SRL
6077 // 16 will clear the top bits.
6078 unsigned OpSizeInBits
= VT
.getSizeInBits();
6079 if (DemandHighBits
&& OpSizeInBits
> 16) {
6080 // If the left-shift isn't masked out then the only way this is a bswap is
6081 // if all bits beyond the low 8 are 0. In that case the entire pattern
6082 // reduces to a left shift anyway: leave it for other parts of the combiner.
6086 // However, if the right shift isn't masked out then it might be because
6087 // it's not needed. See if we can spot that too.
6088 if (!LookPassAnd1
&&
6089 !DAG
.MaskedValueIsZero(
6090 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
6094 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
6095 if (OpSizeInBits
> 16) {
6097 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
6098 DAG
.getConstant(OpSizeInBits
- 16, DL
,
6099 getShiftAmountTy(VT
)));
6104 /// Return true if the specified node is an element that makes up a 32-bit
6105 /// packed halfword byteswap.
6106 /// ((x & 0x000000ff) << 8) |
6107 /// ((x & 0x0000ff00) >> 8) |
6108 /// ((x & 0x00ff0000) << 8) |
6109 /// ((x & 0xff000000) >> 8)
6110 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6111 if (!N
.getNode()->hasOneUse())
6114 unsigned Opc
= N
.getOpcode();
6115 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
6118 SDValue N0
= N
.getOperand(0);
6119 unsigned Opc0
= N0
.getOpcode();
6120 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
6123 ConstantSDNode
*N1C
= nullptr;
6124 // SHL or SRL: look upstream for AND mask operand
6125 if (Opc
== ISD::AND
)
6126 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6127 else if (Opc0
== ISD::AND
)
6128 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6132 unsigned MaskByteOffset
;
6133 switch (N1C
->getZExtValue()) {
6136 case 0xFF: MaskByteOffset
= 0; break;
6137 case 0xFF00: MaskByteOffset
= 1; break;
6139 // In case demanded bits didn't clear the bits that will be shifted out.
6140 // This is needed for X86.
6141 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
6146 case 0xFF0000: MaskByteOffset
= 2; break;
6147 case 0xFF000000: MaskByteOffset
= 3; break;
6150 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
6151 if (Opc
== ISD::AND
) {
6152 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
6154 // (x >> 8) & 0xff0000
6155 if (Opc0
!= ISD::SRL
)
6157 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6158 if (!C
|| C
->getZExtValue() != 8)
6161 // (x << 8) & 0xff00
6162 // (x << 8) & 0xff000000
6163 if (Opc0
!= ISD::SHL
)
6165 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
6166 if (!C
|| C
->getZExtValue() != 8)
6169 } else if (Opc
== ISD::SHL
) {
6171 // (x & 0xff0000) << 8
6172 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
6174 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6175 if (!C
|| C
->getZExtValue() != 8)
6177 } else { // Opc == ISD::SRL
6178 // (x & 0xff00) >> 8
6179 // (x & 0xff000000) >> 8
6180 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
6182 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
6183 if (!C
|| C
->getZExtValue() != 8)
6187 if (Parts
[MaskByteOffset
])
6190 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
6194 // Match 2 elements of a packed halfword bswap.
6195 static bool isBSwapHWordPair(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
6196 if (N
.getOpcode() == ISD::OR
)
6197 return isBSwapHWordElement(N
.getOperand(0), Parts
) &&
6198 isBSwapHWordElement(N
.getOperand(1), Parts
);
6200 if (N
.getOpcode() == ISD::SRL
&& N
.getOperand(0).getOpcode() == ISD::BSWAP
) {
6201 ConstantSDNode
*C
= isConstOrConstSplat(N
.getOperand(1));
6202 if (!C
|| C
->getAPIntValue() != 16)
6204 Parts
[0] = Parts
[1] = N
.getOperand(0).getOperand(0).getNode();
6211 // Match this pattern:
6212 // (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
6213 // And rewrite this to:
6214 // (rotr (bswap A), 16)
6215 static SDValue
matchBSwapHWordOrAndAnd(const TargetLowering
&TLI
,
6216 SelectionDAG
&DAG
, SDNode
*N
, SDValue N0
,
6217 SDValue N1
, EVT VT
, EVT ShiftAmountTy
) {
6218 assert(N
->getOpcode() == ISD::OR
&& VT
== MVT::i32
&&
6219 "MatchBSwapHWordOrAndAnd: expecting i32");
6220 if (!TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6222 if (N0
.getOpcode() != ISD::AND
|| N1
.getOpcode() != ISD::AND
)
6224 // TODO: this is too restrictive; lifting this restriction requires more tests
6225 if (!N0
->hasOneUse() || !N1
->hasOneUse())
6227 ConstantSDNode
*Mask0
= isConstOrConstSplat(N0
.getOperand(1));
6228 ConstantSDNode
*Mask1
= isConstOrConstSplat(N1
.getOperand(1));
6229 if (!Mask0
|| !Mask1
)
6231 if (Mask0
->getAPIntValue() != 0xff00ff00 ||
6232 Mask1
->getAPIntValue() != 0x00ff00ff)
6234 SDValue Shift0
= N0
.getOperand(0);
6235 SDValue Shift1
= N1
.getOperand(0);
6236 if (Shift0
.getOpcode() != ISD::SHL
|| Shift1
.getOpcode() != ISD::SRL
)
6238 ConstantSDNode
*ShiftAmt0
= isConstOrConstSplat(Shift0
.getOperand(1));
6239 ConstantSDNode
*ShiftAmt1
= isConstOrConstSplat(Shift1
.getOperand(1));
6240 if (!ShiftAmt0
|| !ShiftAmt1
)
6242 if (ShiftAmt0
->getAPIntValue() != 8 || ShiftAmt1
->getAPIntValue() != 8)
6244 if (Shift0
.getOperand(0) != Shift1
.getOperand(0))
6248 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
, Shift0
.getOperand(0));
6249 SDValue ShAmt
= DAG
.getConstant(16, DL
, ShiftAmountTy
);
6250 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6253 /// Match a 32-bit packed halfword bswap. That is
6254 /// ((x & 0x000000ff) << 8) |
6255 /// ((x & 0x0000ff00) >> 8) |
6256 /// ((x & 0x00ff0000) << 8) |
6257 /// ((x & 0xff000000) >> 8)
6258 /// => (rotl (bswap x), 16)
6259 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
6260 if (!LegalOperations
)
6263 EVT VT
= N
->getValueType(0);
6266 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
6269 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N0
, N1
, VT
,
6270 getShiftAmountTy(VT
)))
6273 // Try again with commuted operands.
6274 if (SDValue BSwap
= matchBSwapHWordOrAndAnd(TLI
, DAG
, N
, N1
, N0
, VT
,
6275 getShiftAmountTy(VT
)))
6280 // (or (bswaphpair), (bswaphpair))
6281 // (or (or (bswaphpair), (and)), (and))
6282 // (or (or (and), (bswaphpair)), (and))
6283 SDNode
*Parts
[4] = {};
6285 if (isBSwapHWordPair(N0
, Parts
)) {
6286 // (or (or (and), (and)), (or (and), (and)))
6287 if (!isBSwapHWordPair(N1
, Parts
))
6289 } else if (N0
.getOpcode() == ISD::OR
) {
6290 // (or (or (or (and), (and)), (and)), (and))
6291 if (!isBSwapHWordElement(N1
, Parts
))
6293 SDValue N00
= N0
.getOperand(0);
6294 SDValue N01
= N0
.getOperand(1);
6295 if (!(isBSwapHWordElement(N01
, Parts
) && isBSwapHWordPair(N00
, Parts
)) &&
6296 !(isBSwapHWordElement(N00
, Parts
) && isBSwapHWordPair(N01
, Parts
)))
6301 // Make sure the parts are all coming from the same node.
6302 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
6306 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
6307 SDValue(Parts
[0], 0));
6309 // Result of the bswap should be rotated by 16. If it's not legal, then
6310 // do (x << 16) | (x >> 16).
6311 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
6312 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
6313 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
6314 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
6315 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
6316 return DAG
.getNode(ISD::OR
, DL
, VT
,
6317 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
6318 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
6321 /// This contains all DAGCombine rules which reduce two values combined by
6322 /// an Or operation to a single value \see visitANDLike().
6323 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
6324 EVT VT
= N1
.getValueType();
6327 // fold (or x, undef) -> -1
6328 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
6329 return DAG
.getAllOnesConstant(DL
, VT
);
6331 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
6334 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
6335 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
6336 // Don't increase # computations.
6337 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6338 // We can only do this xform if we know that bits from X that are set in C2
6339 // but not in C1 are already zero. Likewise for Y.
6340 if (const ConstantSDNode
*N0O1C
=
6341 getAsNonOpaqueConstant(N0
.getOperand(1))) {
6342 if (const ConstantSDNode
*N1O1C
=
6343 getAsNonOpaqueConstant(N1
.getOperand(1))) {
6344 // We can only do this xform if we know that bits from X that are set in
6345 // C2 but not in C1 are already zero. Likewise for Y.
6346 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
6347 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
6349 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
6350 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
6351 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6352 N0
.getOperand(0), N1
.getOperand(0));
6353 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
6354 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
6360 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
6361 if (N0
.getOpcode() == ISD::AND
&&
6362 N1
.getOpcode() == ISD::AND
&&
6363 N0
.getOperand(0) == N1
.getOperand(0) &&
6364 // Don't increase # computations.
6365 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
6366 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
6367 N0
.getOperand(1), N1
.getOperand(1));
6368 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
6374 /// OR combines for which the commuted variant will be tried as well.
6375 static SDValue
visitORCommutative(
6376 SelectionDAG
&DAG
, SDValue N0
, SDValue N1
, SDNode
*N
) {
6377 EVT VT
= N0
.getValueType();
6378 if (N0
.getOpcode() == ISD::AND
) {
6379 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
6380 if (isBitwiseNot(N0
.getOperand(1)) && N0
.getOperand(1).getOperand(0) == N1
)
6381 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
6383 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
6384 if (isBitwiseNot(N0
.getOperand(0)) && N0
.getOperand(0).getOperand(0) == N1
)
6385 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N0
.getOperand(1), N1
);
6391 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
6392 SDValue N0
= N
->getOperand(0);
6393 SDValue N1
= N
->getOperand(1);
6394 EVT VT
= N1
.getValueType();
6401 if (VT
.isVector()) {
6402 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6405 // fold (or x, 0) -> x, vector edition
6406 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
6408 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
6411 // fold (or x, -1) -> -1, vector edition
6412 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
6413 // do not return N0, because undef node may exist in N0
6414 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
6415 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode()))
6416 // do not return N1, because undef node may exist in N1
6417 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
6419 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
6420 // Do this only if the resulting shuffle is legal.
6421 if (isa
<ShuffleVectorSDNode
>(N0
) &&
6422 isa
<ShuffleVectorSDNode
>(N1
) &&
6423 // Avoid folding a node with illegal type.
6424 TLI
.isTypeLegal(VT
)) {
6425 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
6426 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
6427 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
6428 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
6429 // Ensure both shuffles have a zero input.
6430 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
6431 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
6432 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
6433 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
6434 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
6435 bool CanFold
= true;
6436 int NumElts
= VT
.getVectorNumElements();
6437 SmallVector
<int, 4> Mask(NumElts
);
6439 for (int i
= 0; i
!= NumElts
; ++i
) {
6440 int M0
= SV0
->getMaskElt(i
);
6441 int M1
= SV1
->getMaskElt(i
);
6443 // Determine if either index is pointing to a zero vector.
6444 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
6445 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
6447 // If one element is zero and the otherside is undef, keep undef.
6448 // This also handles the case that both are undef.
6449 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
6454 // Make sure only one of the elements is zero.
6455 if (M0Zero
== M1Zero
) {
6460 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
6462 // We have a zero and non-zero element. If the non-zero came from
6463 // SV0 make the index a LHS index. If it came from SV1, make it
6464 // a RHS index. We need to mod by NumElts because we don't care
6465 // which operand it came from in the original shuffles.
6466 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
6470 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
6471 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
6473 SDValue LegalShuffle
=
6474 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
,
6477 return LegalShuffle
;
6483 // fold (or c1, c2) -> c1|c2
6484 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
6485 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, {N0
, N1
}))
6488 // canonicalize constant to RHS
6489 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6490 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6491 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
6493 // fold (or x, 0) -> x
6494 if (isNullConstant(N1
))
6497 // fold (or x, -1) -> -1
6498 if (isAllOnesConstant(N1
))
6501 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6504 // fold (or x, c) -> c iff (x & ~c) == 0
6505 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
6508 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
6511 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
6514 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
6515 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
6517 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
6521 if (SDValue ROR
= reassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
6524 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
6525 // iff (c1 & c2) != 0 or c1/c2 are undef.
6526 auto MatchIntersect
= [](ConstantSDNode
*C1
, ConstantSDNode
*C2
) {
6527 return !C1
|| !C2
|| C1
->getAPIntValue().intersects(C2
->getAPIntValue());
6529 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
6530 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
, true)) {
6531 if (SDValue COR
= DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N1
), VT
,
6532 {N1
, N0
.getOperand(1)})) {
6533 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
6534 AddToWorklist(IOR
.getNode());
6535 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
6539 if (SDValue Combined
= visitORCommutative(DAG
, N0
, N1
, N
))
6541 if (SDValue Combined
= visitORCommutative(DAG
, N1
, N0
, N
))
6544 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
6545 if (N0
.getOpcode() == N1
.getOpcode())
6546 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
6549 // See if this is some rotate idiom.
6550 if (SDValue Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
6553 if (SDValue Load
= MatchLoadCombine(N
))
6556 // Simplify the operands using demanded-bits information.
6557 if (SimplifyDemandedBits(SDValue(N
, 0)))
6558 return SDValue(N
, 0);
6560 // If OR can be rewritten into ADD, try combines based on ADD.
6561 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ADD
, VT
)) &&
6562 DAG
.haveNoCommonBitsSet(N0
, N1
))
6563 if (SDValue Combined
= visitADDLike(N
))
6569 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
6570 if (Op
.getOpcode() == ISD::AND
&&
6571 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
6572 Mask
= Op
.getOperand(1);
6573 return Op
.getOperand(0);
6578 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
6579 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
6581 Op
= stripConstantMask(DAG
, Op
, Mask
);
6582 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
6589 /// Helper function for visitOR to extract the needed side of a rotate idiom
6590 /// from a shl/srl/mul/udiv. This is meant to handle cases where
6591 /// InstCombine merged some outside op with one of the shifts from
6592 /// the rotate pattern.
6593 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
6594 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
6597 /// (or (add v v) (shrl v bitwidth-1)):
6598 /// expands (add v v) -> (shl v 1)
6600 /// (or (mul v c0) (shrl (mul v c1) c2)):
6601 /// expands (mul v c0) -> (shl (mul v c1) c3)
6603 /// (or (udiv v c0) (shl (udiv v c1) c2)):
6604 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
6606 /// (or (shl v c0) (shrl (shl v c1) c2)):
6607 /// expands (shl v c0) -> (shl (shl v c1) c3)
6609 /// (or (shrl v c0) (shl (shrl v c1) c2)):
6610 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
6612 /// Such that in all cases, c3+c2==bitwidth(op v c1).
6613 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
6614 SDValue ExtractFrom
, SDValue
&Mask
,
6616 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
6618 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
6619 "Existing shift must be valid as a rotate half");
6621 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
6623 // Value and Type of the shift.
6624 SDValue OppShiftLHS
= OppShift
.getOperand(0);
6625 EVT ShiftedVT
= OppShiftLHS
.getValueType();
6627 // Amount of the existing shift.
6628 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
6630 // (add v v) -> (shl v 1)
6631 // TODO: Should this be a general DAG canonicalization?
6632 if (OppShift
.getOpcode() == ISD::SRL
&& OppShiftCst
&&
6633 ExtractFrom
.getOpcode() == ISD::ADD
&&
6634 ExtractFrom
.getOperand(0) == ExtractFrom
.getOperand(1) &&
6635 ExtractFrom
.getOperand(0) == OppShiftLHS
&&
6636 OppShiftCst
->getAPIntValue() == ShiftedVT
.getScalarSizeInBits() - 1)
6637 return DAG
.getNode(ISD::SHL
, DL
, ShiftedVT
, OppShiftLHS
,
6638 DAG
.getShiftAmountConstant(1, ShiftedVT
, DL
));
6641 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
6643 // Find opcode of the needed shift to be extracted from (op0 v c0).
6644 unsigned Opcode
= ISD::DELETED_NODE
;
6645 bool IsMulOrDiv
= false;
6646 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
6647 // opcode or its arithmetic (mul or udiv) variant.
6648 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
6649 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
6650 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
6652 Opcode
= NeededShift
;
6655 // op0 must be either the needed shift opcode or the mul/udiv equivalent
6656 // that the needed shift can be extracted from.
6657 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
6658 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
6661 // op0 must be the same opcode on both sides, have the same LHS argument,
6662 // and produce the same value type.
6663 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
6664 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
6665 ShiftedVT
!= ExtractFrom
.getValueType())
6668 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
6669 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
6670 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
6671 ConstantSDNode
*ExtractFromCst
=
6672 isConstOrConstSplat(ExtractFrom
.getOperand(1));
6673 // TODO: We should be able to handle non-uniform constant vectors for these values
6674 // Check that we have constant values.
6675 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
6676 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
6677 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
6680 // Compute the shift amount we need to extract to complete the rotate.
6681 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
6682 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
6684 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
6685 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
6686 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
6687 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
6688 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
6690 // Now try extract the needed shift from the ExtractFrom op and see if the
6691 // result matches up with the existing shift's LHS op.
6693 // Op to extract from is a mul or udiv by a constant.
6695 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
6696 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
6697 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
6698 NeededShiftAmt
.getZExtValue());
6701 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
6702 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
6705 // Op to extract from is a shift by a constant.
6707 // c2 - (bitwidth(op0 v c0) - c1) == c0
6708 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
6709 ExtractFromAmt
.getBitWidth()))
6713 // Return the expanded shift op that should allow a rotate to be formed.
6714 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
6715 EVT ResVT
= ExtractFrom
.getValueType();
6716 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
6717 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
6720 // Return true if we can prove that, whenever Neg and Pos are both in the
6721 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
6722 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
6724 // (or (shift1 X, Neg), (shift2 X, Pos))
6726 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
6727 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
6728 // to consider shift amounts with defined behavior.
6730 // The IsRotate flag should be set when the LHS of both shifts is the same.
6731 // Otherwise if matching a general funnel shift, it should be clear.
6732 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
6733 SelectionDAG
&DAG
, bool IsRotate
) {
6734 // If EltSize is a power of 2 then:
6736 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
6737 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
6739 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
6740 // for the stronger condition:
6742 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
6744 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
6745 // we can just replace Neg with Neg' for the rest of the function.
6747 // In other cases we check for the even stronger condition:
6749 // Neg == EltSize - Pos [B]
6751 // for all Neg and Pos. Note that the (or ...) then invokes undefined
6752 // behavior if Pos == 0 (and consequently Neg == EltSize).
6754 // We could actually use [A] whenever EltSize is a power of 2, but the
6755 // only extra cases that it would match are those uninteresting ones
6756 // where Neg and Pos are never in range at the same time. E.g. for
6757 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
6758 // as well as (sub 32, Pos), but:
6760 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
6762 // always invokes undefined behavior for 32-bit X.
6764 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
6766 // NOTE: We can only do this when matching an AND and not a general
6768 unsigned MaskLoBits
= 0;
6769 if (IsRotate
&& Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
6770 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
6771 KnownBits Known
= DAG
.computeKnownBits(Neg
.getOperand(0));
6772 unsigned Bits
= Log2_64(EltSize
);
6773 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
6774 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
6775 Neg
= Neg
.getOperand(0);
6781 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
6782 if (Neg
.getOpcode() != ISD::SUB
)
6784 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
6787 SDValue NegOp1
= Neg
.getOperand(1);
6789 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
6790 // Pos'. The truncation is redundant for the purpose of the equality.
6791 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
6792 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
6793 KnownBits Known
= DAG
.computeKnownBits(Pos
.getOperand(0));
6794 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
6795 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
6797 Pos
= Pos
.getOperand(0);
6801 // The condition we need is now:
6803 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
6805 // If NegOp1 == Pos then we need:
6807 // EltSize & Mask == NegC & Mask
6809 // (because "x & Mask" is a truncation and distributes through subtraction).
6811 // We also need to account for a potential truncation of NegOp1 if the amount
6812 // has already been legalized to a shift amount type.
6814 if ((Pos
== NegOp1
) ||
6815 (NegOp1
.getOpcode() == ISD::TRUNCATE
&& Pos
== NegOp1
.getOperand(0)))
6816 Width
= NegC
->getAPIntValue();
6818 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
6819 // Then the condition we want to prove becomes:
6821 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
6823 // which, again because "x & Mask" is a truncation, becomes:
6825 // NegC & Mask == (EltSize - PosC) & Mask
6826 // EltSize & Mask == (NegC + PosC) & Mask
6827 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
6828 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
6829 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
6835 // Now we just need to check that EltSize & Mask == Width & Mask.
6837 // EltSize & Mask is 0 since Mask is EltSize - 1.
6838 return Width
.getLoBits(MaskLoBits
) == 0;
6839 return Width
== EltSize
;
6842 // A subroutine of MatchRotate used once we have found an OR of two opposite
6843 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
6844 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
6845 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6846 // Neg with outer conversions stripped away.
6847 SDValue
DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
6848 SDValue Neg
, SDValue InnerPos
,
6849 SDValue InnerNeg
, unsigned PosOpcode
,
6850 unsigned NegOpcode
, const SDLoc
&DL
) {
6851 // fold (or (shl x, (*ext y)),
6852 // (srl x, (*ext (sub 32, y)))) ->
6853 // (rotl x, y) or (rotr x, (sub 32, y))
6855 // fold (or (shl x, (*ext (sub 32, y))),
6856 // (srl x, (*ext y))) ->
6857 // (rotr x, y) or (rotl x, (sub 32, y))
6858 EVT VT
= Shifted
.getValueType();
6859 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
,
6860 /*IsRotate*/ true)) {
6861 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6862 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
6863 HasPos
? Pos
: Neg
);
6869 // A subroutine of MatchRotate used once we have found an OR of two opposite
6870 // shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
6871 // to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
6872 // former being preferred if supported. InnerPos and InnerNeg are Pos and
6873 // Neg with outer conversions stripped away.
6874 // TODO: Merge with MatchRotatePosNeg.
6875 SDValue
DAGCombiner::MatchFunnelPosNeg(SDValue N0
, SDValue N1
, SDValue Pos
,
6876 SDValue Neg
, SDValue InnerPos
,
6877 SDValue InnerNeg
, unsigned PosOpcode
,
6878 unsigned NegOpcode
, const SDLoc
&DL
) {
6879 EVT VT
= N0
.getValueType();
6880 unsigned EltBits
= VT
.getScalarSizeInBits();
6882 // fold (or (shl x0, (*ext y)),
6883 // (srl x1, (*ext (sub 32, y)))) ->
6884 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
6886 // fold (or (shl x0, (*ext (sub 32, y))),
6887 // (srl x1, (*ext y))) ->
6888 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
6889 if (matchRotateSub(InnerPos
, InnerNeg
, EltBits
, DAG
, /*IsRotate*/ N0
== N1
)) {
6890 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
6891 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, N0
, N1
,
6892 HasPos
? Pos
: Neg
);
6895 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
6896 // so for now just use the PosOpcode case if its legal.
6897 // TODO: When can we use the NegOpcode case?
6898 if (PosOpcode
== ISD::FSHL
&& isPowerOf2_32(EltBits
)) {
6899 auto IsBinOpImm
= [](SDValue Op
, unsigned BinOpc
, unsigned Imm
) {
6900 if (Op
.getOpcode() != BinOpc
)
6902 ConstantSDNode
*Cst
= isConstOrConstSplat(Op
.getOperand(1));
6903 return Cst
&& (Cst
->getAPIntValue() == Imm
);
6906 // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
6907 // -> (fshl x0, x1, y)
6908 if (IsBinOpImm(N1
, ISD::SRL
, 1) &&
6909 IsBinOpImm(InnerNeg
, ISD::XOR
, EltBits
- 1) &&
6910 InnerPos
== InnerNeg
.getOperand(0) &&
6911 TLI
.isOperationLegalOrCustom(ISD::FSHL
, VT
)) {
6912 return DAG
.getNode(ISD::FSHL
, DL
, VT
, N0
, N1
.getOperand(0), Pos
);
6915 // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
6916 // -> (fshr x0, x1, y)
6917 if (IsBinOpImm(N0
, ISD::SHL
, 1) &&
6918 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
6919 InnerNeg
== InnerPos
.getOperand(0) &&
6920 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
6921 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
6924 // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
6925 // -> (fshr x0, x1, y)
6926 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
6927 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N0
.getOperand(1) &&
6928 IsBinOpImm(InnerPos
, ISD::XOR
, EltBits
- 1) &&
6929 InnerNeg
== InnerPos
.getOperand(0) &&
6930 TLI
.isOperationLegalOrCustom(ISD::FSHR
, VT
)) {
6931 return DAG
.getNode(ISD::FSHR
, DL
, VT
, N0
.getOperand(0), N1
, Neg
);
6938 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
6939 // idioms for rotate, and if the target supports rotation instructions, generate
6940 // a rot[lr]. This also matches funnel shift patterns, similar to rotation but
6941 // with different shifted sources.
6942 SDValue
DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
6943 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
6944 EVT VT
= LHS
.getValueType();
6945 if (!TLI
.isTypeLegal(VT
))
6948 // The target must have at least one rotate/funnel flavor.
6949 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
6950 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
6951 bool HasFSHL
= hasOperation(ISD::FSHL
, VT
);
6952 bool HasFSHR
= hasOperation(ISD::FSHR
, VT
);
6953 if (!HasROTL
&& !HasROTR
&& !HasFSHL
&& !HasFSHR
)
6956 // Check for truncated rotate.
6957 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
6958 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
6959 assert(LHS
.getValueType() == RHS
.getValueType());
6960 if (SDValue Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
6961 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(), Rot
);
6965 // Match "(X shl/srl V1) & V2" where V2 may not be present.
6966 SDValue LHSShift
; // The shift.
6967 SDValue LHSMask
; // AND value if any.
6968 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
6970 SDValue RHSShift
; // The shift.
6971 SDValue RHSMask
; // AND value if any.
6972 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
6974 // If neither side matched a rotate half, bail
6975 if (!LHSShift
&& !RHSShift
)
6978 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
6979 // side of the rotate, so try to handle that here. In all cases we need to
6980 // pass the matched shift from the opposite side to compute the opcode and
6981 // needed shift amount to extract. We still want to do this if both sides
6982 // matched a rotate half because one half may be a potential overshift that
6983 // can be broken down (ie if InstCombine merged two shl or srl ops into a
6986 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
6988 if (SDValue NewRHSShift
=
6989 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
6990 RHSShift
= NewRHSShift
;
6991 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
6993 if (SDValue NewLHSShift
=
6994 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
6995 LHSShift
= NewLHSShift
;
6997 // If a side is still missing, nothing else we can do.
6998 if (!RHSShift
|| !LHSShift
)
7001 // At this point we've matched or extracted a shift op on each side.
7003 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
7004 return SDValue(); // Shifts must disagree.
7006 bool IsRotate
= LHSShift
.getOperand(0) == RHSShift
.getOperand(0);
7007 if (!IsRotate
&& !(HasFSHL
|| HasFSHR
))
7008 return SDValue(); // Requires funnel shift support.
7010 // Canonicalize shl to left side in a shl/srl pair.
7011 if (RHSShift
.getOpcode() == ISD::SHL
) {
7012 std::swap(LHS
, RHS
);
7013 std::swap(LHSShift
, RHSShift
);
7014 std::swap(LHSMask
, RHSMask
);
7017 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
7018 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
7019 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
7020 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
7021 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
7023 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
7024 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
7025 // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
7026 // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
7027 // iff C1+C2 == EltSizeInBits
7028 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
7029 ConstantSDNode
*RHS
) {
7030 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
7032 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
7034 if (IsRotate
&& (HasROTL
|| HasROTR
))
7035 Res
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
, LHSShiftArg
,
7036 HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
7038 Res
= DAG
.getNode(HasFSHL
? ISD::FSHL
: ISD::FSHR
, DL
, VT
, LHSShiftArg
,
7039 RHSShiftArg
, HasFSHL
? LHSShiftAmt
: RHSShiftAmt
);
7041 // If there is an AND of either shifted operand, apply it to the result.
7042 if (LHSMask
.getNode() || RHSMask
.getNode()) {
7043 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
7044 SDValue Mask
= AllOnes
;
7046 if (LHSMask
.getNode()) {
7047 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
7048 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7049 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
7051 if (RHSMask
.getNode()) {
7052 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
7053 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
7054 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
7057 Res
= DAG
.getNode(ISD::AND
, DL
, VT
, Res
, Mask
);
7063 // If there is a mask here, and we have a variable shift, we can't be sure
7064 // that we're masking out the right stuff.
7065 if (LHSMask
.getNode() || RHSMask
.getNode())
7068 // If the shift amount is sign/zext/any-extended just peel it off.
7069 SDValue LExtOp0
= LHSShiftAmt
;
7070 SDValue RExtOp0
= RHSShiftAmt
;
7071 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7072 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7073 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7074 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
7075 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
7076 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
7077 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
7078 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
7079 LExtOp0
= LHSShiftAmt
.getOperand(0);
7080 RExtOp0
= RHSShiftAmt
.getOperand(0);
7083 if (IsRotate
&& (HasROTL
|| HasROTR
)) {
7085 MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
, LExtOp0
,
7086 RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
7091 MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
, RExtOp0
,
7092 LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
7098 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
7099 LExtOp0
, RExtOp0
, ISD::FSHL
, ISD::FSHR
, DL
);
7104 MatchFunnelPosNeg(LHSShiftArg
, RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
7105 RExtOp0
, LExtOp0
, ISD::FSHR
, ISD::FSHL
, DL
);
7114 /// Represents known origin of an individual byte in load combine pattern. The
7115 /// value of the byte is either constant zero or comes from memory.
7116 struct ByteProvider
{
7117 // For constant zero providers Load is set to nullptr. For memory providers
7118 // Load represents the node which loads the byte from memory.
7119 // ByteOffset is the offset of the byte in the value produced by the load.
7120 LoadSDNode
*Load
= nullptr;
7121 unsigned ByteOffset
= 0;
7123 ByteProvider() = default;
7125 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
7126 return ByteProvider(Load
, ByteOffset
);
7129 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
7131 bool isConstantZero() const { return !Load
; }
7132 bool isMemory() const { return Load
; }
7134 bool operator==(const ByteProvider
&Other
) const {
7135 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
7139 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
7140 : Load(Load
), ByteOffset(ByteOffset
) {}
7143 } // end anonymous namespace
7145 /// Recursively traverses the expression calculating the origin of the requested
7146 /// byte of the given value. Returns None if the provider can't be calculated.
7148 /// For all the values except the root of the expression verifies that the value
7149 /// has exactly one use and if it's not true return None. This way if the origin
7150 /// of the byte is returned it's guaranteed that the values which contribute to
7151 /// the byte are not used outside of this expression.
7153 /// Because the parts of the expression are not allowed to have more than one
7154 /// use this function iterates over trees, not DAGs. So it never visits the same
7155 /// node more than once.
7156 static const Optional
<ByteProvider
>
7157 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
7158 bool Root
= false) {
7159 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
7163 if (!Root
&& !Op
.hasOneUse())
7166 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
7167 unsigned BitWidth
= Op
.getValueSizeInBits();
7168 if (BitWidth
% 8 != 0)
7170 unsigned ByteWidth
= BitWidth
/ 8;
7171 assert(Index
< ByteWidth
&& "invalid index requested");
7174 switch (Op
.getOpcode()) {
7176 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
7179 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
7183 if (LHS
->isConstantZero())
7185 if (RHS
->isConstantZero())
7190 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
7194 uint64_t BitShift
= ShiftOp
->getZExtValue();
7195 if (BitShift
% 8 != 0)
7197 uint64_t ByteShift
= BitShift
/ 8;
7199 return Index
< ByteShift
7200 ? ByteProvider::getConstantZero()
7201 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
7204 case ISD::ANY_EXTEND
:
7205 case ISD::SIGN_EXTEND
:
7206 case ISD::ZERO_EXTEND
: {
7207 SDValue NarrowOp
= Op
->getOperand(0);
7208 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
7209 if (NarrowBitWidth
% 8 != 0)
7211 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7213 if (Index
>= NarrowByteWidth
)
7214 return Op
.getOpcode() == ISD::ZERO_EXTEND
7215 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7217 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
7220 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
7223 auto L
= cast
<LoadSDNode
>(Op
.getNode());
7224 if (!L
->isSimple() || L
->isIndexed())
7227 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
7228 if (NarrowBitWidth
% 8 != 0)
7230 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
7232 if (Index
>= NarrowByteWidth
)
7233 return L
->getExtensionType() == ISD::ZEXTLOAD
7234 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
7236 return ByteProvider::getMemory(L
, Index
);
7243 static unsigned littleEndianByteAt(unsigned BW
, unsigned i
) {
7247 static unsigned bigEndianByteAt(unsigned BW
, unsigned i
) {
7251 // Check if the bytes offsets we are looking at match with either big or
7252 // little endian value loaded. Return true for big endian, false for little
7253 // endian, and None if match failed.
7254 static Optional
<bool> isBigEndian(const ArrayRef
<int64_t> ByteOffsets
,
7255 int64_t FirstOffset
) {
7256 // The endian can be decided only when it is 2 bytes at least.
7257 unsigned Width
= ByteOffsets
.size();
7261 bool BigEndian
= true, LittleEndian
= true;
7262 for (unsigned i
= 0; i
< Width
; i
++) {
7263 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
7264 LittleEndian
&= CurrentByteOffset
== littleEndianByteAt(Width
, i
);
7265 BigEndian
&= CurrentByteOffset
== bigEndianByteAt(Width
, i
);
7266 if (!BigEndian
&& !LittleEndian
)
7270 assert((BigEndian
!= LittleEndian
) && "It should be either big endian or"
7275 static SDValue
stripTruncAndExt(SDValue Value
) {
7276 switch (Value
.getOpcode()) {
7278 case ISD::ZERO_EXTEND
:
7279 case ISD::SIGN_EXTEND
:
7280 case ISD::ANY_EXTEND
:
7281 return stripTruncAndExt(Value
.getOperand(0));
7286 /// Match a pattern where a wide type scalar value is stored by several narrow
7287 /// stores. Fold it into a single store or a BSWAP and a store if the targets
7290 /// Assuming little endian target:
7293 /// p[0] = (val >> 0) & 0xFF;
7294 /// p[1] = (val >> 8) & 0xFF;
7295 /// p[2] = (val >> 16) & 0xFF;
7296 /// p[3] = (val >> 24) & 0xFF;
7298 /// *((i32)p) = val;
7302 /// p[0] = (val >> 24) & 0xFF;
7303 /// p[1] = (val >> 16) & 0xFF;
7304 /// p[2] = (val >> 8) & 0xFF;
7305 /// p[3] = (val >> 0) & 0xFF;
7307 /// *((i32)p) = BSWAP(val);
7308 SDValue
DAGCombiner::mergeTruncStores(StoreSDNode
*N
) {
7309 // The matching looks for "store (trunc x)" patterns that appear early but are
7310 // likely to be replaced by truncating store nodes during combining.
7311 // TODO: If there is evidence that running this later would help, this
7312 // limitation could be removed. Legality checks may need to be added
7313 // for the created store and optional bswap/rotate.
7314 if (LegalOperations
)
7317 // We only handle merging simple stores of 1-4 bytes.
7318 // TODO: Allow unordered atomics when wider type is legal (see D66309)
7319 EVT MemVT
= N
->getMemoryVT();
7320 if (!(MemVT
== MVT::i8
|| MemVT
== MVT::i16
|| MemVT
== MVT::i32
) ||
7321 !N
->isSimple() || N
->isIndexed())
7324 // Collect all of the stores in the chain.
7325 SDValue Chain
= N
->getChain();
7326 SmallVector
<StoreSDNode
*, 8> Stores
= {N
};
7327 while (auto *Store
= dyn_cast
<StoreSDNode
>(Chain
)) {
7328 // All stores must be the same size to ensure that we are writing all of the
7329 // bytes in the wide value.
7330 // TODO: We could allow multiple sizes by tracking each stored byte.
7331 if (Store
->getMemoryVT() != MemVT
|| !Store
->isSimple() ||
7334 Stores
.push_back(Store
);
7335 Chain
= Store
->getChain();
7337 // There is no reason to continue if we do not have at least a pair of stores.
7338 if (Stores
.size() < 2)
7341 // Handle simple types only.
7342 LLVMContext
&Context
= *DAG
.getContext();
7343 unsigned NumStores
= Stores
.size();
7344 unsigned NarrowNumBits
= N
->getMemoryVT().getScalarSizeInBits();
7345 unsigned WideNumBits
= NumStores
* NarrowNumBits
;
7346 EVT WideVT
= EVT::getIntegerVT(Context
, WideNumBits
);
7347 if (WideVT
!= MVT::i16
&& WideVT
!= MVT::i32
&& WideVT
!= MVT::i64
)
7350 // Check if all bytes of the source value that we are looking at are stored
7351 // to the same base address. Collect offsets from Base address into OffsetMap.
7352 SDValue SourceValue
;
7353 SmallVector
<int64_t, 8> OffsetMap(NumStores
, INT64_MAX
);
7354 int64_t FirstOffset
= INT64_MAX
;
7355 StoreSDNode
*FirstStore
= nullptr;
7356 Optional
<BaseIndexOffset
> Base
;
7357 for (auto Store
: Stores
) {
7358 // All the stores store different parts of the CombinedValue. A truncate is
7359 // required to get the partial value.
7360 SDValue Trunc
= Store
->getValue();
7361 if (Trunc
.getOpcode() != ISD::TRUNCATE
)
7363 // Other than the first/last part, a shift operation is required to get the
7366 SDValue WideVal
= Trunc
.getOperand(0);
7367 if ((WideVal
.getOpcode() == ISD::SRL
|| WideVal
.getOpcode() == ISD::SRA
) &&
7368 isa
<ConstantSDNode
>(WideVal
.getOperand(1))) {
7369 // The shift amount must be a constant multiple of the narrow type.
7370 // It is translated to the offset address in the wide source value "y".
7372 // x = srl y, ShiftAmtC
7375 uint64_t ShiftAmtC
= WideVal
.getConstantOperandVal(1);
7376 if (ShiftAmtC
% NarrowNumBits
!= 0)
7379 Offset
= ShiftAmtC
/ NarrowNumBits
;
7380 WideVal
= WideVal
.getOperand(0);
7383 // Stores must share the same source value with different offsets.
7384 // Truncate and extends should be stripped to get the single source value.
7386 SourceValue
= WideVal
;
7387 else if (stripTruncAndExt(SourceValue
) != stripTruncAndExt(WideVal
))
7389 else if (SourceValue
.getValueType() != WideVT
) {
7390 if (WideVal
.getValueType() == WideVT
||
7391 WideVal
.getScalarValueSizeInBits() >
7392 SourceValue
.getScalarValueSizeInBits())
7393 SourceValue
= WideVal
;
7394 // Give up if the source value type is smaller than the store size.
7395 if (SourceValue
.getScalarValueSizeInBits() < WideVT
.getScalarSizeInBits())
7399 // Stores must share the same base address.
7400 BaseIndexOffset Ptr
= BaseIndexOffset::match(Store
, DAG
);
7401 int64_t ByteOffsetFromBase
= 0;
7404 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7407 // Remember the first store.
7408 if (ByteOffsetFromBase
< FirstOffset
) {
7410 FirstOffset
= ByteOffsetFromBase
;
7412 // Map the offset in the store and the offset in the combined value, and
7413 // early return if it has been set before.
7414 if (Offset
< 0 || Offset
>= NumStores
|| OffsetMap
[Offset
] != INT64_MAX
)
7416 OffsetMap
[Offset
] = ByteOffsetFromBase
;
7419 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7420 assert(FirstStore
&& "First store must be set");
7422 // Check that a store of the wide type is both allowed and fast on the target
7423 const DataLayout
&Layout
= DAG
.getDataLayout();
7425 bool Allowed
= TLI
.allowsMemoryAccess(Context
, Layout
, WideVT
,
7426 *FirstStore
->getMemOperand(), &Fast
);
7427 if (!Allowed
|| !Fast
)
7430 // Check if the pieces of the value are going to the expected places in memory
7431 // to merge the stores.
7432 auto checkOffsets
= [&](bool MatchLittleEndian
) {
7433 if (MatchLittleEndian
) {
7434 for (unsigned i
= 0; i
!= NumStores
; ++i
)
7435 if (OffsetMap
[i
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7437 } else { // MatchBigEndian by reversing loop counter.
7438 for (unsigned i
= 0, j
= NumStores
- 1; i
!= NumStores
; ++i
, --j
)
7439 if (OffsetMap
[j
] != i
* (NarrowNumBits
/ 8) + FirstOffset
)
7445 // Check if the offsets line up for the native data layout of this target.
7446 bool NeedBswap
= false;
7447 bool NeedRotate
= false;
7448 if (!checkOffsets(Layout
.isLittleEndian())) {
7449 // Special-case: check if byte offsets line up for the opposite endian.
7450 if (NarrowNumBits
== 8 && checkOffsets(Layout
.isBigEndian()))
7452 else if (NumStores
== 2 && checkOffsets(Layout
.isBigEndian()))
7459 if (WideVT
!= SourceValue
.getValueType()) {
7460 assert(SourceValue
.getValueType().getScalarSizeInBits() > WideNumBits
&&
7461 "Unexpected store value to merge");
7462 SourceValue
= DAG
.getNode(ISD::TRUNCATE
, DL
, WideVT
, SourceValue
);
7465 // Before legalize we can introduce illegal bswaps/rotates which will be later
7466 // converted to an explicit bswap sequence. This way we end up with a single
7467 // store and byte shuffling instead of several stores and byte shuffling.
7469 SourceValue
= DAG
.getNode(ISD::BSWAP
, DL
, WideVT
, SourceValue
);
7470 } else if (NeedRotate
) {
7471 assert(WideNumBits
% 2 == 0 && "Unexpected type for rotate");
7472 SDValue RotAmt
= DAG
.getConstant(WideNumBits
/ 2, DL
, WideVT
);
7473 SourceValue
= DAG
.getNode(ISD::ROTR
, DL
, WideVT
, SourceValue
, RotAmt
);
7477 DAG
.getStore(Chain
, DL
, SourceValue
, FirstStore
->getBasePtr(),
7478 FirstStore
->getPointerInfo(), FirstStore
->getAlign());
7480 // Rely on other DAG combine rules to remove the other individual stores.
7481 DAG
.ReplaceAllUsesWith(N
, NewStore
.getNode());
7485 /// Match a pattern where a wide type scalar value is loaded by several narrow
7486 /// loads and combined by shifts and ors. Fold it into a single load or a load
7487 /// and a BSWAP if the targets supports it.
7489 /// Assuming little endian target:
7491 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
7493 /// i32 val = *((i32)a)
7496 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
7498 /// i32 val = BSWAP(*((i32)a))
7500 /// TODO: This rule matches complex patterns with OR node roots and doesn't
7501 /// interact well with the worklist mechanism. When a part of the pattern is
7502 /// updated (e.g. one of the loads) its direct users are put into the worklist,
7503 /// but the root node of the pattern which triggers the load combine is not
7504 /// necessarily a direct user of the changed node. For example, once the address
7505 /// of t28 load is reassociated load combine won't be triggered:
7506 /// t25: i32 = add t4, Constant:i32<2>
7507 /// t26: i64 = sign_extend t25
7508 /// t27: i64 = add t2, t26
7509 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
7510 /// t29: i32 = zero_extend t28
7511 /// t32: i32 = shl t29, Constant:i8<8>
7512 /// t33: i32 = or t23, t32
7513 /// As a possible fix visitLoad can check if the load can be a part of a load
7514 /// combine pattern and add corresponding OR roots to the worklist.
7515 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
7516 assert(N
->getOpcode() == ISD::OR
&&
7517 "Can only match load combining against OR nodes");
7519 // Handles simple types only
7520 EVT VT
= N
->getValueType(0);
7521 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
7523 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
7525 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
7526 auto MemoryByteOffset
= [&] (ByteProvider P
) {
7527 assert(P
.isMemory() && "Must be a memory byte provider");
7528 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
7529 assert(LoadBitWidth
% 8 == 0 &&
7530 "can only analyze providers for individual bytes not bit");
7531 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
7532 return IsBigEndianTarget
7533 ? bigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
7534 : littleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
7537 Optional
<BaseIndexOffset
> Base
;
7540 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
7541 Optional
<ByteProvider
> FirstByteProvider
;
7542 int64_t FirstOffset
= INT64_MAX
;
7544 // Check if all the bytes of the OR we are looking at are loaded from the same
7545 // base address. Collect bytes offsets from Base address in ByteOffsets.
7546 SmallVector
<int64_t, 8> ByteOffsets(ByteWidth
);
7547 unsigned ZeroExtendedBytes
= 0;
7548 for (int i
= ByteWidth
- 1; i
>= 0; --i
) {
7549 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
7553 if (P
->isConstantZero()) {
7554 // It's OK for the N most significant bytes to be 0, we can just
7555 // zero-extend the load.
7556 if (++ZeroExtendedBytes
!= (ByteWidth
- static_cast<unsigned>(i
)))
7560 assert(P
->isMemory() && "provenance should either be memory or zero");
7562 LoadSDNode
*L
= P
->Load
;
7563 assert(L
->hasNUsesOfValue(1, 0) && L
->isSimple() &&
7565 "Must be enforced by calculateByteProvider");
7566 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
7568 // All loads must share the same chain
7569 SDValue LChain
= L
->getChain();
7572 else if (Chain
!= LChain
)
7575 // Loads must share the same base address
7576 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
7577 int64_t ByteOffsetFromBase
= 0;
7580 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
7583 // Calculate the offset of the current byte from the base address
7584 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
7585 ByteOffsets
[i
] = ByteOffsetFromBase
;
7587 // Remember the first byte load
7588 if (ByteOffsetFromBase
< FirstOffset
) {
7589 FirstByteProvider
= P
;
7590 FirstOffset
= ByteOffsetFromBase
;
7595 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
7596 "memory, so there must be at least one load which produces the value");
7597 assert(Base
&& "Base address of the accessed memory location must be set");
7598 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
7600 bool NeedsZext
= ZeroExtendedBytes
> 0;
7603 EVT::getIntegerVT(*DAG
.getContext(), (ByteWidth
- ZeroExtendedBytes
) * 8);
7605 if (!MemVT
.isSimple())
7608 // Before legalize we can introduce too wide illegal loads which will be later
7609 // split into legal sized loads. This enables us to combine i64 load by i8
7610 // patterns to a couple of i32 loads on 32 bit targets.
7611 if (LegalOperations
&&
7612 !TLI
.isOperationLegal(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
,
7616 // Check if the bytes of the OR we are looking at match with either big or
7617 // little endian value load
7618 Optional
<bool> IsBigEndian
= isBigEndian(
7619 makeArrayRef(ByteOffsets
).drop_back(ZeroExtendedBytes
), FirstOffset
);
7620 if (!IsBigEndian
.hasValue())
7623 assert(FirstByteProvider
&& "must be set");
7625 // Ensure that the first byte is loaded from zero offset of the first load.
7626 // So the combined value can be loaded from the first load address.
7627 if (MemoryByteOffset(*FirstByteProvider
) != 0)
7629 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
7631 // The node we are looking at matches with the pattern, check if we can
7632 // replace it with a single (possibly zero-extended) load and bswap + shift if
7635 // If the load needs byte swap check if the target supports it
7636 bool NeedsBswap
= IsBigEndianTarget
!= *IsBigEndian
;
7638 // Before legalize we can introduce illegal bswaps which will be later
7639 // converted to an explicit bswap sequence. This way we end up with a single
7640 // load and byte shuffling instead of several loads and byte shuffling.
7641 // We do not introduce illegal bswaps when zero-extending as this tends to
7642 // introduce too many arithmetic instructions.
7643 if (NeedsBswap
&& (LegalOperations
|| NeedsZext
) &&
7644 !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
7647 // If we need to bswap and zero extend, we have to insert a shift. Check that
7649 if (NeedsBswap
&& NeedsZext
&& LegalOperations
&&
7650 !TLI
.isOperationLegal(ISD::SHL
, VT
))
7653 // Check that a load of the wide type is both allowed and fast on the target
7656 TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
7657 *FirstLoad
->getMemOperand(), &Fast
);
7658 if (!Allowed
|| !Fast
)
7662 DAG
.getExtLoad(NeedsZext
? ISD::ZEXTLOAD
: ISD::NON_EXTLOAD
, SDLoc(N
), VT
,
7663 Chain
, FirstLoad
->getBasePtr(),
7664 FirstLoad
->getPointerInfo(), MemVT
, FirstLoad
->getAlign());
7666 // Transfer chain users from old loads to the new load.
7667 for (LoadSDNode
*L
: Loads
)
7668 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
7673 SDValue ShiftedLoad
=
7675 ? DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, NewLoad
,
7676 DAG
.getShiftAmountConstant(ZeroExtendedBytes
* 8, VT
,
7677 SDLoc(N
), LegalOperations
))
7679 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, ShiftedLoad
);
7682 // If the target has andn, bsl, or a similar bit-select instruction,
7683 // we want to unfold masked merge, with canonical pattern of:
7685 // ((x ^ y) & m) ^ y
7688 // (x & m) | (y & ~m)
7689 // If y is a constant, and the 'andn' does not work with immediates,
7690 // we unfold into a different pattern:
7691 // ~(~x & m) & (m | y)
7692 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
7693 // the very least that breaks andnpd / andnps patterns, and because those
7694 // patterns are simplified in IR and shouldn't be created in the DAG
7695 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
7696 assert(N
->getOpcode() == ISD::XOR
);
7698 // Don't touch 'not' (i.e. where y = -1).
7699 if (isAllOnesOrAllOnesSplat(N
->getOperand(1)))
7702 EVT VT
= N
->getValueType(0);
7704 // There are 3 commutable operators in the pattern,
7705 // so we have to deal with 8 possible variants of the basic pattern.
7707 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
7708 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
7710 SDValue Xor
= And
.getOperand(XorIdx
);
7711 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
7713 SDValue Xor0
= Xor
.getOperand(0);
7714 SDValue Xor1
= Xor
.getOperand(1);
7715 // Don't touch 'not' (i.e. where y = -1).
7716 if (isAllOnesOrAllOnesSplat(Xor1
))
7719 std::swap(Xor0
, Xor1
);
7724 M
= And
.getOperand(XorIdx
? 0 : 1);
7728 SDValue N0
= N
->getOperand(0);
7729 SDValue N1
= N
->getOperand(1);
7730 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
7731 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
7734 // Don't do anything if the mask is constant. This should not be reachable.
7735 // InstCombine should have already unfolded this pattern, and DAGCombiner
7736 // probably shouldn't produce it, too.
7737 if (isa
<ConstantSDNode
>(M
.getNode()))
7740 // We can transform if the target has AndNot
7741 if (!TLI
.hasAndNot(M
))
7746 // If Y is a constant, check that 'andn' works with immediates.
7747 if (!TLI
.hasAndNot(Y
)) {
7748 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
7749 // If not, we need to do a bit more work to make sure andn is still used.
7750 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
7751 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
7752 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
7753 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
7754 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
7757 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
7758 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
7759 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
7761 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
7764 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
7765 SDValue N0
= N
->getOperand(0);
7766 SDValue N1
= N
->getOperand(1);
7767 EVT VT
= N0
.getValueType();
7770 if (VT
.isVector()) {
7771 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
7774 // fold (xor x, 0) -> x, vector edition
7775 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
7777 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode()))
7781 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
7783 if (N0
.isUndef() && N1
.isUndef())
7784 return DAG
.getConstant(0, DL
, VT
);
7786 // fold (xor x, undef) -> undef
7792 // fold (xor c1, c2) -> c1^c2
7793 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::XOR
, DL
, VT
, {N0
, N1
}))
7796 // canonicalize constant to RHS
7797 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
7798 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
7799 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
7801 // fold (xor x, 0) -> x
7802 if (isNullConstant(N1
))
7805 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
7809 if (SDValue RXOR
= reassociateOps(ISD::XOR
, DL
, N0
, N1
, N
->getFlags()))
7812 // fold !(x cc y) -> (x !cc y)
7813 unsigned N0Opcode
= N0
.getOpcode();
7814 SDValue LHS
, RHS
, CC
;
7815 if (TLI
.isConstTrueVal(N1
.getNode()) &&
7816 isSetCCEquivalent(N0
, LHS
, RHS
, CC
, /*MatchStrict*/true)) {
7817 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
7818 LHS
.getValueType());
7819 if (!LegalOperations
||
7820 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
7823 llvm_unreachable("Unhandled SetCC Equivalent!");
7825 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
7826 case ISD::SELECT_CC
:
7827 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
7828 N0
.getOperand(3), NotCC
);
7829 case ISD::STRICT_FSETCC
:
7830 case ISD::STRICT_FSETCCS
: {
7831 if (N0
.hasOneUse()) {
7832 // FIXME Can we handle multiple uses? Could we token factor the chain
7833 // results from the new/old setcc?
7835 DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
,
7836 N0
.getOperand(0), N0Opcode
== ISD::STRICT_FSETCCS
);
7837 CombineTo(N
, SetCC
);
7838 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), SetCC
.getValue(1));
7839 recursivelyDeleteUnusedNodes(N0
.getNode());
7840 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
7848 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
7849 if (isOneConstant(N1
) && N0Opcode
== ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
7850 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
7851 SDValue V
= N0
.getOperand(0);
7853 V
= DAG
.getNode(ISD::XOR
, DL0
, V
.getValueType(), V
,
7854 DAG
.getConstant(1, DL0
, V
.getValueType()));
7855 AddToWorklist(V
.getNode());
7856 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, V
);
7859 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
7860 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
7861 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7862 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7863 if (isOneUseSetCC(N01
) || isOneUseSetCC(N00
)) {
7864 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7865 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7866 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7867 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7868 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7871 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
7872 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
7873 (N0Opcode
== ISD::OR
|| N0Opcode
== ISD::AND
)) {
7874 SDValue N00
= N0
.getOperand(0), N01
= N0
.getOperand(1);
7875 if (isa
<ConstantSDNode
>(N01
) || isa
<ConstantSDNode
>(N00
)) {
7876 unsigned NewOpcode
= N0Opcode
== ISD::AND
? ISD::OR
: ISD::AND
;
7877 N00
= DAG
.getNode(ISD::XOR
, SDLoc(N00
), VT
, N00
, N1
); // N00 = ~N00
7878 N01
= DAG
.getNode(ISD::XOR
, SDLoc(N01
), VT
, N01
, N1
); // N01 = ~N01
7879 AddToWorklist(N00
.getNode()); AddToWorklist(N01
.getNode());
7880 return DAG
.getNode(NewOpcode
, DL
, VT
, N00
, N01
);
7884 // fold (not (neg x)) -> (add X, -1)
7885 // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
7886 // Y is a constant or the subtract has a single use.
7887 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::SUB
&&
7888 isNullConstant(N0
.getOperand(0))) {
7889 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(1),
7890 DAG
.getAllOnesConstant(DL
, VT
));
7893 // fold (not (add X, -1)) -> (neg X)
7894 if (isAllOnesConstant(N1
) && N0
.getOpcode() == ISD::ADD
&&
7895 isAllOnesOrAllOnesSplat(N0
.getOperand(1))) {
7896 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
7900 // fold (xor (and x, y), y) -> (and (not x), y)
7901 if (N0Opcode
== ISD::AND
&& N0
.hasOneUse() && N0
->getOperand(1) == N1
) {
7902 SDValue X
= N0
.getOperand(0);
7903 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
7904 AddToWorklist(NotX
.getNode());
7905 return DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, N1
);
7908 if ((N0Opcode
== ISD::SRL
|| N0Opcode
== ISD::SHL
) && N0
.hasOneUse()) {
7909 ConstantSDNode
*XorC
= isConstOrConstSplat(N1
);
7910 ConstantSDNode
*ShiftC
= isConstOrConstSplat(N0
.getOperand(1));
7911 unsigned BitWidth
= VT
.getScalarSizeInBits();
7912 if (XorC
&& ShiftC
) {
7913 // Don't crash on an oversized shift. We can not guarantee that a bogus
7914 // shift has been simplified to undef.
7915 uint64_t ShiftAmt
= ShiftC
->getLimitedValue();
7916 if (ShiftAmt
< BitWidth
) {
7917 APInt Ones
= APInt::getAllOnesValue(BitWidth
);
7918 Ones
= N0Opcode
== ISD::SHL
? Ones
.shl(ShiftAmt
) : Ones
.lshr(ShiftAmt
);
7919 if (XorC
->getAPIntValue() == Ones
) {
7920 // If the xor constant is a shifted -1, do a 'not' before the shift:
7921 // xor (X << ShiftC), XorC --> (not X) << ShiftC
7922 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
7923 SDValue Not
= DAG
.getNOT(DL
, N0
.getOperand(0), VT
);
7924 return DAG
.getNode(N0Opcode
, DL
, VT
, Not
, N0
.getOperand(1));
7930 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
7931 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
7932 SDValue A
= N0Opcode
== ISD::ADD
? N0
: N1
;
7933 SDValue S
= N0Opcode
== ISD::SRA
? N0
: N1
;
7934 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
7935 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
7936 SDValue S0
= S
.getOperand(0);
7937 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
))
7938 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
7939 if (C
->getAPIntValue() == (VT
.getScalarSizeInBits() - 1))
7940 return DAG
.getNode(ISD::ABS
, DL
, VT
, S0
);
7944 // fold (xor x, x) -> 0
7946 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
);
7948 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
7949 // Here is a concrete example of this equivalence:
7951 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
7952 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
7956 // i16 ~1 == 0b1111111111111110
7957 // i16 rol(~1, 14) == 0b1011111111111111
7959 // Some additional tips to help conceptualize this transform:
7960 // - Try to see the operation as placing a single zero in a value of all ones.
7961 // - There exists no value for x which would allow the result to contain zero.
7962 // - Values of x larger than the bitwidth are undefined and do not require a
7963 // consistent result.
7964 // - Pushing the zero left requires shifting one bits in from the right.
7965 // A rotate left of ~1 is a nice way of achieving the desired result.
7966 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0Opcode
== ISD::SHL
&&
7967 isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
7968 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
7972 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
7973 if (N0Opcode
== N1
.getOpcode())
7974 if (SDValue V
= hoistLogicOpWithSameOpcodeHands(N
))
7977 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
7978 if (SDValue MM
= unfoldMaskedMerge(N
))
7981 // Simplify the expression using non-local knowledge.
7982 if (SimplifyDemandedBits(SDValue(N
, 0)))
7983 return SDValue(N
, 0);
7985 if (SDValue Combined
= combineCarryDiamond(*this, DAG
, TLI
, N0
, N1
, N
))
7991 /// If we have a shift-by-constant of a bitwise logic op that itself has a
7992 /// shift-by-constant operand with identical opcode, we may be able to convert
7993 /// that into 2 independent shifts followed by the logic op. This is a
7994 /// throughput improvement.
7995 static SDValue
combineShiftOfShiftedLogic(SDNode
*Shift
, SelectionDAG
&DAG
) {
7996 // Match a one-use bitwise logic op.
7997 SDValue LogicOp
= Shift
->getOperand(0);
7998 if (!LogicOp
.hasOneUse())
8001 unsigned LogicOpcode
= LogicOp
.getOpcode();
8002 if (LogicOpcode
!= ISD::AND
&& LogicOpcode
!= ISD::OR
&&
8003 LogicOpcode
!= ISD::XOR
)
8006 // Find a matching one-use shift by constant.
8007 unsigned ShiftOpcode
= Shift
->getOpcode();
8008 SDValue C1
= Shift
->getOperand(1);
8009 ConstantSDNode
*C1Node
= isConstOrConstSplat(C1
);
8010 assert(C1Node
&& "Expected a shift with constant operand");
8011 const APInt
&C1Val
= C1Node
->getAPIntValue();
8012 auto matchFirstShift
= [&](SDValue V
, SDValue
&ShiftOp
,
8013 const APInt
*&ShiftAmtVal
) {
8014 if (V
.getOpcode() != ShiftOpcode
|| !V
.hasOneUse())
8017 ConstantSDNode
*ShiftCNode
= isConstOrConstSplat(V
.getOperand(1));
8021 // Capture the shifted operand and shift amount value.
8022 ShiftOp
= V
.getOperand(0);
8023 ShiftAmtVal
= &ShiftCNode
->getAPIntValue();
8025 // Shift amount types do not have to match their operand type, so check that
8026 // the constants are the same width.
8027 if (ShiftAmtVal
->getBitWidth() != C1Val
.getBitWidth())
8030 // The fold is not valid if the sum of the shift values exceeds bitwidth.
8031 if ((*ShiftAmtVal
+ C1Val
).uge(V
.getScalarValueSizeInBits()))
8037 // Logic ops are commutative, so check each operand for a match.
8040 if (matchFirstShift(LogicOp
.getOperand(0), X
, C0Val
))
8041 Y
= LogicOp
.getOperand(1);
8042 else if (matchFirstShift(LogicOp
.getOperand(1), X
, C0Val
))
8043 Y
= LogicOp
.getOperand(0);
8047 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
8049 EVT VT
= Shift
->getValueType(0);
8050 EVT ShiftAmtVT
= Shift
->getOperand(1).getValueType();
8051 SDValue ShiftSumC
= DAG
.getConstant(*C0Val
+ C1Val
, DL
, ShiftAmtVT
);
8052 SDValue NewShift1
= DAG
.getNode(ShiftOpcode
, DL
, VT
, X
, ShiftSumC
);
8053 SDValue NewShift2
= DAG
.getNode(ShiftOpcode
, DL
, VT
, Y
, C1
);
8054 return DAG
.getNode(LogicOpcode
, DL
, VT
, NewShift1
, NewShift2
);
8057 /// Handle transforms common to the three shifts, when the shift amount is a
8059 /// We are looking for: (shift being one of shl/sra/srl)
8060 /// shift (binop X, C0), C1
8061 /// And want to transform into:
8062 /// binop (shift X, C1), (shift C0, C1)
8063 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
) {
8064 assert(isConstOrConstSplat(N
->getOperand(1)) && "Expected constant operand");
8066 // Do not turn a 'not' into a regular xor.
8067 if (isBitwiseNot(N
->getOperand(0)))
8070 // The inner binop must be one-use, since we want to replace it.
8071 SDValue LHS
= N
->getOperand(0);
8072 if (!LHS
.hasOneUse() || !TLI
.isDesirableToCommuteWithShift(N
, Level
))
8075 // TODO: This is limited to early combining because it may reveal regressions
8076 // otherwise. But since we just checked a target hook to see if this is
8077 // desirable, that should have filtered out cases where this interferes
8078 // with some other pattern matching.
8080 if (SDValue R
= combineShiftOfShiftedLogic(N
, DAG
))
8083 // We want to pull some binops through shifts, so that we have (and (shift))
8084 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
8085 // thing happens with address calculations, so it's important to canonicalize
8087 switch (LHS
.getOpcode()) {
8095 if (N
->getOpcode() != ISD::SHL
)
8096 return SDValue(); // only shl(add) not sr[al](add).
8100 // We require the RHS of the binop to be a constant and not opaque as well.
8101 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
.getOperand(1));
8105 // FIXME: disable this unless the input to the binop is a shift by a constant
8106 // or is copy/select. Enable this in other cases when figure out it's exactly
8108 SDValue BinOpLHSVal
= LHS
.getOperand(0);
8109 bool IsShiftByConstant
= (BinOpLHSVal
.getOpcode() == ISD::SHL
||
8110 BinOpLHSVal
.getOpcode() == ISD::SRA
||
8111 BinOpLHSVal
.getOpcode() == ISD::SRL
) &&
8112 isa
<ConstantSDNode
>(BinOpLHSVal
.getOperand(1));
8113 bool IsCopyOrSelect
= BinOpLHSVal
.getOpcode() == ISD::CopyFromReg
||
8114 BinOpLHSVal
.getOpcode() == ISD::SELECT
;
8116 if (!IsShiftByConstant
&& !IsCopyOrSelect
)
8119 if (IsCopyOrSelect
&& N
->hasOneUse())
8122 // Fold the constants, shifting the binop RHS by the shift amount.
8124 EVT VT
= N
->getValueType(0);
8125 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(1),
8127 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
8129 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), DL
, VT
, LHS
.getOperand(0),
8131 return DAG
.getNode(LHS
.getOpcode(), DL
, VT
, NewShift
, NewRHS
);
8134 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
8135 assert(N
->getOpcode() == ISD::TRUNCATE
);
8136 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
8138 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
8139 EVT TruncVT
= N
->getValueType(0);
8140 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse() &&
8141 TLI
.isTypeDesirableForOp(ISD::AND
, TruncVT
)) {
8142 SDValue N01
= N
->getOperand(0).getOperand(1);
8143 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
8145 SDValue N00
= N
->getOperand(0).getOperand(0);
8146 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
8147 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
8148 AddToWorklist(Trunc00
.getNode());
8149 AddToWorklist(Trunc01
.getNode());
8150 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
8157 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
8159 SDValue N0
= N
->getOperand(0);
8160 SDValue N1
= N
->getOperand(1);
8161 EVT VT
= N
->getValueType(0);
8162 unsigned Bitsize
= VT
.getScalarSizeInBits();
8164 // fold (rot x, 0) -> x
8165 if (isNullOrNullSplat(N1
))
8168 // fold (rot x, c) -> x iff (c % BitSize) == 0
8169 if (isPowerOf2_32(Bitsize
) && Bitsize
> 1) {
8170 APInt
ModuloMask(N1
.getScalarValueSizeInBits(), Bitsize
- 1);
8171 if (DAG
.MaskedValueIsZero(N1
, ModuloMask
))
8175 // fold (rot x, c) -> (rot x, c % BitSize)
8176 bool OutOfRange
= false;
8177 auto MatchOutOfRange
= [Bitsize
, &OutOfRange
](ConstantSDNode
*C
) {
8178 OutOfRange
|= C
->getAPIntValue().uge(Bitsize
);
8181 if (ISD::matchUnaryPredicate(N1
, MatchOutOfRange
) && OutOfRange
) {
8182 EVT AmtVT
= N1
.getValueType();
8183 SDValue Bits
= DAG
.getConstant(Bitsize
, dl
, AmtVT
);
8185 DAG
.FoldConstantArithmetic(ISD::UREM
, dl
, AmtVT
, {N1
, Bits
}))
8186 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, Amt
);
8189 // rot i16 X, 8 --> bswap X
8190 auto *RotAmtC
= isConstOrConstSplat(N1
);
8191 if (RotAmtC
&& RotAmtC
->getAPIntValue() == 8 &&
8192 VT
.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP
, VT
))
8193 return DAG
.getNode(ISD::BSWAP
, dl
, VT
, N0
);
8195 // Simplify the operands using demanded-bits information.
8196 if (SimplifyDemandedBits(SDValue(N
, 0)))
8197 return SDValue(N
, 0);
8199 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
8200 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8201 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8202 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8203 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
8206 unsigned NextOp
= N0
.getOpcode();
8207 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
8208 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
8209 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
8210 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
8211 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
8212 EVT ShiftVT
= C1
->getValueType(0);
8213 bool SameSide
= (N
->getOpcode() == NextOp
);
8214 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
8215 if (SDValue CombinedShift
= DAG
.FoldConstantArithmetic(
8216 CombineOp
, dl
, ShiftVT
, {N1
, N0
.getOperand(1)})) {
8217 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
8218 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
8219 ISD::SREM
, dl
, ShiftVT
, {CombinedShift
, BitsizeC
});
8220 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
8228 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
8229 SDValue N0
= N
->getOperand(0);
8230 SDValue N1
= N
->getOperand(1);
8231 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8234 EVT VT
= N0
.getValueType();
8235 EVT ShiftVT
= N1
.getValueType();
8236 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8239 if (VT
.isVector()) {
8240 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8243 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
8244 // If setcc produces all-one true value then:
8245 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
8246 if (N1CV
&& N1CV
->isConstant()) {
8247 if (N0
.getOpcode() == ISD::AND
) {
8248 SDValue N00
= N0
->getOperand(0);
8249 SDValue N01
= N0
->getOperand(1);
8250 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
8252 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
8253 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
8254 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
8256 DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N01
, N1
}))
8257 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
8263 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8265 // fold (shl c1, c2) -> c1<<c2
8266 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, {N0
, N1
}))
8269 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8272 // if (shl x, c) is known to be zero, return 0
8273 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
8274 APInt::getAllOnesValue(OpSizeInBits
)))
8275 return DAG
.getConstant(0, SDLoc(N
), VT
);
8277 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
8278 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8279 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8280 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8281 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
8284 if (SimplifyDemandedBits(SDValue(N
, 0)))
8285 return SDValue(N
, 0);
8287 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
8288 if (N0
.getOpcode() == ISD::SHL
) {
8289 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8290 ConstantSDNode
*RHS
) {
8291 APInt c1
= LHS
->getAPIntValue();
8292 APInt c2
= RHS
->getAPIntValue();
8293 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8294 return (c1
+ c2
).uge(OpSizeInBits
);
8296 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
8297 return DAG
.getConstant(0, SDLoc(N
), VT
);
8299 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8300 ConstantSDNode
*RHS
) {
8301 APInt c1
= LHS
->getAPIntValue();
8302 APInt c2
= RHS
->getAPIntValue();
8303 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8304 return (c1
+ c2
).ult(OpSizeInBits
);
8306 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
8308 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
8309 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
8313 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
8314 // For this to be valid, the second form must not preserve any of the bits
8315 // that are shifted out by the inner shift in the first form. This means
8316 // the outer shift size must be >= the number of bits added by the ext.
8317 // As a corollary, we don't care what kind of ext it is.
8318 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
8319 N0
.getOpcode() == ISD::ANY_EXTEND
||
8320 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
8321 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
8322 SDValue N0Op0
= N0
.getOperand(0);
8323 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8324 EVT InnerVT
= N0Op0
.getValueType();
8325 uint64_t InnerBitwidth
= InnerVT
.getScalarSizeInBits();
8327 auto MatchOutOfRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8328 ConstantSDNode
*RHS
) {
8329 APInt c1
= LHS
->getAPIntValue();
8330 APInt c2
= RHS
->getAPIntValue();
8331 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8332 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8333 (c1
+ c2
).uge(OpSizeInBits
);
8335 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchOutOfRange
,
8336 /*AllowUndefs*/ false,
8337 /*AllowTypeMismatch*/ true))
8338 return DAG
.getConstant(0, SDLoc(N
), VT
);
8340 auto MatchInRange
= [OpSizeInBits
, InnerBitwidth
](ConstantSDNode
*LHS
,
8341 ConstantSDNode
*RHS
) {
8342 APInt c1
= LHS
->getAPIntValue();
8343 APInt c2
= RHS
->getAPIntValue();
8344 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8345 return c2
.uge(OpSizeInBits
- InnerBitwidth
) &&
8346 (c1
+ c2
).ult(OpSizeInBits
);
8348 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchInRange
,
8349 /*AllowUndefs*/ false,
8350 /*AllowTypeMismatch*/ true)) {
8352 SDValue Ext
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
.getOperand(0));
8353 SDValue Sum
= DAG
.getZExtOrTrunc(InnerShiftAmt
, DL
, ShiftVT
);
8354 Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, Sum
, N1
);
8355 return DAG
.getNode(ISD::SHL
, DL
, VT
, Ext
, Sum
);
8359 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
8360 // Only fold this if the inner zext has no other uses to avoid increasing
8361 // the total number of instructions.
8362 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
8363 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
8364 SDValue N0Op0
= N0
.getOperand(0);
8365 SDValue InnerShiftAmt
= N0Op0
.getOperand(1);
8367 auto MatchEqual
= [VT
](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8368 APInt c1
= LHS
->getAPIntValue();
8369 APInt c2
= RHS
->getAPIntValue();
8370 zeroExtendToMatch(c1
, c2
);
8371 return c1
.ult(VT
.getScalarSizeInBits()) && (c1
== c2
);
8373 if (ISD::matchBinaryPredicate(InnerShiftAmt
, N1
, MatchEqual
,
8374 /*AllowUndefs*/ false,
8375 /*AllowTypeMismatch*/ true)) {
8377 EVT InnerShiftAmtVT
= N0Op0
.getOperand(1).getValueType();
8378 SDValue NewSHL
= DAG
.getZExtOrTrunc(N1
, DL
, InnerShiftAmtVT
);
8379 NewSHL
= DAG
.getNode(ISD::SHL
, DL
, N0Op0
.getValueType(), N0Op0
, NewSHL
);
8380 AddToWorklist(NewSHL
.getNode());
8381 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
8385 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
8386 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
8387 // TODO - support non-uniform vector shift amounts.
8388 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
8389 N0
->getFlags().hasExact()) {
8390 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8391 uint64_t C1
= N0C1
->getZExtValue();
8392 uint64_t C2
= N1C
->getZExtValue();
8395 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8396 DAG
.getConstant(C2
- C1
, DL
, ShiftVT
));
8397 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
8398 DAG
.getConstant(C1
- C2
, DL
, ShiftVT
));
8402 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
8403 // (and (srl x, (sub c1, c2), MASK)
8404 // Only fold this if the inner shift has no other uses -- if it does, folding
8405 // this will increase the total number of instructions.
8406 // TODO - drop hasOneUse requirement if c1 == c2?
8407 // TODO - support non-uniform vector shift amounts.
8408 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse() &&
8409 TLI
.shouldFoldConstantShiftPairToMask(N
, Level
)) {
8410 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
8411 if (N0C1
->getAPIntValue().ult(OpSizeInBits
)) {
8412 uint64_t c1
= N0C1
->getZExtValue();
8413 uint64_t c2
= N1C
->getZExtValue();
8414 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
8419 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
8420 DAG
.getConstant(c2
- c1
, DL
, ShiftVT
));
8422 Mask
.lshrInPlace(c1
- c2
);
8424 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
8425 DAG
.getConstant(c1
- c2
, DL
, ShiftVT
));
8428 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
8429 DAG
.getConstant(Mask
, DL
, VT
));
8434 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
8435 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
8436 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
8438 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
8439 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
8440 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
8443 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
8444 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
8445 // Variant of version done on multiply, except mul by a power of 2 is turned
8447 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
8448 N0
.getNode()->hasOneUse() &&
8449 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8450 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
8451 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
8452 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
8453 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8454 AddToWorklist(Shl0
.getNode());
8455 AddToWorklist(Shl1
.getNode());
8456 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
8459 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
8460 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
8461 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
8462 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
8463 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
8464 if (isConstantOrConstantVector(Shl
))
8465 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
8468 if (N1C
&& !N1C
->isOpaque())
8469 if (SDValue NewSHL
= visitShiftByConstant(N
))
8472 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
8473 if (N0
.getOpcode() == ISD::VSCALE
)
8474 if (ConstantSDNode
*NC1
= isConstOrConstSplat(N
->getOperand(1))) {
8475 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8476 const APInt
&C1
= NC1
->getAPIntValue();
8477 return DAG
.getVScale(SDLoc(N
), VT
, C0
<< C1
);
8480 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
8482 if (N0
.getOpcode() == ISD::STEP_VECTOR
)
8483 if (ISD::isConstantSplatVector(N1
.getNode(), ShlVal
)) {
8484 const APInt
&C0
= N0
.getConstantOperandAPInt(0);
8485 if (ShlVal
.ult(C0
.getBitWidth())) {
8486 APInt NewStep
= C0
<< ShlVal
;
8487 return DAG
.getStepVector(SDLoc(N
), VT
, NewStep
);
8494 // Transform a right shift of a multiply into a multiply-high.
8496 // (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
8497 // (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
8498 static SDValue
combineShiftToMULH(SDNode
*N
, SelectionDAG
&DAG
,
8499 const TargetLowering
&TLI
) {
8500 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
) &&
8501 "SRL or SRA node is required here!");
8503 // Check the shift amount. Proceed with the transformation if the shift
8504 // amount is constant.
8505 ConstantSDNode
*ShiftAmtSrc
= isConstOrConstSplat(N
->getOperand(1));
8511 // The operation feeding into the shift must be a multiply.
8512 SDValue ShiftOperand
= N
->getOperand(0);
8513 if (ShiftOperand
.getOpcode() != ISD::MUL
)
8516 // Both operands must be equivalent extend nodes.
8517 SDValue LeftOp
= ShiftOperand
.getOperand(0);
8518 SDValue RightOp
= ShiftOperand
.getOperand(1);
8519 bool IsSignExt
= LeftOp
.getOpcode() == ISD::SIGN_EXTEND
;
8520 bool IsZeroExt
= LeftOp
.getOpcode() == ISD::ZERO_EXTEND
;
8522 if ((!(IsSignExt
|| IsZeroExt
)) || LeftOp
.getOpcode() != RightOp
.getOpcode())
8525 EVT WideVT1
= LeftOp
.getValueType();
8526 EVT WideVT2
= RightOp
.getValueType();
8528 // Proceed with the transformation if the wide types match.
8529 assert((WideVT1
== WideVT2
) &&
8530 "Cannot have a multiply node with two different operand types.");
8532 EVT NarrowVT
= LeftOp
.getOperand(0).getValueType();
8533 // Check that the two extend nodes are the same type.
8534 if (NarrowVT
!= RightOp
.getOperand(0).getValueType())
8537 // Proceed with the transformation if the wide type is twice as large
8538 // as the narrow type.
8539 unsigned NarrowVTSize
= NarrowVT
.getScalarSizeInBits();
8540 if (WideVT1
.getScalarSizeInBits() != 2 * NarrowVTSize
)
8543 // Check the shift amount with the narrow type size.
8544 // Proceed with the transformation if the shift amount is the width
8545 // of the narrow type.
8546 unsigned ShiftAmt
= ShiftAmtSrc
->getZExtValue();
8547 if (ShiftAmt
!= NarrowVTSize
)
8550 // If the operation feeding into the MUL is a sign extend (sext),
8551 // we use mulhs. Othewise, zero extends (zext) use mulhu.
8552 unsigned MulhOpcode
= IsSignExt
? ISD::MULHS
: ISD::MULHU
;
8554 // Combine to mulh if mulh is legal/custom for the narrow type on the target.
8555 if (!TLI
.isOperationLegalOrCustom(MulhOpcode
, NarrowVT
))
8558 SDValue Result
= DAG
.getNode(MulhOpcode
, DL
, NarrowVT
, LeftOp
.getOperand(0),
8559 RightOp
.getOperand(0));
8560 return (N
->getOpcode() == ISD::SRA
? DAG
.getSExtOrTrunc(Result
, DL
, WideVT1
)
8561 : DAG
.getZExtOrTrunc(Result
, DL
, WideVT1
));
8564 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
8565 SDValue N0
= N
->getOperand(0);
8566 SDValue N1
= N
->getOperand(1);
8567 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8570 EVT VT
= N0
.getValueType();
8571 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8573 // Arithmetic shifting an all-sign-bit value is a no-op.
8574 // fold (sra 0, x) -> 0
8575 // fold (sra -1, x) -> -1
8576 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
8581 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8584 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8586 // fold (sra c1, c2) -> (sra c1, c2)
8587 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, {N0
, N1
}))
8590 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8593 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
8595 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
8596 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
8597 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
8599 ExtVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
,
8600 VT
.getVectorElementCount());
8601 if (!LegalOperations
||
8602 TLI
.getOperationAction(ISD::SIGN_EXTEND_INREG
, ExtVT
) ==
8603 TargetLowering::Legal
)
8604 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
8605 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
8606 // Even if we can't convert to sext_inreg, we might be able to remove
8607 // this shift pair if the input is already sign extended.
8608 if (DAG
.ComputeNumSignBits(N0
.getOperand(0)) > N1C
->getZExtValue())
8609 return N0
.getOperand(0);
8612 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
8613 // clamp (add c1, c2) to max shift.
8614 if (N0
.getOpcode() == ISD::SRA
) {
8616 EVT ShiftVT
= N1
.getValueType();
8617 EVT ShiftSVT
= ShiftVT
.getScalarType();
8618 SmallVector
<SDValue
, 16> ShiftValues
;
8620 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
8621 APInt c1
= LHS
->getAPIntValue();
8622 APInt c2
= RHS
->getAPIntValue();
8623 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8624 APInt Sum
= c1
+ c2
;
8626 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
8627 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
8630 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
8632 if (N1
.getOpcode() == ISD::BUILD_VECTOR
)
8633 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
8634 else if (N1
.getOpcode() == ISD::SPLAT_VECTOR
) {
8635 assert(ShiftValues
.size() == 1 &&
8636 "Expected matchBinaryPredicate to return one element for "
8638 ShiftValue
= DAG
.getSplatVector(ShiftVT
, DL
, ShiftValues
[0]);
8640 ShiftValue
= ShiftValues
[0];
8641 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
8645 // fold (sra (shl X, m), (sub result_size, n))
8646 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
8647 // result_size - n != m.
8648 // If truncate is free for the target sext(shl) is likely to result in better
8650 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
8651 // Get the two constanst of the shifts, CN0 = m, CN = n.
8652 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
8654 LLVMContext
&Ctx
= *DAG
.getContext();
8655 // Determine what the truncate's result bitsize and type would be.
8656 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
8659 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8661 // Determine the residual right-shift amount.
8662 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
8664 // If the shift is not a no-op (in which case this should be just a sign
8665 // extend already), the truncated to type is legal, sign_extend is legal
8666 // on that type, and the truncate to that type is both legal and free,
8667 // perform the transform.
8668 if ((ShiftAmt
> 0) &&
8669 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
8670 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
8671 TLI
.isTruncateFree(VT
, TruncVT
)) {
8673 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
8674 getShiftAmountTy(N0
.getOperand(0).getValueType()));
8675 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
8676 N0
.getOperand(0), Amt
);
8677 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
8679 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
8680 N
->getValueType(0), Trunc
);
8685 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
8686 // sra (add (shl X, N1C), AddC), N1C -->
8687 // sext (add (trunc X to (width - N1C)), AddC')
8688 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() && N1C
&&
8689 N0
.getOperand(0).getOpcode() == ISD::SHL
&&
8690 N0
.getOperand(0).getOperand(1) == N1
&& N0
.getOperand(0).hasOneUse()) {
8691 if (ConstantSDNode
*AddC
= isConstOrConstSplat(N0
.getOperand(1))) {
8692 SDValue Shl
= N0
.getOperand(0);
8693 // Determine what the truncate's type would be and ask the target if that
8694 // is a free operation.
8695 LLVMContext
&Ctx
= *DAG
.getContext();
8696 unsigned ShiftAmt
= N1C
->getZExtValue();
8697 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- ShiftAmt
);
8699 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorElementCount());
8701 // TODO: The simple type check probably belongs in the default hook
8702 // implementation and/or target-specific overrides (because
8703 // non-simple types likely require masking when legalized), but that
8704 // restriction may conflict with other transforms.
8705 if (TruncVT
.isSimple() && isTypeLegal(TruncVT
) &&
8706 TLI
.isTruncateFree(VT
, TruncVT
)) {
8708 SDValue Trunc
= DAG
.getZExtOrTrunc(Shl
.getOperand(0), DL
, TruncVT
);
8709 SDValue ShiftC
= DAG
.getConstant(AddC
->getAPIntValue().lshr(ShiftAmt
).
8710 trunc(TruncVT
.getScalarSizeInBits()), DL
, TruncVT
);
8711 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, TruncVT
, Trunc
, ShiftC
);
8712 return DAG
.getSExtOrTrunc(Add
, DL
, VT
);
8717 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
8718 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8719 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8720 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8721 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
8724 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
8725 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
8726 // if c1 is equal to the number of bits the trunc removes
8727 // TODO - support non-uniform vector shift amounts.
8728 if (N0
.getOpcode() == ISD::TRUNCATE
&&
8729 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
8730 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
8731 N0
.getOperand(0).hasOneUse() &&
8732 N0
.getOperand(0).getOperand(1).hasOneUse() && N1C
) {
8733 SDValue N0Op0
= N0
.getOperand(0);
8734 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
8735 EVT LargeVT
= N0Op0
.getValueType();
8736 unsigned TruncBits
= LargeVT
.getScalarSizeInBits() - OpSizeInBits
;
8737 if (LargeShift
->getAPIntValue() == TruncBits
) {
8739 SDValue Amt
= DAG
.getConstant(N1C
->getZExtValue() + TruncBits
, DL
,
8740 getShiftAmountTy(LargeVT
));
8742 DAG
.getNode(ISD::SRA
, DL
, LargeVT
, N0Op0
.getOperand(0), Amt
);
8743 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
8748 // Simplify, based on bits shifted out of the LHS.
8749 if (SimplifyDemandedBits(SDValue(N
, 0)))
8750 return SDValue(N
, 0);
8752 // If the sign bit is known to be zero, switch this to a SRL.
8753 if (DAG
.SignBitIsZero(N0
))
8754 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
8756 if (N1C
&& !N1C
->isOpaque())
8757 if (SDValue NewSRA
= visitShiftByConstant(N
))
8760 // Try to transform this shift into a multiply-high if
8761 // it matches the appropriate pattern detected in combineShiftToMULH.
8762 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
8768 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
8769 SDValue N0
= N
->getOperand(0);
8770 SDValue N1
= N
->getOperand(1);
8771 if (SDValue V
= DAG
.simplifyShift(N0
, N1
))
8774 EVT VT
= N0
.getValueType();
8775 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
8779 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
8782 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
8784 // fold (srl c1, c2) -> c1 >>u c2
8785 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, {N0
, N1
}))
8788 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
8791 // if (srl x, c) is known to be zero, return 0
8792 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
8793 APInt::getAllOnesValue(OpSizeInBits
)))
8794 return DAG
.getConstant(0, SDLoc(N
), VT
);
8796 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
8797 if (N0
.getOpcode() == ISD::SRL
) {
8798 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8799 ConstantSDNode
*RHS
) {
8800 APInt c1
= LHS
->getAPIntValue();
8801 APInt c2
= RHS
->getAPIntValue();
8802 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8803 return (c1
+ c2
).uge(OpSizeInBits
);
8805 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
8806 return DAG
.getConstant(0, SDLoc(N
), VT
);
8808 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
8809 ConstantSDNode
*RHS
) {
8810 APInt c1
= LHS
->getAPIntValue();
8811 APInt c2
= RHS
->getAPIntValue();
8812 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
8813 return (c1
+ c2
).ult(OpSizeInBits
);
8815 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
8817 EVT ShiftVT
= N1
.getValueType();
8818 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
8819 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
8823 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
8824 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
8825 SDValue InnerShift
= N0
.getOperand(0);
8826 // TODO - support non-uniform vector shift amounts.
8827 if (auto *N001C
= isConstOrConstSplat(InnerShift
.getOperand(1))) {
8828 uint64_t c1
= N001C
->getZExtValue();
8829 uint64_t c2
= N1C
->getZExtValue();
8830 EVT InnerShiftVT
= InnerShift
.getValueType();
8831 EVT ShiftAmtVT
= InnerShift
.getOperand(1).getValueType();
8832 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
8833 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
8834 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
8835 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
8837 if (c1
+ c2
>= InnerShiftSize
)
8838 return DAG
.getConstant(0, DL
, VT
);
8839 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
8840 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
8841 InnerShift
.getOperand(0), NewShiftAmt
);
8842 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewShift
);
8844 // In the more general case, we can clear the high bits after the shift:
8845 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
8846 if (N0
.hasOneUse() && InnerShift
.hasOneUse() &&
8847 c1
+ c2
< InnerShiftSize
) {
8849 SDValue NewShiftAmt
= DAG
.getConstant(c1
+ c2
, DL
, ShiftAmtVT
);
8850 SDValue NewShift
= DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
8851 InnerShift
.getOperand(0), NewShiftAmt
);
8852 SDValue Mask
= DAG
.getConstant(APInt::getLowBitsSet(InnerShiftSize
,
8855 SDValue And
= DAG
.getNode(ISD::AND
, DL
, InnerShiftVT
, NewShift
, Mask
);
8856 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, And
);
8861 // fold (srl (shl x, c), c) -> (and x, cst2)
8862 // TODO - (srl (shl x, c1), c2).
8863 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
8864 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
8867 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
8868 AddToWorklist(Mask
.getNode());
8869 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
8872 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
8873 // TODO - support non-uniform vector shift amounts.
8874 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
8875 // Shifting in all undef bits?
8876 EVT SmallVT
= N0
.getOperand(0).getValueType();
8877 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
8878 if (N1C
->getAPIntValue().uge(BitSize
))
8879 return DAG
.getUNDEF(VT
);
8881 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
8882 uint64_t ShiftAmt
= N1C
->getZExtValue();
8884 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
8886 DAG
.getConstant(ShiftAmt
, DL0
,
8887 getShiftAmountTy(SmallVT
)));
8888 AddToWorklist(SmallShift
.getNode());
8889 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
8891 return DAG
.getNode(ISD::AND
, DL
, VT
,
8892 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
8893 DAG
.getConstant(Mask
, DL
, VT
));
8897 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
8898 // bit, which is unmodified by sra.
8899 if (N1C
&& N1C
->getAPIntValue() == (OpSizeInBits
- 1)) {
8900 if (N0
.getOpcode() == ISD::SRA
)
8901 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
8904 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
8905 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
8906 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
8907 KnownBits Known
= DAG
.computeKnownBits(N0
.getOperand(0));
8909 // If any of the input bits are KnownOne, then the input couldn't be all
8910 // zeros, thus the result of the srl will always be zero.
8911 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
8913 // If all of the bits input the to ctlz node are known to be zero, then
8914 // the result of the ctlz is "32" and the result of the shift is one.
8915 APInt UnknownBits
= ~Known
.Zero
;
8916 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
8918 // Otherwise, check to see if there is exactly one bit input to the ctlz.
8919 if (UnknownBits
.isPowerOf2()) {
8920 // Okay, we know that only that the single bit specified by UnknownBits
8921 // could be set on input to the CTLZ node. If this bit is set, the SRL
8922 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
8923 // to an SRL/XOR pair, which is likely to simplify more.
8924 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
8925 SDValue Op
= N0
.getOperand(0);
8929 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
8930 DAG
.getConstant(ShAmt
, DL
,
8931 getShiftAmountTy(Op
.getValueType())));
8932 AddToWorklist(Op
.getNode());
8936 return DAG
.getNode(ISD::XOR
, DL
, VT
,
8937 Op
, DAG
.getConstant(1, DL
, VT
));
8941 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
8942 if (N1
.getOpcode() == ISD::TRUNCATE
&&
8943 N1
.getOperand(0).getOpcode() == ISD::AND
) {
8944 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
8945 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
8948 // fold operands of srl based on knowledge that the low bits are not
8950 if (SimplifyDemandedBits(SDValue(N
, 0)))
8951 return SDValue(N
, 0);
8953 if (N1C
&& !N1C
->isOpaque())
8954 if (SDValue NewSRL
= visitShiftByConstant(N
))
8957 // Attempt to convert a srl of a load into a narrower zero-extending load.
8958 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
8961 // Here is a common situation. We want to optimize:
8964 // %b = and i32 %a, 2
8965 // %c = srl i32 %b, 1
8966 // brcond i32 %c ...
8972 // %c = setcc eq %b, 0
8975 // However when after the source operand of SRL is optimized into AND, the SRL
8976 // itself may not be optimized further. Look for it and add the BRCOND into
8978 if (N
->hasOneUse()) {
8979 SDNode
*Use
= *N
->use_begin();
8980 if (Use
->getOpcode() == ISD::BRCOND
)
8982 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
8983 // Also look pass the truncate.
8984 Use
= *Use
->use_begin();
8985 if (Use
->getOpcode() == ISD::BRCOND
)
8990 // Try to transform this shift into a multiply-high if
8991 // it matches the appropriate pattern detected in combineShiftToMULH.
8992 if (SDValue MULH
= combineShiftToMULH(N
, DAG
, TLI
))
8998 SDValue
DAGCombiner::visitFunnelShift(SDNode
*N
) {
8999 EVT VT
= N
->getValueType(0);
9000 SDValue N0
= N
->getOperand(0);
9001 SDValue N1
= N
->getOperand(1);
9002 SDValue N2
= N
->getOperand(2);
9003 bool IsFSHL
= N
->getOpcode() == ISD::FSHL
;
9004 unsigned BitWidth
= VT
.getScalarSizeInBits();
9006 // fold (fshl N0, N1, 0) -> N0
9007 // fold (fshr N0, N1, 0) -> N1
9008 if (isPowerOf2_32(BitWidth
))
9009 if (DAG
.MaskedValueIsZero(
9010 N2
, APInt(N2
.getScalarValueSizeInBits(), BitWidth
- 1)))
9011 return IsFSHL
? N0
: N1
;
9013 auto IsUndefOrZero
= [](SDValue V
) {
9014 return V
.isUndef() || isNullOrNullSplat(V
, /*AllowUndefs*/ true);
9017 // TODO - support non-uniform vector shift amounts.
9018 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N2
)) {
9019 EVT ShAmtTy
= N2
.getValueType();
9021 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
9022 if (Cst
->getAPIntValue().uge(BitWidth
)) {
9023 uint64_t RotAmt
= Cst
->getAPIntValue().urem(BitWidth
);
9024 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N0
, N1
,
9025 DAG
.getConstant(RotAmt
, SDLoc(N
), ShAmtTy
));
9028 unsigned ShAmt
= Cst
->getZExtValue();
9030 return IsFSHL
? N0
: N1
;
9032 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
9033 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
9034 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
9035 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
9036 if (IsUndefOrZero(N0
))
9037 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
,
9038 DAG
.getConstant(IsFSHL
? BitWidth
- ShAmt
: ShAmt
,
9039 SDLoc(N
), ShAmtTy
));
9040 if (IsUndefOrZero(N1
))
9041 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
,
9042 DAG
.getConstant(IsFSHL
? ShAmt
: BitWidth
- ShAmt
,
9043 SDLoc(N
), ShAmtTy
));
9045 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9046 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
9047 // TODO - bigendian support once we have test coverage.
9048 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
9049 // TODO - permit LHS EXTLOAD if extensions are shifted out.
9050 if ((BitWidth
% 8) == 0 && (ShAmt
% 8) == 0 && !VT
.isVector() &&
9051 !DAG
.getDataLayout().isBigEndian()) {
9052 auto *LHS
= dyn_cast
<LoadSDNode
>(N0
);
9053 auto *RHS
= dyn_cast
<LoadSDNode
>(N1
);
9054 if (LHS
&& RHS
&& LHS
->isSimple() && RHS
->isSimple() &&
9055 LHS
->getAddressSpace() == RHS
->getAddressSpace() &&
9056 (LHS
->hasOneUse() || RHS
->hasOneUse()) && ISD::isNON_EXTLoad(RHS
) &&
9057 ISD::isNON_EXTLoad(LHS
)) {
9058 if (DAG
.areNonVolatileConsecutiveLoads(LHS
, RHS
, BitWidth
/ 8, 1)) {
9061 IsFSHL
? (((BitWidth
- ShAmt
) % BitWidth
) / 8) : (ShAmt
/ 8);
9062 Align NewAlign
= commonAlignment(RHS
->getAlign(), PtrOff
);
9064 if (TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
9065 RHS
->getAddressSpace(), NewAlign
,
9066 RHS
->getMemOperand()->getFlags(), &Fast
) &&
9068 SDValue NewPtr
= DAG
.getMemBasePlusOffset(
9069 RHS
->getBasePtr(), TypeSize::Fixed(PtrOff
), DL
);
9070 AddToWorklist(NewPtr
.getNode());
9071 SDValue Load
= DAG
.getLoad(
9072 VT
, DL
, RHS
->getChain(), NewPtr
,
9073 RHS
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
9074 RHS
->getMemOperand()->getFlags(), RHS
->getAAInfo());
9075 // Replace the old load's chain with the new load's chain.
9076 WorklistRemover
DeadNodes(*this);
9077 DAG
.ReplaceAllUsesOfValueWith(N1
.getValue(1), Load
.getValue(1));
9085 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
9086 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
9087 // iff We know the shift amount is in range.
9088 // TODO: when is it worth doing SUB(BW, N2) as well?
9089 if (isPowerOf2_32(BitWidth
)) {
9090 APInt
ModuloBits(N2
.getScalarValueSizeInBits(), BitWidth
- 1);
9091 if (IsUndefOrZero(N0
) && !IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9092 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N1
, N2
);
9093 if (IsUndefOrZero(N1
) && IsFSHL
&& DAG
.MaskedValueIsZero(N2
, ~ModuloBits
))
9094 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, N2
);
9097 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
9098 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
9099 // TODO: Investigate flipping this rotate if only one is legal, if funnel shift
9100 // is legal as well we might be better off avoiding non-constant (BW - N2).
9101 unsigned RotOpc
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
9102 if (N0
== N1
&& hasOperation(RotOpc
, VT
))
9103 return DAG
.getNode(RotOpc
, SDLoc(N
), VT
, N0
, N2
);
9105 // Simplify, based on bits shifted out of N0/N1.
9106 if (SimplifyDemandedBits(SDValue(N
, 0)))
9107 return SDValue(N
, 0);
9112 // Given a ABS node, detect the following pattern:
9113 // (ABS (SUB (EXTEND a), (EXTEND b))).
9114 // Generates UABD/SABD instruction.
9115 static SDValue
combineABSToABD(SDNode
*N
, SelectionDAG
&DAG
,
9116 const TargetLowering
&TLI
) {
9117 SDValue AbsOp1
= N
->getOperand(0);
9120 if (AbsOp1
.getOpcode() != ISD::SUB
)
9123 Op0
= AbsOp1
.getOperand(0);
9124 Op1
= AbsOp1
.getOperand(1);
9126 unsigned Opc0
= Op0
.getOpcode();
9127 // Check if the operands of the sub are (zero|sign)-extended.
9128 if (Opc0
!= Op1
.getOpcode() ||
9129 (Opc0
!= ISD::ZERO_EXTEND
&& Opc0
!= ISD::SIGN_EXTEND
))
9132 EVT VT1
= Op0
.getOperand(0).getValueType();
9133 EVT VT2
= Op1
.getOperand(0).getValueType();
9134 // Check if the operands are of same type and valid size.
9135 unsigned ABDOpcode
= (Opc0
== ISD::SIGN_EXTEND
) ? ISD::ABDS
: ISD::ABDU
;
9136 if (VT1
!= VT2
|| !TLI
.isOperationLegalOrCustom(ABDOpcode
, VT1
))
9139 Op0
= Op0
.getOperand(0);
9140 Op1
= Op1
.getOperand(0);
9142 DAG
.getNode(ABDOpcode
, SDLoc(N
), Op0
->getValueType(0), Op0
, Op1
);
9143 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0), ABD
);
9146 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
9147 SDValue N0
= N
->getOperand(0);
9148 EVT VT
= N
->getValueType(0);
9150 // fold (abs c1) -> c2
9151 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9152 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
9153 // fold (abs (abs x)) -> (abs x)
9154 if (N0
.getOpcode() == ISD::ABS
)
9156 // fold (abs x) -> x iff not-negative
9157 if (DAG
.SignBitIsZero(N0
))
9160 if (SDValue ABD
= combineABSToABD(N
, DAG
, TLI
))
9166 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
9167 SDValue N0
= N
->getOperand(0);
9168 EVT VT
= N
->getValueType(0);
9170 // fold (bswap c1) -> c2
9171 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9172 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
9173 // fold (bswap (bswap x)) -> x
9174 if (N0
.getOpcode() == ISD::BSWAP
)
9175 return N0
->getOperand(0);
9179 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
9180 SDValue N0
= N
->getOperand(0);
9181 EVT VT
= N
->getValueType(0);
9183 // fold (bitreverse c1) -> c2
9184 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9185 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
9186 // fold (bitreverse (bitreverse x)) -> x
9187 if (N0
.getOpcode() == ISD::BITREVERSE
)
9188 return N0
.getOperand(0);
9192 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
9193 SDValue N0
= N
->getOperand(0);
9194 EVT VT
= N
->getValueType(0);
9196 // fold (ctlz c1) -> c2
9197 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9198 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
9200 // If the value is known never to be zero, switch to the undef version.
9201 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
9202 if (DAG
.isKnownNeverZero(N0
))
9203 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9209 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
9210 SDValue N0
= N
->getOperand(0);
9211 EVT VT
= N
->getValueType(0);
9213 // fold (ctlz_zero_undef c1) -> c2
9214 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9215 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9219 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
9220 SDValue N0
= N
->getOperand(0);
9221 EVT VT
= N
->getValueType(0);
9223 // fold (cttz c1) -> c2
9224 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9225 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
9227 // If the value is known never to be zero, switch to the undef version.
9228 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
9229 if (DAG
.isKnownNeverZero(N0
))
9230 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9236 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
9237 SDValue N0
= N
->getOperand(0);
9238 EVT VT
= N
->getValueType(0);
9240 // fold (cttz_zero_undef c1) -> c2
9241 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9242 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
9246 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
9247 SDValue N0
= N
->getOperand(0);
9248 EVT VT
= N
->getValueType(0);
9250 // fold (ctpop c1) -> c2
9251 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9252 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
9256 // FIXME: This should be checking for no signed zeros on individual operands, as
9258 static bool isLegalToCombineMinNumMaxNum(SelectionDAG
&DAG
, SDValue LHS
,
9260 const TargetLowering
&TLI
) {
9261 const TargetOptions
&Options
= DAG
.getTarget().Options
;
9262 EVT VT
= LHS
.getValueType();
9264 return Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() &&
9265 TLI
.isProfitableToCombineMinNumMaxNum(VT
) &&
9266 DAG
.isKnownNeverNaN(LHS
) && DAG
.isKnownNeverNaN(RHS
);
9269 /// Generate Min/Max node
9270 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
9271 SDValue RHS
, SDValue True
, SDValue False
,
9272 ISD::CondCode CC
, const TargetLowering
&TLI
,
9273 SelectionDAG
&DAG
) {
9274 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
9277 EVT TransformVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
9285 // Since it's known never nan to get here already, either fminnum or
9286 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
9287 // expanded in terms of it.
9288 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
9289 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9290 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9292 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
9293 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9294 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9303 unsigned IEEEOpcode
= (LHS
== True
) ? ISD::FMAXNUM_IEEE
: ISD::FMINNUM_IEEE
;
9304 if (TLI
.isOperationLegalOrCustom(IEEEOpcode
, VT
))
9305 return DAG
.getNode(IEEEOpcode
, DL
, VT
, LHS
, RHS
);
9307 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
9308 if (TLI
.isOperationLegalOrCustom(Opcode
, TransformVT
))
9309 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
9317 /// If a (v)select has a condition value that is a sign-bit test, try to smear
9318 /// the condition operand sign-bit across the value width and use it as a mask.
9319 static SDValue
foldSelectOfConstantsUsingSra(SDNode
*N
, SelectionDAG
&DAG
) {
9320 SDValue Cond
= N
->getOperand(0);
9321 SDValue C1
= N
->getOperand(1);
9322 SDValue C2
= N
->getOperand(2);
9323 if (!isConstantOrConstantVector(C1
) || !isConstantOrConstantVector(C2
))
9326 EVT VT
= N
->getValueType(0);
9327 if (Cond
.getOpcode() != ISD::SETCC
|| !Cond
.hasOneUse() ||
9328 VT
!= Cond
.getOperand(0).getValueType())
9331 // The inverted-condition + commuted-select variants of these patterns are
9332 // canonicalized to these forms in IR.
9333 SDValue X
= Cond
.getOperand(0);
9334 SDValue CondC
= Cond
.getOperand(1);
9335 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
9336 if (CC
== ISD::SETGT
&& isAllOnesOrAllOnesSplat(CondC
) &&
9337 isAllOnesOrAllOnesSplat(C2
)) {
9338 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
9340 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9341 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9342 return DAG
.getNode(ISD::OR
, DL
, VT
, Sra
, C1
);
9344 if (CC
== ISD::SETLT
&& isNullOrNullSplat(CondC
) && isNullOrNullSplat(C2
)) {
9345 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
9347 SDValue ShAmtC
= DAG
.getConstant(X
.getScalarValueSizeInBits() - 1, DL
, VT
);
9348 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, X
, ShAmtC
);
9349 return DAG
.getNode(ISD::AND
, DL
, VT
, Sra
, C1
);
9354 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
9355 SDValue Cond
= N
->getOperand(0);
9356 SDValue N1
= N
->getOperand(1);
9357 SDValue N2
= N
->getOperand(2);
9358 EVT VT
= N
->getValueType(0);
9359 EVT CondVT
= Cond
.getValueType();
9362 if (!VT
.isInteger())
9365 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
9366 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
9370 // Only do this before legalization to avoid conflicting with target-specific
9371 // transforms in the other direction (create a select from a zext/sext). There
9372 // is also a target-independent combine here in DAGCombiner in the other
9373 // direction for (select Cond, -1, 0) when the condition is not i1.
9374 if (CondVT
== MVT::i1
&& !LegalOperations
) {
9375 if (C1
->isNullValue() && C2
->isOne()) {
9376 // select Cond, 0, 1 --> zext (!Cond)
9377 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9379 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
9382 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
9383 // select Cond, 0, -1 --> sext (!Cond)
9384 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
9386 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
9389 if (C1
->isOne() && C2
->isNullValue()) {
9390 // select Cond, 1, 0 --> zext (Cond)
9392 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9395 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
9396 // select Cond, -1, 0 --> sext (Cond)
9398 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9402 // Use a target hook because some targets may prefer to transform in the
9404 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
9405 // For any constants that differ by 1, we can transform the select into an
9407 const APInt
&C1Val
= C1
->getAPIntValue();
9408 const APInt
&C2Val
= C2
->getAPIntValue();
9409 if (C1Val
- 1 == C2Val
) {
9410 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
9412 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9413 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9415 if (C1Val
+ 1 == C2Val
) {
9416 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
9418 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
9419 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
9422 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
9423 if (C1Val
.isPowerOf2() && C2Val
.isNullValue()) {
9425 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
9426 SDValue ShAmtC
= DAG
.getConstant(C1Val
.exactLogBase2(), DL
, VT
);
9427 return DAG
.getNode(ISD::SHL
, DL
, VT
, Cond
, ShAmtC
);
9430 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
9437 // fold (select Cond, 0, 1) -> (xor Cond, 1)
9438 // We can't do this reliably if integer based booleans have different contents
9439 // to floating point based booleans. This is because we can't tell whether we
9440 // have an integer-based boolean or a floating-point-based boolean unless we
9441 // can find the SETCC that produced it and inspect its operands. This is
9442 // fairly easy if C is the SETCC node, but it can potentially be
9443 // undiscoverable (or not reasonably discoverable). For example, it could be
9444 // in another basic block or it could require searching a complicated
9446 if (CondVT
.isInteger() &&
9447 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
9448 TargetLowering::ZeroOrOneBooleanContent
&&
9449 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
9450 TargetLowering::ZeroOrOneBooleanContent
&&
9451 C1
->isNullValue() && C2
->isOne()) {
9453 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
9454 if (VT
.bitsEq(CondVT
))
9456 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
9462 static SDValue
foldBoolSelectToLogic(SDNode
*N
, SelectionDAG
&DAG
) {
9463 assert((N
->getOpcode() == ISD::SELECT
|| N
->getOpcode() == ISD::VSELECT
) &&
9464 "Expected a (v)select");
9465 SDValue Cond
= N
->getOperand(0);
9466 SDValue T
= N
->getOperand(1), F
= N
->getOperand(2);
9467 EVT VT
= N
->getValueType(0);
9468 if (VT
!= Cond
.getValueType() || VT
.getScalarSizeInBits() != 1)
9471 // select Cond, Cond, F --> or Cond, F
9472 // select Cond, 1, F --> or Cond, F
9473 if (Cond
== T
|| isOneOrOneSplat(T
, /* AllowUndefs */ true))
9474 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, Cond
, F
);
9476 // select Cond, T, Cond --> and Cond, T
9477 // select Cond, T, 0 --> and Cond, T
9478 if (Cond
== F
|| isNullOrNullSplat(F
, /* AllowUndefs */ true))
9479 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, Cond
, T
);
9481 // select Cond, T, 1 --> or (not Cond), T
9482 if (isOneOrOneSplat(F
, /* AllowUndefs */ true)) {
9483 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9484 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, NotCond
, T
);
9487 // select Cond, 0, F --> and (not Cond), F
9488 if (isNullOrNullSplat(T
, /* AllowUndefs */ true)) {
9489 SDValue NotCond
= DAG
.getNOT(SDLoc(N
), Cond
, VT
);
9490 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NotCond
, F
);
9496 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
9497 SDValue N0
= N
->getOperand(0);
9498 SDValue N1
= N
->getOperand(1);
9499 SDValue N2
= N
->getOperand(2);
9500 EVT VT
= N
->getValueType(0);
9501 EVT VT0
= N0
.getValueType();
9503 SDNodeFlags Flags
= N
->getFlags();
9505 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
9508 if (SDValue V
= foldSelectOfConstants(N
))
9511 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
9514 // If we can fold this based on the true/false value, do so.
9515 if (SimplifySelectOps(N
, N1
, N2
))
9516 return SDValue(N
, 0); // Don't revisit N.
9518 if (VT0
== MVT::i1
) {
9519 // The code in this block deals with the following 2 equivalences:
9520 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
9521 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
9522 // The target can specify its preferred form with the
9523 // shouldNormalizeToSelectSequence() callback. However we always transform
9524 // to the right anyway if we find the inner select exists in the DAG anyway
9525 // and we always transform to the left side if we know that we can further
9526 // optimize the combination of the conditions.
9527 bool normalizeToSequence
=
9528 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
9529 // select (and Cond0, Cond1), X, Y
9530 // -> select Cond0, (select Cond1, X, Y), Y
9531 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
9532 SDValue Cond0
= N0
->getOperand(0);
9533 SDValue Cond1
= N0
->getOperand(1);
9534 SDValue InnerSelect
=
9535 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
, Flags
);
9536 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9537 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
9538 InnerSelect
, N2
, Flags
);
9539 // Cleanup on failure.
9540 if (InnerSelect
.use_empty())
9541 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9543 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
9544 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
9545 SDValue Cond0
= N0
->getOperand(0);
9546 SDValue Cond1
= N0
->getOperand(1);
9547 SDValue InnerSelect
= DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(),
9548 Cond1
, N1
, N2
, Flags
);
9549 if (normalizeToSequence
|| !InnerSelect
.use_empty())
9550 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
9551 InnerSelect
, Flags
);
9552 // Cleanup on failure.
9553 if (InnerSelect
.use_empty())
9554 recursivelyDeleteUnusedNodes(InnerSelect
.getNode());
9557 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
9558 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
9559 SDValue N1_0
= N1
->getOperand(0);
9560 SDValue N1_1
= N1
->getOperand(1);
9561 SDValue N1_2
= N1
->getOperand(2);
9562 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
9563 // Create the actual and node if we can generate good code for it.
9564 if (!normalizeToSequence
) {
9565 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
9566 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
,
9569 // Otherwise see if we can optimize the "and" to a better pattern.
9570 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
)) {
9571 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
9576 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
9577 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
9578 SDValue N2_0
= N2
->getOperand(0);
9579 SDValue N2_1
= N2
->getOperand(1);
9580 SDValue N2_2
= N2
->getOperand(2);
9581 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
9582 // Create the actual or node if we can generate good code for it.
9583 if (!normalizeToSequence
) {
9584 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
9585 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
,
9588 // Otherwise see if we can optimize to a better pattern.
9589 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
9590 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
9596 // select (not Cond), N1, N2 -> select Cond, N2, N1
9597 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false)) {
9598 SDValue SelectOp
= DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
9599 SelectOp
->setFlags(Flags
);
9603 // Fold selects based on a setcc into other things, such as min/max/abs.
9604 if (N0
.getOpcode() == ISD::SETCC
) {
9605 SDValue Cond0
= N0
.getOperand(0), Cond1
= N0
.getOperand(1);
9606 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9608 // select (fcmp lt x, y), x, y -> fminnum x, y
9609 // select (fcmp gt x, y), x, y -> fmaxnum x, y
9611 // This is OK if we don't care what happens if either operand is a NaN.
9612 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, N1
, N2
, TLI
))
9613 if (SDValue FMinMax
= combineMinNumMaxNum(DL
, VT
, Cond0
, Cond1
, N1
, N2
,
9617 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
9618 // This is conservatively limited to pre-legal-operations to give targets
9619 // a chance to reverse the transform if they want to do that. Also, it is
9620 // unlikely that the pattern would be formed late, so it's probably not
9621 // worth going through the other checks.
9622 if (!LegalOperations
&& TLI
.isOperationLegalOrCustom(ISD::UADDO
, VT
) &&
9623 CC
== ISD::SETUGT
&& N0
.hasOneUse() && isAllOnesConstant(N1
) &&
9624 N2
.getOpcode() == ISD::ADD
&& Cond0
== N2
.getOperand(0)) {
9625 auto *C
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(1));
9626 auto *NotC
= dyn_cast
<ConstantSDNode
>(Cond1
);
9627 if (C
&& NotC
&& C
->getAPIntValue() == ~NotC
->getAPIntValue()) {
9628 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
9629 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
9631 // The IR equivalent of this transform would have this form:
9633 // %c = icmp ugt %x, ~C
9634 // %r = select %c, -1, %a
9636 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
9637 // %u0 = extractvalue %u, 0
9638 // %u1 = extractvalue %u, 1
9639 // %r = select %u1, -1, %u0
9640 SDVTList VTs
= DAG
.getVTList(VT
, VT0
);
9641 SDValue UAO
= DAG
.getNode(ISD::UADDO
, DL
, VTs
, Cond0
, N2
.getOperand(1));
9642 return DAG
.getSelect(DL
, VT
, UAO
.getValue(1), N1
, UAO
.getValue(0));
9646 if (TLI
.isOperationLegal(ISD::SELECT_CC
, VT
) ||
9647 (!LegalOperations
&&
9648 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
))) {
9649 // Any flags available in a select/setcc fold will be on the setcc as they
9650 // migrated from fcmp
9651 Flags
= N0
.getNode()->getFlags();
9652 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Cond0
, Cond1
, N1
,
9653 N2
, N0
.getOperand(2));
9654 SelectNode
->setFlags(Flags
);
9658 if (SDValue NewSel
= SimplifySelect(DL
, N0
, N1
, N2
))
9663 if (SDValue BinOp
= foldSelectOfBinops(N
))
9669 // This function assumes all the vselect's arguments are CONCAT_VECTOR
9670 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
9671 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
9673 SDValue Cond
= N
->getOperand(0);
9674 SDValue LHS
= N
->getOperand(1);
9675 SDValue RHS
= N
->getOperand(2);
9676 EVT VT
= N
->getValueType(0);
9677 int NumElems
= VT
.getVectorNumElements();
9678 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9679 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
9680 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
9682 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
9683 // binary ones here.
9684 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
9687 // We're sure we have an even number of elements due to the
9688 // concat_vectors we have as arguments to vselect.
9689 // Skip BV elements until we find one that's not an UNDEF
9690 // After we find an UNDEF element, keep looping until we get to half the
9691 // length of the BV and see if all the non-undef nodes are the same.
9692 ConstantSDNode
*BottomHalf
= nullptr;
9693 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
9694 if (Cond
->getOperand(i
)->isUndef())
9697 if (BottomHalf
== nullptr)
9698 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9699 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
9703 // Do the same for the second half of the BuildVector
9704 ConstantSDNode
*TopHalf
= nullptr;
9705 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
9706 if (Cond
->getOperand(i
)->isUndef())
9709 if (TopHalf
== nullptr)
9710 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
9711 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
9715 assert(TopHalf
&& BottomHalf
&&
9716 "One half of the selector was all UNDEFs and the other was all the "
9717 "same value. This should have been addressed before this function.");
9719 ISD::CONCAT_VECTORS
, DL
, VT
,
9720 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
9721 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
9724 bool refineUniformBase(SDValue
&BasePtr
, SDValue
&Index
, SelectionDAG
&DAG
) {
9725 if (!isNullConstant(BasePtr
) || Index
.getOpcode() != ISD::ADD
)
9728 // For now we check only the LHS of the add.
9729 SDValue LHS
= Index
.getOperand(0);
9730 SDValue SplatVal
= DAG
.getSplatValue(LHS
);
9735 Index
= Index
.getOperand(1);
9739 // Fold sext/zext of index into index type.
9740 bool refineIndexType(MaskedGatherScatterSDNode
*MGS
, SDValue
&Index
,
9741 bool Scaled
, SelectionDAG
&DAG
) {
9742 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9744 if (Index
.getOpcode() == ISD::ZERO_EXTEND
) {
9745 SDValue Op
= Index
.getOperand(0);
9746 MGS
->setIndexType(Scaled
? ISD::UNSIGNED_SCALED
: ISD::UNSIGNED_UNSCALED
);
9747 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
9753 if (Index
.getOpcode() == ISD::SIGN_EXTEND
) {
9754 SDValue Op
= Index
.getOperand(0);
9755 MGS
->setIndexType(Scaled
? ISD::SIGNED_SCALED
: ISD::SIGNED_UNSCALED
);
9756 if (TLI
.shouldRemoveExtendFromGSIndex(Op
.getValueType())) {
9765 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
9766 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
9767 SDValue Mask
= MSC
->getMask();
9768 SDValue Chain
= MSC
->getChain();
9769 SDValue Index
= MSC
->getIndex();
9770 SDValue Scale
= MSC
->getScale();
9771 SDValue StoreVal
= MSC
->getValue();
9772 SDValue BasePtr
= MSC
->getBasePtr();
9775 // Zap scatters with a zero mask.
9776 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9779 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
9780 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
9781 return DAG
.getMaskedScatter(
9782 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
9783 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
9786 if (refineIndexType(MSC
, Index
, MSC
->isIndexScaled(), DAG
)) {
9787 SDValue Ops
[] = {Chain
, StoreVal
, Mask
, BasePtr
, Index
, Scale
};
9788 return DAG
.getMaskedScatter(
9789 DAG
.getVTList(MVT::Other
), MSC
->getMemoryVT(), DL
, Ops
,
9790 MSC
->getMemOperand(), MSC
->getIndexType(), MSC
->isTruncatingStore());
9796 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
9797 MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
9798 SDValue Mask
= MST
->getMask();
9799 SDValue Chain
= MST
->getChain();
9802 // Zap masked stores with a zero mask.
9803 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9806 // If this is a masked load with an all ones mask, we can use a unmasked load.
9807 // FIXME: Can we do this for indexed, compressing, or truncating stores?
9808 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) &&
9809 MST
->isUnindexed() && !MST
->isCompressingStore() &&
9810 !MST
->isTruncatingStore())
9811 return DAG
.getStore(MST
->getChain(), SDLoc(N
), MST
->getValue(),
9812 MST
->getBasePtr(), MST
->getMemOperand());
9814 // Try transforming N to an indexed store.
9815 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
9816 return SDValue(N
, 0);
9821 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
9822 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
9823 SDValue Mask
= MGT
->getMask();
9824 SDValue Chain
= MGT
->getChain();
9825 SDValue Index
= MGT
->getIndex();
9826 SDValue Scale
= MGT
->getScale();
9827 SDValue PassThru
= MGT
->getPassThru();
9828 SDValue BasePtr
= MGT
->getBasePtr();
9831 // Zap gathers with a zero mask.
9832 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9833 return CombineTo(N
, PassThru
, MGT
->getChain());
9835 if (refineUniformBase(BasePtr
, Index
, DAG
)) {
9836 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
9837 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
9838 MGT
->getMemoryVT(), DL
, Ops
,
9839 MGT
->getMemOperand(), MGT
->getIndexType(),
9840 MGT
->getExtensionType());
9843 if (refineIndexType(MGT
, Index
, MGT
->isIndexScaled(), DAG
)) {
9844 SDValue Ops
[] = {Chain
, PassThru
, Mask
, BasePtr
, Index
, Scale
};
9845 return DAG
.getMaskedGather(DAG
.getVTList(N
->getValueType(0), MVT::Other
),
9846 MGT
->getMemoryVT(), DL
, Ops
,
9847 MGT
->getMemOperand(), MGT
->getIndexType(),
9848 MGT
->getExtensionType());
9854 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
9855 MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
9856 SDValue Mask
= MLD
->getMask();
9859 // Zap masked loads with a zero mask.
9860 if (ISD::isConstantSplatVectorAllZeros(Mask
.getNode()))
9861 return CombineTo(N
, MLD
->getPassThru(), MLD
->getChain());
9863 // If this is a masked load with an all ones mask, we can use a unmasked load.
9864 // FIXME: Can we do this for indexed, expanding, or extending loads?
9865 if (ISD::isConstantSplatVectorAllOnes(Mask
.getNode()) &&
9866 MLD
->isUnindexed() && !MLD
->isExpandingLoad() &&
9867 MLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
9868 SDValue NewLd
= DAG
.getLoad(N
->getValueType(0), SDLoc(N
), MLD
->getChain(),
9869 MLD
->getBasePtr(), MLD
->getMemOperand());
9870 return CombineTo(N
, NewLd
, NewLd
.getValue(1));
9873 // Try transforming N to an indexed load.
9874 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
9875 return SDValue(N
, 0);
9880 /// A vector select of 2 constant vectors can be simplified to math/logic to
9881 /// avoid a variable select instruction and possibly avoid constant loads.
9882 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
9883 SDValue Cond
= N
->getOperand(0);
9884 SDValue N1
= N
->getOperand(1);
9885 SDValue N2
= N
->getOperand(2);
9886 EVT VT
= N
->getValueType(0);
9887 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
9888 !TLI
.convertSelectOfConstantsToMath(VT
) ||
9889 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
9890 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
9893 // Check if we can use the condition value to increment/decrement a single
9894 // constant value. This simplifies a select to an add and removes a constant
9895 // load/materialization from the general case.
9896 bool AllAddOne
= true;
9897 bool AllSubOne
= true;
9898 unsigned Elts
= VT
.getVectorNumElements();
9899 for (unsigned i
= 0; i
!= Elts
; ++i
) {
9900 SDValue N1Elt
= N1
.getOperand(i
);
9901 SDValue N2Elt
= N2
.getOperand(i
);
9902 if (N1Elt
.isUndef() || N2Elt
.isUndef())
9904 if (N1Elt
.getValueType() != N2Elt
.getValueType())
9907 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
9908 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
9915 // Further simplifications for the extra-special cases where the constants are
9916 // all 0 or all -1 should be implemented as folds of these patterns.
9918 if (AllAddOne
|| AllSubOne
) {
9919 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
9920 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
9921 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
9922 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
9923 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
9926 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
9928 if (ISD::isConstantSplatVector(N1
.getNode(), Pow2C
) && Pow2C
.isPowerOf2() &&
9929 isNullOrNullSplat(N2
)) {
9930 SDValue ZextCond
= DAG
.getZExtOrTrunc(Cond
, DL
, VT
);
9931 SDValue ShAmtC
= DAG
.getConstant(Pow2C
.exactLogBase2(), DL
, VT
);
9932 return DAG
.getNode(ISD::SHL
, DL
, VT
, ZextCond
, ShAmtC
);
9935 if (SDValue V
= foldSelectOfConstantsUsingSra(N
, DAG
))
9938 // The general case for select-of-constants:
9939 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
9940 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
9941 // leave that to a machine-specific pass.
9945 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
9946 SDValue N0
= N
->getOperand(0);
9947 SDValue N1
= N
->getOperand(1);
9948 SDValue N2
= N
->getOperand(2);
9949 EVT VT
= N
->getValueType(0);
9952 if (SDValue V
= DAG
.simplifySelect(N0
, N1
, N2
))
9955 if (SDValue V
= foldBoolSelectToLogic(N
, DAG
))
9958 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
9959 if (SDValue F
= extractBooleanFlip(N0
, DAG
, TLI
, false))
9960 return DAG
.getSelect(DL
, VT
, F
, N2
, N1
);
9962 // Canonicalize integer abs.
9963 // vselect (setg[te] X, 0), X, -X ->
9964 // vselect (setgt X, -1), X, -X ->
9965 // vselect (setl[te] X, 0), -X, X ->
9966 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9967 if (N0
.getOpcode() == ISD::SETCC
) {
9968 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
9969 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
9971 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
9973 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
9974 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
9975 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
9976 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
9977 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
9978 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
9979 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
9982 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
9983 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
9985 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, VT
, LHS
,
9986 DAG
.getConstant(VT
.getScalarSizeInBits() - 1,
9987 DL
, getShiftAmountTy(VT
)));
9988 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
9989 AddToWorklist(Shift
.getNode());
9990 AddToWorklist(Add
.getNode());
9991 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
9994 // vselect x, y (fcmp lt x, y) -> fminnum x, y
9995 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
9997 // This is OK if we don't care about what happens if either operand is a
10000 if (N0
.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG
, LHS
, RHS
, TLI
)) {
10001 if (SDValue FMinMax
=
10002 combineMinNumMaxNum(DL
, VT
, LHS
, RHS
, N1
, N2
, CC
, TLI
, DAG
))
10006 // If this select has a condition (setcc) with narrower operands than the
10007 // select, try to widen the compare to match the select width.
10008 // TODO: This should be extended to handle any constant.
10009 // TODO: This could be extended to handle non-loading patterns, but that
10010 // requires thorough testing to avoid regressions.
10011 if (isNullOrNullSplat(RHS
)) {
10012 EVT NarrowVT
= LHS
.getValueType();
10013 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
10014 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
10015 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
10016 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
10017 bool IsSigned
= isSignedIntSetCC(CC
);
10018 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10019 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
10020 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
10021 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
10022 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
10023 // Both compare operands can be widened for free. The LHS can use an
10024 // extended load, and the RHS is a constant:
10025 // vselect (ext (setcc load(X), C)), N1, N2 -->
10026 // vselect (setcc extload(X), C'), N1, N2
10027 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
10028 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
10029 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
10030 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
10031 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
10032 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
10036 // Match VSELECTs into add with unsigned saturation.
10037 if (hasOperation(ISD::UADDSAT
, VT
)) {
10038 // Check if one of the arms of the VSELECT is vector with all bits set.
10039 // If it's on the left side invert the predicate to simplify logic below.
10041 ISD::CondCode SatCC
= CC
;
10042 if (ISD::isConstantSplatVectorAllOnes(N1
.getNode())) {
10044 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10045 } else if (ISD::isConstantSplatVectorAllOnes(N2
.getNode())) {
10049 if (Other
&& Other
.getOpcode() == ISD::ADD
) {
10050 SDValue CondLHS
= LHS
, CondRHS
= RHS
;
10051 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10053 // Canonicalize condition operands.
10054 if (SatCC
== ISD::SETUGE
) {
10055 std::swap(CondLHS
, CondRHS
);
10056 SatCC
= ISD::SETULE
;
10059 // We can test against either of the addition operands.
10060 // x <= x+y ? x+y : ~0 --> uaddsat x, y
10061 // x+y >= x ? x+y : ~0 --> uaddsat x, y
10062 if (SatCC
== ISD::SETULE
&& Other
== CondRHS
&&
10063 (OpLHS
== CondLHS
|| OpRHS
== CondLHS
))
10064 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10066 if (OpRHS
.getOpcode() == CondRHS
.getOpcode() &&
10067 (OpRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10068 OpRHS
.getOpcode() == ISD::SPLAT_VECTOR
) &&
10069 CondLHS
== OpLHS
) {
10070 // If the RHS is a constant we have to reverse the const
10071 // canonicalization.
10072 // x >= ~C ? x+C : ~0 --> uaddsat x, C
10073 auto MatchUADDSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10074 return Cond
->getAPIntValue() == ~Op
->getAPIntValue();
10076 if (SatCC
== ISD::SETULE
&&
10077 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUADDSAT
))
10078 return DAG
.getNode(ISD::UADDSAT
, DL
, VT
, OpLHS
, OpRHS
);
10083 // Match VSELECTs into sub with unsigned saturation.
10084 if (hasOperation(ISD::USUBSAT
, VT
)) {
10085 // Check if one of the arms of the VSELECT is a zero vector. If it's on
10086 // the left side invert the predicate to simplify logic below.
10088 ISD::CondCode SatCC
= CC
;
10089 if (ISD::isConstantSplatVectorAllZeros(N1
.getNode())) {
10091 SatCC
= ISD::getSetCCInverse(SatCC
, VT
.getScalarType());
10092 } else if (ISD::isConstantSplatVectorAllZeros(N2
.getNode())) {
10096 if (Other
&& Other
.getNumOperands() == 2) {
10097 SDValue CondRHS
= RHS
;
10098 SDValue OpLHS
= Other
.getOperand(0), OpRHS
= Other
.getOperand(1);
10100 if (Other
.getOpcode() == ISD::SUB
&&
10101 LHS
.getOpcode() == ISD::ZERO_EXTEND
&& LHS
.getOperand(0) == OpLHS
&&
10102 OpRHS
.getOpcode() == ISD::TRUNCATE
&& OpRHS
.getOperand(0) == RHS
) {
10103 // Look for a general sub with unsigned saturation first.
10104 // zext(x) >= y ? x - trunc(y) : 0
10105 // --> usubsat(x,trunc(umin(y,SatLimit)))
10106 // zext(x) > y ? x - trunc(y) : 0
10107 // --> usubsat(x,trunc(umin(y,SatLimit)))
10108 if (SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
)
10109 return getTruncatedUSUBSAT(VT
, LHS
.getValueType(), LHS
, RHS
, DAG
,
10113 if (OpLHS
== LHS
) {
10114 // Look for a general sub with unsigned saturation first.
10115 // x >= y ? x-y : 0 --> usubsat x, y
10116 // x > y ? x-y : 0 --> usubsat x, y
10117 if ((SatCC
== ISD::SETUGE
|| SatCC
== ISD::SETUGT
) &&
10118 Other
.getOpcode() == ISD::SUB
&& OpRHS
== CondRHS
)
10119 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10121 if (OpRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10122 OpRHS
.getOpcode() == ISD::SPLAT_VECTOR
) {
10123 if (CondRHS
.getOpcode() == ISD::BUILD_VECTOR
||
10124 CondRHS
.getOpcode() == ISD::SPLAT_VECTOR
) {
10125 // If the RHS is a constant we have to reverse the const
10126 // canonicalization.
10127 // x > C-1 ? x+-C : 0 --> usubsat x, C
10128 auto MatchUSUBSAT
= [](ConstantSDNode
*Op
, ConstantSDNode
*Cond
) {
10129 return (!Op
&& !Cond
) ||
10131 Cond
->getAPIntValue() == (-Op
->getAPIntValue() - 1));
10133 if (SatCC
== ISD::SETUGT
&& Other
.getOpcode() == ISD::ADD
&&
10134 ISD::matchBinaryPredicate(OpRHS
, CondRHS
, MatchUSUBSAT
,
10135 /*AllowUndefs*/ true)) {
10136 OpRHS
= DAG
.getNode(ISD::SUB
, DL
, VT
,
10137 DAG
.getConstant(0, DL
, VT
), OpRHS
);
10138 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10141 // Another special case: If C was a sign bit, the sub has been
10142 // canonicalized into a xor.
10143 // FIXME: Would it be better to use computeKnownBits to determine
10144 // whether it's safe to decanonicalize the xor?
10145 // x s< 0 ? x^C : 0 --> usubsat x, C
10147 if (SatCC
== ISD::SETLT
&& Other
.getOpcode() == ISD::XOR
&&
10148 ISD::isConstantSplatVector(OpRHS
.getNode(), SplatValue
) &&
10149 ISD::isConstantSplatVectorAllZeros(CondRHS
.getNode()) &&
10150 SplatValue
.isSignMask()) {
10151 // Note that we have to rebuild the RHS constant here to
10152 // ensure we don't rely on particular values of undef lanes.
10153 OpRHS
= DAG
.getConstant(SplatValue
, DL
, VT
);
10154 return DAG
.getNode(ISD::USUBSAT
, DL
, VT
, OpLHS
, OpRHS
);
10163 if (SimplifySelectOps(N
, N1
, N2
))
10164 return SDValue(N
, 0); // Don't revisit N.
10166 // Fold (vselect all_ones, N1, N2) -> N1
10167 if (ISD::isConstantSplatVectorAllOnes(N0
.getNode()))
10169 // Fold (vselect all_zeros, N1, N2) -> N2
10170 if (ISD::isConstantSplatVectorAllZeros(N0
.getNode()))
10173 // The ConvertSelectToConcatVector function is assuming both the above
10174 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
10176 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
10177 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
10178 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
10179 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
10183 if (SDValue V
= foldVSelectOfConstants(N
))
10189 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
10190 SDValue N0
= N
->getOperand(0);
10191 SDValue N1
= N
->getOperand(1);
10192 SDValue N2
= N
->getOperand(2);
10193 SDValue N3
= N
->getOperand(3);
10194 SDValue N4
= N
->getOperand(4);
10195 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
10197 // fold select_cc lhs, rhs, x, x, cc -> x
10201 // Determine if the condition we're dealing with is constant
10202 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
10203 CC
, SDLoc(N
), false)) {
10204 AddToWorklist(SCC
.getNode());
10206 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
10207 if (!SCCC
->isNullValue())
10208 return N2
; // cond always true -> true val
10210 return N3
; // cond always false -> false val
10211 } else if (SCC
->isUndef()) {
10212 // When the condition is UNDEF, just return the first operand. This is
10213 // coherent the DAG creation, no setcc node is created in this case
10215 } else if (SCC
.getOpcode() == ISD::SETCC
) {
10216 // Fold to a simpler select_cc
10217 SDValue SelectOp
= DAG
.getNode(
10218 ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(), SCC
.getOperand(0),
10219 SCC
.getOperand(1), N2
, N3
, SCC
.getOperand(2));
10220 SelectOp
->setFlags(SCC
->getFlags());
10225 // If we can fold this based on the true/false value, do so.
10226 if (SimplifySelectOps(N
, N2
, N3
))
10227 return SDValue(N
, 0); // Don't revisit N.
10229 // fold select_cc into other things, such as min/max/abs
10230 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
10233 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
10234 // setcc is very commonly used as an argument to brcond. This pattern
10235 // also lend itself to numerous combines and, as a result, it is desired
10236 // we keep the argument to a brcond as a setcc as much as possible.
10238 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
10240 ISD::CondCode Cond
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
10241 EVT VT
= N
->getValueType(0);
10243 // SETCC(FREEZE(X), CONST, Cond)
10245 // FREEZE(SETCC(X, CONST, Cond))
10246 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
10247 // isn't equivalent to true or false.
10248 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
10249 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
10251 // This transformation is beneficial because visitBRCOND can fold
10252 // BRCOND(FREEZE(X)) to BRCOND(X).
10254 // Conservatively optimize integer comparisons only.
10256 // Do this only when SETCC is going to be used by BRCOND.
10258 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
10259 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
10260 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
10261 bool Updated
= false;
10263 // Is 'X Cond C' always true or false?
10264 auto IsAlwaysTrueOrFalse
= [](ISD::CondCode Cond
, ConstantSDNode
*C
) {
10265 bool False
= (Cond
== ISD::SETULT
&& C
->isNullValue()) ||
10266 (Cond
== ISD::SETLT
&& C
->isMinSignedValue()) ||
10267 (Cond
== ISD::SETUGT
&& C
->isAllOnesValue()) ||
10268 (Cond
== ISD::SETGT
&& C
->isMaxSignedValue());
10269 bool True
= (Cond
== ISD::SETULE
&& C
->isAllOnesValue()) ||
10270 (Cond
== ISD::SETLE
&& C
->isMaxSignedValue()) ||
10271 (Cond
== ISD::SETUGE
&& C
->isNullValue()) ||
10272 (Cond
== ISD::SETGE
&& C
->isMinSignedValue());
10273 return True
|| False
;
10276 if (N0
->getOpcode() == ISD::FREEZE
&& N0
.hasOneUse() && N1C
) {
10277 if (!IsAlwaysTrueOrFalse(Cond
, N1C
)) {
10278 N0
= N0
->getOperand(0);
10282 if (N1
->getOpcode() == ISD::FREEZE
&& N1
.hasOneUse() && N0C
) {
10283 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond
),
10285 N1
= N1
->getOperand(0);
10291 return DAG
.getFreeze(DAG
.getSetCC(SDLoc(N
), VT
, N0
, N1
, Cond
));
10294 SDValue Combined
= SimplifySetCC(VT
, N
->getOperand(0), N
->getOperand(1), Cond
,
10295 SDLoc(N
), !PreferSetCC
);
10300 // If we prefer to have a setcc, and we don't, we'll try our best to
10301 // recreate one using rebuildSetCC.
10302 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
10303 SDValue NewSetCC
= rebuildSetCC(Combined
);
10305 // We don't have anything interesting to combine to.
10306 if (NewSetCC
.getNode() == N
)
10316 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
10317 SDValue LHS
= N
->getOperand(0);
10318 SDValue RHS
= N
->getOperand(1);
10319 SDValue Carry
= N
->getOperand(2);
10320 SDValue Cond
= N
->getOperand(3);
10322 // If Carry is false, fold to a regular SETCC.
10323 if (isNullConstant(Carry
))
10324 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
10329 /// Check if N satisfies:
10330 /// N is used once.
10332 /// The load is compatible with ExtOpcode. It means
10333 /// If load has explicit zero/sign extension, ExpOpcode must have the same
10335 /// Otherwise returns true.
10336 static bool isCompatibleLoad(SDValue N
, unsigned ExtOpcode
) {
10337 if (!N
.hasOneUse())
10340 if (!isa
<LoadSDNode
>(N
))
10343 LoadSDNode
*Load
= cast
<LoadSDNode
>(N
);
10344 ISD::LoadExtType LoadExt
= Load
->getExtensionType();
10345 if (LoadExt
== ISD::NON_EXTLOAD
|| LoadExt
== ISD::EXTLOAD
)
10348 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
10350 if ((LoadExt
== ISD::SEXTLOAD
&& ExtOpcode
!= ISD::SIGN_EXTEND
) ||
10351 (LoadExt
== ISD::ZEXTLOAD
&& ExtOpcode
!= ISD::ZERO_EXTEND
))
10358 /// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
10359 /// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
10360 /// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
10361 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10362 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10363 static SDValue
tryToFoldExtendSelectLoad(SDNode
*N
, const TargetLowering
&TLI
,
10364 SelectionDAG
&DAG
) {
10365 unsigned Opcode
= N
->getOpcode();
10366 SDValue N0
= N
->getOperand(0);
10367 EVT VT
= N
->getValueType(0);
10370 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10371 Opcode
== ISD::ANY_EXTEND
) &&
10372 "Expected EXTEND dag node in input!");
10374 if (!(N0
->getOpcode() == ISD::SELECT
|| N0
->getOpcode() == ISD::VSELECT
) ||
10378 SDValue Op1
= N0
->getOperand(1);
10379 SDValue Op2
= N0
->getOperand(2);
10380 if (!isCompatibleLoad(Op1
, Opcode
) || !isCompatibleLoad(Op2
, Opcode
))
10383 auto ExtLoadOpcode
= ISD::EXTLOAD
;
10384 if (Opcode
== ISD::SIGN_EXTEND
)
10385 ExtLoadOpcode
= ISD::SEXTLOAD
;
10386 else if (Opcode
== ISD::ZERO_EXTEND
)
10387 ExtLoadOpcode
= ISD::ZEXTLOAD
;
10389 LoadSDNode
*Load1
= cast
<LoadSDNode
>(Op1
);
10390 LoadSDNode
*Load2
= cast
<LoadSDNode
>(Op2
);
10391 if (!TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load1
->getMemoryVT()) ||
10392 !TLI
.isLoadExtLegal(ExtLoadOpcode
, VT
, Load2
->getMemoryVT()))
10395 SDValue Ext1
= DAG
.getNode(Opcode
, DL
, VT
, Op1
);
10396 SDValue Ext2
= DAG
.getNode(Opcode
, DL
, VT
, Op2
);
10397 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0), Ext1
, Ext2
);
10400 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
10401 /// a build_vector of constants.
10402 /// This function is called by the DAGCombiner when visiting sext/zext/aext
10403 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
10404 /// Vector extends are not folded if operations are legal; this is to
10405 /// avoid introducing illegal build_vector dag nodes.
10406 static SDValue
tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
10407 SelectionDAG
&DAG
, bool LegalTypes
) {
10408 unsigned Opcode
= N
->getOpcode();
10409 SDValue N0
= N
->getOperand(0);
10410 EVT VT
= N
->getValueType(0);
10413 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
10414 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
10415 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
10416 && "Expected EXTEND dag node in input!");
10418 // fold (sext c1) -> c1
10419 // fold (zext c1) -> c1
10420 // fold (aext c1) -> c1
10421 if (isa
<ConstantSDNode
>(N0
))
10422 return DAG
.getNode(Opcode
, DL
, VT
, N0
);
10424 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10425 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
10426 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
10427 if (N0
->getOpcode() == ISD::SELECT
) {
10428 SDValue Op1
= N0
->getOperand(1);
10429 SDValue Op2
= N0
->getOperand(2);
10430 if (isa
<ConstantSDNode
>(Op1
) && isa
<ConstantSDNode
>(Op2
) &&
10431 (Opcode
!= ISD::ZERO_EXTEND
|| !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
10432 // For any_extend, choose sign extension of the constants to allow a
10433 // possible further transform to sign_extend_inreg.i.e.
10435 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
10436 // t2: i64 = any_extend t1
10438 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
10440 // t4: i64 = sign_extend_inreg t3
10441 unsigned FoldOpc
= Opcode
;
10442 if (FoldOpc
== ISD::ANY_EXTEND
)
10443 FoldOpc
= ISD::SIGN_EXTEND
;
10444 return DAG
.getSelect(DL
, VT
, N0
->getOperand(0),
10445 DAG
.getNode(FoldOpc
, DL
, VT
, Op1
),
10446 DAG
.getNode(FoldOpc
, DL
, VT
, Op2
));
10450 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
10451 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
10452 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
10453 EVT SVT
= VT
.getScalarType();
10454 if (!(VT
.isVector() && (!LegalTypes
|| TLI
.isTypeLegal(SVT
)) &&
10455 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
10458 // We can fold this node into a build_vector.
10459 unsigned VTBits
= SVT
.getSizeInBits();
10460 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
10461 SmallVector
<SDValue
, 8> Elts
;
10462 unsigned NumElts
= VT
.getVectorNumElements();
10464 // For zero-extensions, UNDEF elements still guarantee to have the upper
10465 // bits set to zero.
10467 Opcode
== ISD::ZERO_EXTEND
|| Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
;
10469 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
10470 SDValue Op
= N0
.getOperand(i
);
10471 if (Op
.isUndef()) {
10472 Elts
.push_back(IsZext
? DAG
.getConstant(0, DL
, SVT
) : DAG
.getUNDEF(SVT
));
10477 // Get the constant value and if needed trunc it to the size of the type.
10478 // Nodes like build_vector might have constants wider than the scalar type.
10479 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
10480 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
10481 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
10483 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
10486 return DAG
.getBuildVector(VT
, DL
, Elts
);
10489 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
10490 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
10491 // transformation. Returns true if extension are possible and the above
10492 // mentioned transformation is profitable.
10493 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
10495 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
10496 const TargetLowering
&TLI
) {
10497 bool HasCopyToRegUses
= false;
10498 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
10499 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
10500 UE
= N0
.getNode()->use_end();
10502 SDNode
*User
= *UI
;
10505 if (UI
.getUse().getResNo() != N0
.getResNo())
10507 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
10508 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
10509 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
10510 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
10511 // Sign bits will be lost after a zext.
10514 for (unsigned i
= 0; i
!= 2; ++i
) {
10515 SDValue UseOp
= User
->getOperand(i
);
10518 if (!isa
<ConstantSDNode
>(UseOp
))
10523 ExtendNodes
.push_back(User
);
10526 // If truncates aren't free and there are users we can't
10527 // extend, it isn't worthwhile.
10530 // Remember if this value is live-out.
10531 if (User
->getOpcode() == ISD::CopyToReg
)
10532 HasCopyToRegUses
= true;
10535 if (HasCopyToRegUses
) {
10536 bool BothLiveOut
= false;
10537 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
10539 SDUse
&Use
= UI
.getUse();
10540 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
10541 BothLiveOut
= true;
10546 // Both unextended and extended values are live out. There had better be
10547 // a good reason for the transformation.
10548 return ExtendNodes
.size();
10553 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
10554 SDValue OrigLoad
, SDValue ExtLoad
,
10555 ISD::NodeType ExtType
) {
10556 // Extend SetCC uses if necessary.
10558 for (SDNode
*SetCC
: SetCCs
) {
10559 SmallVector
<SDValue
, 4> Ops
;
10561 for (unsigned j
= 0; j
!= 2; ++j
) {
10562 SDValue SOp
= SetCC
->getOperand(j
);
10563 if (SOp
== OrigLoad
)
10564 Ops
.push_back(ExtLoad
);
10566 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
10569 Ops
.push_back(SetCC
->getOperand(2));
10570 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
10574 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
10575 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
10576 SDValue N0
= N
->getOperand(0);
10577 EVT DstVT
= N
->getValueType(0);
10578 EVT SrcVT
= N0
.getValueType();
10580 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
10581 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
10582 "Unexpected node type (not an extend)!");
10584 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
10585 // For example, on a target with legal v4i32, but illegal v8i32, turn:
10586 // (v8i32 (sext (v8i16 (load x))))
10588 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10589 // (v4i32 (sextload (x + 16)))))
10590 // Where uses of the original load, i.e.:
10591 // (v8i16 (load x))
10592 // are replaced with:
10593 // (v8i16 (truncate
10594 // (v8i32 (concat_vectors (v4i32 (sextload x)),
10595 // (v4i32 (sextload (x + 16)))))))
10597 // This combine is only applicable to illegal, but splittable, vectors.
10598 // All legal types, and illegal non-vector types, are handled elsewhere.
10599 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
10601 if (N0
->getOpcode() != ISD::LOAD
)
10604 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10606 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
10607 !N0
.hasOneUse() || !LN0
->isSimple() ||
10608 !DstVT
.isVector() || !DstVT
.isPow2VectorType() ||
10609 !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
10612 SmallVector
<SDNode
*, 4> SetCCs
;
10613 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
10616 ISD::LoadExtType ExtType
=
10617 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10619 // Try to split the vector types to get down to legal types.
10620 EVT SplitSrcVT
= SrcVT
;
10621 EVT SplitDstVT
= DstVT
;
10622 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
10623 SplitSrcVT
.getVectorNumElements() > 1) {
10624 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
10625 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
10628 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
10631 assert(!DstVT
.isScalableVector() && "Unexpected scalable vector type");
10634 const unsigned NumSplits
=
10635 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
10636 const unsigned Stride
= SplitSrcVT
.getStoreSize();
10637 SmallVector
<SDValue
, 4> Loads
;
10638 SmallVector
<SDValue
, 4> Chains
;
10640 SDValue BasePtr
= LN0
->getBasePtr();
10641 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
10642 const unsigned Offset
= Idx
* Stride
;
10643 const Align Align
= commonAlignment(LN0
->getAlign(), Offset
);
10645 SDValue SplitLoad
= DAG
.getExtLoad(
10646 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
10647 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
10648 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
10650 BasePtr
= DAG
.getMemBasePlusOffset(BasePtr
, TypeSize::Fixed(Stride
), DL
);
10652 Loads
.push_back(SplitLoad
.getValue(0));
10653 Chains
.push_back(SplitLoad
.getValue(1));
10656 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
10657 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
10660 AddToWorklist(NewChain
.getNode());
10662 CombineTo(N
, NewValue
);
10664 // Replace uses of the original load (before extension)
10665 // with a truncate of the concatenated sextloaded vectors.
10667 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
10668 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
10669 CombineTo(N0
.getNode(), Trunc
, NewChain
);
10670 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10673 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
10674 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
10675 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
10676 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
10677 EVT VT
= N
->getValueType(0);
10678 EVT OrigVT
= N
->getOperand(0).getValueType();
10679 if (TLI
.isZExtFree(OrigVT
, VT
))
10683 SDValue N0
= N
->getOperand(0);
10684 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
10685 N0
.getOpcode() == ISD::XOR
) ||
10686 N0
.getOperand(1).getOpcode() != ISD::Constant
||
10687 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
10691 SDValue N1
= N0
->getOperand(0);
10692 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
10693 N1
.getOperand(1).getOpcode() != ISD::Constant
||
10694 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
10698 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
10700 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
10701 EVT MemVT
= Load
->getMemoryVT();
10702 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
10703 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
10707 // If the shift op is SHL, the logic op must be AND, otherwise the result
10709 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
10712 if (!N0
.hasOneUse() || !N1
.hasOneUse())
10715 SmallVector
<SDNode
*, 4> SetCCs
;
10716 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
10717 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
10720 // Actually do the transformation.
10721 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
10722 Load
->getChain(), Load
->getBasePtr(),
10723 Load
->getMemoryVT(), Load
->getMemOperand());
10726 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
10729 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
10731 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
10732 DAG
.getConstant(Mask
, DL0
, VT
));
10734 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
10736 if (SDValue(Load
, 0).hasOneUse()) {
10737 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
10739 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
10740 Load
->getValueType(0), ExtLoad
);
10741 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
10744 // N0 is dead at this point.
10745 recursivelyDeleteUnusedNodes(N0
.getNode());
10747 return SDValue(N
,0); // Return N so it doesn't get rechecked!
10750 /// If we're narrowing or widening the result of a vector select and the final
10751 /// size is the same size as a setcc (compare) feeding the select, then try to
10752 /// apply the cast operation to the select's operands because matching vector
10753 /// sizes for a select condition and other operands should be more efficient.
10754 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
10755 unsigned CastOpcode
= Cast
->getOpcode();
10756 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
10757 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
10758 CastOpcode
== ISD::FP_ROUND
) &&
10759 "Unexpected opcode for vector select narrowing/widening");
10761 // We only do this transform before legal ops because the pattern may be
10762 // obfuscated by target-specific operations after legalization. Do not create
10763 // an illegal select op, however, because that may be difficult to lower.
10764 EVT VT
= Cast
->getValueType(0);
10765 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
10768 SDValue VSel
= Cast
->getOperand(0);
10769 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
10770 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
10773 // Does the setcc have the same vector size as the casted select?
10774 SDValue SetCC
= VSel
.getOperand(0);
10775 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
10776 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
10779 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
10780 SDValue A
= VSel
.getOperand(1);
10781 SDValue B
= VSel
.getOperand(2);
10782 SDValue CastA
, CastB
;
10784 if (CastOpcode
== ISD::FP_ROUND
) {
10785 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
10786 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
10787 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
10789 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
10790 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
10792 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
10795 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10796 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10797 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
10798 const TargetLowering
&TLI
, EVT VT
,
10799 bool LegalOperations
, SDNode
*N
,
10800 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
10801 SDNode
*N0Node
= N0
.getNode();
10802 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
10803 : ISD::isZEXTLoad(N0Node
);
10804 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
10805 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
10808 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10809 EVT MemVT
= LN0
->getMemoryVT();
10810 if ((LegalOperations
|| !LN0
->isSimple() ||
10812 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
10816 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
10817 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
10818 Combiner
.CombineTo(N
, ExtLoad
);
10819 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10820 if (LN0
->use_empty())
10821 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
10822 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10825 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
10826 // Only generate vector extloads when 1) they're legal, and 2) they are
10827 // deemed desirable by the target.
10828 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
10829 const TargetLowering
&TLI
, EVT VT
,
10830 bool LegalOperations
, SDNode
*N
, SDValue N0
,
10831 ISD::LoadExtType ExtLoadType
,
10832 ISD::NodeType ExtOpc
) {
10833 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
10834 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
10835 ((LegalOperations
|| VT
.isVector() ||
10836 !cast
<LoadSDNode
>(N0
)->isSimple()) &&
10837 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
10840 bool DoXform
= true;
10841 SmallVector
<SDNode
*, 4> SetCCs
;
10842 if (!N0
.hasOneUse())
10843 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
10845 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
10849 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
10850 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
10851 LN0
->getBasePtr(), N0
.getValueType(),
10852 LN0
->getMemOperand());
10853 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
10854 // If the load value is used only by N, replace it via CombineTo N.
10855 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
10856 Combiner
.CombineTo(N
, ExtLoad
);
10857 if (NoReplaceTrunc
) {
10858 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
10859 Combiner
.recursivelyDeleteUnusedNodes(LN0
);
10862 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
10863 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
10865 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
10868 static SDValue
tryToFoldExtOfMaskedLoad(SelectionDAG
&DAG
,
10869 const TargetLowering
&TLI
, EVT VT
,
10870 SDNode
*N
, SDValue N0
,
10871 ISD::LoadExtType ExtLoadType
,
10872 ISD::NodeType ExtOpc
) {
10873 if (!N0
.hasOneUse())
10876 MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
);
10877 if (!Ld
|| Ld
->getExtensionType() != ISD::NON_EXTLOAD
)
10880 if (!TLI
.isLoadExtLegal(ExtLoadType
, VT
, Ld
->getValueType(0)))
10883 if (!TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
10887 SDValue PassThru
= DAG
.getNode(ExtOpc
, dl
, VT
, Ld
->getPassThru());
10888 SDValue NewLoad
= DAG
.getMaskedLoad(
10889 VT
, dl
, Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(), Ld
->getMask(),
10890 PassThru
, Ld
->getMemoryVT(), Ld
->getMemOperand(), Ld
->getAddressingMode(),
10891 ExtLoadType
, Ld
->isExpandingLoad());
10892 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1), SDValue(NewLoad
.getNode(), 1));
10896 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
10897 bool LegalOperations
) {
10898 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
10899 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
10901 SDValue SetCC
= N
->getOperand(0);
10902 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
10903 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
10906 SDValue X
= SetCC
.getOperand(0);
10907 SDValue Ones
= SetCC
.getOperand(1);
10908 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
10909 EVT VT
= N
->getValueType(0);
10910 EVT XVT
= X
.getValueType();
10911 // setge X, C is canonicalized to setgt, so we do not need to match that
10912 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
10913 // not require the 'not' op.
10914 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
10915 // Invert and smear/shift the sign bit:
10916 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
10917 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
10919 unsigned ShCt
= VT
.getSizeInBits() - 1;
10920 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10921 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
10922 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
10923 SDValue ShiftAmount
= DAG
.getConstant(ShCt
, DL
, VT
);
10925 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
10926 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
10932 SDValue
DAGCombiner::foldSextSetcc(SDNode
*N
) {
10933 SDValue N0
= N
->getOperand(0);
10934 if (N0
.getOpcode() != ISD::SETCC
)
10937 SDValue N00
= N0
.getOperand(0);
10938 SDValue N01
= N0
.getOperand(1);
10939 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
10940 EVT VT
= N
->getValueType(0);
10941 EVT N00VT
= N00
.getValueType();
10944 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
10945 // the same size as the compared operands. Try to optimize sext(setcc())
10946 // if this is the case.
10947 if (VT
.isVector() && !LegalOperations
&&
10948 TLI
.getBooleanContents(N00VT
) ==
10949 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
10950 EVT SVT
= getSetCCResultType(N00VT
);
10952 // If we already have the desired type, don't change it.
10953 if (SVT
!= N0
.getValueType()) {
10954 // We know that the # elements of the results is the same as the
10955 // # elements of the compare (and the # elements of the compare result
10956 // for that matter). Check to see that they are the same size. If so,
10957 // we know that the element size of the sext'd result matches the
10958 // element size of the compare operands.
10959 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
10960 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
10962 // If the desired elements are smaller or larger than the source
10963 // elements, we can use a matching integer vector type and then
10964 // truncate/sign extend.
10965 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
10966 if (SVT
== MatchingVecType
) {
10967 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
10968 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
10972 // Try to eliminate the sext of a setcc by zexting the compare operands.
10973 if (N0
.hasOneUse() && TLI
.isOperationLegalOrCustom(ISD::SETCC
, VT
) &&
10974 !TLI
.isOperationLegalOrCustom(ISD::SETCC
, SVT
)) {
10975 bool IsSignedCmp
= ISD::isSignedIntSetCC(CC
);
10976 unsigned LoadOpcode
= IsSignedCmp
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
10977 unsigned ExtOpcode
= IsSignedCmp
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
10979 // We have an unsupported narrow vector compare op that would be legal
10980 // if extended to the destination type. See if the compare operands
10981 // can be freely extended to the destination type.
10982 auto IsFreeToExtend
= [&](SDValue V
) {
10983 if (isConstantOrConstantVector(V
, /*NoOpaques*/ true))
10985 // Match a simple, non-extended load that can be converted to a
10986 // legal {z/s}ext-load.
10987 // TODO: Allow widening of an existing {z/s}ext-load?
10988 if (!(ISD::isNON_EXTLoad(V
.getNode()) &&
10989 ISD::isUNINDEXEDLoad(V
.getNode()) &&
10990 cast
<LoadSDNode
>(V
)->isSimple() &&
10991 TLI
.isLoadExtLegal(LoadOpcode
, VT
, V
.getValueType())))
10994 // Non-chain users of this value must either be the setcc in this
10995 // sequence or extends that can be folded into the new {z/s}ext-load.
10996 for (SDNode::use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
10998 // Skip uses of the chain and the setcc.
10999 SDNode
*User
= *UI
;
11000 if (UI
.getUse().getResNo() != 0 || User
== N0
.getNode())
11002 // Extra users must have exactly the same cast we are about to create.
11003 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
11004 // is enhanced similarly.
11005 if (User
->getOpcode() != ExtOpcode
|| User
->getValueType(0) != VT
)
11011 if (IsFreeToExtend(N00
) && IsFreeToExtend(N01
)) {
11012 SDValue Ext0
= DAG
.getNode(ExtOpcode
, DL
, VT
, N00
);
11013 SDValue Ext1
= DAG
.getNode(ExtOpcode
, DL
, VT
, N01
);
11014 return DAG
.getSetCC(DL
, VT
, Ext0
, Ext1
, CC
);
11019 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
11020 // Here, T can be 1 or -1, depending on the type of the setcc and
11021 // getBooleanContents().
11022 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
11024 // To determine the "true" side of the select, we need to know the high bit
11025 // of the value returned by the setcc if it evaluates to true.
11026 // If the type of the setcc is i1, then the true case of the select is just
11027 // sext(i1 1), that is, -1.
11028 // If the type of the setcc is larger (say, i8) then the value of the high
11029 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
11030 // of the appropriate width.
11031 SDValue ExtTrueVal
= (SetCCWidth
== 1)
11032 ? DAG
.getAllOnesConstant(DL
, VT
)
11033 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
11034 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
11035 if (SDValue SCC
= SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
11038 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
11039 EVT SetCCVT
= getSetCCResultType(N00VT
);
11040 // Don't do this transform for i1 because there's a select transform
11041 // that would reverse it.
11042 // TODO: We should not do this transform at all without a target hook
11043 // because a sext is likely cheaper than a select?
11044 if (SetCCVT
.getScalarSizeInBits() != 1 &&
11045 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
11046 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
11047 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
11054 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
11055 SDValue N0
= N
->getOperand(0);
11056 EVT VT
= N
->getValueType(0);
11059 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11062 // fold (sext (sext x)) -> (sext x)
11063 // fold (sext (aext x)) -> (sext x)
11064 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
11065 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
11067 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11068 // fold (sext (truncate (load x))) -> (sext (smaller load x))
11069 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
11070 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
11071 SDNode
*oye
= N0
.getOperand(0).getNode();
11072 if (NarrowLoad
.getNode() != N0
.getNode()) {
11073 CombineTo(N0
.getNode(), NarrowLoad
);
11074 // CombineTo deleted the truncate, if needed, but not what's under it.
11075 AddToWorklist(oye
);
11077 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11080 // See if the value being truncated is already sign extended. If so, just
11081 // eliminate the trunc/sext pair.
11082 SDValue Op
= N0
.getOperand(0);
11083 unsigned OpBits
= Op
.getScalarValueSizeInBits();
11084 unsigned MidBits
= N0
.getScalarValueSizeInBits();
11085 unsigned DestBits
= VT
.getScalarSizeInBits();
11086 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
11088 if (OpBits
== DestBits
) {
11089 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
11090 // bits, it is already ready.
11091 if (NumSignBits
> DestBits
-MidBits
)
11093 } else if (OpBits
< DestBits
) {
11094 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
11095 // bits, just sext from i32.
11096 if (NumSignBits
> OpBits
-MidBits
)
11097 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
11099 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
11100 // bits, just truncate to i32.
11101 if (NumSignBits
> OpBits
-MidBits
)
11102 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
11105 // fold (sext (truncate x)) -> (sextinreg x).
11106 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
11107 N0
.getValueType())) {
11108 if (OpBits
< DestBits
)
11109 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
11110 else if (OpBits
> DestBits
)
11111 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
11112 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
11113 DAG
.getValueType(N0
.getValueType()));
11117 // Try to simplify (sext (load x)).
11118 if (SDValue foldedExt
=
11119 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11120 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
11123 if (SDValue foldedExt
=
11124 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::SEXTLOAD
,
11128 // fold (sext (load x)) to multiple smaller sextloads.
11129 // Only on illegal but splittable vectors.
11130 if (SDValue ExtLoad
= CombineExtLoad(N
))
11133 // Try to simplify (sext (sextload x)).
11134 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11135 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
11138 // fold (sext (and/or/xor (load x), cst)) ->
11139 // (and/or/xor (sextload x), (sext cst))
11140 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11141 N0
.getOpcode() == ISD::XOR
) &&
11142 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11143 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11144 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11145 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11146 EVT MemVT
= LN00
->getMemoryVT();
11147 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
11148 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
11149 SmallVector
<SDNode
*, 4> SetCCs
;
11150 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11151 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
11153 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
11154 LN00
->getChain(), LN00
->getBasePtr(),
11155 LN00
->getMemoryVT(),
11156 LN00
->getMemOperand());
11157 APInt Mask
= N0
.getConstantOperandAPInt(1).sext(VT
.getSizeInBits());
11158 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11159 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11160 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
11161 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11162 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11164 // If N0 has multiple uses, change other uses as well.
11165 if (NoReplaceTruncAnd
) {
11167 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11168 CombineTo(N0
.getNode(), TruncAnd
);
11170 if (NoReplaceTrunc
) {
11171 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11173 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11174 LN00
->getValueType(0), ExtLoad
);
11175 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11177 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11182 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11185 if (SDValue V
= foldSextSetcc(N
))
11188 // fold (sext x) -> (zext x) if the sign bit is known zero.
11189 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
11190 DAG
.SignBitIsZero(N0
))
11191 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
11193 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11196 // Eliminate this sign extend by doing a negation in the destination type:
11197 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
11198 if (N0
.getOpcode() == ISD::SUB
&& N0
.hasOneUse() &&
11199 isNullOrNullSplat(N0
.getOperand(0)) &&
11200 N0
.getOperand(1).getOpcode() == ISD::ZERO_EXTEND
&&
11201 TLI
.isOperationLegalOrCustom(ISD::SUB
, VT
)) {
11202 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(1).getOperand(0), DL
, VT
);
11203 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Zext
);
11205 // Eliminate this sign extend by doing a decrement in the destination type:
11206 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
11207 if (N0
.getOpcode() == ISD::ADD
&& N0
.hasOneUse() &&
11208 isAllOnesOrAllOnesSplat(N0
.getOperand(1)) &&
11209 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11210 TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
)) {
11211 SDValue Zext
= DAG
.getZExtOrTrunc(N0
.getOperand(0).getOperand(0), DL
, VT
);
11212 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11215 // fold sext (not i1 X) -> add (zext i1 X), -1
11216 // TODO: This could be extended to handle bool vectors.
11217 if (N0
.getValueType() == MVT::i1
&& isBitwiseNot(N0
) && N0
.hasOneUse() &&
11218 (!LegalOperations
|| (TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
) &&
11219 TLI
.isOperationLegal(ISD::ADD
, VT
)))) {
11220 // If we can eliminate the 'not', the sext form should be better
11221 if (SDValue NewXor
= visitXOR(N0
.getNode())) {
11222 // Returning N0 is a form of in-visit replacement that may have
11224 if (NewXor
.getNode() == N0
.getNode()) {
11225 // Return SDValue here as the xor should have already been replaced in
11229 // Return a new sext with the new xor.
11230 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NewXor
);
11234 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
11235 return DAG
.getNode(ISD::ADD
, DL
, VT
, Zext
, DAG
.getAllOnesConstant(DL
, VT
));
11238 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11244 // isTruncateOf - If N is a truncate of some other value, return true, record
11245 // the value being truncated in Op and which of Op's bits are zero/one in Known.
11246 // This function computes KnownBits to avoid a duplicated call to
11247 // computeKnownBits in the caller.
11248 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
11249 KnownBits
&Known
) {
11250 if (N
->getOpcode() == ISD::TRUNCATE
) {
11251 Op
= N
->getOperand(0);
11252 Known
= DAG
.computeKnownBits(Op
);
11256 if (N
.getOpcode() != ISD::SETCC
||
11257 N
.getValueType().getScalarType() != MVT::i1
||
11258 cast
<CondCodeSDNode
>(N
.getOperand(2))->get() != ISD::SETNE
)
11261 SDValue Op0
= N
->getOperand(0);
11262 SDValue Op1
= N
->getOperand(1);
11263 assert(Op0
.getValueType() == Op1
.getValueType());
11265 if (isNullOrNullSplat(Op0
))
11267 else if (isNullOrNullSplat(Op1
))
11272 Known
= DAG
.computeKnownBits(Op
);
11274 return (Known
.Zero
| 1).isAllOnesValue();
11277 /// Given an extending node with a pop-count operand, if the target does not
11278 /// support a pop-count in the narrow source type but does support it in the
11279 /// destination type, widen the pop-count to the destination type.
11280 static SDValue
widenCtPop(SDNode
*Extend
, SelectionDAG
&DAG
) {
11281 assert((Extend
->getOpcode() == ISD::ZERO_EXTEND
||
11282 Extend
->getOpcode() == ISD::ANY_EXTEND
) && "Expected extend op");
11284 SDValue CtPop
= Extend
->getOperand(0);
11285 if (CtPop
.getOpcode() != ISD::CTPOP
|| !CtPop
.hasOneUse())
11288 EVT VT
= Extend
->getValueType(0);
11289 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11290 if (TLI
.isOperationLegalOrCustom(ISD::CTPOP
, CtPop
.getValueType()) ||
11291 !TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
))
11294 // zext (ctpop X) --> ctpop (zext X)
11296 SDValue NewZext
= DAG
.getZExtOrTrunc(CtPop
.getOperand(0), DL
, VT
);
11297 return DAG
.getNode(ISD::CTPOP
, DL
, VT
, NewZext
);
11300 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
11301 SDValue N0
= N
->getOperand(0);
11302 EVT VT
= N
->getValueType(0);
11304 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11307 // fold (zext (zext x)) -> (zext x)
11308 // fold (zext (aext x)) -> (zext x)
11309 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
11310 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
11313 // fold (zext (truncate x)) -> (zext x) or
11314 // (zext (truncate x)) -> (truncate x)
11315 // This is valid when the truncated bits of x are already zero.
11318 if (isTruncateOf(DAG
, N0
, Op
, Known
)) {
11319 APInt TruncatedBits
=
11320 (Op
.getScalarValueSizeInBits() == N0
.getScalarValueSizeInBits()) ?
11321 APInt(Op
.getScalarValueSizeInBits(), 0) :
11322 APInt::getBitsSet(Op
.getScalarValueSizeInBits(),
11323 N0
.getScalarValueSizeInBits(),
11324 std::min(Op
.getScalarValueSizeInBits(),
11325 VT
.getScalarSizeInBits()));
11326 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
11327 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11330 // fold (zext (truncate x)) -> (and x, mask)
11331 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11332 // fold (zext (truncate (load x))) -> (zext (smaller load x))
11333 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
11334 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
11335 SDNode
*oye
= N0
.getOperand(0).getNode();
11336 if (NarrowLoad
.getNode() != N0
.getNode()) {
11337 CombineTo(N0
.getNode(), NarrowLoad
);
11338 // CombineTo deleted the truncate, if needed, but not what's under it.
11339 AddToWorklist(oye
);
11341 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11344 EVT SrcVT
= N0
.getOperand(0).getValueType();
11345 EVT MinVT
= N0
.getValueType();
11347 // Try to mask before the extension to avoid having to generate a larger mask,
11348 // possibly over several sub-vectors.
11349 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
11350 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
11351 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
11352 SDValue Op
= N0
.getOperand(0);
11353 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11354 AddToWorklist(Op
.getNode());
11355 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
11356 // Transfer the debug info; the new node is equivalent to N0.
11357 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
11358 return ZExtOrTrunc
;
11362 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
11363 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11364 AddToWorklist(Op
.getNode());
11365 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
);
11366 // We may safely transfer the debug info describing the truncate node over
11367 // to the equivalent and operation.
11368 DAG
.transferDbgValues(N0
, And
);
11373 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
11374 // if either of the casts is not free.
11375 if (N0
.getOpcode() == ISD::AND
&&
11376 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11377 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11378 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11379 N0
.getValueType()) ||
11380 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
11381 SDValue X
= N0
.getOperand(0).getOperand(0);
11382 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
11383 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11385 return DAG
.getNode(ISD::AND
, DL
, VT
,
11386 X
, DAG
.getConstant(Mask
, DL
, VT
));
11389 // Try to simplify (zext (load x)).
11390 if (SDValue foldedExt
=
11391 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11392 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11395 if (SDValue foldedExt
=
11396 tryToFoldExtOfMaskedLoad(DAG
, TLI
, VT
, N
, N0
, ISD::ZEXTLOAD
,
11400 // fold (zext (load x)) to multiple smaller zextloads.
11401 // Only on illegal but splittable vectors.
11402 if (SDValue ExtLoad
= CombineExtLoad(N
))
11405 // fold (zext (and/or/xor (load x), cst)) ->
11406 // (and/or/xor (zextload x), (zext cst))
11407 // Unless (and (load x) cst) will match as a zextload already and has
11408 // additional users.
11409 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
11410 N0
.getOpcode() == ISD::XOR
) &&
11411 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
11412 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11413 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
11414 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
11415 EVT MemVT
= LN00
->getMemoryVT();
11416 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
11417 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
11418 bool DoXform
= true;
11419 SmallVector
<SDNode
*, 4> SetCCs
;
11420 if (!N0
.hasOneUse()) {
11421 if (N0
.getOpcode() == ISD::AND
) {
11422 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
11423 EVT LoadResultTy
= AndC
->getValueType(0);
11425 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
11430 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
11431 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
11433 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
11434 LN00
->getChain(), LN00
->getBasePtr(),
11435 LN00
->getMemoryVT(),
11436 LN00
->getMemOperand());
11437 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11439 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11440 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
11441 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
11442 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
11443 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
11445 // If N0 has multiple uses, change other uses as well.
11446 if (NoReplaceTruncAnd
) {
11448 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
11449 CombineTo(N0
.getNode(), TruncAnd
);
11451 if (NoReplaceTrunc
) {
11452 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
11454 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
11455 LN00
->getValueType(0), ExtLoad
);
11456 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
11458 return SDValue(N
,0); // Return N so it doesn't get rechecked!
11463 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
11464 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
11465 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
11468 // Try to simplify (zext (zextload x)).
11469 if (SDValue foldedExt
= tryToFoldExtOfExtload(
11470 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
11473 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
11476 if (N0
.getOpcode() == ISD::SETCC
) {
11477 // Only do this before legalize for now.
11478 if (!LegalOperations
&& VT
.isVector() &&
11479 N0
.getValueType().getVectorElementType() == MVT::i1
) {
11480 EVT N00VT
= N0
.getOperand(0).getValueType();
11481 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11484 // We know that the # elements of the results is the same as the #
11485 // elements of the compare (and the # elements of the compare result for
11486 // that matter). Check to see that they are the same size. If so, we know
11487 // that the element size of the sext'd result matches the element size of
11488 // the compare operands.
11490 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
11491 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
11492 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
11493 N0
.getOperand(1), N0
.getOperand(2));
11494 return DAG
.getZeroExtendInReg(VSetCC
, DL
, N0
.getValueType());
11497 // If the desired elements are smaller or larger than the source
11498 // elements we can use a matching integer vector type and then
11499 // truncate/any extend followed by zext_in_reg.
11500 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11502 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
11503 N0
.getOperand(1), N0
.getOperand(2));
11504 return DAG
.getZeroExtendInReg(DAG
.getAnyExtOrTrunc(VsetCC
, DL
, VT
), DL
,
11505 N0
.getValueType());
11508 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
11510 EVT N0VT
= N0
.getValueType();
11511 EVT N00VT
= N0
.getOperand(0).getValueType();
11512 if (SDValue SCC
= SimplifySelectCC(
11513 DL
, N0
.getOperand(0), N0
.getOperand(1),
11514 DAG
.getBoolConstant(true, DL
, N0VT
, N00VT
),
11515 DAG
.getBoolConstant(false, DL
, N0VT
, N00VT
),
11516 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
11517 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, SCC
);
11520 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
11521 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
11522 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
11523 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
11525 SDValue ShAmt
= N0
.getOperand(1);
11526 if (N0
.getOpcode() == ISD::SHL
) {
11527 SDValue InnerZExt
= N0
.getOperand(0);
11528 // If the original shl may be shifting out bits, do not perform this
11530 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
11531 InnerZExt
.getOperand(0).getValueSizeInBits();
11532 if (cast
<ConstantSDNode
>(ShAmt
)->getAPIntValue().ugt(KnownZeroBits
))
11538 // Ensure that the shift amount is wide enough for the shifted value.
11539 if (Log2_32_Ceil(VT
.getSizeInBits()) > ShAmt
.getValueSizeInBits())
11540 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
11542 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
11543 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
11547 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11550 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
11553 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11559 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
11560 SDValue N0
= N
->getOperand(0);
11561 EVT VT
= N
->getValueType(0);
11563 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
11566 // fold (aext (aext x)) -> (aext x)
11567 // fold (aext (zext x)) -> (zext x)
11568 // fold (aext (sext x)) -> (sext x)
11569 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
11570 N0
.getOpcode() == ISD::ZERO_EXTEND
||
11571 N0
.getOpcode() == ISD::SIGN_EXTEND
)
11572 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
11574 // fold (aext (truncate (load x))) -> (aext (smaller load x))
11575 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
11576 if (N0
.getOpcode() == ISD::TRUNCATE
) {
11577 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
11578 SDNode
*oye
= N0
.getOperand(0).getNode();
11579 if (NarrowLoad
.getNode() != N0
.getNode()) {
11580 CombineTo(N0
.getNode(), NarrowLoad
);
11581 // CombineTo deleted the truncate, if needed, but not what's under it.
11582 AddToWorklist(oye
);
11584 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11588 // fold (aext (truncate x))
11589 if (N0
.getOpcode() == ISD::TRUNCATE
)
11590 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
11592 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
11593 // if the trunc is not free.
11594 if (N0
.getOpcode() == ISD::AND
&&
11595 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
11596 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
11597 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
11598 N0
.getValueType())) {
11600 SDValue X
= N0
.getOperand(0).getOperand(0);
11601 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
11602 APInt Mask
= N0
.getConstantOperandAPInt(1).zext(VT
.getSizeInBits());
11603 return DAG
.getNode(ISD::AND
, DL
, VT
,
11604 X
, DAG
.getConstant(Mask
, DL
, VT
));
11607 // fold (aext (load x)) -> (aext (truncate (extload x)))
11608 // None of the supported targets knows how to perform load and any_ext
11609 // on vectors in one instruction, so attempt to fold to zext instead.
11610 if (VT
.isVector()) {
11611 // Try to simplify (zext (load x)).
11612 if (SDValue foldedExt
=
11613 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
11614 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
11616 } else if (ISD::isNON_EXTLoad(N0
.getNode()) &&
11617 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
11618 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
11619 bool DoXform
= true;
11620 SmallVector
<SDNode
*, 4> SetCCs
;
11621 if (!N0
.hasOneUse())
11623 ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
11625 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11626 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
11627 LN0
->getChain(), LN0
->getBasePtr(),
11628 N0
.getValueType(), LN0
->getMemOperand());
11629 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
11630 // If the load value is used only by N, replace it via CombineTo N.
11631 bool NoReplaceTrunc
= N0
.hasOneUse();
11632 CombineTo(N
, ExtLoad
);
11633 if (NoReplaceTrunc
) {
11634 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11635 recursivelyDeleteUnusedNodes(LN0
);
11638 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
11639 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
11641 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11645 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
11646 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
11647 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
11648 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
11649 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
11650 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11651 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
11652 EVT MemVT
= LN0
->getMemoryVT();
11653 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
11654 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
11655 VT
, LN0
->getChain(), LN0
->getBasePtr(),
11656 MemVT
, LN0
->getMemOperand());
11657 CombineTo(N
, ExtLoad
);
11658 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
11659 recursivelyDeleteUnusedNodes(LN0
);
11660 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11664 if (N0
.getOpcode() == ISD::SETCC
) {
11666 // aext(setcc) -> vsetcc
11667 // aext(setcc) -> truncate(vsetcc)
11668 // aext(setcc) -> aext(vsetcc)
11669 // Only do this before legalize for now.
11670 if (VT
.isVector() && !LegalOperations
) {
11671 EVT N00VT
= N0
.getOperand(0).getValueType();
11672 if (getSetCCResultType(N00VT
) == N0
.getValueType())
11675 // We know that the # elements of the results is the same as the
11676 // # elements of the compare (and the # elements of the compare result
11677 // for that matter). Check to see that they are the same size. If so,
11678 // we know that the element size of the sext'd result matches the
11679 // element size of the compare operands.
11680 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
11681 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
11683 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11685 // If the desired elements are smaller or larger than the source
11686 // elements we can use a matching integer vector type and then
11687 // truncate/any extend
11688 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
11690 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
11692 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11693 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
11696 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
11698 if (SDValue SCC
= SimplifySelectCC(
11699 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
11700 DAG
.getConstant(0, DL
, VT
),
11701 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
11705 if (SDValue NewCtPop
= widenCtPop(N
, DAG
))
11708 if (SDValue Res
= tryToFoldExtendSelectLoad(N
, TLI
, DAG
))
11714 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
11715 unsigned Opcode
= N
->getOpcode();
11716 SDValue N0
= N
->getOperand(0);
11717 SDValue N1
= N
->getOperand(1);
11718 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
11720 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
11721 if (N0
.getOpcode() == Opcode
&&
11722 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
11725 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
11726 N0
.getOperand(0).getOpcode() == Opcode
) {
11727 // We have an assert, truncate, assert sandwich. Make one stronger assert
11728 // by asserting on the smallest asserted type to the larger source type.
11729 // This eliminates the later assert:
11730 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
11731 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
11732 SDValue BigA
= N0
.getOperand(0);
11733 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
11734 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
11735 "Asserting zero/sign-extended bits to a type larger than the "
11736 "truncated destination does not provide information");
11739 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
11740 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
11741 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
11742 BigA
.getOperand(0), MinAssertVTVal
);
11743 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
11746 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
11747 // than X. Just move the AssertZext in front of the truncate and drop the
11749 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
11750 N0
.getOperand(0).getOpcode() == ISD::AssertSext
&&
11751 Opcode
== ISD::AssertZext
) {
11752 SDValue BigA
= N0
.getOperand(0);
11753 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
11754 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
11755 "Asserting zero/sign-extended bits to a type larger than the "
11756 "truncated destination does not provide information");
11758 if (AssertVT
.bitsLT(BigA_AssertVT
)) {
11760 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
11761 BigA
.getOperand(0), N1
);
11762 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
11769 SDValue
DAGCombiner::visitAssertAlign(SDNode
*N
) {
11772 Align AL
= cast
<AssertAlignSDNode
>(N
)->getAlign();
11773 SDValue N0
= N
->getOperand(0);
11775 // Fold (assertalign (assertalign x, AL0), AL1) ->
11776 // (assertalign x, max(AL0, AL1))
11777 if (auto *AAN
= dyn_cast
<AssertAlignSDNode
>(N0
))
11778 return DAG
.getAssertAlign(DL
, N0
.getOperand(0),
11779 std::max(AL
, AAN
->getAlign()));
11781 // In rare cases, there are trivial arithmetic ops in source operands. Sink
11782 // this assert down to source operands so that those arithmetic ops could be
11783 // exposed to the DAG combining.
11784 switch (N0
.getOpcode()) {
11789 unsigned AlignShift
= Log2(AL
);
11790 SDValue LHS
= N0
.getOperand(0);
11791 SDValue RHS
= N0
.getOperand(1);
11792 unsigned LHSAlignShift
= DAG
.computeKnownBits(LHS
).countMinTrailingZeros();
11793 unsigned RHSAlignShift
= DAG
.computeKnownBits(RHS
).countMinTrailingZeros();
11794 if (LHSAlignShift
>= AlignShift
|| RHSAlignShift
>= AlignShift
) {
11795 if (LHSAlignShift
< AlignShift
)
11796 LHS
= DAG
.getAssertAlign(DL
, LHS
, AL
);
11797 if (RHSAlignShift
< AlignShift
)
11798 RHS
= DAG
.getAssertAlign(DL
, RHS
, AL
);
11799 return DAG
.getNode(N0
.getOpcode(), DL
, N0
.getValueType(), LHS
, RHS
);
11808 /// If the result of a wider load is shifted to right of N bits and then
11809 /// truncated to a narrower type and where N is a multiple of number of bits of
11810 /// the narrower type, transform it to a narrower load from address + N / num of
11811 /// bits of new type. Also narrow the load if the result is masked with an AND
11812 /// to effectively produce a smaller type. If the result is to be extended, also
11813 /// fold the extension to form a extending load.
11814 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
11815 unsigned Opc
= N
->getOpcode();
11817 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
11818 SDValue N0
= N
->getOperand(0);
11819 EVT VT
= N
->getValueType(0);
11822 // This transformation isn't valid for vector loads.
11826 unsigned ShAmt
= 0;
11827 bool HasShiftedOffset
= false;
11828 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
11830 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
11831 ExtType
= ISD::SEXTLOAD
;
11832 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
11833 } else if (Opc
== ISD::SRL
) {
11834 // Another special-case: SRL is basically zero-extending a narrower value,
11835 // or it maybe shifting a higher subword, half or byte into the lowest
11837 ExtType
= ISD::ZEXTLOAD
;
11838 N0
= SDValue(N
, 0);
11840 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
11841 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
11845 uint64_t ShiftAmt
= N01
->getZExtValue();
11846 uint64_t MemoryWidth
= LN0
->getMemoryVT().getScalarSizeInBits();
11847 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
11848 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
11850 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
11851 VT
.getScalarSizeInBits() - ShiftAmt
);
11852 } else if (Opc
== ISD::AND
) {
11853 // An AND with a constant mask is the same as a truncate + zero-extend.
11854 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11858 const APInt
&Mask
= AndC
->getAPIntValue();
11859 unsigned ActiveBits
= 0;
11860 if (Mask
.isMask()) {
11861 ActiveBits
= Mask
.countTrailingOnes();
11862 } else if (Mask
.isShiftedMask()) {
11863 ShAmt
= Mask
.countTrailingZeros();
11864 APInt ShiftedMask
= Mask
.lshr(ShAmt
);
11865 ActiveBits
= ShiftedMask
.countTrailingOnes();
11866 HasShiftedOffset
= true;
11870 ExtType
= ISD::ZEXTLOAD
;
11871 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
11874 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
11876 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
11877 ShAmt
= ConstShift
->getZExtValue();
11878 unsigned EVTBits
= ExtVT
.getScalarSizeInBits();
11879 // Is the shift amount a multiple of size of VT?
11880 if ((ShAmt
& (EVTBits
-1)) == 0) {
11881 N0
= N0
.getOperand(0);
11882 // Is the load width a multiple of size of VT?
11883 if ((N0
.getScalarValueSizeInBits() & (EVTBits
- 1)) != 0)
11887 // At this point, we must have a load or else we can't do the transform.
11888 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
);
11889 if (!LN0
) return SDValue();
11891 // Because a SRL must be assumed to *need* to zero-extend the high bits
11892 // (as opposed to anyext the high bits), we can't combine the zextload
11893 // lowering of SRL and an sextload.
11894 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
11897 // If the shift amount is larger than the input type then we're not
11898 // accessing any of the loaded bytes. If the load was a zextload/extload
11899 // then the result of the shift+trunc is zero/undef (handled elsewhere).
11900 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
11903 // If the SRL is only used by a masking AND, we may be able to adjust
11904 // the ExtVT to make the AND redundant.
11905 SDNode
*Mask
= *(SRL
->use_begin());
11906 if (Mask
->getOpcode() == ISD::AND
&&
11907 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
11908 const APInt
& ShiftMask
= Mask
->getConstantOperandAPInt(1);
11909 if (ShiftMask
.isMask()) {
11910 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
11911 ShiftMask
.countTrailingOnes());
11912 // If the mask is smaller, recompute the type.
11913 if ((ExtVT
.getScalarSizeInBits() > MaskedVT
.getScalarSizeInBits()) &&
11914 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
11921 // If the load is shifted left (and the result isn't shifted back right),
11922 // we can fold the truncate through the shift.
11923 unsigned ShLeftAmt
= 0;
11924 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
11925 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
11926 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
11927 ShLeftAmt
= N01
->getZExtValue();
11928 N0
= N0
.getOperand(0);
11932 // If we haven't found a load, we can't narrow it.
11933 if (!isa
<LoadSDNode
>(N0
))
11936 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11937 // Reducing the width of a volatile load is illegal. For atomics, we may be
11938 // able to reduce the width provided we never widen again. (see D66309)
11939 if (!LN0
->isSimple() ||
11940 !isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
11943 auto AdjustBigEndianShift
= [&](unsigned ShAmt
) {
11944 unsigned LVTStoreBits
=
11945 LN0
->getMemoryVT().getStoreSizeInBits().getFixedSize();
11946 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits().getFixedSize();
11947 return LVTStoreBits
- EVTStoreBits
- ShAmt
;
11950 // For big endian targets, we need to adjust the offset to the pointer to
11951 // load the correct bytes.
11952 if (DAG
.getDataLayout().isBigEndian())
11953 ShAmt
= AdjustBigEndianShift(ShAmt
);
11955 uint64_t PtrOff
= ShAmt
/ 8;
11956 Align NewAlign
= commonAlignment(LN0
->getAlign(), PtrOff
);
11958 // The original load itself didn't wrap, so an offset within it doesn't.
11960 Flags
.setNoUnsignedWrap(true);
11961 SDValue NewPtr
= DAG
.getMemBasePlusOffset(LN0
->getBasePtr(),
11962 TypeSize::Fixed(PtrOff
), DL
, Flags
);
11963 AddToWorklist(NewPtr
.getNode());
11966 if (ExtType
== ISD::NON_EXTLOAD
)
11967 Load
= DAG
.getLoad(VT
, DL
, LN0
->getChain(), NewPtr
,
11968 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
11969 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
11971 Load
= DAG
.getExtLoad(ExtType
, DL
, VT
, LN0
->getChain(), NewPtr
,
11972 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
11973 NewAlign
, LN0
->getMemOperand()->getFlags(),
11976 // Replace the old load's chain with the new load's chain.
11977 WorklistRemover
DeadNodes(*this);
11978 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
11980 // Shift the result left, if we've swallowed a left shift.
11981 SDValue Result
= Load
;
11982 if (ShLeftAmt
!= 0) {
11983 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
11984 if (!isUIntN(ShImmTy
.getScalarSizeInBits(), ShLeftAmt
))
11986 // If the shift amount is as large as the result size (but, presumably,
11987 // no larger than the source) then the useful bits of the result are
11988 // zero; we can't simply return the shortened shift, because the result
11989 // of that operation is undefined.
11990 if (ShLeftAmt
>= VT
.getScalarSizeInBits())
11991 Result
= DAG
.getConstant(0, DL
, VT
);
11993 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11994 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
11997 if (HasShiftedOffset
) {
11998 // Recalculate the shift amount after it has been altered to calculate
12000 if (DAG
.getDataLayout().isBigEndian())
12001 ShAmt
= AdjustBigEndianShift(ShAmt
);
12003 // We're using a shifted mask, so the load now has an offset. This means
12004 // that data has been loaded into the lower bytes than it would have been
12005 // before, so we need to shl the loaded data into the correct position in the
12007 SDValue ShiftC
= DAG
.getConstant(ShAmt
, DL
, VT
);
12008 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
, Result
, ShiftC
);
12009 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
12012 // Return the new loaded value.
12016 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
12017 SDValue N0
= N
->getOperand(0);
12018 SDValue N1
= N
->getOperand(1);
12019 EVT VT
= N
->getValueType(0);
12020 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
12021 unsigned VTBits
= VT
.getScalarSizeInBits();
12022 unsigned ExtVTBits
= ExtVT
.getScalarSizeInBits();
12024 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
12026 return DAG
.getConstant(0, SDLoc(N
), VT
);
12028 // fold (sext_in_reg c1) -> c1
12029 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
12030 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
12032 // If the input is already sign extended, just drop the extension.
12033 if (DAG
.ComputeNumSignBits(N0
) >= (VTBits
- ExtVTBits
+ 1))
12036 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
12037 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
12038 ExtVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
12039 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
.getOperand(0),
12042 // fold (sext_in_reg (sext x)) -> (sext x)
12043 // fold (sext_in_reg (aext x)) -> (sext x)
12044 // if x is small enough or if we know that x has more than 1 sign bit and the
12045 // sign_extend_inreg is extending from one of them.
12046 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
12047 SDValue N00
= N0
.getOperand(0);
12048 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
12049 if ((N00Bits
<= ExtVTBits
||
12050 (N00Bits
- DAG
.ComputeNumSignBits(N00
)) < ExtVTBits
) &&
12051 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
12052 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
);
12055 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
12056 // if x is small enough or if we know that x has more than 1 sign bit and the
12057 // sign_extend_inreg is extending from one of them.
12058 if (N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
12059 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
12060 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
12061 SDValue N00
= N0
.getOperand(0);
12062 unsigned N00Bits
= N00
.getScalarValueSizeInBits();
12063 unsigned DstElts
= N0
.getValueType().getVectorMinNumElements();
12064 unsigned SrcElts
= N00
.getValueType().getVectorMinNumElements();
12065 bool IsZext
= N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
12066 APInt DemandedSrcElts
= APInt::getLowBitsSet(SrcElts
, DstElts
);
12067 if ((N00Bits
== ExtVTBits
||
12068 (!IsZext
&& (N00Bits
< ExtVTBits
||
12069 (N00Bits
- DAG
.ComputeNumSignBits(N00
, DemandedSrcElts
)) <
12071 (!LegalOperations
||
12072 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
)))
12073 return DAG
.getNode(ISD::SIGN_EXTEND_VECTOR_INREG
, SDLoc(N
), VT
, N00
);
12076 // fold (sext_in_reg (zext x)) -> (sext x)
12077 // iff we are extending the source sign bit.
12078 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
12079 SDValue N00
= N0
.getOperand(0);
12080 if (N00
.getScalarValueSizeInBits() == ExtVTBits
&&
12081 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
12082 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
12085 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
12086 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, ExtVTBits
- 1)))
12087 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), ExtVT
);
12089 // fold operands of sext_in_reg based on knowledge that the top bits are not
12091 if (SimplifyDemandedBits(SDValue(N
, 0)))
12092 return SDValue(N
, 0);
12094 // fold (sext_in_reg (load x)) -> (smaller sextload x)
12095 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
12096 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
12099 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
12100 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
12101 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
12102 if (N0
.getOpcode() == ISD::SRL
) {
12103 if (auto *ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
12104 if (ShAmt
->getAPIntValue().ule(VTBits
- ExtVTBits
)) {
12105 // We can turn this into an SRA iff the input to the SRL is already sign
12106 // extended enough.
12107 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
12108 if (((VTBits
- ExtVTBits
) - ShAmt
->getZExtValue()) < InSignBits
)
12109 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
.getOperand(0),
12114 // fold (sext_inreg (extload x)) -> (sextload x)
12115 // If sextload is not supported by target, we can only do the combine when
12116 // load has one use. Doing otherwise can block folding the extload with other
12117 // extends that the target does support.
12118 if (ISD::isEXTLoad(N0
.getNode()) &&
12119 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12120 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12121 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple() &&
12123 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12124 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12125 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12127 LN0
->getBasePtr(), ExtVT
,
12128 LN0
->getMemOperand());
12129 CombineTo(N
, ExtLoad
);
12130 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12131 AddToWorklist(ExtLoad
.getNode());
12132 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12135 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
12136 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
12138 ExtVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
12139 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) &&
12140 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
))) {
12141 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12142 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
12144 LN0
->getBasePtr(), ExtVT
,
12145 LN0
->getMemOperand());
12146 CombineTo(N
, ExtLoad
);
12147 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12148 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12151 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
12152 // ignore it if the masked load is already sign extended
12153 if (MaskedLoadSDNode
*Ld
= dyn_cast
<MaskedLoadSDNode
>(N0
)) {
12154 if (ExtVT
== Ld
->getMemoryVT() && N0
.hasOneUse() &&
12155 Ld
->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD
&&
12156 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, ExtVT
)) {
12157 SDValue ExtMaskedLoad
= DAG
.getMaskedLoad(
12158 VT
, SDLoc(N
), Ld
->getChain(), Ld
->getBasePtr(), Ld
->getOffset(),
12159 Ld
->getMask(), Ld
->getPassThru(), ExtVT
, Ld
->getMemOperand(),
12160 Ld
->getAddressingMode(), ISD::SEXTLOAD
, Ld
->isExpandingLoad());
12161 CombineTo(N
, ExtMaskedLoad
);
12162 CombineTo(N0
.getNode(), ExtMaskedLoad
, ExtMaskedLoad
.getValue(1));
12163 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12167 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
12168 if (auto *GN0
= dyn_cast
<MaskedGatherSDNode
>(N0
)) {
12169 if (SDValue(GN0
, 0).hasOneUse() &&
12170 ExtVT
== GN0
->getMemoryVT() &&
12171 TLI
.isVectorLoadExtDesirable(SDValue(SDValue(GN0
, 0)))) {
12172 SDValue Ops
[] = {GN0
->getChain(), GN0
->getPassThru(), GN0
->getMask(),
12173 GN0
->getBasePtr(), GN0
->getIndex(), GN0
->getScale()};
12175 SDValue ExtLoad
= DAG
.getMaskedGather(
12176 DAG
.getVTList(VT
, MVT::Other
), ExtVT
, SDLoc(N
), Ops
,
12177 GN0
->getMemOperand(), GN0
->getIndexType(), ISD::SEXTLOAD
);
12179 CombineTo(N
, ExtLoad
);
12180 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
12181 AddToWorklist(ExtLoad
.getNode());
12182 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12186 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
12187 if (ExtVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
12188 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
12189 N0
.getOperand(1), false))
12190 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, BSwap
, N1
);
12196 SDValue
DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode
*N
) {
12197 SDValue N0
= N
->getOperand(0);
12198 EVT VT
= N
->getValueType(0);
12200 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
12202 return DAG
.getConstant(0, SDLoc(N
), VT
);
12204 if (SDValue Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
))
12207 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
12208 return SDValue(N
, 0);
12213 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
12214 SDValue N0
= N
->getOperand(0);
12215 EVT VT
= N
->getValueType(0);
12216 EVT SrcVT
= N0
.getValueType();
12217 bool isLE
= DAG
.getDataLayout().isLittleEndian();
12223 // fold (truncate (truncate x)) -> (truncate x)
12224 if (N0
.getOpcode() == ISD::TRUNCATE
)
12225 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12227 // fold (truncate c1) -> c1
12228 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
12229 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
12230 if (C
.getNode() != N
)
12234 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
12235 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
12236 N0
.getOpcode() == ISD::SIGN_EXTEND
||
12237 N0
.getOpcode() == ISD::ANY_EXTEND
) {
12238 // if the source is smaller than the dest, we still need an extend.
12239 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
12240 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
12241 // if the source is larger than the dest, than we just need the truncate.
12242 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
12243 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
12244 // if the source and dest are the same type, we can drop both the extend
12245 // and the truncate.
12246 return N0
.getOperand(0);
12249 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
12250 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
12253 // Fold extract-and-trunc into a narrow extract. For example:
12254 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
12255 // i32 y = TRUNCATE(i64 x)
12257 // v16i8 b = BITCAST (v2i64 val)
12258 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
12260 // Note: We only run this optimization after type legalization (which often
12261 // creates this pattern) and before operation legalization after which
12262 // we need to be more careful about the vector instructions that we generate.
12263 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
12264 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
12265 EVT VecTy
= N0
.getOperand(0).getValueType();
12266 EVT ExTy
= N0
.getValueType();
12267 EVT TrTy
= N
->getValueType(0);
12269 auto EltCnt
= VecTy
.getVectorElementCount();
12270 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
12271 auto NewEltCnt
= EltCnt
* SizeRatio
;
12273 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, NewEltCnt
);
12274 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
12276 SDValue EltNo
= N0
->getOperand(1);
12277 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
12278 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
12279 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
12282 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
12283 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
12284 DAG
.getVectorIdxConstant(Index
, DL
));
12288 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
12289 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
12290 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
12291 TLI
.isTruncateFree(SrcVT
, VT
)) {
12293 SDValue Cond
= N0
.getOperand(0);
12294 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12295 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
12296 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
12300 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
12301 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
12302 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SHL
, VT
)) &&
12303 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
12304 SDValue Amt
= N0
.getOperand(1);
12305 KnownBits Known
= DAG
.computeKnownBits(Amt
);
12306 unsigned Size
= VT
.getScalarSizeInBits();
12307 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
12309 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
12311 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12312 if (AmtVT
!= Amt
.getValueType()) {
12313 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
12314 AddToWorklist(Amt
.getNode());
12316 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
12320 if (SDValue V
= foldSubToUSubSat(VT
, N0
.getNode()))
12323 // Attempt to pre-truncate BUILD_VECTOR sources.
12324 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& !LegalOperations
&&
12325 TLI
.isTruncateFree(SrcVT
.getScalarType(), VT
.getScalarType()) &&
12326 // Avoid creating illegal types if running after type legalizer.
12327 (!LegalTypes
|| TLI
.isTypeLegal(VT
.getScalarType()))) {
12329 EVT SVT
= VT
.getScalarType();
12330 SmallVector
<SDValue
, 8> TruncOps
;
12331 for (const SDValue
&Op
: N0
->op_values()) {
12332 SDValue TruncOp
= DAG
.getNode(ISD::TRUNCATE
, DL
, SVT
, Op
);
12333 TruncOps
.push_back(TruncOp
);
12335 return DAG
.getBuildVector(VT
, DL
, TruncOps
);
12338 // Fold a series of buildvector, bitcast, and truncate if possible.
12339 // For example fold
12340 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
12341 // (2xi32 (buildvector x, y)).
12342 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
12343 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
12344 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
12345 N0
.getOperand(0).hasOneUse()) {
12346 SDValue BuildVect
= N0
.getOperand(0);
12347 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
12348 EVT TruncVecEltTy
= VT
.getVectorElementType();
12350 // Check that the element types match.
12351 if (BuildVectEltTy
== TruncVecEltTy
) {
12352 // Now we only need to compute the offset of the truncated elements.
12353 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
12354 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
12355 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
12357 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
12358 "Invalid number of elements");
12360 SmallVector
<SDValue
, 8> Opnds
;
12361 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
12362 Opnds
.push_back(BuildVect
.getOperand(i
));
12364 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
12368 // See if we can simplify the input to this truncate through knowledge that
12369 // only the low bits are being used.
12370 // For example "trunc (or (shl x, 8), y)" // -> trunc y
12371 // Currently we only perform this optimization on scalars because vectors
12372 // may have different active low bits.
12373 if (!VT
.isVector()) {
12375 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
12376 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
12377 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
12380 // fold (truncate (load x)) -> (smaller load x)
12381 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
12382 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
12383 if (SDValue Reduced
= ReduceLoadWidth(N
))
12386 // Handle the case where the load remains an extending load even
12387 // after truncation.
12388 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
12389 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12390 if (LN0
->isSimple() && LN0
->getMemoryVT().bitsLT(VT
)) {
12391 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
12392 VT
, LN0
->getChain(), LN0
->getBasePtr(),
12393 LN0
->getMemoryVT(),
12394 LN0
->getMemOperand());
12395 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
12401 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
12402 // where ... are all 'undef'.
12403 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
12404 SmallVector
<EVT
, 8> VTs
;
12407 unsigned NumDefs
= 0;
12409 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
12410 SDValue X
= N0
.getOperand(i
);
12411 if (!X
.isUndef()) {
12416 // Stop if more than one members are non-undef.
12420 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
12421 VT
.getVectorElementType(),
12422 X
.getValueType().getVectorElementCount()));
12426 return DAG
.getUNDEF(VT
);
12428 if (NumDefs
== 1) {
12429 assert(V
.getNode() && "The single defined operand is empty!");
12430 SmallVector
<SDValue
, 8> Opnds
;
12431 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
12433 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
12436 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
12437 AddToWorklist(NV
.getNode());
12438 Opnds
.push_back(NV
);
12440 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
12444 // Fold truncate of a bitcast of a vector to an extract of the low vector
12447 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
12448 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
12449 SDValue VecSrc
= N0
.getOperand(0);
12450 EVT VecSrcVT
= VecSrc
.getValueType();
12451 if (VecSrcVT
.isVector() && VecSrcVT
.getScalarType() == VT
&&
12452 (!LegalOperations
||
12453 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecSrcVT
))) {
12456 unsigned Idx
= isLE
? 0 : VecSrcVT
.getVectorNumElements() - 1;
12457 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
, VecSrc
,
12458 DAG
.getVectorIdxConstant(Idx
, SL
));
12462 // Simplify the operands using demanded-bits information.
12463 if (SimplifyDemandedBits(SDValue(N
, 0)))
12464 return SDValue(N
, 0);
12466 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
12467 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
12468 // When the adde's carry is not used.
12469 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
12470 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
12471 // We only do for addcarry before legalize operation
12472 ((!LegalOperations
&& N0
.getOpcode() == ISD::ADDCARRY
) ||
12473 TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
12475 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
12476 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
12477 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
12478 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
12481 // fold (truncate (extract_subvector(ext x))) ->
12482 // (extract_subvector x)
12483 // TODO: This can be generalized to cover cases where the truncate and extract
12484 // do not fully cancel each other out.
12485 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
12486 SDValue N00
= N0
.getOperand(0);
12487 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
12488 N00
.getOpcode() == ISD::ZERO_EXTEND
||
12489 N00
.getOpcode() == ISD::ANY_EXTEND
) {
12490 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
12491 VT
.getVectorElementType())
12492 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
12493 N00
.getOperand(0), N0
.getOperand(1));
12497 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
12500 // Narrow a suitable binary operation with a non-opaque constant operand by
12501 // moving it ahead of the truncate. This is limited to pre-legalization
12502 // because targets may prefer a wider type during later combines and invert
12504 switch (N0
.getOpcode()) {
12511 if (!LegalOperations
&& N0
.hasOneUse() &&
12512 (isConstantOrConstantVector(N0
.getOperand(0), true) ||
12513 isConstantOrConstantVector(N0
.getOperand(1), true))) {
12514 // TODO: We already restricted this to pre-legalization, but for vectors
12515 // we are extra cautious to not create an unsupported operation.
12516 // Target-specific changes are likely needed to avoid regressions here.
12517 if (VT
.isScalarInteger() || TLI
.isOperationLegal(N0
.getOpcode(), VT
)) {
12519 SDValue NarrowL
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(0));
12520 SDValue NarrowR
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N0
.getOperand(1));
12521 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, NarrowL
, NarrowR
);
12526 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
12527 // enough to know that the upper bits are zero we must ensure that we don't
12528 // introduce an extra truncate.
12529 if (!LegalOperations
&& N0
.hasOneUse() &&
12530 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
12531 N0
.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
12532 VT
.getScalarSizeInBits() &&
12533 hasOperation(N0
.getOpcode(), VT
)) {
12534 return getTruncatedUSUBSAT(VT
, SrcVT
, N0
.getOperand(0), N0
.getOperand(1),
12543 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
12544 SDValue Elt
= N
->getOperand(i
);
12545 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
12546 return Elt
.getNode();
12547 return Elt
.getOperand(Elt
.getResNo()).getNode();
12550 /// build_pair (load, load) -> load
12551 /// if load locations are consecutive.
12552 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
12553 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
12555 auto *LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
12556 auto *LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
12558 // A BUILD_PAIR is always having the least significant part in elt 0 and the
12559 // most significant part in elt 1. So when combining into one large load, we
12560 // need to consider the endianness.
12561 if (DAG
.getDataLayout().isBigEndian())
12562 std::swap(LD1
, LD2
);
12564 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !ISD::isNON_EXTLoad(LD2
) ||
12565 !LD1
->hasOneUse() || !LD2
->hasOneUse() ||
12566 LD1
->getAddressSpace() != LD2
->getAddressSpace())
12569 EVT LD1VT
= LD1
->getValueType(0);
12570 unsigned LD1Bytes
= LD1VT
.getStoreSize();
12571 if (DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
12572 Align Alignment
= LD1
->getAlign();
12573 Align NewAlign
= DAG
.getDataLayout().getABITypeAlign(
12574 VT
.getTypeForEVT(*DAG
.getContext()));
12576 if (NewAlign
<= Alignment
&&
12577 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
12578 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
12579 LD1
->getPointerInfo(), Alignment
);
12585 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
12586 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
12587 // and Lo parts; on big-endian machines it doesn't.
12588 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
12591 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
12592 const TargetLowering
&TLI
) {
12593 // If this is not a bitcast to an FP type or if the target doesn't have
12594 // IEEE754-compliant FP logic, we're done.
12595 EVT VT
= N
->getValueType(0);
12596 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
12599 // TODO: Handle cases where the integer constant is a different scalar
12600 // bitwidth to the FP.
12601 SDValue N0
= N
->getOperand(0);
12602 EVT SourceVT
= N0
.getValueType();
12603 if (VT
.getScalarSizeInBits() != SourceVT
.getScalarSizeInBits())
12608 switch (N0
.getOpcode()) {
12610 FPOpcode
= ISD::FABS
;
12611 SignMask
= ~APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12614 FPOpcode
= ISD::FNEG
;
12615 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12618 FPOpcode
= ISD::FABS
;
12619 SignMask
= APInt::getSignMask(SourceVT
.getScalarSizeInBits());
12625 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
12626 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
12627 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
12629 SDValue LogicOp0
= N0
.getOperand(0);
12630 ConstantSDNode
*LogicOp1
= isConstOrConstSplat(N0
.getOperand(1), true);
12631 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
12632 LogicOp0
.getOpcode() == ISD::BITCAST
&&
12633 LogicOp0
.getOperand(0).getValueType() == VT
) {
12634 SDValue FPOp
= DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
.getOperand(0));
12635 NumFPLogicOpsConv
++;
12636 if (N0
.getOpcode() == ISD::OR
)
12637 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, FPOp
);
12644 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
12645 SDValue N0
= N
->getOperand(0);
12646 EVT VT
= N
->getValueType(0);
12649 return DAG
.getUNDEF(VT
);
12651 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
12652 // Only do this before legalize types, unless both types are integer and the
12653 // scalar type is legal. Only do this before legalize ops, since the target
12654 // maybe depending on the bitcast.
12655 // First check to see if this is all constant.
12656 // TODO: Support FP bitcasts after legalize types.
12657 if (VT
.isVector() &&
12659 (!LegalOperations
&& VT
.isInteger() && N0
.getValueType().isInteger() &&
12660 TLI
.isTypeLegal(VT
.getVectorElementType()))) &&
12661 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
12662 cast
<BuildVectorSDNode
>(N0
)->isConstant())
12663 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(),
12664 VT
.getVectorElementType());
12666 // If the input is a constant, let getNode fold it.
12667 if (isIntOrFPConstant(N0
)) {
12668 // If we can't allow illegal operations, we need to check that this is just
12669 // a fp -> int or int -> conversion and that the resulting operation will
12671 if (!LegalOperations
||
12672 (isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
12673 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)) ||
12674 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
12675 TLI
.isOperationLegal(ISD::Constant
, VT
))) {
12676 SDValue C
= DAG
.getBitcast(VT
, N0
);
12677 if (C
.getNode() != N
)
12682 // (conv (conv x, t1), t2) -> (conv x, t2)
12683 if (N0
.getOpcode() == ISD::BITCAST
)
12684 return DAG
.getBitcast(VT
, N0
.getOperand(0));
12686 // fold (conv (load x)) -> (load (conv*)x)
12687 // If the resultant load doesn't need a higher alignment than the original!
12688 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
12689 // Do not remove the cast if the types differ in endian layout.
12690 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
12691 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
12692 // If the load is volatile, we only want to change the load type if the
12693 // resulting load is legal. Otherwise we might increase the number of
12694 // memory accesses. We don't care if the original type was legal or not
12695 // as we assume software couldn't rely on the number of accesses of an
12697 ((!LegalOperations
&& cast
<LoadSDNode
>(N0
)->isSimple()) ||
12698 TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
12699 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
12701 if (TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
, DAG
,
12702 *LN0
->getMemOperand())) {
12704 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
12705 LN0
->getPointerInfo(), LN0
->getAlign(),
12706 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
12707 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
12712 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
12715 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
12716 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
12719 // fold (bitcast (fneg x)) ->
12720 // flipbit = signbit
12721 // (xor (bitcast x) (build_pair flipbit, flipbit))
12723 // fold (bitcast (fabs x)) ->
12724 // flipbit = (and (extract_element (bitcast x), 0), signbit)
12725 // (xor (bitcast x) (build_pair flipbit, flipbit))
12726 // This often reduces constant pool loads.
12727 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
12728 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
12729 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
12730 !VT
.isVector() && !N0
.getValueType().isVector()) {
12731 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12732 AddToWorklist(NewConv
.getNode());
12735 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
12736 assert(VT
.getSizeInBits() == 128);
12737 SDValue SignBit
= DAG
.getConstant(
12738 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
12740 if (N0
.getOpcode() == ISD::FNEG
) {
12742 AddToWorklist(FlipBit
.getNode());
12744 assert(N0
.getOpcode() == ISD::FABS
);
12746 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
12747 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
12749 AddToWorklist(Hi
.getNode());
12750 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
12751 AddToWorklist(FlipBit
.getNode());
12754 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
12755 AddToWorklist(FlipBits
.getNode());
12756 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
12758 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
12759 if (N0
.getOpcode() == ISD::FNEG
)
12760 return DAG
.getNode(ISD::XOR
, DL
, VT
,
12761 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
12762 assert(N0
.getOpcode() == ISD::FABS
);
12763 return DAG
.getNode(ISD::AND
, DL
, VT
,
12764 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
12767 // fold (bitconvert (fcopysign cst, x)) ->
12768 // (or (and (bitconvert x), sign), (and cst, (not sign)))
12769 // Note that we don't handle (copysign x, cst) because this can always be
12770 // folded to an fneg or fabs.
12773 // fold (bitcast (fcopysign cst, x)) ->
12774 // flipbit = (and (extract_element
12775 // (xor (bitcast cst), (bitcast x)), 0),
12777 // (xor (bitcast cst) (build_pair flipbit, flipbit))
12778 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
12779 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
12780 VT
.isInteger() && !VT
.isVector()) {
12781 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
12782 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
12783 if (isTypeLegal(IntXVT
)) {
12784 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
12785 AddToWorklist(X
.getNode());
12787 // If X has a different width than the result/lhs, sext it or truncate it.
12788 unsigned VTWidth
= VT
.getSizeInBits();
12789 if (OrigXWidth
< VTWidth
) {
12790 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
12791 AddToWorklist(X
.getNode());
12792 } else if (OrigXWidth
> VTWidth
) {
12793 // To get the sign bit in the right place, we have to shift it right
12794 // before truncating.
12796 X
= DAG
.getNode(ISD::SRL
, DL
,
12797 X
.getValueType(), X
,
12798 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
12799 X
.getValueType()));
12800 AddToWorklist(X
.getNode());
12801 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
12802 AddToWorklist(X
.getNode());
12805 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
12806 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
12807 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12808 AddToWorklist(Cst
.getNode());
12809 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
12810 AddToWorklist(X
.getNode());
12811 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
12812 AddToWorklist(XorResult
.getNode());
12813 SDValue XorResult64
= DAG
.getNode(
12814 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
12815 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
12816 SDLoc(XorResult
)));
12817 AddToWorklist(XorResult64
.getNode());
12819 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
12820 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
12821 AddToWorklist(FlipBit
.getNode());
12823 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
12824 AddToWorklist(FlipBits
.getNode());
12825 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
12827 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
12828 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
12829 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
12830 AddToWorklist(X
.getNode());
12832 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
12833 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
12834 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
12835 AddToWorklist(Cst
.getNode());
12837 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
12841 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
12842 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
12843 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
12846 // Remove double bitcasts from shuffles - this is often a legacy of
12847 // XformToShuffleWithZero being used to combine bitmaskings (of
12848 // float vectors bitcast to integer vectors) into shuffles.
12849 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
12850 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
12851 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&& N0
.hasOneUse() &&
12852 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
12853 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
12854 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
12856 // If operands are a bitcast, peek through if it casts the original VT.
12857 // If operands are a constant, just bitcast back to original VT.
12858 auto PeekThroughBitcast
= [&](SDValue Op
) {
12859 if (Op
.getOpcode() == ISD::BITCAST
&&
12860 Op
.getOperand(0).getValueType() == VT
)
12861 return SDValue(Op
.getOperand(0));
12862 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
12863 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
12864 return DAG
.getBitcast(VT
, Op
);
12868 // FIXME: If either input vector is bitcast, try to convert the shuffle to
12869 // the result type of this bitcast. This would eliminate at least one
12870 // bitcast. See the transform in InstCombine.
12871 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
12872 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
12877 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
12878 SmallVector
<int, 8> NewMask
;
12879 for (int M
: SVN
->getMask())
12880 for (int i
= 0; i
!= MaskScale
; ++i
)
12881 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
12883 SDValue LegalShuffle
=
12884 TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
, DAG
);
12886 return LegalShuffle
;
12892 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
12893 EVT VT
= N
->getValueType(0);
12894 return CombineConsecutiveLoads(N
, VT
);
12897 SDValue
DAGCombiner::visitFREEZE(SDNode
*N
) {
12898 SDValue N0
= N
->getOperand(0);
12900 if (DAG
.isGuaranteedNotToBeUndefOrPoison(N0
, /*PoisonOnly*/ false))
12906 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
12907 /// operands. DstEltVT indicates the destination element value type.
12908 SDValue
DAGCombiner::
12909 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
12910 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
12912 // If this is already the right type, we're done.
12913 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
12915 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
12916 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
12918 // If this is a conversion of N elements of one type to N elements of another
12919 // type, convert each element. This handles FP<->INT cases.
12920 if (SrcBitSize
== DstBitSize
) {
12921 SmallVector
<SDValue
, 8> Ops
;
12922 for (SDValue Op
: BV
->op_values()) {
12923 // If the vector element type is not legal, the BUILD_VECTOR operands
12924 // are promoted and implicitly truncated. Make that explicit here.
12925 if (Op
.getValueType() != SrcEltVT
)
12926 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
12927 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
12928 AddToWorklist(Ops
.back().getNode());
12930 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
12931 BV
->getValueType(0).getVectorNumElements());
12932 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
12935 // Otherwise, we're growing or shrinking the elements. To avoid having to
12936 // handle annoying details of growing/shrinking FP values, we convert them to
12938 if (SrcEltVT
.isFloatingPoint()) {
12939 // Convert the input float vector to a int vector where the elements are the
12941 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
12942 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
12946 // Now we know the input is an integer vector. If the output is a FP type,
12947 // convert to integer first, then to FP of the right size.
12948 if (DstEltVT
.isFloatingPoint()) {
12949 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
12950 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
12952 // Next, convert to FP elements of the same size.
12953 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
12958 // Okay, we know the src/dst types are both integers of differing types.
12959 // Handling growing first.
12960 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
12961 if (SrcBitSize
< DstBitSize
) {
12962 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
12964 SmallVector
<SDValue
, 8> Ops
;
12965 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
12966 i
+= NumInputsPerOutput
) {
12967 bool isLE
= DAG
.getDataLayout().isLittleEndian();
12968 APInt NewBits
= APInt(DstBitSize
, 0);
12969 bool EltIsUndef
= true;
12970 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
12971 // Shift the previously computed bits over.
12972 NewBits
<<= SrcBitSize
;
12973 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
12974 if (Op
.isUndef()) continue;
12975 EltIsUndef
= false;
12977 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
12978 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
12982 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
12984 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
12987 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
12988 return DAG
.getBuildVector(VT
, DL
, Ops
);
12991 // Finally, this must be the case where we are shrinking elements: each input
12992 // turns into multiple outputs.
12993 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
12994 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
12995 NumOutputsPerInput
*BV
->getNumOperands());
12996 SmallVector
<SDValue
, 8> Ops
;
12998 for (const SDValue
&Op
: BV
->op_values()) {
12999 if (Op
.isUndef()) {
13000 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
13004 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
13005 getAPIntValue().zextOrTrunc(SrcBitSize
);
13007 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
13008 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
13009 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
13010 OpVal
.lshrInPlace(DstBitSize
);
13013 // For big endian targets, swap the order of the pieces of each element.
13014 if (DAG
.getDataLayout().isBigEndian())
13015 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
13018 return DAG
.getBuildVector(VT
, DL
, Ops
);
13021 /// Try to perform FMA combining on a given FADD node.
13022 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
13023 SDValue N0
= N
->getOperand(0);
13024 SDValue N1
= N
->getOperand(1);
13025 EVT VT
= N
->getValueType(0);
13028 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13030 // Floating-point multiply-add with intermediate rounding.
13031 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13033 // Floating-point multiply-add without intermediate rounding.
13035 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13036 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13038 // No valid opcode, do not combine.
13039 if (!HasFMAD
&& !HasFMA
)
13042 bool CanReassociate
=
13043 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
13044 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
13045 Options
.UnsafeFPMath
|| HasFMAD
);
13046 // If the addition is not contractable, do not combine.
13047 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
13050 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
13053 // Always prefer FMAD to FMA for precision.
13054 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13055 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13057 // Is the node an FMUL and contractable either due to global flags or
13059 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
13060 if (N
.getOpcode() != ISD::FMUL
)
13062 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
13064 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
13065 // prefer to fold the multiply with fewer uses.
13066 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
13067 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
13071 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
13072 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
13073 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13074 N0
.getOperand(1), N1
);
13077 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
13078 // Note: Commutes FADD operands.
13079 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
13080 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N1
.getOperand(0),
13081 N1
.getOperand(1), N0
);
13084 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
13085 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
13086 // This requires reassociation because it changes the order of operations.
13088 if (CanReassociate
&& N0
.getOpcode() == PreferredFusedOpcode
&&
13089 N0
.getOperand(2).getOpcode() == ISD::FMUL
&& N0
.hasOneUse() &&
13090 N0
.getOperand(2).hasOneUse()) {
13093 } else if (CanReassociate
&& N1
.getOpcode() == PreferredFusedOpcode
&&
13094 N1
.getOperand(2).getOpcode() == ISD::FMUL
&& N1
.hasOneUse() &&
13095 N1
.getOperand(2).hasOneUse()) {
13100 SDValue A
= FMA
.getOperand(0);
13101 SDValue B
= FMA
.getOperand(1);
13102 SDValue C
= FMA
.getOperand(2).getOperand(0);
13103 SDValue D
= FMA
.getOperand(2).getOperand(1);
13104 SDValue CDE
= DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, C
, D
, E
);
13105 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, A
, B
, CDE
);
13108 // Look through FP_EXTEND nodes to do more combining.
13110 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
13111 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13112 SDValue N00
= N0
.getOperand(0);
13113 if (isContractableFMUL(N00
) &&
13114 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13115 N00
.getValueType())) {
13116 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13117 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13118 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13123 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
13124 // Note: Commutes FADD operands.
13125 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13126 SDValue N10
= N1
.getOperand(0);
13127 if (isContractableFMUL(N10
) &&
13128 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13129 N10
.getValueType())) {
13130 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13131 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0)),
13132 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)),
13137 // More folding opportunities when target permits.
13139 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
13140 // -> (fma x, y, (fma (fpext u), (fpext v), z))
13141 auto FoldFAddFMAFPExtFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13143 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
13144 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13145 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13146 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
13149 if (N0
.getOpcode() == PreferredFusedOpcode
) {
13150 SDValue N02
= N0
.getOperand(2);
13151 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13152 SDValue N020
= N02
.getOperand(0);
13153 if (isContractableFMUL(N020
) &&
13154 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13155 N020
.getValueType())) {
13156 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
13157 N020
.getOperand(0), N020
.getOperand(1),
13163 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
13164 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
13165 // FIXME: This turns two single-precision and one double-precision
13166 // operation into two double-precision operations, which might not be
13167 // interesting for all targets, especially GPUs.
13168 auto FoldFAddFPExtFMAFMul
= [&](SDValue X
, SDValue Y
, SDValue U
, SDValue V
,
13170 return DAG
.getNode(
13171 PreferredFusedOpcode
, SL
, VT
, DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
13172 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
13173 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13174 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
13175 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
), Z
));
13177 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13178 SDValue N00
= N0
.getOperand(0);
13179 if (N00
.getOpcode() == PreferredFusedOpcode
) {
13180 SDValue N002
= N00
.getOperand(2);
13181 if (isContractableFMUL(N002
) &&
13182 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13183 N00
.getValueType())) {
13184 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
13185 N002
.getOperand(0), N002
.getOperand(1),
13191 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
13192 // -> (fma y, z, (fma (fpext u), (fpext v), x))
13193 if (N1
.getOpcode() == PreferredFusedOpcode
) {
13194 SDValue N12
= N1
.getOperand(2);
13195 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
13196 SDValue N120
= N12
.getOperand(0);
13197 if (isContractableFMUL(N120
) &&
13198 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13199 N120
.getValueType())) {
13200 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
13201 N120
.getOperand(0), N120
.getOperand(1),
13207 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
13208 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
13209 // FIXME: This turns two single-precision and one double-precision
13210 // operation into two double-precision operations, which might not be
13211 // interesting for all targets, especially GPUs.
13212 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13213 SDValue N10
= N1
.getOperand(0);
13214 if (N10
.getOpcode() == PreferredFusedOpcode
) {
13215 SDValue N102
= N10
.getOperand(2);
13216 if (isContractableFMUL(N102
) &&
13217 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13218 N10
.getValueType())) {
13219 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
13220 N102
.getOperand(0), N102
.getOperand(1),
13230 /// Try to perform FMA combining on a given FSUB node.
13231 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
13232 SDValue N0
= N
->getOperand(0);
13233 SDValue N1
= N
->getOperand(1);
13234 EVT VT
= N
->getValueType(0);
13237 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13238 // Floating-point multiply-add with intermediate rounding.
13239 bool HasFMAD
= (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13241 // Floating-point multiply-add without intermediate rounding.
13243 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13244 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13246 // No valid opcode, do not combine.
13247 if (!HasFMAD
&& !HasFMA
)
13250 const SDNodeFlags Flags
= N
->getFlags();
13251 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
13252 Options
.UnsafeFPMath
|| HasFMAD
);
13254 // If the subtraction is not contractable, do not combine.
13255 if (!AllowFusionGlobally
&& !N
->getFlags().hasAllowContract())
13258 if (TLI
.generateFMAsInMachineCombiner(VT
, OptLevel
))
13261 // Always prefer FMAD to FMA for precision.
13262 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13263 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13264 bool NoSignedZero
= Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros();
13266 // Is the node an FMUL and contractable either due to global flags or
13268 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
13269 if (N
.getOpcode() != ISD::FMUL
)
13271 return AllowFusionGlobally
|| N
->getFlags().hasAllowContract();
13274 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13275 auto tryToFoldXYSubZ
= [&](SDValue XY
, SDValue Z
) {
13276 if (isContractableFMUL(XY
) && (Aggressive
|| XY
->hasOneUse())) {
13277 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, XY
.getOperand(0),
13278 XY
.getOperand(1), DAG
.getNode(ISD::FNEG
, SL
, VT
, Z
));
13283 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13284 // Note: Commutes FSUB operands.
13285 auto tryToFoldXSubYZ
= [&](SDValue X
, SDValue YZ
) {
13286 if (isContractableFMUL(YZ
) && (Aggressive
|| YZ
->hasOneUse())) {
13287 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13288 DAG
.getNode(ISD::FNEG
, SL
, VT
, YZ
.getOperand(0)),
13289 YZ
.getOperand(1), X
);
13294 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
13295 // prefer to fold the multiply with fewer uses.
13296 if (isContractableFMUL(N0
) && isContractableFMUL(N1
) &&
13297 (N0
.getNode()->use_size() > N1
.getNode()->use_size())) {
13298 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
13299 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13301 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
13302 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13305 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
13306 if (SDValue V
= tryToFoldXYSubZ(N0
, N1
))
13308 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
13309 if (SDValue V
= tryToFoldXSubYZ(N0
, N1
))
13313 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
13314 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
13315 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
13316 SDValue N00
= N0
.getOperand(0).getOperand(0);
13317 SDValue N01
= N0
.getOperand(0).getOperand(1);
13318 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13319 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
13320 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13323 // Look through FP_EXTEND nodes to do more combining.
13325 // fold (fsub (fpext (fmul x, y)), z)
13326 // -> (fma (fpext x), (fpext y), (fneg z))
13327 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13328 SDValue N00
= N0
.getOperand(0);
13329 if (isContractableFMUL(N00
) &&
13330 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13331 N00
.getValueType())) {
13332 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13333 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13334 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13335 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
));
13339 // fold (fsub x, (fpext (fmul y, z)))
13340 // -> (fma (fneg (fpext y)), (fpext z), x)
13341 // Note: Commutes FSUB operands.
13342 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
13343 SDValue N10
= N1
.getOperand(0);
13344 if (isContractableFMUL(N10
) &&
13345 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13346 N10
.getValueType())) {
13347 return DAG
.getNode(
13348 PreferredFusedOpcode
, SL
, VT
,
13349 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13350 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(0))),
13351 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N10
.getOperand(1)), N0
);
13355 // fold (fsub (fpext (fneg (fmul, x, y))), z)
13356 // -> (fneg (fma (fpext x), (fpext y), z))
13357 // Note: This could be removed with appropriate canonicalization of the
13358 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13359 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13360 // from implementing the canonicalization in visitFSUB.
13361 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13362 SDValue N00
= N0
.getOperand(0);
13363 if (N00
.getOpcode() == ISD::FNEG
) {
13364 SDValue N000
= N00
.getOperand(0);
13365 if (isContractableFMUL(N000
) &&
13366 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13367 N00
.getValueType())) {
13368 return DAG
.getNode(
13370 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13371 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13372 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13378 // fold (fsub (fneg (fpext (fmul, x, y))), z)
13379 // -> (fneg (fma (fpext x)), (fpext y), z)
13380 // Note: This could be removed with appropriate canonicalization of the
13381 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
13382 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
13383 // from implementing the canonicalization in visitFSUB.
13384 if (N0
.getOpcode() == ISD::FNEG
) {
13385 SDValue N00
= N0
.getOperand(0);
13386 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
13387 SDValue N000
= N00
.getOperand(0);
13388 if (isContractableFMUL(N000
) &&
13389 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13390 N000
.getValueType())) {
13391 return DAG
.getNode(
13393 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13394 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(0)),
13395 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N000
.getOperand(1)),
13401 auto isReassociable
= [Options
](SDNode
*N
) {
13402 return Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
13405 auto isContractableAndReassociableFMUL
= [isContractableFMUL
,
13406 isReassociable
](SDValue N
) {
13407 return isContractableFMUL(N
) && isReassociable(N
.getNode());
13410 // More folding opportunities when target permits.
13411 if (Aggressive
&& isReassociable(N
)) {
13412 bool CanFuse
= Options
.UnsafeFPMath
|| N
->getFlags().hasAllowContract();
13413 // fold (fsub (fma x, y, (fmul u, v)), z)
13414 // -> (fma x, y (fma u, v, (fneg z)))
13415 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
13416 isContractableAndReassociableFMUL(N0
.getOperand(2)) &&
13417 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
13418 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0),
13420 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13421 N0
.getOperand(2).getOperand(0),
13422 N0
.getOperand(2).getOperand(1),
13423 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13426 // fold (fsub x, (fma y, z, (fmul u, v)))
13427 // -> (fma (fneg y), z, (fma (fneg u), v, x))
13428 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
13429 isContractableAndReassociableFMUL(N1
.getOperand(2)) &&
13430 N1
->hasOneUse() && NoSignedZero
) {
13431 SDValue N20
= N1
.getOperand(2).getOperand(0);
13432 SDValue N21
= N1
.getOperand(2).getOperand(1);
13433 return DAG
.getNode(
13434 PreferredFusedOpcode
, SL
, VT
,
13435 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13436 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13437 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
), N21
, N0
));
13440 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
13441 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
13442 if (N0
.getOpcode() == PreferredFusedOpcode
&&
13444 SDValue N02
= N0
.getOperand(2);
13445 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
13446 SDValue N020
= N02
.getOperand(0);
13447 if (isContractableAndReassociableFMUL(N020
) &&
13448 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13449 N020
.getValueType())) {
13450 return DAG
.getNode(
13451 PreferredFusedOpcode
, SL
, VT
, N0
.getOperand(0), N0
.getOperand(1),
13453 PreferredFusedOpcode
, SL
, VT
,
13454 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(0)),
13455 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N020
.getOperand(1)),
13456 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13461 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
13462 // -> (fma (fpext x), (fpext y),
13463 // (fma (fpext u), (fpext v), (fneg z)))
13464 // FIXME: This turns two single-precision and one double-precision
13465 // operation into two double-precision operations, which might not be
13466 // interesting for all targets, especially GPUs.
13467 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
13468 SDValue N00
= N0
.getOperand(0);
13469 if (N00
.getOpcode() == PreferredFusedOpcode
) {
13470 SDValue N002
= N00
.getOperand(2);
13471 if (isContractableAndReassociableFMUL(N002
) &&
13472 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13473 N00
.getValueType())) {
13474 return DAG
.getNode(
13475 PreferredFusedOpcode
, SL
, VT
,
13476 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(0)),
13477 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N00
.getOperand(1)),
13479 PreferredFusedOpcode
, SL
, VT
,
13480 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(0)),
13481 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N002
.getOperand(1)),
13482 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
)));
13487 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
13488 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
13489 if (N1
.getOpcode() == PreferredFusedOpcode
&&
13490 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
&&
13492 SDValue N120
= N1
.getOperand(2).getOperand(0);
13493 if (isContractableAndReassociableFMUL(N120
) &&
13494 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13495 N120
.getValueType())) {
13496 SDValue N1200
= N120
.getOperand(0);
13497 SDValue N1201
= N120
.getOperand(1);
13498 return DAG
.getNode(
13499 PreferredFusedOpcode
, SL
, VT
,
13500 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)), N1
.getOperand(1),
13501 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13502 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13503 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1200
)),
13504 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1201
), N0
));
13508 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
13509 // -> (fma (fneg (fpext y)), (fpext z),
13510 // (fma (fneg (fpext u)), (fpext v), x))
13511 // FIXME: This turns two single-precision and one double-precision
13512 // operation into two double-precision operations, which might not be
13513 // interesting for all targets, especially GPUs.
13514 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
13515 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
13516 SDValue CvtSrc
= N1
.getOperand(0);
13517 SDValue N100
= CvtSrc
.getOperand(0);
13518 SDValue N101
= CvtSrc
.getOperand(1);
13519 SDValue N102
= CvtSrc
.getOperand(2);
13520 if (isContractableAndReassociableFMUL(N102
) &&
13521 TLI
.isFPExtFoldable(DAG
, PreferredFusedOpcode
, VT
,
13522 CvtSrc
.getValueType())) {
13523 SDValue N1020
= N102
.getOperand(0);
13524 SDValue N1021
= N102
.getOperand(1);
13525 return DAG
.getNode(
13526 PreferredFusedOpcode
, SL
, VT
,
13527 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13528 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N100
)),
13529 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
13530 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13531 DAG
.getNode(ISD::FNEG
, SL
, VT
,
13532 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1020
)),
13533 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N1021
), N0
));
13541 /// Try to perform FMA combining on a given FMUL node based on the distributive
13542 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
13543 /// subtraction instead of addition).
13544 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
13545 SDValue N0
= N
->getOperand(0);
13546 SDValue N1
= N
->getOperand(1);
13547 EVT VT
= N
->getValueType(0);
13550 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
13552 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13554 // The transforms below are incorrect when x == 0 and y == inf, because the
13555 // intermediate multiplication produces a nan.
13556 if (!Options
.NoInfsFPMath
)
13559 // Floating-point multiply-add without intermediate rounding.
13561 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
13562 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
) &&
13563 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
13565 // Floating-point multiply-add with intermediate rounding. This can result
13566 // in a less precise result due to the changed rounding order.
13567 bool HasFMAD
= Options
.UnsafeFPMath
&&
13568 (LegalOperations
&& TLI
.isFMADLegal(DAG
, N
));
13570 // No valid opcode, do not combine.
13571 if (!HasFMAD
&& !HasFMA
)
13574 // Always prefer FMAD to FMA for precision.
13575 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
13576 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
13578 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
13579 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
13580 auto FuseFADD
= [&](SDValue X
, SDValue Y
) {
13581 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
13582 if (auto *C
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13583 if (C
->isExactlyValue(+1.0))
13584 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13586 if (C
->isExactlyValue(-1.0))
13587 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13588 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13594 if (SDValue FMA
= FuseFADD(N0
, N1
))
13596 if (SDValue FMA
= FuseFADD(N1
, N0
))
13599 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
13600 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
13601 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
13602 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
13603 auto FuseFSUB
= [&](SDValue X
, SDValue Y
) {
13604 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
13605 if (auto *C0
= isConstOrConstSplatFP(X
.getOperand(0), true)) {
13606 if (C0
->isExactlyValue(+1.0))
13607 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13608 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13610 if (C0
->isExactlyValue(-1.0))
13611 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
13612 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
13613 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13615 if (auto *C1
= isConstOrConstSplatFP(X
.getOperand(1), true)) {
13616 if (C1
->isExactlyValue(+1.0))
13617 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13618 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
));
13619 if (C1
->isExactlyValue(-1.0))
13620 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
13627 if (SDValue FMA
= FuseFSUB(N0
, N1
))
13629 if (SDValue FMA
= FuseFSUB(N1
, N0
))
13635 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
13636 SDValue N0
= N
->getOperand(0);
13637 SDValue N1
= N
->getOperand(1);
13638 bool N0CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
);
13639 bool N1CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
);
13640 EVT VT
= N
->getValueType(0);
13642 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13643 SDNodeFlags Flags
= N
->getFlags();
13644 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13646 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13651 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13654 // fold (fadd c1, c2) -> c1 + c2
13655 if (N0CFP
&& N1CFP
)
13656 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
);
13658 // canonicalize constant to RHS
13659 if (N0CFP
&& !N1CFP
)
13660 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
);
13662 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
13663 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
, true);
13664 if (N1C
&& N1C
->isZero())
13665 if (N1C
->isNegative() || Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())
13668 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13671 // fold (fadd A, (fneg B)) -> (fsub A, B)
13672 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13673 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
13674 N1
, DAG
, LegalOperations
, ForCodeSize
))
13675 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, NegN1
);
13677 // fold (fadd (fneg A), B) -> (fsub B, A)
13678 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
13679 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
13680 N0
, DAG
, LegalOperations
, ForCodeSize
))
13681 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, NegN0
);
13683 auto isFMulNegTwo
= [](SDValue FMul
) {
13684 if (!FMul
.hasOneUse() || FMul
.getOpcode() != ISD::FMUL
)
13686 auto *C
= isConstOrConstSplatFP(FMul
.getOperand(1), true);
13687 return C
&& C
->isExactlyValue(-2.0);
13690 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
13691 if (isFMulNegTwo(N0
)) {
13692 SDValue B
= N0
.getOperand(0);
13693 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
13694 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
, Add
);
13696 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
13697 if (isFMulNegTwo(N1
)) {
13698 SDValue B
= N1
.getOperand(0);
13699 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, B
, B
);
13700 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, Add
);
13703 // No FP constant should be created after legalization as Instruction
13704 // Selection pass has a hard time dealing with FP constants.
13705 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
13707 // If nnan is enabled, fold lots of things.
13708 if ((Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
13709 // If allowed, fold (fadd (fneg x), x) -> 0.0
13710 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
13711 return DAG
.getConstantFP(0.0, DL
, VT
);
13713 // If allowed, fold (fadd x, (fneg x)) -> 0.0
13714 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
13715 return DAG
.getConstantFP(0.0, DL
, VT
);
13718 // If 'unsafe math' or reassoc and nsz, fold lots of things.
13719 // TODO: break out portions of the transformations below for which Unsafe is
13720 // considered and which do not require both nsz and reassoc
13721 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
13722 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
13724 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
13725 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
13726 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
13727 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
);
13728 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
);
13731 // We can fold chains of FADD's of the same value into multiplications.
13732 // This transform is not safe in general because we are reducing the number
13733 // of rounding steps.
13734 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
13735 if (N0
.getOpcode() == ISD::FMUL
) {
13736 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
13737 bool CFP01
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
13739 // (fadd (fmul x, c), x) -> (fmul x, c+1)
13740 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
13741 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
13742 DAG
.getConstantFP(1.0, DL
, VT
));
13743 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
);
13746 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
13747 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
13748 N1
.getOperand(0) == N1
.getOperand(1) &&
13749 N0
.getOperand(0) == N1
.getOperand(0)) {
13750 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
13751 DAG
.getConstantFP(2.0, DL
, VT
));
13752 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
);
13756 if (N1
.getOpcode() == ISD::FMUL
) {
13757 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
13758 bool CFP11
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
13760 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
13761 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
13762 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
13763 DAG
.getConstantFP(1.0, DL
, VT
));
13764 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
);
13767 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
13768 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
13769 N0
.getOperand(0) == N0
.getOperand(1) &&
13770 N1
.getOperand(0) == N0
.getOperand(0)) {
13771 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
13772 DAG
.getConstantFP(2.0, DL
, VT
));
13773 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
);
13777 if (N0
.getOpcode() == ISD::FADD
) {
13778 bool CFP00
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
13779 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
13780 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
13781 (N0
.getOperand(0) == N1
)) {
13782 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
,
13783 DAG
.getConstantFP(3.0, DL
, VT
));
13787 if (N1
.getOpcode() == ISD::FADD
) {
13788 bool CFP10
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
13789 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
13790 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
13791 N1
.getOperand(0) == N0
) {
13792 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
13793 DAG
.getConstantFP(3.0, DL
, VT
));
13797 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
13798 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
13799 N0
.getOperand(0) == N0
.getOperand(1) &&
13800 N1
.getOperand(0) == N1
.getOperand(1) &&
13801 N0
.getOperand(0) == N1
.getOperand(0)) {
13802 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
13803 DAG
.getConstantFP(4.0, DL
, VT
));
13806 } // enable-unsafe-fp-math
13808 // FADD -> FMA combines:
13809 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
13810 AddToWorklist(Fused
.getNode());
13816 SDValue
DAGCombiner::visitSTRICT_FADD(SDNode
*N
) {
13817 SDValue Chain
= N
->getOperand(0);
13818 SDValue N0
= N
->getOperand(1);
13819 SDValue N1
= N
->getOperand(2);
13820 EVT VT
= N
->getValueType(0);
13821 EVT ChainVT
= N
->getValueType(1);
13823 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13825 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
13826 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
13827 if (SDValue NegN1
= TLI
.getCheaperNegatedExpression(
13828 N1
, DAG
, LegalOperations
, ForCodeSize
)) {
13829 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
13830 {Chain
, N0
, NegN1
});
13833 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
13834 if (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::STRICT_FSUB
, VT
))
13835 if (SDValue NegN0
= TLI
.getCheaperNegatedExpression(
13836 N0
, DAG
, LegalOperations
, ForCodeSize
)) {
13837 return DAG
.getNode(ISD::STRICT_FSUB
, DL
, DAG
.getVTList(VT
, ChainVT
),
13838 {Chain
, N1
, NegN0
});
13843 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
13844 SDValue N0
= N
->getOperand(0);
13845 SDValue N1
= N
->getOperand(1);
13846 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
13847 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
13848 EVT VT
= N
->getValueType(0);
13850 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13851 const SDNodeFlags Flags
= N
->getFlags();
13852 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13854 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13859 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13862 // fold (fsub c1, c2) -> c1-c2
13863 if (N0CFP
&& N1CFP
)
13864 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
);
13866 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13869 // (fsub A, 0) -> A
13870 if (N1CFP
&& N1CFP
->isZero()) {
13871 if (!N1CFP
->isNegative() || Options
.NoSignedZerosFPMath
||
13872 Flags
.hasNoSignedZeros()) {
13878 // (fsub x, x) -> 0.0
13879 if (Options
.NoNaNsFPMath
|| Flags
.hasNoNaNs())
13880 return DAG
.getConstantFP(0.0f
, DL
, VT
);
13883 // (fsub -0.0, N1) -> -N1
13884 if (N0CFP
&& N0CFP
->isZero()) {
13885 if (N0CFP
->isNegative() ||
13886 (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros())) {
13887 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
13888 // flushed to zero, unless all users treat denorms as zero (DAZ).
13889 // FIXME: This transform will change the sign of a NaN and the behavior
13890 // of a signaling NaN. It is only valid when a NoNaN flag is present.
13891 DenormalMode DenormMode
= DAG
.getDenormalMode(VT
);
13892 if (DenormMode
== DenormalMode::getIEEE()) {
13893 if (SDValue NegN1
=
13894 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
13896 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
13897 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
);
13902 if (((Options
.UnsafeFPMath
&& Options
.NoSignedZerosFPMath
) ||
13903 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
13904 N1
.getOpcode() == ISD::FADD
) {
13905 // X - (X + Y) -> -Y
13906 if (N0
== N1
->getOperand(0))
13907 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1));
13908 // X - (Y + X) -> -Y
13909 if (N0
== N1
->getOperand(1))
13910 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0));
13913 // fold (fsub A, (fneg B)) -> (fadd A, B)
13914 if (SDValue NegN1
=
13915 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
))
13916 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, NegN1
);
13918 // FSUB -> FMA combines:
13919 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
13920 AddToWorklist(Fused
.getNode());
13927 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
13928 SDValue N0
= N
->getOperand(0);
13929 SDValue N1
= N
->getOperand(1);
13930 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, true);
13931 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
, true);
13932 EVT VT
= N
->getValueType(0);
13934 const TargetOptions
&Options
= DAG
.getTarget().Options
;
13935 const SDNodeFlags Flags
= N
->getFlags();
13936 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
13938 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
13942 if (VT
.isVector()) {
13943 // This just handles C1 * C2 for vectors. Other vector folds are below.
13944 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
13948 // fold (fmul c1, c2) -> c1*c2
13949 if (N0CFP
&& N1CFP
)
13950 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
);
13952 // canonicalize constant to RHS
13953 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
13954 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
13955 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
);
13957 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
13960 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
13961 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
13962 if (DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
13963 N0
.getOpcode() == ISD::FMUL
) {
13964 SDValue N00
= N0
.getOperand(0);
13965 SDValue N01
= N0
.getOperand(1);
13966 // Avoid an infinite loop by making sure that N00 is not a constant
13967 // (the inner multiply has not been constant folded yet).
13968 if (DAG
.isConstantFPBuildVectorOrConstantFP(N01
) &&
13969 !DAG
.isConstantFPBuildVectorOrConstantFP(N00
)) {
13970 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
);
13971 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
);
13975 // Match a special-case: we convert X * 2.0 into fadd.
13976 // fmul (fadd X, X), C -> fmul X, 2.0 * C
13977 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
13978 N0
.getOperand(0) == N0
.getOperand(1)) {
13979 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
13980 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
);
13981 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
);
13985 // fold (fmul X, 2.0) -> (fadd X, X)
13986 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
13987 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
);
13989 // fold (fmul X, -1.0) -> (fneg X)
13990 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
13991 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
13992 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
13994 // -N0 * -N1 --> N0 * N1
13995 TargetLowering::NegatibleCost CostN0
=
13996 TargetLowering::NegatibleCost::Expensive
;
13997 TargetLowering::NegatibleCost CostN1
=
13998 TargetLowering::NegatibleCost::Expensive
;
14000 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14002 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14003 if (NegN0
&& NegN1
&&
14004 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14005 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14006 return DAG
.getNode(ISD::FMUL
, DL
, VT
, NegN0
, NegN1
);
14008 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
14009 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
14010 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
14011 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
14012 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
14013 SDValue Select
= N0
, X
= N1
;
14014 if (Select
.getOpcode() != ISD::SELECT
)
14015 std::swap(Select
, X
);
14017 SDValue Cond
= Select
.getOperand(0);
14018 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
14019 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
14021 if (TrueOpnd
&& FalseOpnd
&&
14022 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
14023 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
14024 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
14025 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
14034 std::swap(TrueOpnd
, FalseOpnd
);
14042 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
14043 TLI
.isOperationLegal(ISD::FNEG
, VT
))
14044 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
14045 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
14046 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
14047 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
14054 // FMUL -> FMA combines:
14055 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
14056 AddToWorklist(Fused
.getNode());
14063 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
14064 SDValue N0
= N
->getOperand(0);
14065 SDValue N1
= N
->getOperand(1);
14066 SDValue N2
= N
->getOperand(2);
14067 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14068 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14069 EVT VT
= N
->getValueType(0);
14071 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14072 // FMA nodes have flags that propagate to the created nodes.
14073 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14075 bool UnsafeFPMath
=
14076 Options
.UnsafeFPMath
|| N
->getFlags().hasAllowReassociation();
14078 // Constant fold FMA.
14079 if (isa
<ConstantFPSDNode
>(N0
) &&
14080 isa
<ConstantFPSDNode
>(N1
) &&
14081 isa
<ConstantFPSDNode
>(N2
)) {
14082 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
14085 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
14086 TargetLowering::NegatibleCost CostN0
=
14087 TargetLowering::NegatibleCost::Expensive
;
14088 TargetLowering::NegatibleCost CostN1
=
14089 TargetLowering::NegatibleCost::Expensive
;
14091 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14093 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14094 if (NegN0
&& NegN1
&&
14095 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14096 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14097 return DAG
.getNode(ISD::FMA
, DL
, VT
, NegN0
, NegN1
, N2
);
14099 if (UnsafeFPMath
) {
14100 if (N0CFP
&& N0CFP
->isZero())
14102 if (N1CFP
&& N1CFP
->isZero())
14106 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
14107 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
14108 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
14109 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
14111 // Canonicalize (fma c, x, y) -> (fma x, c, y)
14112 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
14113 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
14114 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
14116 if (UnsafeFPMath
) {
14117 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
14118 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
14119 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14120 DAG
.isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
14121 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14122 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1)));
14125 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
14126 if (N0
.getOpcode() == ISD::FMUL
&&
14127 DAG
.isConstantFPBuildVectorOrConstantFP(N1
) &&
14128 DAG
.isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
14129 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14130 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1)),
14135 // (fma x, -1, y) -> (fadd (fneg x), y)
14137 if (N1CFP
->isExactlyValue(1.0))
14138 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
14140 if (N1CFP
->isExactlyValue(-1.0) &&
14141 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
14142 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
14143 AddToWorklist(RHSNeg
.getNode());
14144 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
14147 // fma (fneg x), K, y -> fma x -K, y
14148 if (N0
.getOpcode() == ISD::FNEG
&&
14149 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14150 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
,
14152 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
14153 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
), N2
);
14157 if (UnsafeFPMath
) {
14158 // (fma x, c, x) -> (fmul x, (c+1))
14159 if (N1CFP
&& N0
== N2
) {
14160 return DAG
.getNode(
14161 ISD::FMUL
, DL
, VT
, N0
,
14162 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(1.0, DL
, VT
)));
14165 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
14166 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
14167 return DAG
.getNode(
14168 ISD::FMUL
, DL
, VT
, N0
,
14169 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, DAG
.getConstantFP(-1.0, DL
, VT
)));
14173 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
14174 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
14175 if (!TLI
.isFNegFree(VT
))
14176 if (SDValue Neg
= TLI
.getCheaperNegatedExpression(
14177 SDValue(N
, 0), DAG
, LegalOperations
, ForCodeSize
))
14178 return DAG
.getNode(ISD::FNEG
, DL
, VT
, Neg
);
14182 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
14184 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
14185 // Notice that this is not always beneficial. One reason is different targets
14186 // may have different costs for FDIV and FMUL, so sometimes the cost of two
14187 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
14188 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
14189 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
14190 // TODO: Limit this transform based on optsize/minsize - it always creates at
14191 // least 1 extra instruction. But the perf win may be substantial enough
14192 // that only minsize should restrict this.
14193 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
14194 const SDNodeFlags Flags
= N
->getFlags();
14195 if (LegalDAG
|| (!UnsafeMath
&& !Flags
.hasAllowReciprocal()))
14198 // Skip if current node is a reciprocal/fneg-reciprocal.
14199 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
14200 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
, /* AllowUndefs */ true);
14201 if (N0CFP
&& (N0CFP
->isExactlyValue(1.0) || N0CFP
->isExactlyValue(-1.0)))
14204 // Exit early if the target does not want this transform or if there can't
14205 // possibly be enough uses of the divisor to make the transform worthwhile.
14206 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
14208 // For splat vectors, scale the number of uses by the splat factor. If we can
14209 // convert the division into a scalar op, that will likely be much faster.
14210 unsigned NumElts
= 1;
14211 EVT VT
= N
->getValueType(0);
14212 if (VT
.isVector() && DAG
.isSplatValue(N1
))
14213 NumElts
= VT
.getVectorNumElements();
14215 if (!MinUses
|| (N1
->use_size() * NumElts
) < MinUses
)
14218 // Find all FDIV users of the same divisor.
14219 // Use a set because duplicates may be present in the user list.
14220 SetVector
<SDNode
*> Users
;
14221 for (auto *U
: N1
->uses()) {
14222 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
14223 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
14224 if (U
->getOperand(1).getOpcode() == ISD::FSQRT
&&
14225 U
->getOperand(0) == U
->getOperand(1).getOperand(0) &&
14226 U
->getFlags().hasAllowReassociation() &&
14227 U
->getFlags().hasNoSignedZeros())
14230 // This division is eligible for optimization only if global unsafe math
14231 // is enabled or if this division allows reciprocal formation.
14232 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
14237 // Now that we have the actual number of divisor uses, make sure it meets
14238 // the minimum threshold specified by the target.
14239 if ((Users
.size() * NumElts
) < MinUses
)
14243 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
14244 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
14246 // Dividend / Divisor -> Dividend * Reciprocal
14247 for (auto *U
: Users
) {
14248 SDValue Dividend
= U
->getOperand(0);
14249 if (Dividend
!= FPOne
) {
14250 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
14251 Reciprocal
, Flags
);
14252 CombineTo(U
, NewNode
);
14253 } else if (U
!= Reciprocal
.getNode()) {
14254 // In the absence of fast-math-flags, this user node is always the
14255 // same node as Reciprocal, but with FMF they may be different nodes.
14256 CombineTo(U
, Reciprocal
);
14259 return SDValue(N
, 0); // N was replaced.
14262 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
14263 SDValue N0
= N
->getOperand(0);
14264 SDValue N1
= N
->getOperand(1);
14265 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14266 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14267 EVT VT
= N
->getValueType(0);
14269 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14270 SDNodeFlags Flags
= N
->getFlags();
14271 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14273 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14278 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
14281 // fold (fdiv c1, c2) -> c1/c2
14282 if (N0CFP
&& N1CFP
)
14283 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
);
14285 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14288 if (SDValue V
= combineRepeatedFPDivisors(N
))
14291 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
14292 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
14294 // Compute the reciprocal 1.0 / c2.
14295 const APFloat
&N1APF
= N1CFP
->getValueAPF();
14296 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
14297 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
14298 // Only do the transform if the reciprocal is a legal fp immediate that
14299 // isn't too nasty (eg NaN, denormal, ...).
14300 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
14301 (!LegalOperations
||
14302 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
14303 // backend)... we should handle this gracefully after Legalize.
14304 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
14305 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
14306 TLI
.isFPImmLegal(Recip
, VT
, ForCodeSize
)))
14307 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
14308 DAG
.getConstantFP(Recip
, DL
, VT
));
14311 // If this FDIV is part of a reciprocal square root, it may be folded
14312 // into a target-specific square root estimate instruction.
14313 if (N1
.getOpcode() == ISD::FSQRT
) {
14314 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
))
14315 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14316 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
14317 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14319 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14320 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
14321 AddToWorklist(RV
.getNode());
14322 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14324 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
14325 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14327 buildRsqrtEstimate(N1
.getOperand(0).getOperand(0), Flags
)) {
14328 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
14329 AddToWorklist(RV
.getNode());
14330 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
);
14332 } else if (N1
.getOpcode() == ISD::FMUL
) {
14333 // Look through an FMUL. Even though this won't remove the FDIV directly,
14334 // it's still worthwhile to get rid of the FSQRT if possible.
14336 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
14337 Sqrt
= N1
.getOperand(0);
14338 Y
= N1
.getOperand(1);
14339 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
14340 Sqrt
= N1
.getOperand(1);
14341 Y
= N1
.getOperand(0);
14343 if (Sqrt
.getNode()) {
14344 // If the other multiply operand is known positive, pull it into the
14345 // sqrt. That will eliminate the division if we convert to an estimate.
14346 if (Flags
.hasAllowReassociation() && N1
.hasOneUse() &&
14347 N1
->getFlags().hasAllowReassociation() && Sqrt
.hasOneUse()) {
14349 if (Y
.getOpcode() == ISD::FABS
&& Y
.hasOneUse())
14350 A
= Y
.getOperand(0);
14351 else if (Y
== Sqrt
.getOperand(0))
14354 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
14355 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
14356 SDValue AA
= DAG
.getNode(ISD::FMUL
, DL
, VT
, A
, A
);
14358 DAG
.getNode(ISD::FMUL
, DL
, VT
, AA
, Sqrt
.getOperand(0));
14359 if (SDValue Rsqrt
= buildRsqrtEstimate(AAZ
, Flags
))
14360 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Rsqrt
);
14362 // Estimate creation failed. Clean up speculatively created nodes.
14363 recursivelyDeleteUnusedNodes(AAZ
.getNode());
14367 // We found a FSQRT, so try to make this fold:
14368 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
14369 if (SDValue Rsqrt
= buildRsqrtEstimate(Sqrt
.getOperand(0), Flags
)) {
14370 SDValue Div
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, Rsqrt
, Y
);
14371 AddToWorklist(Div
.getNode());
14372 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, Div
);
14377 // Fold into a reciprocal estimate and multiply instead of a real divide.
14378 if (Options
.NoInfsFPMath
|| Flags
.hasNoInfs())
14379 if (SDValue RV
= BuildDivEstimate(N0
, N1
, Flags
))
14383 // Fold X/Sqrt(X) -> Sqrt(X)
14384 if ((Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) &&
14385 (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()))
14386 if (N1
.getOpcode() == ISD::FSQRT
&& N0
== N1
.getOperand(0))
14389 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
14390 TargetLowering::NegatibleCost CostN0
=
14391 TargetLowering::NegatibleCost::Expensive
;
14392 TargetLowering::NegatibleCost CostN1
=
14393 TargetLowering::NegatibleCost::Expensive
;
14395 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
, CostN0
);
14397 TLI
.getNegatedExpression(N1
, DAG
, LegalOperations
, ForCodeSize
, CostN1
);
14398 if (NegN0
&& NegN1
&&
14399 (CostN0
== TargetLowering::NegatibleCost::Cheaper
||
14400 CostN1
== TargetLowering::NegatibleCost::Cheaper
))
14401 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, NegN0
, NegN1
);
14406 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
14407 SDValue N0
= N
->getOperand(0);
14408 SDValue N1
= N
->getOperand(1);
14409 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14410 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
14411 EVT VT
= N
->getValueType(0);
14412 SDNodeFlags Flags
= N
->getFlags();
14413 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14415 if (SDValue R
= DAG
.simplifyFPBinop(N
->getOpcode(), N0
, N1
, Flags
))
14418 // fold (frem c1, c2) -> fmod(c1,c2)
14419 if (N0CFP
&& N1CFP
)
14420 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
);
14422 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
14428 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
14429 SDNodeFlags Flags
= N
->getFlags();
14430 const TargetOptions
&Options
= DAG
.getTarget().Options
;
14432 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
14433 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
14434 if (!Flags
.hasApproximateFuncs() ||
14435 (!Options
.NoInfsFPMath
&& !Flags
.hasNoInfs()))
14438 SDValue N0
= N
->getOperand(0);
14439 if (TLI
.isFsqrtCheap(N0
, DAG
))
14442 // FSQRT nodes have flags that propagate to the created nodes.
14443 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
14444 // transform the fdiv, we may produce a sub-optimal estimate sequence
14445 // because the reciprocal calculation may not have to filter out a
14447 return buildSqrtEstimate(N0
, Flags
);
14450 /// copysign(x, fp_extend(y)) -> copysign(x, y)
14451 /// copysign(x, fp_round(y)) -> copysign(x, y)
14452 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
14453 SDValue N1
= N
->getOperand(1);
14454 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
14455 N1
.getOpcode() == ISD::FP_ROUND
)) {
14456 EVT N1VT
= N1
->getValueType(0);
14457 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
14459 // Always fold no-op FP casts.
14460 if (N1VT
== N1Op0VT
)
14463 // Do not optimize out type conversion of f128 type yet.
14464 // For some targets like x86_64, configuration is changed to keep one f128
14465 // value in one SSE register, but instruction selection cannot handle
14466 // FCOPYSIGN on SSE registers yet.
14467 if (N1Op0VT
== MVT::f128
)
14470 // Avoid mismatched vector operand types, for better instruction selection.
14471 if (N1Op0VT
.isVector())
14479 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
14480 SDValue N0
= N
->getOperand(0);
14481 SDValue N1
= N
->getOperand(1);
14482 bool N0CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N0
);
14483 bool N1CFP
= DAG
.isConstantFPBuildVectorOrConstantFP(N1
);
14484 EVT VT
= N
->getValueType(0);
14486 if (N0CFP
&& N1CFP
) // Constant fold
14487 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
14489 if (ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N
->getOperand(1))) {
14490 const APFloat
&V
= N1C
->getValueAPF();
14491 // copysign(x, c1) -> fabs(x) iff ispos(c1)
14492 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
14493 if (!V
.isNegative()) {
14494 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
14495 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14497 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
14498 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
14499 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
14503 // copysign(fabs(x), y) -> copysign(x, y)
14504 // copysign(fneg(x), y) -> copysign(x, y)
14505 // copysign(copysign(x,z), y) -> copysign(x, y)
14506 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
14507 N0
.getOpcode() == ISD::FCOPYSIGN
)
14508 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
14510 // copysign(x, abs(y)) -> abs(x)
14511 if (N1
.getOpcode() == ISD::FABS
)
14512 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
14514 // copysign(x, copysign(y,z)) -> copysign(x, z)
14515 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
14516 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
14518 // copysign(x, fp_extend(y)) -> copysign(x, y)
14519 // copysign(x, fp_round(y)) -> copysign(x, y)
14520 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
14521 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
14526 SDValue
DAGCombiner::visitFPOW(SDNode
*N
) {
14527 ConstantFPSDNode
*ExponentC
= isConstOrConstSplatFP(N
->getOperand(1));
14530 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14532 // Try to convert x ** (1/3) into cube root.
14533 // TODO: Handle the various flavors of long double.
14534 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
14535 // Some range near 1/3 should be fine.
14536 EVT VT
= N
->getValueType(0);
14537 if ((VT
== MVT::f32
&& ExponentC
->getValueAPF().isExactlyValue(1.0f
/3.0f
)) ||
14538 (VT
== MVT::f64
&& ExponentC
->getValueAPF().isExactlyValue(1.0/3.0))) {
14539 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
14540 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
14541 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
14542 // For regular numbers, rounding may cause the results to differ.
14543 // Therefore, we require { nsz ninf nnan afn } for this transform.
14544 // TODO: We could select out the special cases if we don't have nsz/ninf.
14545 SDNodeFlags Flags
= N
->getFlags();
14546 if (!Flags
.hasNoSignedZeros() || !Flags
.hasNoInfs() || !Flags
.hasNoNaNs() ||
14547 !Flags
.hasApproximateFuncs())
14550 // Do not create a cbrt() libcall if the target does not have it, and do not
14551 // turn a pow that has lowering support into a cbrt() libcall.
14552 if (!DAG
.getLibInfo().has(LibFunc_cbrt
) ||
14553 (!DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FPOW
, VT
) &&
14554 DAG
.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT
, VT
)))
14557 return DAG
.getNode(ISD::FCBRT
, SDLoc(N
), VT
, N
->getOperand(0));
14560 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
14561 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
14562 // TODO: This could be extended (using a target hook) to handle smaller
14563 // power-of-2 fractional exponents.
14564 bool ExponentIs025
= ExponentC
->getValueAPF().isExactlyValue(0.25);
14565 bool ExponentIs075
= ExponentC
->getValueAPF().isExactlyValue(0.75);
14566 if (ExponentIs025
|| ExponentIs075
) {
14567 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
14568 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
14569 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
14570 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
14571 // For regular numbers, rounding may cause the results to differ.
14572 // Therefore, we require { nsz ninf afn } for this transform.
14573 // TODO: We could select out the special cases if we don't have nsz/ninf.
14574 SDNodeFlags Flags
= N
->getFlags();
14576 // We only need no signed zeros for the 0.25 case.
14577 if ((!Flags
.hasNoSignedZeros() && ExponentIs025
) || !Flags
.hasNoInfs() ||
14578 !Flags
.hasApproximateFuncs())
14581 // Don't double the number of libcalls. We are trying to inline fast code.
14582 if (!DAG
.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT
, VT
))
14585 // Assume that libcalls are the smallest code.
14586 // TODO: This restriction should probably be lifted for vectors.
14590 // pow(X, 0.25) --> sqrt(sqrt(X))
14592 SDValue Sqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, N
->getOperand(0));
14593 SDValue SqrtSqrt
= DAG
.getNode(ISD::FSQRT
, DL
, VT
, Sqrt
);
14596 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
14597 return DAG
.getNode(ISD::FMUL
, DL
, VT
, Sqrt
, SqrtSqrt
);
14603 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
14604 const TargetLowering
&TLI
) {
14605 // This optimization is guarded by a function attribute because it may produce
14606 // unexpected results. Ie, programs may be relying on the platform-specific
14607 // undefined behavior when the float-to-int conversion overflows.
14608 const Function
&F
= DAG
.getMachineFunction().getFunction();
14609 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
14610 if (StrictOverflow
.getValueAsString().equals("false"))
14613 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
14614 // replacing casts with a libcall. We also must be allowed to ignore -0.0
14615 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
14616 // conversions would return +0.0.
14617 // FIXME: We should be able to use node-level FMF here.
14618 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
14619 EVT VT
= N
->getValueType(0);
14620 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
14621 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
14624 // fptosi/fptoui round towards zero, so converting from FP to integer and
14625 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
14626 SDValue N0
= N
->getOperand(0);
14627 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
14628 N0
.getOperand(0).getValueType() == VT
)
14629 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14631 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
14632 N0
.getOperand(0).getValueType() == VT
)
14633 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
14638 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
14639 SDValue N0
= N
->getOperand(0);
14640 EVT VT
= N
->getValueType(0);
14641 EVT OpVT
= N0
.getValueType();
14643 // [us]itofp(undef) = 0, because the result value is bounded.
14645 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14647 // fold (sint_to_fp c1) -> c1fp
14648 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14649 // ...but only if the target supports immediate floating-point values
14650 (!LegalOperations
||
14651 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
14652 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
14654 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
14655 // but UINT_TO_FP is legal on this target, try to convert.
14656 if (!hasOperation(ISD::SINT_TO_FP
, OpVT
) &&
14657 hasOperation(ISD::UINT_TO_FP
, OpVT
)) {
14658 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
14659 if (DAG
.SignBitIsZero(N0
))
14660 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
14663 // The next optimizations are desirable only if SELECT_CC can be lowered.
14664 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
14665 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
14667 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14669 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(-1.0, DL
, VT
),
14670 DAG
.getConstantFP(0.0, DL
, VT
));
14673 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
14674 // (select (setcc x, y, cc), 1.0, 0.0)
14675 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
14676 N0
.getOperand(0).getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
14677 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14679 return DAG
.getSelect(DL
, VT
, N0
.getOperand(0),
14680 DAG
.getConstantFP(1.0, DL
, VT
),
14681 DAG
.getConstantFP(0.0, DL
, VT
));
14684 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
14690 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
14691 SDValue N0
= N
->getOperand(0);
14692 EVT VT
= N
->getValueType(0);
14693 EVT OpVT
= N0
.getValueType();
14695 // [us]itofp(undef) = 0, because the result value is bounded.
14697 return DAG
.getConstantFP(0.0, SDLoc(N
), VT
);
14699 // fold (uint_to_fp c1) -> c1fp
14700 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
14701 // ...but only if the target supports immediate floating-point values
14702 (!LegalOperations
||
14703 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
14704 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
14706 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
14707 // but SINT_TO_FP is legal on this target, try to convert.
14708 if (!hasOperation(ISD::UINT_TO_FP
, OpVT
) &&
14709 hasOperation(ISD::SINT_TO_FP
, OpVT
)) {
14710 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
14711 if (DAG
.SignBitIsZero(N0
))
14712 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
14715 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
14716 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
14717 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
14719 return DAG
.getSelect(DL
, VT
, N0
, DAG
.getConstantFP(1.0, DL
, VT
),
14720 DAG
.getConstantFP(0.0, DL
, VT
));
14723 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
14729 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
14730 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
14731 SDValue N0
= N
->getOperand(0);
14732 EVT VT
= N
->getValueType(0);
14734 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
14737 SDValue Src
= N0
.getOperand(0);
14738 EVT SrcVT
= Src
.getValueType();
14739 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
14740 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
14742 // We can safely assume the conversion won't overflow the output range,
14743 // because (for example) (uint8_t)18293.f is undefined behavior.
14745 // Since we can assume the conversion won't overflow, our decision as to
14746 // whether the input will fit in the float should depend on the minimum
14747 // of the input range and output range.
14749 // This means this is also safe for a signed input and unsigned output, since
14750 // a negative input would lead to undefined behavior.
14751 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
14752 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
14753 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
14754 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
14756 // We can only fold away the float conversion if the input range can be
14757 // represented exactly in the float range.
14758 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
14759 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
14760 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
14761 : ISD::ZERO_EXTEND
;
14762 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
14764 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
14765 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
14766 return DAG
.getBitcast(VT
, Src
);
14771 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
14772 SDValue N0
= N
->getOperand(0);
14773 EVT VT
= N
->getValueType(0);
14775 // fold (fp_to_sint undef) -> undef
14777 return DAG
.getUNDEF(VT
);
14779 // fold (fp_to_sint c1fp) -> c1
14780 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14781 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
14783 return FoldIntToFPToInt(N
, DAG
);
14786 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
14787 SDValue N0
= N
->getOperand(0);
14788 EVT VT
= N
->getValueType(0);
14790 // fold (fp_to_uint undef) -> undef
14792 return DAG
.getUNDEF(VT
);
14794 // fold (fp_to_uint c1fp) -> c1
14795 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14796 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
14798 return FoldIntToFPToInt(N
, DAG
);
14801 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
14802 SDValue N0
= N
->getOperand(0);
14803 SDValue N1
= N
->getOperand(1);
14804 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
14805 EVT VT
= N
->getValueType(0);
14807 // fold (fp_round c1fp) -> c1fp
14809 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
14811 // fold (fp_round (fp_extend x)) -> x
14812 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
14813 return N0
.getOperand(0);
14815 // fold (fp_round (fp_round x)) -> (fp_round x)
14816 if (N0
.getOpcode() == ISD::FP_ROUND
) {
14817 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
14818 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
14820 // Skip this folding if it results in an fp_round from f80 to f16.
14822 // f80 to f16 always generates an expensive (and as yet, unimplemented)
14823 // libcall to __truncxfhf2 instead of selecting native f16 conversion
14824 // instructions from f32 or f64. Moreover, the first (value-preserving)
14825 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
14827 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
14830 // If the first fp_round isn't a value preserving truncation, it might
14831 // introduce a tie in the second fp_round, that wouldn't occur in the
14832 // single-step fp_round we want to fold to.
14833 // In other words, double rounding isn't the same as rounding.
14834 // Also, this is a value preserving truncation iff both fp_round's are.
14835 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
14837 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
14838 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
14842 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
14843 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
14844 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
14845 N0
.getOperand(0), N1
);
14846 AddToWorklist(Tmp
.getNode());
14847 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
14848 Tmp
, N0
.getOperand(1));
14851 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
14857 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
14858 SDValue N0
= N
->getOperand(0);
14859 EVT VT
= N
->getValueType(0);
14861 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
14862 if (N
->hasOneUse() &&
14863 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
14866 // fold (fp_extend c1fp) -> c1fp
14867 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14868 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
14870 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
14871 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
14872 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
14873 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
14875 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
14877 if (N0
.getOpcode() == ISD::FP_ROUND
14878 && N0
.getConstantOperandVal(1) == 1) {
14879 SDValue In
= N0
.getOperand(0);
14880 if (In
.getValueType() == VT
) return In
;
14881 if (VT
.bitsLT(In
.getValueType()))
14882 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
14883 In
, N0
.getOperand(1));
14884 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
14887 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
14888 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
14889 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
14890 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
14891 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
14893 LN0
->getBasePtr(), N0
.getValueType(),
14894 LN0
->getMemOperand());
14895 CombineTo(N
, ExtLoad
);
14896 CombineTo(N0
.getNode(),
14897 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
14898 N0
.getValueType(), ExtLoad
,
14899 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
14900 ExtLoad
.getValue(1));
14901 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
14904 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
14910 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
14911 SDValue N0
= N
->getOperand(0);
14912 EVT VT
= N
->getValueType(0);
14914 // fold (fceil c1) -> fceil(c1)
14915 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14916 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
14921 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
14922 SDValue N0
= N
->getOperand(0);
14923 EVT VT
= N
->getValueType(0);
14925 // fold (ftrunc c1) -> ftrunc(c1)
14926 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14927 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
14929 // fold ftrunc (known rounded int x) -> x
14930 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
14931 // likely to be generated to extract integer from a rounded floating value.
14932 switch (N0
.getOpcode()) {
14936 case ISD::FNEARBYINT
:
14945 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
14946 SDValue N0
= N
->getOperand(0);
14947 EVT VT
= N
->getValueType(0);
14949 // fold (ffloor c1) -> ffloor(c1)
14950 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14951 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
14956 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
14957 SDValue N0
= N
->getOperand(0);
14958 EVT VT
= N
->getValueType(0);
14959 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14961 // Constant fold FNEG.
14962 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
14963 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
14965 if (SDValue NegN0
=
14966 TLI
.getNegatedExpression(N0
, DAG
, LegalOperations
, ForCodeSize
))
14969 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
14970 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
14971 // know it was called from a context with a nsz flag if the input fsub does
14973 if (N0
.getOpcode() == ISD::FSUB
&&
14974 (DAG
.getTarget().Options
.NoSignedZerosFPMath
||
14975 N
->getFlags().hasNoSignedZeros()) && N0
.hasOneUse()) {
14976 return DAG
.getNode(ISD::FSUB
, SDLoc(N
), VT
, N0
.getOperand(1),
14980 if (SDValue Cast
= foldSignChangeInBitcast(N
))
14986 static SDValue
visitFMinMax(SelectionDAG
&DAG
, SDNode
*N
,
14987 APFloat (*Op
)(const APFloat
&, const APFloat
&)) {
14988 SDValue N0
= N
->getOperand(0);
14989 SDValue N1
= N
->getOperand(1);
14990 EVT VT
= N
->getValueType(0);
14991 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
14992 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
14993 const SDNodeFlags Flags
= N
->getFlags();
14994 unsigned Opc
= N
->getOpcode();
14995 bool PropagatesNaN
= Opc
== ISD::FMINIMUM
|| Opc
== ISD::FMAXIMUM
;
14996 bool IsMin
= Opc
== ISD::FMINNUM
|| Opc
== ISD::FMINIMUM
;
14997 SelectionDAG::FlagInserter
FlagsInserter(DAG
, N
);
14999 if (N0CFP
&& N1CFP
) {
15000 const APFloat
&C0
= N0CFP
->getValueAPF();
15001 const APFloat
&C1
= N1CFP
->getValueAPF();
15002 return DAG
.getConstantFP(Op(C0
, C1
), SDLoc(N
), VT
);
15005 // Canonicalize to constant on RHS.
15006 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
) &&
15007 !DAG
.isConstantFPBuildVectorOrConstantFP(N1
))
15008 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
15011 const APFloat
&AF
= N1CFP
->getValueAPF();
15013 // minnum(X, nan) -> X
15014 // maxnum(X, nan) -> X
15015 // minimum(X, nan) -> nan
15016 // maximum(X, nan) -> nan
15018 return PropagatesNaN
? N
->getOperand(1) : N
->getOperand(0);
15020 // In the following folds, inf can be replaced with the largest finite
15021 // float, if the ninf flag is set.
15022 if (AF
.isInfinity() || (Flags
.hasNoInfs() && AF
.isLargest())) {
15023 // minnum(X, -inf) -> -inf
15024 // maxnum(X, +inf) -> +inf
15025 // minimum(X, -inf) -> -inf if nnan
15026 // maximum(X, +inf) -> +inf if nnan
15027 if (IsMin
== AF
.isNegative() && (!PropagatesNaN
|| Flags
.hasNoNaNs()))
15028 return N
->getOperand(1);
15030 // minnum(X, +inf) -> X if nnan
15031 // maxnum(X, -inf) -> X if nnan
15032 // minimum(X, +inf) -> X
15033 // maximum(X, -inf) -> X
15034 if (IsMin
!= AF
.isNegative() && (PropagatesNaN
|| Flags
.hasNoNaNs()))
15035 return N
->getOperand(0);
15042 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
15043 return visitFMinMax(DAG
, N
, minnum
);
15046 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
15047 return visitFMinMax(DAG
, N
, maxnum
);
15050 SDValue
DAGCombiner::visitFMINIMUM(SDNode
*N
) {
15051 return visitFMinMax(DAG
, N
, minimum
);
15054 SDValue
DAGCombiner::visitFMAXIMUM(SDNode
*N
) {
15055 return visitFMinMax(DAG
, N
, maximum
);
15058 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
15059 SDValue N0
= N
->getOperand(0);
15060 EVT VT
= N
->getValueType(0);
15062 // fold (fabs c1) -> fabs(c1)
15063 if (DAG
.isConstantFPBuildVectorOrConstantFP(N0
))
15064 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
15066 // fold (fabs (fabs x)) -> (fabs x)
15067 if (N0
.getOpcode() == ISD::FABS
)
15068 return N
->getOperand(0);
15070 // fold (fabs (fneg x)) -> (fabs x)
15071 // fold (fabs (fcopysign x, y)) -> (fabs x)
15072 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
15073 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
15075 if (SDValue Cast
= foldSignChangeInBitcast(N
))
15081 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
15082 SDValue Chain
= N
->getOperand(0);
15083 SDValue N1
= N
->getOperand(1);
15084 SDValue N2
= N
->getOperand(2);
15086 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
15087 // nondeterministic jumps).
15088 if (N1
->getOpcode() == ISD::FREEZE
&& N1
.hasOneUse()) {
15089 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
,
15090 N1
->getOperand(0), N2
);
15093 // If N is a constant we could fold this into a fallthrough or unconditional
15094 // branch. However that doesn't happen very often in normal code, because
15095 // Instcombine/SimplifyCFG should have handled the available opportunities.
15096 // If we did this folding here, it would be necessary to update the
15097 // MachineBasicBlock CFG, which is awkward.
15099 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
15101 if (N1
.getOpcode() == ISD::SETCC
&&
15102 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
15103 N1
.getOperand(0).getValueType())) {
15104 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15105 Chain
, N1
.getOperand(2),
15106 N1
.getOperand(0), N1
.getOperand(1), N2
);
15109 if (N1
.hasOneUse()) {
15110 // rebuildSetCC calls visitXor which may change the Chain when there is a
15111 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
15112 HandleSDNode
ChainHandle(Chain
);
15113 if (SDValue NewN1
= rebuildSetCC(N1
))
15114 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
,
15115 ChainHandle
.getValue(), NewN1
, N2
);
15121 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
15122 if (N
.getOpcode() == ISD::SRL
||
15123 (N
.getOpcode() == ISD::TRUNCATE
&&
15124 (N
.getOperand(0).hasOneUse() &&
15125 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
15126 // Look pass the truncate.
15127 if (N
.getOpcode() == ISD::TRUNCATE
)
15128 N
= N
.getOperand(0);
15130 // Match this pattern so that we can generate simpler code:
15133 // %b = and i32 %a, 2
15134 // %c = srl i32 %b, 1
15135 // brcond i32 %c ...
15140 // %b = and i32 %a, 2
15141 // %c = setcc eq %b, 0
15144 // This applies only when the AND constant value has one bit set and the
15145 // SRL constant is equal to the log2 of the AND constant. The back-end is
15146 // smart enough to convert the result into a TEST/JMP sequence.
15147 SDValue Op0
= N
.getOperand(0);
15148 SDValue Op1
= N
.getOperand(1);
15150 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
15151 SDValue AndOp1
= Op0
.getOperand(1);
15153 if (AndOp1
.getOpcode() == ISD::Constant
) {
15154 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
15156 if (AndConst
.isPowerOf2() &&
15157 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
15159 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
15160 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
15167 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
15168 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
15169 if (N
.getOpcode() == ISD::XOR
) {
15170 // Because we may call this on a speculatively constructed
15171 // SimplifiedSetCC Node, we need to simplify this node first.
15172 // Ideally this should be folded into SimplifySetCC and not
15173 // here. For now, grab a handle to N so we don't lose it from
15174 // replacements interal to the visit.
15175 HandleSDNode
XORHandle(N
);
15176 while (N
.getOpcode() == ISD::XOR
) {
15177 SDValue Tmp
= visitXOR(N
.getNode());
15178 // No simplification done.
15179 if (!Tmp
.getNode())
15181 // Returning N is form in-visit replacement that may invalidated
15182 // N. Grab value from Handle.
15183 if (Tmp
.getNode() == N
.getNode())
15184 N
= XORHandle
.getValue();
15185 else // Node simplified. Try simplifying again.
15189 if (N
.getOpcode() != ISD::XOR
)
15192 SDValue Op0
= N
->getOperand(0);
15193 SDValue Op1
= N
->getOperand(1);
15195 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
15196 bool Equal
= false;
15197 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
15198 if (isBitwiseNot(N
) && Op0
.hasOneUse() && Op0
.getOpcode() == ISD::XOR
&&
15199 Op0
.getValueType() == MVT::i1
) {
15201 Op0
= N
->getOperand(0);
15202 Op1
= N
->getOperand(1);
15206 EVT SetCCVT
= N
.getValueType();
15208 SetCCVT
= getSetCCResultType(SetCCVT
);
15209 // Replace the uses of XOR with SETCC
15210 return DAG
.getSetCC(SDLoc(N
), SetCCVT
, Op0
, Op1
,
15211 Equal
? ISD::SETEQ
: ISD::SETNE
);
15218 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
15220 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
15221 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
15222 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
15224 // If N is a constant we could fold this into a fallthrough or unconditional
15225 // branch. However that doesn't happen very often in normal code, because
15226 // Instcombine/SimplifyCFG should have handled the available opportunities.
15227 // If we did this folding here, it would be necessary to update the
15228 // MachineBasicBlock CFG, which is awkward.
15230 // Use SimplifySetCC to simplify SETCC's.
15231 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
15232 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
15234 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
15236 // fold to a simpler setcc
15237 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
15238 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
15239 N
->getOperand(0), Simp
.getOperand(2),
15240 Simp
.getOperand(0), Simp
.getOperand(1),
15246 static bool getCombineLoadStoreParts(SDNode
*N
, unsigned Inc
, unsigned Dec
,
15247 bool &IsLoad
, bool &IsMasked
, SDValue
&Ptr
,
15248 const TargetLowering
&TLI
) {
15249 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
15250 if (LD
->isIndexed())
15252 EVT VT
= LD
->getMemoryVT();
15253 if (!TLI
.isIndexedLoadLegal(Inc
, VT
) && !TLI
.isIndexedLoadLegal(Dec
, VT
))
15255 Ptr
= LD
->getBasePtr();
15256 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
15257 if (ST
->isIndexed())
15259 EVT VT
= ST
->getMemoryVT();
15260 if (!TLI
.isIndexedStoreLegal(Inc
, VT
) && !TLI
.isIndexedStoreLegal(Dec
, VT
))
15262 Ptr
= ST
->getBasePtr();
15264 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(N
)) {
15265 if (LD
->isIndexed())
15267 EVT VT
= LD
->getMemoryVT();
15268 if (!TLI
.isIndexedMaskedLoadLegal(Inc
, VT
) &&
15269 !TLI
.isIndexedMaskedLoadLegal(Dec
, VT
))
15271 Ptr
= LD
->getBasePtr();
15273 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(N
)) {
15274 if (ST
->isIndexed())
15276 EVT VT
= ST
->getMemoryVT();
15277 if (!TLI
.isIndexedMaskedStoreLegal(Inc
, VT
) &&
15278 !TLI
.isIndexedMaskedStoreLegal(Dec
, VT
))
15280 Ptr
= ST
->getBasePtr();
15289 /// Try turning a load/store into a pre-indexed load/store when the base
15290 /// pointer is an add or subtract and it has other uses besides the load/store.
15291 /// After the transformation, the new indexed load/store has effectively folded
15292 /// the add/subtract in and all of its other uses are redirected to the
15293 /// new load/store.
15294 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
15295 if (Level
< AfterLegalizeDAG
)
15298 bool IsLoad
= true;
15299 bool IsMasked
= false;
15301 if (!getCombineLoadStoreParts(N
, ISD::PRE_INC
, ISD::PRE_DEC
, IsLoad
, IsMasked
,
15305 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
15306 // out. There is no reason to make this a preinc/predec.
15307 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
15308 Ptr
.getNode()->hasOneUse())
15311 // Ask the target to do addressing mode selection.
15314 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15315 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
15318 // Backends without true r+i pre-indexed forms may need to pass a
15319 // constant base with a variable offset so that constant coercion
15320 // will work with the patterns in canonical form.
15321 bool Swapped
= false;
15322 if (isa
<ConstantSDNode
>(BasePtr
)) {
15323 std::swap(BasePtr
, Offset
);
15327 // Don't create a indexed load / store with zero offset.
15328 if (isNullConstant(Offset
))
15331 // Try turning it into a pre-indexed load / store except when:
15332 // 1) The new base ptr is a frame index.
15333 // 2) If N is a store and the new base ptr is either the same as or is a
15334 // predecessor of the value being stored.
15335 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
15336 // that would create a cycle.
15337 // 4) All uses are load / store ops that use it as old base ptr.
15339 // Check #1. Preinc'ing a frame index would require copying the stack pointer
15340 // (plus the implicit offset) to a register to preinc anyway.
15341 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15346 SDValue Val
= IsMasked
? cast
<MaskedStoreSDNode
>(N
)->getValue()
15347 : cast
<StoreSDNode
>(N
)->getValue();
15349 // Would require a copy.
15350 if (Val
== BasePtr
)
15353 // Would create a cycle.
15354 if (Val
== Ptr
|| Ptr
->isPredecessorOf(Val
.getNode()))
15358 // Caches for hasPredecessorHelper.
15359 SmallPtrSet
<const SDNode
*, 32> Visited
;
15360 SmallVector
<const SDNode
*, 16> Worklist
;
15361 Worklist
.push_back(N
);
15363 // If the offset is a constant, there may be other adds of constants that
15364 // can be folded with this one. We should do this to avoid having to keep
15365 // a copy of the original base pointer.
15366 SmallVector
<SDNode
*, 16> OtherUses
;
15367 if (isa
<ConstantSDNode
>(Offset
))
15368 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
15369 UE
= BasePtr
.getNode()->use_end();
15371 SDUse
&Use
= UI
.getUse();
15372 // Skip the use that is Ptr and uses of other results from BasePtr's
15373 // node (important for nodes that return multiple results).
15374 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
15377 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
15380 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
15381 Use
.getUser()->getOpcode() != ISD::SUB
) {
15386 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
15387 if (!isa
<ConstantSDNode
>(Op1
)) {
15392 // FIXME: In some cases, we can be smarter about this.
15393 if (Op1
.getValueType() != Offset
.getValueType()) {
15398 OtherUses
.push_back(Use
.getUser());
15402 std::swap(BasePtr
, Offset
);
15404 // Now check for #3 and #4.
15405 bool RealUse
= false;
15407 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
15410 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
15413 // If Ptr may be folded in addressing mode of other use, then it's
15414 // not profitable to do this transformation.
15415 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
15425 Result
= DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15428 DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
, Offset
, AM
);
15431 Result
= DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15434 Result
= DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15439 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
15440 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
15441 WorklistRemover
DeadNodes(*this);
15443 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15444 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15446 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15449 // Finally, since the node is now dead, remove it from the graph.
15450 deleteAndRecombine(N
);
15453 std::swap(BasePtr
, Offset
);
15455 // Replace other uses of BasePtr that can be updated to use Ptr
15456 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
15457 unsigned OffsetIdx
= 1;
15458 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
15460 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
15461 BasePtr
.getNode() && "Expected BasePtr operand");
15463 // We need to replace ptr0 in the following expression:
15464 // x0 * offset0 + y0 * ptr0 = t0
15466 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
15468 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
15469 // indexed load/store and the expression that needs to be re-written.
15471 // Therefore, we have:
15472 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
15474 auto *CN
= cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
15475 const APInt
&Offset0
= CN
->getAPIntValue();
15476 const APInt
&Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
15477 int X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
15478 int Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
15479 int X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
15480 int Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
15482 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
15484 APInt CNV
= Offset0
;
15485 if (X0
< 0) CNV
= -CNV
;
15486 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
15487 else CNV
= CNV
- Offset1
;
15489 SDLoc
DL(OtherUses
[i
]);
15491 // We can now generate the new expression.
15492 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
15493 SDValue NewOp2
= Result
.getValue(IsLoad
? 1 : 0);
15495 SDValue NewUse
= DAG
.getNode(Opcode
,
15497 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
15498 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
15499 deleteAndRecombine(OtherUses
[i
]);
15502 // Replace the uses of Ptr with uses of the updated base value.
15503 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(IsLoad
? 1 : 0));
15504 deleteAndRecombine(Ptr
.getNode());
15505 AddToWorklist(Result
.getNode());
15510 static bool shouldCombineToPostInc(SDNode
*N
, SDValue Ptr
, SDNode
*PtrUse
,
15511 SDValue
&BasePtr
, SDValue
&Offset
,
15512 ISD::MemIndexedMode
&AM
,
15514 const TargetLowering
&TLI
) {
15516 (PtrUse
->getOpcode() != ISD::ADD
&& PtrUse
->getOpcode() != ISD::SUB
))
15519 if (!TLI
.getPostIndexedAddressParts(N
, PtrUse
, BasePtr
, Offset
, AM
, DAG
))
15522 // Don't create a indexed load / store with zero offset.
15523 if (isNullConstant(Offset
))
15526 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
15529 SmallPtrSet
<const SDNode
*, 32> Visited
;
15530 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
15531 if (Use
== Ptr
.getNode())
15534 // No if there's a later user which could perform the index instead.
15535 if (isa
<MemSDNode
>(Use
)) {
15536 bool IsLoad
= true;
15537 bool IsMasked
= false;
15539 if (getCombineLoadStoreParts(Use
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15540 IsMasked
, OtherPtr
, TLI
)) {
15541 SmallVector
<const SDNode
*, 2> Worklist
;
15542 Worklist
.push_back(Use
);
15543 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
))
15548 // If all the uses are load / store addresses, then don't do the
15550 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
) {
15551 for (SDNode
*UseUse
: Use
->uses())
15552 if (canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
15559 static SDNode
*getPostIndexedLoadStoreOp(SDNode
*N
, bool &IsLoad
,
15560 bool &IsMasked
, SDValue
&Ptr
,
15561 SDValue
&BasePtr
, SDValue
&Offset
,
15562 ISD::MemIndexedMode
&AM
,
15564 const TargetLowering
&TLI
) {
15565 if (!getCombineLoadStoreParts(N
, ISD::POST_INC
, ISD::POST_DEC
, IsLoad
,
15566 IsMasked
, Ptr
, TLI
) ||
15567 Ptr
.getNode()->hasOneUse())
15570 // Try turning it into a post-indexed load / store except when
15571 // 1) All uses are load / store ops that use it as base ptr (and
15572 // it may be folded as addressing mmode).
15573 // 2) Op must be independent of N, i.e. Op is neither a predecessor
15574 // nor a successor of N. Otherwise, if Op is folded that would
15576 for (SDNode
*Op
: Ptr
->uses()) {
15578 if (!shouldCombineToPostInc(N
, Ptr
, Op
, BasePtr
, Offset
, AM
, DAG
, TLI
))
15582 SmallPtrSet
<const SDNode
*, 32> Visited
;
15583 SmallVector
<const SDNode
*, 8> Worklist
;
15584 // Ptr is predecessor to both N and Op.
15585 Visited
.insert(Ptr
.getNode());
15586 Worklist
.push_back(N
);
15587 Worklist
.push_back(Op
);
15588 if (!SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) &&
15589 !SDNode::hasPredecessorHelper(Op
, Visited
, Worklist
))
15595 /// Try to combine a load/store with a add/sub of the base pointer node into a
15596 /// post-indexed load/store. The transformation folded the add/subtract into the
15597 /// new indexed load/store effectively and all of its uses are redirected to the
15598 /// new load/store.
15599 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
15600 if (Level
< AfterLegalizeDAG
)
15603 bool IsLoad
= true;
15604 bool IsMasked
= false;
15608 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
15609 SDNode
*Op
= getPostIndexedLoadStoreOp(N
, IsLoad
, IsMasked
, Ptr
, BasePtr
,
15610 Offset
, AM
, DAG
, TLI
);
15616 Result
= IsLoad
? DAG
.getIndexedLoad(SDValue(N
, 0), SDLoc(N
), BasePtr
,
15618 : DAG
.getIndexedStore(SDValue(N
, 0), SDLoc(N
),
15619 BasePtr
, Offset
, AM
);
15621 Result
= IsLoad
? DAG
.getIndexedMaskedLoad(SDValue(N
, 0), SDLoc(N
),
15622 BasePtr
, Offset
, AM
)
15623 : DAG
.getIndexedMaskedStore(SDValue(N
, 0), SDLoc(N
),
15624 BasePtr
, Offset
, AM
);
15625 ++PostIndexedNodes
;
15627 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
15628 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
15630 WorklistRemover
DeadNodes(*this);
15632 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
15633 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
15635 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
15638 // Finally, since the node is now dead, remove it from the graph.
15639 deleteAndRecombine(N
);
15641 // Replace the uses of Use with uses of the updated base value.
15642 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
15643 Result
.getValue(IsLoad
? 1 : 0));
15644 deleteAndRecombine(Op
);
15648 /// Return the base-pointer arithmetic from an indexed \p LD.
15649 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
15650 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
15651 assert(AM
!= ISD::UNINDEXED
);
15652 SDValue BP
= LD
->getOperand(1);
15653 SDValue Inc
= LD
->getOperand(2);
15655 // Some backends use TargetConstants for load offsets, but don't expect
15656 // TargetConstants in general ADD nodes. We can convert these constants into
15657 // regular Constants (if the constant is not opaque).
15658 assert((Inc
.getOpcode() != ISD::TargetConstant
||
15659 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
15660 "Cannot split out indexing using opaque target constants");
15661 if (Inc
.getOpcode() == ISD::TargetConstant
) {
15662 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
15663 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
15664 ConstInc
->getValueType(0));
15668 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
15669 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
15672 static inline ElementCount
numVectorEltsOrZero(EVT T
) {
15673 return T
.isVector() ? T
.getVectorElementCount() : ElementCount::getFixed(0);
15676 bool DAGCombiner::getTruncatedStoreValue(StoreSDNode
*ST
, SDValue
&Val
) {
15677 Val
= ST
->getValue();
15678 EVT STType
= Val
.getValueType();
15679 EVT STMemType
= ST
->getMemoryVT();
15680 if (STType
== STMemType
)
15682 if (isTypeLegal(STMemType
))
15683 return false; // fail.
15684 if (STType
.isFloatingPoint() && STMemType
.isFloatingPoint() &&
15685 TLI
.isOperationLegal(ISD::FTRUNC
, STMemType
)) {
15686 Val
= DAG
.getNode(ISD::FTRUNC
, SDLoc(ST
), STMemType
, Val
);
15689 if (numVectorEltsOrZero(STType
) == numVectorEltsOrZero(STMemType
) &&
15690 STType
.isInteger() && STMemType
.isInteger()) {
15691 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(ST
), STMemType
, Val
);
15694 if (STType
.getSizeInBits() == STMemType
.getSizeInBits()) {
15695 Val
= DAG
.getBitcast(STMemType
, Val
);
15698 return false; // fail.
15701 bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode
*LD
, SDValue
&Val
) {
15702 EVT LDMemType
= LD
->getMemoryVT();
15703 EVT LDType
= LD
->getValueType(0);
15704 assert(Val
.getValueType() == LDMemType
&&
15705 "Attempting to extend value of non-matching type");
15706 if (LDType
== LDMemType
)
15708 if (LDMemType
.isInteger() && LDType
.isInteger()) {
15709 switch (LD
->getExtensionType()) {
15710 case ISD::NON_EXTLOAD
:
15711 Val
= DAG
.getBitcast(LDType
, Val
);
15714 Val
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(LD
), LDType
, Val
);
15716 case ISD::SEXTLOAD
:
15717 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(LD
), LDType
, Val
);
15719 case ISD::ZEXTLOAD
:
15720 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(LD
), LDType
, Val
);
15727 SDValue
DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode
*LD
) {
15728 if (OptLevel
== CodeGenOpt::None
|| !LD
->isSimple())
15730 SDValue Chain
= LD
->getOperand(0);
15731 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
.getNode());
15732 // TODO: Relax this restriction for unordered atomics (see D66309)
15733 if (!ST
|| !ST
->isSimple())
15736 EVT LDType
= LD
->getValueType(0);
15737 EVT LDMemType
= LD
->getMemoryVT();
15738 EVT STMemType
= ST
->getMemoryVT();
15739 EVT STType
= ST
->getValue().getValueType();
15741 // There are two cases to consider here:
15742 // 1. The store is fixed width and the load is scalable. In this case we
15743 // don't know at compile time if the store completely envelops the load
15744 // so we abandon the optimisation.
15745 // 2. The store is scalable and the load is fixed width. We could
15746 // potentially support a limited number of cases here, but there has been
15747 // no cost-benefit analysis to prove it's worth it.
15748 bool LdStScalable
= LDMemType
.isScalableVector();
15749 if (LdStScalable
!= STMemType
.isScalableVector())
15752 // If we are dealing with scalable vectors on a big endian platform the
15753 // calculation of offsets below becomes trickier, since we do not know at
15754 // compile time the absolute size of the vector. Until we've done more
15755 // analysis on big-endian platforms it seems better to bail out for now.
15756 if (LdStScalable
&& DAG
.getDataLayout().isBigEndian())
15759 BaseIndexOffset BasePtrLD
= BaseIndexOffset::match(LD
, DAG
);
15760 BaseIndexOffset BasePtrST
= BaseIndexOffset::match(ST
, DAG
);
15762 if (!BasePtrST
.equalBaseIndex(BasePtrLD
, DAG
, Offset
))
15765 // Normalize for Endianness. After this Offset=0 will denote that the least
15766 // significant bit in the loaded value maps to the least significant bit in
15767 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
15768 // n:th least significant byte of the stored value.
15769 if (DAG
.getDataLayout().isBigEndian())
15770 Offset
= ((int64_t)STMemType
.getStoreSizeInBits().getFixedSize() -
15771 (int64_t)LDMemType
.getStoreSizeInBits().getFixedSize()) /
15775 // Check that the stored value cover all bits that are loaded.
15778 TypeSize LdMemSize
= LDMemType
.getSizeInBits();
15779 TypeSize StMemSize
= STMemType
.getSizeInBits();
15781 STCoversLD
= (Offset
== 0) && LdMemSize
== StMemSize
;
15783 STCoversLD
= (Offset
>= 0) && (Offset
* 8 + LdMemSize
.getFixedSize() <=
15784 StMemSize
.getFixedSize());
15786 auto ReplaceLd
= [&](LoadSDNode
*LD
, SDValue Val
, SDValue Chain
) -> SDValue
{
15787 if (LD
->isIndexed()) {
15788 // Cannot handle opaque target constants and we must respect the user's
15789 // request not to split indexes from loads.
15790 if (!canSplitIdx(LD
))
15792 SDValue Idx
= SplitIndexingFromLoad(LD
);
15793 SDValue Ops
[] = {Val
, Idx
, Chain
};
15794 return CombineTo(LD
, Ops
, 3);
15796 return CombineTo(LD
, Val
, Chain
);
15802 // Memory as copy space (potentially masked).
15803 if (Offset
== 0 && LDType
== STType
&& STMemType
== LDMemType
) {
15804 // Simple case: Direct non-truncating forwarding
15805 if (LDType
.getSizeInBits() == LdMemSize
)
15806 return ReplaceLd(LD
, ST
->getValue(), Chain
);
15807 // Can we model the truncate and extension with an and mask?
15808 if (STType
.isInteger() && LDMemType
.isInteger() && !STType
.isVector() &&
15809 !LDMemType
.isVector() && LD
->getExtensionType() != ISD::SEXTLOAD
) {
15810 // Mask to size of LDMemType
15812 DAG
.getConstant(APInt::getLowBitsSet(STType
.getFixedSizeInBits(),
15813 StMemSize
.getFixedSize()),
15814 SDLoc(ST
), STType
);
15815 auto Val
= DAG
.getNode(ISD::AND
, SDLoc(LD
), LDType
, ST
->getValue(), Mask
);
15816 return ReplaceLd(LD
, Val
, Chain
);
15820 // TODO: Deal with nonzero offset.
15821 if (LD
->getBasePtr().isUndef() || Offset
!= 0)
15823 // Model necessary truncations / extenstions.
15825 // Truncate Value To Stored Memory Size.
15827 if (!getTruncatedStoreValue(ST
, Val
))
15829 if (!isTypeLegal(LDMemType
))
15831 if (STMemType
!= LDMemType
) {
15832 // TODO: Support vectors? This requires extract_subvector/bitcast.
15833 if (!STMemType
.isVector() && !LDMemType
.isVector() &&
15834 STMemType
.isInteger() && LDMemType
.isInteger())
15835 Val
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LD
), LDMemType
, Val
);
15839 if (!extendLoadedValueToExtension(LD
, Val
))
15841 return ReplaceLd(LD
, Val
, Chain
);
15844 // On failure, cleanup dead nodes we may have created.
15845 if (Val
->use_empty())
15846 deleteAndRecombine(Val
.getNode());
15850 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
15851 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
15852 SDValue Chain
= LD
->getChain();
15853 SDValue Ptr
= LD
->getBasePtr();
15855 // If load is not volatile and there are no uses of the loaded value (and
15856 // the updated indexed value in case of indexed loads), change uses of the
15857 // chain value into uses of the chain input (i.e. delete the dead load).
15858 // TODO: Allow this for unordered atomics (see D66309)
15859 if (LD
->isSimple()) {
15860 if (N
->getValueType(1) == MVT::Other
) {
15861 // Unindexed loads.
15862 if (!N
->hasAnyUseOfValue(0)) {
15863 // It's not safe to use the two value CombineTo variant here. e.g.
15864 // v1, chain2 = load chain1, loc
15865 // v2, chain3 = load chain2, loc
15867 // Now we replace use of chain2 with chain1. This makes the second load
15868 // isomorphic to the one we are deleting, and thus makes this load live.
15869 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
15870 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
15872 WorklistRemover
DeadNodes(*this);
15873 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
15874 AddUsersToWorklist(Chain
.getNode());
15875 if (N
->use_empty())
15876 deleteAndRecombine(N
);
15878 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
15882 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
15884 // If this load has an opaque TargetConstant offset, then we cannot split
15885 // the indexing into an add/sub directly (that TargetConstant may not be
15886 // valid for a different type of node, and we cannot convert an opaque
15887 // target constant into a regular constant).
15888 bool CanSplitIdx
= canSplitIdx(LD
);
15890 if (!N
->hasAnyUseOfValue(0) && (CanSplitIdx
|| !N
->hasAnyUseOfValue(1))) {
15891 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
15893 if (N
->hasAnyUseOfValue(1) && CanSplitIdx
) {
15894 Index
= SplitIndexingFromLoad(LD
);
15895 // Try to fold the base pointer arithmetic into subsequent loads and
15897 AddUsersToWorklist(N
);
15899 Index
= DAG
.getUNDEF(N
->getValueType(1));
15900 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
15901 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
15902 dbgs() << " and 2 other values\n");
15903 WorklistRemover
DeadNodes(*this);
15904 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
15905 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
15906 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
15907 deleteAndRecombine(N
);
15908 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
15913 // If this load is directly stored, replace the load value with the stored
15915 if (auto V
= ForwardStoreValueToDirectLoad(LD
))
15918 // Try to infer better alignment information than the load already has.
15919 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed() && !LD
->isAtomic()) {
15920 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
15921 if (*Alignment
> LD
->getAlign() &&
15922 isAligned(*Alignment
, LD
->getSrcValueOffset())) {
15923 SDValue NewLoad
= DAG
.getExtLoad(
15924 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
15925 LD
->getPointerInfo(), LD
->getMemoryVT(), *Alignment
,
15926 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
15927 // NewLoad will always be N as we are only refining the alignment
15928 assert(NewLoad
.getNode() == N
);
15934 if (LD
->isUnindexed()) {
15935 // Walk up chain skipping non-aliasing memory nodes.
15936 SDValue BetterChain
= FindBetterChain(LD
, Chain
);
15938 // If there is a better chain.
15939 if (Chain
!= BetterChain
) {
15942 // Replace the chain to void dependency.
15943 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
15944 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
15945 BetterChain
, Ptr
, LD
->getMemOperand());
15947 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
15948 LD
->getValueType(0),
15949 BetterChain
, Ptr
, LD
->getMemoryVT(),
15950 LD
->getMemOperand());
15953 // Create token factor to keep old chain connected.
15954 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
15955 MVT::Other
, Chain
, ReplLoad
.getValue(1));
15957 // Replace uses with load result and token factor
15958 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
15962 // Try transforming N to an indexed load.
15963 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
15964 return SDValue(N
, 0);
15966 // Try to slice up N to more direct loads if the slices are mapped to
15967 // different register banks or pairing can take place.
15968 if (SliceUpLoad(N
))
15969 return SDValue(N
, 0);
15976 /// Helper structure used to slice a load in smaller loads.
15977 /// Basically a slice is obtained from the following sequence:
15978 /// Origin = load Ty1, Base
15979 /// Shift = srl Ty1 Origin, CstTy Amount
15980 /// Inst = trunc Shift to Ty2
15982 /// Then, it will be rewritten into:
15983 /// Slice = load SliceTy, Base + SliceOffset
15984 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
15986 /// SliceTy is deduced from the number of bits that are actually used to
15988 struct LoadedSlice
{
15989 /// Helper structure used to compute the cost of a slice.
15991 /// Are we optimizing for code size.
15992 bool ForCodeSize
= false;
15995 unsigned Loads
= 0;
15996 unsigned Truncates
= 0;
15997 unsigned CrossRegisterBanksCopies
= 0;
15998 unsigned ZExts
= 0;
15999 unsigned Shift
= 0;
16001 explicit Cost(bool ForCodeSize
) : ForCodeSize(ForCodeSize
) {}
16003 /// Get the cost of one isolated slice.
16004 Cost(const LoadedSlice
&LS
, bool ForCodeSize
)
16005 : ForCodeSize(ForCodeSize
), Loads(1) {
16006 EVT TruncType
= LS
.Inst
->getValueType(0);
16007 EVT LoadedType
= LS
.getLoadedType();
16008 if (TruncType
!= LoadedType
&&
16009 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
16013 /// Account for slicing gain in the current cost.
16014 /// Slicing provide a few gains like removing a shift or a
16015 /// truncate. This method allows to grow the cost of the original
16016 /// load with the gain from this slice.
16017 void addSliceGain(const LoadedSlice
&LS
) {
16018 // Each slice saves a truncate.
16019 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
16020 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
16021 LS
.Inst
->getValueType(0)))
16023 // If there is a shift amount, this slice gets rid of it.
16026 // If this slice can merge a cross register bank copy, account for it.
16027 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
16028 ++CrossRegisterBanksCopies
;
16031 Cost
&operator+=(const Cost
&RHS
) {
16032 Loads
+= RHS
.Loads
;
16033 Truncates
+= RHS
.Truncates
;
16034 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
16035 ZExts
+= RHS
.ZExts
;
16036 Shift
+= RHS
.Shift
;
16040 bool operator==(const Cost
&RHS
) const {
16041 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
16042 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
16043 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
16046 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
16048 bool operator<(const Cost
&RHS
) const {
16049 // Assume cross register banks copies are as expensive as loads.
16050 // FIXME: Do we want some more target hooks?
16051 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
16052 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
16053 // Unless we are optimizing for code size, consider the
16054 // expensive operation first.
16055 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
16056 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
16057 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
16058 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
16061 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
16063 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
16065 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
16068 // The last instruction that represent the slice. This should be a
16069 // truncate instruction.
16072 // The original load instruction.
16073 LoadSDNode
*Origin
;
16075 // The right shift amount in bits from the original load.
16078 // The DAG from which Origin came from.
16079 // This is used to get some contextual information about legal types, etc.
16082 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
16083 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
16084 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
16086 /// Get the bits used in a chunk of bits \p BitWidth large.
16087 /// \return Result is \p BitWidth and has used bits set to 1 and
16088 /// not used bits set to 0.
16089 APInt
getUsedBits() const {
16090 // Reproduce the trunc(lshr) sequence:
16091 // - Start from the truncated value.
16092 // - Zero extend to the desired bit width.
16094 assert(Origin
&& "No original load to compare against.");
16095 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
16096 assert(Inst
&& "This slice is not bound to an instruction");
16097 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
16098 "Extracted slice is bigger than the whole type!");
16099 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
16100 UsedBits
.setAllBits();
16101 UsedBits
= UsedBits
.zext(BitWidth
);
16102 UsedBits
<<= Shift
;
16106 /// Get the size of the slice to be loaded in bytes.
16107 unsigned getLoadedSize() const {
16108 unsigned SliceSize
= getUsedBits().countPopulation();
16109 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
16110 return SliceSize
/ 8;
16113 /// Get the type that will be loaded for this slice.
16114 /// Note: This may not be the final type for the slice.
16115 EVT
getLoadedType() const {
16116 assert(DAG
&& "Missing context");
16117 LLVMContext
&Ctxt
= *DAG
->getContext();
16118 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
16121 /// Get the alignment of the load used for this slice.
16122 Align
getAlign() const {
16123 Align Alignment
= Origin
->getAlign();
16124 uint64_t Offset
= getOffsetFromBase();
16126 Alignment
= commonAlignment(Alignment
, Alignment
.value() + Offset
);
16130 /// Check if this slice can be rewritten with legal operations.
16131 bool isLegal() const {
16132 // An invalid slice is not legal.
16133 if (!Origin
|| !Inst
|| !DAG
)
16136 // Offsets are for indexed load only, we do not handle that.
16137 if (!Origin
->getOffset().isUndef())
16140 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16142 // Check that the type is legal.
16143 EVT SliceType
= getLoadedType();
16144 if (!TLI
.isTypeLegal(SliceType
))
16147 // Check that the load is legal for this type.
16148 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
16151 // Check that the offset can be computed.
16152 // 1. Check its type.
16153 EVT PtrType
= Origin
->getBasePtr().getValueType();
16154 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
16157 // 2. Check that it fits in the immediate.
16158 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
16161 // 3. Check that the computation is legal.
16162 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
16165 // Check that the zext is legal if it needs one.
16166 EVT TruncateType
= Inst
->getValueType(0);
16167 if (TruncateType
!= SliceType
&&
16168 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
16174 /// Get the offset in bytes of this slice in the original chunk of
16176 /// \pre DAG != nullptr.
16177 uint64_t getOffsetFromBase() const {
16178 assert(DAG
&& "Missing context.");
16179 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
16180 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
16181 uint64_t Offset
= Shift
/ 8;
16182 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
16183 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
16184 "The size of the original loaded type is not a multiple of a"
16186 // If Offset is bigger than TySizeInBytes, it means we are loading all
16187 // zeros. This should have been optimized before in the process.
16188 assert(TySizeInBytes
> Offset
&&
16189 "Invalid shift amount for given loaded size");
16191 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
16195 /// Generate the sequence of instructions to load the slice
16196 /// represented by this object and redirect the uses of this slice to
16197 /// this new sequence of instructions.
16198 /// \pre this->Inst && this->Origin are valid Instructions and this
16199 /// object passed the legal check: LoadedSlice::isLegal returned true.
16200 /// \return The last instruction of the sequence used to load the slice.
16201 SDValue
loadSlice() const {
16202 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
16203 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
16204 SDValue BaseAddr
= OldBaseAddr
;
16205 // Get the offset in that chunk of bytes w.r.t. the endianness.
16206 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
16207 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
16209 // BaseAddr = BaseAddr + Offset.
16210 EVT ArithType
= BaseAddr
.getValueType();
16212 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
16213 DAG
->getConstant(Offset
, DL
, ArithType
));
16216 // Create the type of the loaded slice according to its size.
16217 EVT SliceType
= getLoadedType();
16219 // Create the load for the slice.
16221 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
16222 Origin
->getPointerInfo().getWithOffset(Offset
), getAlign(),
16223 Origin
->getMemOperand()->getFlags());
16224 // If the final type is not the same as the loaded type, this means that
16225 // we have to pad with zero. Create a zero extend for that.
16226 EVT FinalType
= Inst
->getValueType(0);
16227 if (SliceType
!= FinalType
)
16229 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
16233 /// Check if this slice can be merged with an expensive cross register
16234 /// bank copy. E.g.,
16236 /// f = bitcast i32 i to float
16237 bool canMergeExpensiveCrossRegisterBankCopy() const {
16238 if (!Inst
|| !Inst
->hasOneUse())
16240 SDNode
*Use
= *Inst
->use_begin();
16241 if (Use
->getOpcode() != ISD::BITCAST
)
16243 assert(DAG
&& "Missing context");
16244 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
16245 EVT ResVT
= Use
->getValueType(0);
16246 const TargetRegisterClass
*ResRC
=
16247 TLI
.getRegClassFor(ResVT
.getSimpleVT(), Use
->isDivergent());
16248 const TargetRegisterClass
*ArgRC
=
16249 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT(),
16250 Use
->getOperand(0)->isDivergent());
16251 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16254 // At this point, we know that we perform a cross-register-bank copy.
16255 // Check if it is expensive.
16256 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
16257 // Assume bitcasts are cheap, unless both register classes do not
16258 // explicitly share a common sub class.
16259 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
16262 // Check if it will be merged with the load.
16263 // 1. Check the alignment constraint.
16264 Align RequiredAlignment
= DAG
->getDataLayout().getABITypeAlign(
16265 ResVT
.getTypeForEVT(*DAG
->getContext()));
16267 if (RequiredAlignment
> getAlign())
16270 // 2. Check that the load is a legal operation for that type.
16271 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
16274 // 3. Check that we do not have a zext in the way.
16275 if (Inst
->getValueType(0) != getLoadedType())
16282 } // end anonymous namespace
16284 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
16285 /// \p UsedBits looks like 0..0 1..1 0..0.
16286 static bool areUsedBitsDense(const APInt
&UsedBits
) {
16287 // If all the bits are one, this is dense!
16288 if (UsedBits
.isAllOnesValue())
16291 // Get rid of the unused bits on the right.
16292 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
16293 // Get rid of the unused bits on the left.
16294 if (NarrowedUsedBits
.countLeadingZeros())
16295 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
16296 // Check that the chunk of bits is completely used.
16297 return NarrowedUsedBits
.isAllOnesValue();
16300 /// Check whether or not \p First and \p Second are next to each other
16301 /// in memory. This means that there is no hole between the bits loaded
16302 /// by \p First and the bits loaded by \p Second.
16303 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
16304 const LoadedSlice
&Second
) {
16305 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
16306 "Unable to match different memory origins.");
16307 APInt UsedBits
= First
.getUsedBits();
16308 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
16309 "Slices are not supposed to overlap.");
16310 UsedBits
|= Second
.getUsedBits();
16311 return areUsedBitsDense(UsedBits
);
16314 /// Adjust the \p GlobalLSCost according to the target
16315 /// paring capabilities and the layout of the slices.
16316 /// \pre \p GlobalLSCost should account for at least as many loads as
16317 /// there is in the slices in \p LoadedSlices.
16318 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16319 LoadedSlice::Cost
&GlobalLSCost
) {
16320 unsigned NumberOfSlices
= LoadedSlices
.size();
16321 // If there is less than 2 elements, no pairing is possible.
16322 if (NumberOfSlices
< 2)
16325 // Sort the slices so that elements that are likely to be next to each
16326 // other in memory are next to each other in the list.
16327 llvm::sort(LoadedSlices
, [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
16328 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
16329 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
16331 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
16332 // First (resp. Second) is the first (resp. Second) potentially candidate
16333 // to be placed in a paired load.
16334 const LoadedSlice
*First
= nullptr;
16335 const LoadedSlice
*Second
= nullptr;
16336 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
16337 // Set the beginning of the pair.
16339 Second
= &LoadedSlices
[CurrSlice
];
16341 // If First is NULL, it means we start a new pair.
16342 // Get to the next slice.
16346 EVT LoadedType
= First
->getLoadedType();
16348 // If the types of the slices are different, we cannot pair them.
16349 if (LoadedType
!= Second
->getLoadedType())
16352 // Check if the target supplies paired loads for this type.
16353 Align RequiredAlignment
;
16354 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
16355 // move to the next pair, this type is hopeless.
16359 // Check if we meet the alignment requirement.
16360 if (First
->getAlign() < RequiredAlignment
)
16363 // Check that both loads are next to each other in memory.
16364 if (!areSlicesNextToEachOther(*First
, *Second
))
16367 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
16368 --GlobalLSCost
.Loads
;
16369 // Move to the next pair.
16374 /// Check the profitability of all involved LoadedSlice.
16375 /// Currently, it is considered profitable if there is exactly two
16376 /// involved slices (1) which are (2) next to each other in memory, and
16377 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
16379 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
16380 /// the elements themselves.
16382 /// FIXME: When the cost model will be mature enough, we can relax
16383 /// constraints (1) and (2).
16384 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
16385 const APInt
&UsedBits
, bool ForCodeSize
) {
16386 unsigned NumberOfSlices
= LoadedSlices
.size();
16387 if (StressLoadSlicing
)
16388 return NumberOfSlices
> 1;
16391 if (NumberOfSlices
!= 2)
16395 if (!areUsedBitsDense(UsedBits
))
16399 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
16400 // The original code has one big load.
16401 OrigCost
.Loads
= 1;
16402 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
16403 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
16404 // Accumulate the cost of all the slices.
16405 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
16406 GlobalSlicingCost
+= SliceCost
;
16408 // Account as cost in the original configuration the gain obtained
16409 // with the current slices.
16410 OrigCost
.addSliceGain(LS
);
16413 // If the target supports paired load, adjust the cost accordingly.
16414 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
16415 return OrigCost
> GlobalSlicingCost
;
16418 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
16419 /// operations, split it in the various pieces being extracted.
16421 /// This sort of thing is introduced by SROA.
16422 /// This slicing takes care not to insert overlapping loads.
16423 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
16424 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
16425 if (Level
< AfterLegalizeDAG
)
16428 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
16429 if (!LD
->isSimple() || !ISD::isNormalLoad(LD
) ||
16430 !LD
->getValueType(0).isInteger())
16433 // The algorithm to split up a load of a scalable vector into individual
16434 // elements currently requires knowing the length of the loaded type,
16435 // so will need adjusting to work on scalable vectors.
16436 if (LD
->getValueType(0).isScalableVector())
16439 // Keep track of already used bits to detect overlapping values.
16440 // In that case, we will just abort the transformation.
16441 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
16443 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
16445 // Check if this load is used as several smaller chunks of bits.
16446 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
16447 // of computation for each trunc.
16448 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
16449 UI
!= UIEnd
; ++UI
) {
16450 // Skip the uses of the chain.
16451 if (UI
.getUse().getResNo() != 0)
16454 SDNode
*User
= *UI
;
16455 unsigned Shift
= 0;
16457 // Check if this is a trunc(lshr).
16458 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
16459 isa
<ConstantSDNode
>(User
->getOperand(1))) {
16460 Shift
= User
->getConstantOperandVal(1);
16461 User
= *User
->use_begin();
16464 // At this point, User is a Truncate, iff we encountered, trunc or
16466 if (User
->getOpcode() != ISD::TRUNCATE
)
16469 // The width of the type must be a power of 2 and greater than 8-bits.
16470 // Otherwise the load cannot be represented in LLVM IR.
16471 // Moreover, if we shifted with a non-8-bits multiple, the slice
16472 // will be across several bytes. We do not support that.
16473 unsigned Width
= User
->getValueSizeInBits(0);
16474 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
16477 // Build the slice for this chain of computations.
16478 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
16479 APInt CurrentUsedBits
= LS
.getUsedBits();
16481 // Check if this slice overlaps with another.
16482 if ((CurrentUsedBits
& UsedBits
) != 0)
16484 // Update the bits used globally.
16485 UsedBits
|= CurrentUsedBits
;
16487 // Check if the new slice would be legal.
16491 // Record the slice.
16492 LoadedSlices
.push_back(LS
);
16495 // Abort slicing if it does not seem to be profitable.
16496 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
16501 // Rewrite each chain to use an independent load.
16502 // By construction, each chain can be represented by a unique load.
16504 // Prepare the argument for the new token factor for all the slices.
16505 SmallVector
<SDValue
, 8> ArgChains
;
16506 for (const LoadedSlice
&LS
: LoadedSlices
) {
16507 SDValue SliceInst
= LS
.loadSlice();
16508 CombineTo(LS
.Inst
, SliceInst
, true);
16509 if (SliceInst
.getOpcode() != ISD::LOAD
)
16510 SliceInst
= SliceInst
.getOperand(0);
16511 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
16512 "It takes more than a zext to get to the loaded slice!!");
16513 ArgChains
.push_back(SliceInst
.getValue(1));
16516 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
16518 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
16519 AddToWorklist(Chain
.getNode());
16523 /// Check to see if V is (and load (ptr), imm), where the load is having
16524 /// specific bytes cleared out. If so, return the byte size being masked out
16525 /// and the shift amount.
16526 static std::pair
<unsigned, unsigned>
16527 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
16528 std::pair
<unsigned, unsigned> Result(0, 0);
16530 // Check for the structure we're looking for.
16531 if (V
->getOpcode() != ISD::AND
||
16532 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
16533 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
16536 // Check the chain and pointer.
16537 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
16538 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
16540 // This only handles simple types.
16541 if (V
.getValueType() != MVT::i16
&&
16542 V
.getValueType() != MVT::i32
&&
16543 V
.getValueType() != MVT::i64
)
16546 // Check the constant mask. Invert it so that the bits being masked out are
16547 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
16548 // follow the sign bit for uniformity.
16549 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
16550 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
16551 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
16552 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
16553 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
16554 if (NotMaskLZ
== 64) return Result
; // All zero mask.
16556 // See if we have a continuous run of bits. If so, we have 0*1+0*
16557 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
16560 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
16561 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
16562 NotMaskLZ
-= 64-V
.getValueSizeInBits();
16564 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
16565 switch (MaskedBytes
) {
16569 default: return Result
; // All one mask, or 5-byte mask.
16572 // Verify that the first bit starts at a multiple of mask so that the access
16573 // is aligned the same as the access width.
16574 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
16576 // For narrowing to be valid, it must be the case that the load the
16577 // immediately preceding memory operation before the store.
16578 if (LD
== Chain
.getNode())
16580 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
16581 SDValue(LD
, 1).hasOneUse()) {
16582 // LD has only 1 chain use so they are no indirect dependencies.
16583 if (!LD
->isOperandOf(Chain
.getNode()))
16586 return Result
; // Fail.
16588 Result
.first
= MaskedBytes
;
16589 Result
.second
= NotMaskTZ
/8;
16593 /// Check to see if IVal is something that provides a value as specified by
16594 /// MaskInfo. If so, replace the specified store with a narrower store of
16595 /// truncated IVal.
16597 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
16598 SDValue IVal
, StoreSDNode
*St
,
16600 unsigned NumBytes
= MaskInfo
.first
;
16601 unsigned ByteShift
= MaskInfo
.second
;
16602 SelectionDAG
&DAG
= DC
->getDAG();
16604 // Check to see if IVal is all zeros in the part being masked in by the 'or'
16605 // that uses this. If not, this is not a replacement.
16606 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
16607 ByteShift
*8, (ByteShift
+NumBytes
)*8);
16608 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return SDValue();
16610 // Check that it is legal on the target to do this. It is legal if the new
16611 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
16612 // legalization (and the target doesn't explicitly think this is a bad idea).
16613 MVT VT
= MVT::getIntegerVT(NumBytes
* 8);
16614 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16615 if (!DC
->isTypeLegal(VT
))
16617 if (St
->getMemOperand() &&
16618 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
16619 *St
->getMemOperand()))
16622 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
16623 // shifted by ByteShift and truncated down to NumBytes.
16626 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
16627 DAG
.getConstant(ByteShift
*8, DL
,
16628 DC
->getShiftAmountTy(IVal
.getValueType())));
16631 // Figure out the offset for the store and the alignment of the access.
16633 if (DAG
.getDataLayout().isLittleEndian())
16634 StOffset
= ByteShift
;
16636 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
16638 SDValue Ptr
= St
->getBasePtr();
16641 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(StOffset
), DL
);
16644 // Truncate down to the new size.
16645 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
16649 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
16650 St
->getPointerInfo().getWithOffset(StOffset
),
16651 St
->getOriginalAlign());
16654 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
16655 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
16656 /// narrowing the load and store if it would end up being a win for performance
16658 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
16659 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16660 if (!ST
->isSimple())
16663 SDValue Chain
= ST
->getChain();
16664 SDValue Value
= ST
->getValue();
16665 SDValue Ptr
= ST
->getBasePtr();
16666 EVT VT
= Value
.getValueType();
16668 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
16671 unsigned Opc
= Value
.getOpcode();
16673 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
16674 // is a byte mask indicating a consecutive number of bytes, check to see if
16675 // Y is known to provide just those bytes. If so, we try to replace the
16676 // load + replace + store sequence with a single (narrower) store, which makes
16678 if (Opc
== ISD::OR
&& EnableShrinkLoadReplaceStoreWithStore
) {
16679 std::pair
<unsigned, unsigned> MaskedLoad
;
16680 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
16681 if (MaskedLoad
.first
)
16682 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16683 Value
.getOperand(1), ST
,this))
16686 // Or is commutative, so try swapping X and Y.
16687 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
16688 if (MaskedLoad
.first
)
16689 if (SDValue NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
16690 Value
.getOperand(0), ST
,this))
16694 if (!EnableReduceLoadOpStoreWidth
)
16697 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
16698 Value
.getOperand(1).getOpcode() != ISD::Constant
)
16701 SDValue N0
= Value
.getOperand(0);
16702 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
16703 Chain
== SDValue(N0
.getNode(), 1)) {
16704 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
16705 if (LD
->getBasePtr() != Ptr
||
16706 LD
->getPointerInfo().getAddrSpace() !=
16707 ST
->getPointerInfo().getAddrSpace())
16710 // Find the type to narrow it the load / op / store to.
16711 SDValue N1
= Value
.getOperand(1);
16712 unsigned BitWidth
= N1
.getValueSizeInBits();
16713 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
16714 if (Opc
== ISD::AND
)
16715 Imm
^= APInt::getAllOnesValue(BitWidth
);
16716 if (Imm
== 0 || Imm
.isAllOnesValue())
16718 unsigned ShAmt
= Imm
.countTrailingZeros();
16719 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
16720 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
16721 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
16722 // The narrowing should be profitable, the load/store operation should be
16723 // legal (or custom) and the store size should be equal to the NewVT width.
16724 while (NewBW
< BitWidth
&&
16725 (NewVT
.getStoreSizeInBits() != NewBW
||
16726 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
16727 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
16728 NewBW
= NextPowerOf2(NewBW
);
16729 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
16731 if (NewBW
>= BitWidth
)
16734 // If the lsb changed does not start at the type bitwidth boundary,
16735 // start at the previous one.
16737 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
16738 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
16739 std::min(BitWidth
, ShAmt
+ NewBW
));
16740 if ((Imm
& Mask
) == Imm
) {
16741 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
16742 if (Opc
== ISD::AND
)
16743 NewImm
^= APInt::getAllOnesValue(NewBW
);
16744 uint64_t PtrOff
= ShAmt
/ 8;
16745 // For big endian targets, we need to adjust the offset to the pointer to
16746 // load the correct bytes.
16747 if (DAG
.getDataLayout().isBigEndian())
16748 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
16750 Align NewAlign
= commonAlignment(LD
->getAlign(), PtrOff
);
16751 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
16752 if (NewAlign
< DAG
.getDataLayout().getABITypeAlign(NewVTTy
))
16756 DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(PtrOff
), SDLoc(LD
));
16758 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
16759 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
16760 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
16761 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
16762 DAG
.getConstant(NewImm
, SDLoc(Value
),
16765 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
16766 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
16768 AddToWorklist(NewPtr
.getNode());
16769 AddToWorklist(NewLD
.getNode());
16770 AddToWorklist(NewVal
.getNode());
16771 WorklistRemover
DeadNodes(*this);
16772 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
16781 /// For a given floating point load / store pair, if the load value isn't used
16782 /// by any other operations, then consider transforming the pair to integer
16783 /// load / store operations if the target deems the transformation profitable.
16784 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
16785 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
16786 SDValue Value
= ST
->getValue();
16787 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
16788 Value
.hasOneUse()) {
16789 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
16790 EVT VT
= LD
->getMemoryVT();
16791 if (!VT
.isFloatingPoint() ||
16792 VT
!= ST
->getMemoryVT() ||
16793 LD
->isNonTemporal() ||
16794 ST
->isNonTemporal() ||
16795 LD
->getPointerInfo().getAddrSpace() != 0 ||
16796 ST
->getPointerInfo().getAddrSpace() != 0)
16799 TypeSize VTSize
= VT
.getSizeInBits();
16801 // We don't know the size of scalable types at compile time so we cannot
16802 // create an integer of the equivalent size.
16803 if (VTSize
.isScalable())
16806 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VTSize
.getFixedSize());
16807 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
16808 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
16809 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
16810 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
16813 Align LDAlign
= LD
->getAlign();
16814 Align STAlign
= ST
->getAlign();
16815 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
16816 Align ABIAlign
= DAG
.getDataLayout().getABITypeAlign(IntVTTy
);
16817 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
16821 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
16822 LD
->getPointerInfo(), LDAlign
);
16825 DAG
.getStore(ST
->getChain(), SDLoc(N
), NewLD
, ST
->getBasePtr(),
16826 ST
->getPointerInfo(), STAlign
);
16828 AddToWorklist(NewLD
.getNode());
16829 AddToWorklist(NewST
.getNode());
16830 WorklistRemover
DeadNodes(*this);
16831 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
16839 // This is a helper function for visitMUL to check the profitability
16840 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
16841 // MulNode is the original multiply, AddNode is (add x, c1),
16842 // and ConstNode is c2.
16844 // If the (add x, c1) has multiple uses, we could increase
16845 // the number of adds if we make this transformation.
16846 // It would only be worth doing this if we can remove a
16847 // multiply in the process. Check for that here.
16851 // We're checking for cases where we have common "c3 * A" expressions.
16852 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
16854 SDValue
&ConstNode
) {
16857 // If the add only has one use, and the target thinks the folding is
16858 // profitable or does not lead to worse code, this would be OK to do.
16859 if (AddNode
.getNode()->hasOneUse() &&
16860 TLI
.isMulAddWithConstProfitable(AddNode
, ConstNode
))
16863 // Walk all the users of the constant with which we're multiplying.
16864 for (SDNode
*Use
: ConstNode
->uses()) {
16865 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
16868 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
16870 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
16872 // OtherOp is what we're multiplying against the constant.
16873 if (Use
->getOperand(0) == ConstNode
)
16874 OtherOp
= Use
->getOperand(1).getNode();
16876 OtherOp
= Use
->getOperand(0).getNode();
16878 // Check to see if multiply is with the same operand of our "add".
16880 // ConstNode = CONST
16881 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
16883 // AddNode = (A + c1) <-- MulVar is A.
16884 // = AddNode * ConstNode <-- current visiting instruction.
16886 // If we make this transformation, we will have a common
16887 // multiply (ConstNode * A) that we can save.
16888 if (OtherOp
== MulVar
)
16891 // Now check to see if a future expansion will give us a common
16894 // ConstNode = CONST
16895 // AddNode = (A + c1)
16896 // ... = AddNode * ConstNode <-- current visiting instruction.
16898 // OtherOp = (A + c2)
16899 // Use = OtherOp * ConstNode <-- visiting Use.
16901 // If we make this transformation, we will have a common
16902 // multiply (CONST * A) after we also do the same transformation
16903 // to the "t2" instruction.
16904 if (OtherOp
->getOpcode() == ISD::ADD
&&
16905 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
16906 OtherOp
->getOperand(0).getNode() == MulVar
)
16911 // Didn't find a case where this would be profitable.
16915 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
16916 unsigned NumStores
) {
16917 SmallVector
<SDValue
, 8> Chains
;
16918 SmallPtrSet
<const SDNode
*, 8> Visited
;
16919 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
16921 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16922 Visited
.insert(StoreNodes
[i
].MemNode
);
16925 // don't include nodes that are children or repeated nodes.
16926 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16927 if (Visited
.insert(StoreNodes
[i
].MemNode
->getChain().getNode()).second
)
16928 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
16931 assert(Chains
.size() > 0 && "Chain should have generated a chain");
16932 return DAG
.getTokenFactor(StoreDL
, Chains
);
16935 bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
16936 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
16937 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
16938 // Make sure we have something to merge.
16942 assert((!UseTrunc
|| !UseVector
) &&
16943 "This optimization cannot emit a vector truncating store");
16945 // The latest Node in the DAG.
16946 SDLoc
DL(StoreNodes
[0].MemNode
);
16948 TypeSize ElementSizeBits
= MemVT
.getStoreSizeInBits();
16949 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
16950 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
16954 unsigned Elts
= NumStores
* NumMemElts
;
16955 // Get the type for the merged vector store.
16956 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
16958 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
16962 if (IsConstantSrc
) {
16963 SmallVector
<SDValue
, 8> BuildVector
;
16964 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
16965 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
16966 SDValue Val
= St
->getValue();
16967 // If constant is of the wrong type, convert it now.
16968 if (MemVT
!= Val
.getValueType()) {
16969 Val
= peekThroughBitcasts(Val
);
16970 // Deal with constants of wrong size.
16971 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
16973 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
16974 if (isa
<ConstantFPSDNode
>(Val
)) {
16975 // Not clear how to truncate FP values.
16977 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
16978 Val
= DAG
.getConstant(C
->getAPIntValue()
16979 .zextOrTrunc(Val
.getValueSizeInBits())
16980 .zextOrTrunc(ElementSizeBits
),
16981 SDLoc(C
), IntMemVT
);
16983 // Make sure correctly size type is the correct type.
16984 Val
= DAG
.getBitcast(MemVT
, Val
);
16986 BuildVector
.push_back(Val
);
16988 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
16989 : ISD::BUILD_VECTOR
,
16990 DL
, StoreTy
, BuildVector
);
16992 SmallVector
<SDValue
, 8> Ops
;
16993 for (unsigned i
= 0; i
< NumStores
; ++i
) {
16994 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
16995 SDValue Val
= peekThroughBitcasts(St
->getValue());
16996 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
16997 // type MemVT. If the underlying value is not the correct
16998 // type, but it is an extraction of an appropriate vector we
16999 // can recast Val to be of the correct type. This may require
17000 // converting between EXTRACT_VECTOR_ELT and
17001 // EXTRACT_SUBVECTOR.
17002 if ((MemVT
!= Val
.getValueType()) &&
17003 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
17004 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
17005 EVT MemVTScalarTy
= MemVT
.getScalarType();
17006 // We may need to add a bitcast here to get types to line up.
17007 if (MemVTScalarTy
!= Val
.getValueType().getScalarType()) {
17008 Val
= DAG
.getBitcast(MemVT
, Val
);
17010 unsigned OpC
= MemVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
17011 : ISD::EXTRACT_VECTOR_ELT
;
17012 SDValue Vec
= Val
.getOperand(0);
17013 SDValue Idx
= Val
.getOperand(1);
17014 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Idx
);
17017 Ops
.push_back(Val
);
17020 // Build the extracted vector elements back into a vector.
17021 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
17022 : ISD::BUILD_VECTOR
,
17026 // We should always use a vector store when merging extracted vector
17027 // elements, so this path implies a store of constants.
17028 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
17030 APInt
StoreInt(SizeInBits
, 0);
17032 // Construct a single integer constant which is made of the smaller
17033 // constant inputs.
17034 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
17035 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17036 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
17037 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
17039 SDValue Val
= St
->getValue();
17040 Val
= peekThroughBitcasts(Val
);
17041 StoreInt
<<= ElementSizeBits
;
17042 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
17043 StoreInt
|= C
->getAPIntValue()
17044 .zextOrTrunc(ElementSizeBits
)
17045 .zextOrTrunc(SizeInBits
);
17046 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
17047 StoreInt
|= C
->getValueAPF()
17049 .zextOrTrunc(ElementSizeBits
)
17050 .zextOrTrunc(SizeInBits
);
17051 // If fp truncation is necessary give up for now.
17052 if (MemVT
.getSizeInBits() != ElementSizeBits
)
17055 llvm_unreachable("Invalid constant element type");
17059 // Create the new Load and Store operations.
17060 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
17063 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17064 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
17066 // make sure we use trunc store if it's necessary to be legal.
17070 DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
17071 FirstInChain
->getPointerInfo(), FirstInChain
->getAlign());
17072 } else { // Must be realized as a trunc store
17073 EVT LegalizedStoredValTy
=
17074 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
17075 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
17076 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
17077 SDValue ExtendedStoreVal
=
17078 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
17079 LegalizedStoredValTy
);
17080 NewStore
= DAG
.getTruncStore(
17081 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
17082 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
17083 FirstInChain
->getAlign(), FirstInChain
->getMemOperand()->getFlags());
17086 // Replace all merged stores with the new store.
17087 for (unsigned i
= 0; i
< NumStores
; ++i
)
17088 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
17090 AddToWorklist(NewChain
.getNode());
17094 void DAGCombiner::getStoreMergeCandidates(
17095 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17096 SDNode
*&RootNode
) {
17097 // This holds the base pointer, index, and the offset in bytes from the base
17098 // pointer. We must have a base and an offset. Do not handle stores to undef
17100 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
17101 if (!BasePtr
.getBase().getNode() || BasePtr
.getBase().isUndef())
17104 SDValue Val
= peekThroughBitcasts(St
->getValue());
17105 StoreSource StoreSrc
= getStoreSource(Val
);
17106 assert(StoreSrc
!= StoreSource::Unknown
&& "Expected known source for store");
17108 // Match on loadbaseptr if relevant.
17109 EVT MemVT
= St
->getMemoryVT();
17110 BaseIndexOffset LBasePtr
;
17112 if (StoreSrc
== StoreSource::Load
) {
17113 auto *Ld
= cast
<LoadSDNode
>(Val
);
17114 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
17115 LoadVT
= Ld
->getMemoryVT();
17116 // Load and store should be the same type.
17117 if (MemVT
!= LoadVT
)
17119 // Loads must only have one use.
17120 if (!Ld
->hasNUsesOfValue(1, 0))
17122 // The memory operands must not be volatile/indexed/atomic.
17123 // TODO: May be able to relax for unordered atomics (see D66309)
17124 if (!Ld
->isSimple() || Ld
->isIndexed())
17127 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
17128 int64_t &Offset
) -> bool {
17129 // The memory operands must not be volatile/indexed/atomic.
17130 // TODO: May be able to relax for unordered atomics (see D66309)
17131 if (!Other
->isSimple() || Other
->isIndexed())
17133 // Don't mix temporal stores with non-temporal stores.
17134 if (St
->isNonTemporal() != Other
->isNonTemporal())
17136 SDValue OtherBC
= peekThroughBitcasts(Other
->getValue());
17137 // Allow merging constants of different types as integers.
17138 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
17139 : Other
->getMemoryVT() != MemVT
;
17140 switch (StoreSrc
) {
17141 case StoreSource::Load
: {
17144 // The Load's Base Ptr must also match.
17145 auto *OtherLd
= dyn_cast
<LoadSDNode
>(OtherBC
);
17148 BaseIndexOffset LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
17149 if (LoadVT
!= OtherLd
->getMemoryVT())
17151 // Loads must only have one use.
17152 if (!OtherLd
->hasNUsesOfValue(1, 0))
17154 // The memory operands must not be volatile/indexed/atomic.
17155 // TODO: May be able to relax for unordered atomics (see D66309)
17156 if (!OtherLd
->isSimple() || OtherLd
->isIndexed())
17158 // Don't mix temporal loads with non-temporal loads.
17159 if (cast
<LoadSDNode
>(Val
)->isNonTemporal() != OtherLd
->isNonTemporal())
17161 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
17165 case StoreSource::Constant
:
17168 if (!isIntOrFPConstant(OtherBC
))
17171 case StoreSource::Extract
:
17172 // Do not merge truncated stores here.
17173 if (Other
->isTruncatingStore())
17175 if (!MemVT
.bitsEq(OtherBC
.getValueType()))
17177 if (OtherBC
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
17178 OtherBC
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
17182 llvm_unreachable("Unhandled store source for merging");
17184 Ptr
= BaseIndexOffset::match(Other
, DAG
);
17185 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
17188 // Check if the pair of StoreNode and the RootNode already bail out many
17189 // times which is over the limit in dependence check.
17190 auto OverLimitInDependenceCheck
= [&](SDNode
*StoreNode
,
17191 SDNode
*RootNode
) -> bool {
17192 auto RootCount
= StoreRootCountMap
.find(StoreNode
);
17193 return RootCount
!= StoreRootCountMap
.end() &&
17194 RootCount
->second
.first
== RootNode
&&
17195 RootCount
->second
.second
> StoreMergeDependenceLimit
;
17198 auto TryToAddCandidate
= [&](SDNode::use_iterator UseIter
) {
17199 // This must be a chain use.
17200 if (UseIter
.getOperandNo() != 0)
17202 if (auto *OtherStore
= dyn_cast
<StoreSDNode
>(*UseIter
)) {
17203 BaseIndexOffset Ptr
;
17205 if (CandidateMatch(OtherStore
, Ptr
, PtrDiff
) &&
17206 !OverLimitInDependenceCheck(OtherStore
, RootNode
))
17207 StoreNodes
.push_back(MemOpLink(OtherStore
, PtrDiff
));
17211 // We looking for a root node which is an ancestor to all mergable
17212 // stores. We search up through a load, to our root and then down
17213 // through all children. For instance we will find Store{1,2,3} if
17214 // St is Store1, Store2. or Store3 where the root is not a load
17215 // which always true for nonvolatile ops. TODO: Expand
17216 // the search to find all valid candidates through multiple layers of loads.
17219 // |-------|-------|
17220 // Load Load Store3
17224 // FIXME: We should be able to climb and
17225 // descend TokenFactors to find candidates as well.
17227 RootNode
= St
->getChain().getNode();
17229 unsigned NumNodesExplored
= 0;
17230 const unsigned MaxSearchNodes
= 1024;
17231 if (auto *Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
17232 RootNode
= Ldn
->getChain().getNode();
17233 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17234 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
) {
17235 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) { // walk down chain
17236 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
17237 TryToAddCandidate(I2
);
17241 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end();
17242 I
!= E
&& NumNodesExplored
< MaxSearchNodes
; ++I
, ++NumNodesExplored
)
17243 TryToAddCandidate(I
);
17247 // We need to check that merging these stores does not cause a loop in
17248 // the DAG. Any store candidate may depend on another candidate
17249 // indirectly through its operand (we already consider dependencies
17250 // through the chain). Check in parallel by searching up from
17251 // non-chain operands of candidates.
17252 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
17253 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
17254 SDNode
*RootNode
) {
17255 // FIXME: We should be able to truncate a full search of
17256 // predecessors by doing a BFS and keeping tabs the originating
17257 // stores from which worklist nodes come from in a similar way to
17258 // TokenFactor simplfication.
17260 SmallPtrSet
<const SDNode
*, 32> Visited
;
17261 SmallVector
<const SDNode
*, 8> Worklist
;
17263 // RootNode is a predecessor to all candidates so we need not search
17264 // past it. Add RootNode (peeking through TokenFactors). Do not count
17265 // these towards size check.
17267 Worklist
.push_back(RootNode
);
17268 while (!Worklist
.empty()) {
17269 auto N
= Worklist
.pop_back_val();
17270 if (!Visited
.insert(N
).second
)
17271 continue; // Already present in Visited.
17272 if (N
->getOpcode() == ISD::TokenFactor
) {
17273 for (SDValue Op
: N
->ops())
17274 Worklist
.push_back(Op
.getNode());
17278 // Don't count pruning nodes towards max.
17279 unsigned int Max
= 1024 + Visited
.size();
17280 // Search Ops of store candidates.
17281 for (unsigned i
= 0; i
< NumStores
; ++i
) {
17282 SDNode
*N
= StoreNodes
[i
].MemNode
;
17283 // Of the 4 Store Operands:
17284 // * Chain (Op 0) -> We have already considered these
17285 // in candidate selection and can be
17287 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
17288 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
17289 // but aren't necessarily fromt the same base node, so
17290 // cycles possible (e.g. via indexed store).
17291 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
17292 // non-indexed stores). Not constant on all targets (e.g. ARM)
17293 // and so can participate in a cycle.
17294 for (unsigned j
= 1; j
< N
->getNumOperands(); ++j
)
17295 Worklist
.push_back(N
->getOperand(j
).getNode());
17297 // Search through DAG. We can stop early if we find a store node.
17298 for (unsigned i
= 0; i
< NumStores
; ++i
)
17299 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
17301 // If the searching bail out, record the StoreNode and RootNode in the
17302 // StoreRootCountMap. If we have seen the pair many times over a limit,
17303 // we won't add the StoreNode into StoreNodes set again.
17304 if (Visited
.size() >= Max
) {
17305 auto &RootCount
= StoreRootCountMap
[StoreNodes
[i
].MemNode
];
17306 if (RootCount
.first
== RootNode
)
17307 RootCount
.second
++;
17309 RootCount
= {RootNode
, 1};
17317 DAGCombiner::getConsecutiveStores(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17318 int64_t ElementSizeBytes
) const {
17320 // Find a store past the width of the first store.
17321 size_t StartIdx
= 0;
17322 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
17323 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
17324 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
17327 // Bail if we don't have enough candidates to merge.
17328 if (StartIdx
+ 1 >= StoreNodes
.size())
17331 // Trim stores that overlapped with the first store.
17333 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
17335 // Scan the memory operations on the chain and find the first
17336 // non-consecutive store memory address.
17337 unsigned NumConsecutiveStores
= 1;
17338 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
17339 // Check that the addresses are consecutive starting from the second
17340 // element in the list of stores.
17341 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
17342 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
17343 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17345 NumConsecutiveStores
= i
+ 1;
17347 if (NumConsecutiveStores
> 1)
17348 return NumConsecutiveStores
;
17350 // There are no consecutive stores at the start of the list.
17351 // Remove the first store and try again.
17352 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 1);
17356 bool DAGCombiner::tryStoreMergeOfConstants(
17357 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17358 EVT MemVT
, SDNode
*RootNode
, bool AllowVectors
) {
17359 LLVMContext
&Context
= *DAG
.getContext();
17360 const DataLayout
&DL
= DAG
.getDataLayout();
17361 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17362 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17363 bool MadeChange
= false;
17365 // Store the constants into memory as one consecutive store.
17366 while (NumConsecutiveStores
>= 2) {
17367 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17368 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17369 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17370 unsigned LastLegalType
= 1;
17371 unsigned LastLegalVectorType
= 1;
17372 bool LastIntegerTrunc
= false;
17373 bool NonZero
= false;
17374 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
17375 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17376 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17377 SDValue StoredVal
= ST
->getValue();
17378 bool IsElementZero
= false;
17379 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
17380 IsElementZero
= C
->isNullValue();
17381 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
17382 IsElementZero
= C
->getConstantFPValue()->isNullValue();
17383 if (IsElementZero
) {
17384 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
17385 FirstZeroAfterNonZero
= i
;
17387 NonZero
|= !IsElementZero
;
17389 // Find a legal type for the constant store.
17390 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17391 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17392 bool IsFast
= false;
17394 // Break early when size is too large to be legal.
17395 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17398 if (TLI
.isTypeLegal(StoreTy
) &&
17399 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17400 DAG
.getMachineFunction()) &&
17401 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17402 *FirstInChain
->getMemOperand(), &IsFast
) &&
17404 LastIntegerTrunc
= false;
17405 LastLegalType
= i
+ 1;
17406 // Or check whether a truncstore is legal.
17407 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17408 TargetLowering::TypePromoteInteger
) {
17409 EVT LegalizedStoredValTy
=
17410 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
17411 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17412 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
,
17413 DAG
.getMachineFunction()) &&
17414 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17415 *FirstInChain
->getMemOperand(), &IsFast
) &&
17417 LastIntegerTrunc
= true;
17418 LastLegalType
= i
+ 1;
17422 // We only use vectors if the constant is known to be zero or the
17423 // target allows it and the function is not marked with the
17424 // noimplicitfloat attribute.
17426 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
17428 // Find a legal type for the vector store.
17429 unsigned Elts
= (i
+ 1) * NumMemElts
;
17430 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17431 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
17432 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
.getMachineFunction()) &&
17433 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17434 *FirstInChain
->getMemOperand(), &IsFast
) &&
17436 LastLegalVectorType
= i
+ 1;
17440 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && AllowVectors
;
17441 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
17442 bool UseTrunc
= LastIntegerTrunc
&& !UseVector
;
17444 // Check if we found a legal integer type that creates a meaningful
17447 // We know that candidate stores are in order and of correct
17448 // shape. While there is no mergeable sequence from the
17449 // beginning one may start later in the sequence. The only
17450 // reason a merge of size N could have failed where another of
17451 // the same size would not have, is if the alignment has
17452 // improved or we've dropped a non-zero value. Drop as many
17453 // candidates as we can here.
17454 unsigned NumSkip
= 1;
17455 while ((NumSkip
< NumConsecutiveStores
) &&
17456 (NumSkip
< FirstZeroAfterNonZero
) &&
17457 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17460 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17461 NumConsecutiveStores
-= NumSkip
;
17465 // Check that we can merge these candidates without causing a cycle.
17466 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
17468 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17469 NumConsecutiveStores
-= NumElem
;
17473 MadeChange
|= mergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
,
17474 /*IsConstantSrc*/ true,
17475 UseVector
, UseTrunc
);
17477 // Remove merged stores for next iteration.
17478 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17479 NumConsecutiveStores
-= NumElem
;
17484 bool DAGCombiner::tryStoreMergeOfExtracts(
17485 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumConsecutiveStores
,
17486 EVT MemVT
, SDNode
*RootNode
) {
17487 LLVMContext
&Context
= *DAG
.getContext();
17488 const DataLayout
&DL
= DAG
.getDataLayout();
17489 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17490 bool MadeChange
= false;
17492 // Loop on Consecutive Stores on success.
17493 while (NumConsecutiveStores
>= 2) {
17494 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17495 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17496 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
17497 unsigned NumStoresToMerge
= 1;
17498 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17499 // Find a legal type for the vector store.
17500 unsigned Elts
= (i
+ 1) * NumMemElts
;
17501 EVT Ty
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
17502 bool IsFast
= false;
17504 // Break early when size is too large to be legal.
17505 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
17508 if (TLI
.isTypeLegal(Ty
) &&
17509 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
.getMachineFunction()) &&
17510 TLI
.allowsMemoryAccess(Context
, DL
, Ty
,
17511 *FirstInChain
->getMemOperand(), &IsFast
) &&
17513 NumStoresToMerge
= i
+ 1;
17516 // Check if we found a legal integer type creating a meaningful
17518 if (NumStoresToMerge
< 2) {
17519 // We know that candidate stores are in order and of correct
17520 // shape. While there is no mergeable sequence from the
17521 // beginning one may start later in the sequence. The only
17522 // reason a merge of size N could have failed where another of
17523 // the same size would not have, is if the alignment has
17524 // improved. Drop as many candidates as we can here.
17525 unsigned NumSkip
= 1;
17526 while ((NumSkip
< NumConsecutiveStores
) &&
17527 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
17530 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17531 NumConsecutiveStores
-= NumSkip
;
17535 // Check that we can merge these candidates without causing a cycle.
17536 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumStoresToMerge
,
17538 StoreNodes
.erase(StoreNodes
.begin(),
17539 StoreNodes
.begin() + NumStoresToMerge
);
17540 NumConsecutiveStores
-= NumStoresToMerge
;
17544 MadeChange
|= mergeStoresOfConstantsOrVecElts(
17545 StoreNodes
, MemVT
, NumStoresToMerge
, /*IsConstantSrc*/ false,
17546 /*UseVector*/ true, /*UseTrunc*/ false);
17548 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumStoresToMerge
);
17549 NumConsecutiveStores
-= NumStoresToMerge
;
17554 bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
17555 unsigned NumConsecutiveStores
, EVT MemVT
,
17556 SDNode
*RootNode
, bool AllowVectors
,
17557 bool IsNonTemporalStore
,
17558 bool IsNonTemporalLoad
) {
17559 LLVMContext
&Context
= *DAG
.getContext();
17560 const DataLayout
&DL
= DAG
.getDataLayout();
17561 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17562 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
17563 bool MadeChange
= false;
17565 // Look for load nodes which are used by the stored values.
17566 SmallVector
<MemOpLink
, 8> LoadNodes
;
17568 // Find acceptable loads. Loads need to have the same chain (token factor),
17569 // must not be zext, volatile, indexed, and they must be consecutive.
17570 BaseIndexOffset LdBasePtr
;
17572 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
17573 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
17574 SDValue Val
= peekThroughBitcasts(St
->getValue());
17575 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
17577 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
17578 // If this is not the first ptr that we check.
17579 int64_t LdOffset
= 0;
17580 if (LdBasePtr
.getBase().getNode()) {
17581 // The base ptr must be the same.
17582 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
17585 // Check that all other base pointers are the same as this one.
17589 // We found a potential memory operand to merge.
17590 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
17593 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
17594 Align RequiredAlignment
;
17595 bool NeedRotate
= false;
17596 if (LoadNodes
.size() == 2) {
17597 // If we have load/store pair instructions and we only have two values,
17598 // don't bother merging.
17599 if (TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
17600 StoreNodes
[0].MemNode
->getAlign() >= RequiredAlignment
) {
17601 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
17602 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
17605 // If the loads are reversed, see if we can rotate the halves into place.
17606 int64_t Offset0
= LoadNodes
[0].OffsetFromBase
;
17607 int64_t Offset1
= LoadNodes
[1].OffsetFromBase
;
17608 EVT PairVT
= EVT::getIntegerVT(Context
, ElementSizeBytes
* 8 * 2);
17609 if (Offset0
- Offset1
== ElementSizeBytes
&&
17610 (hasOperation(ISD::ROTL
, PairVT
) ||
17611 hasOperation(ISD::ROTR
, PairVT
))) {
17612 std::swap(LoadNodes
[0], LoadNodes
[1]);
17616 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
17617 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
17618 Align FirstStoreAlign
= FirstInChain
->getAlign();
17619 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
17621 // Scan the memory operations on the chain and find the first
17622 // non-consecutive load memory address. These variables hold the index in
17623 // the store node array.
17625 unsigned LastConsecutiveLoad
= 1;
17627 // This variable refers to the size and not index in the array.
17628 unsigned LastLegalVectorType
= 1;
17629 unsigned LastLegalIntegerType
= 1;
17630 bool isDereferenceable
= true;
17631 bool DoIntegerTruncate
= false;
17632 int64_t StartAddress
= LoadNodes
[0].OffsetFromBase
;
17633 SDValue LoadChain
= FirstLoad
->getChain();
17634 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
17635 // All loads must share the same chain.
17636 if (LoadNodes
[i
].MemNode
->getChain() != LoadChain
)
17639 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
17640 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
17642 LastConsecutiveLoad
= i
;
17644 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
17645 isDereferenceable
= false;
17647 // Find a legal type for the vector store.
17648 unsigned Elts
= (i
+ 1) * NumMemElts
;
17649 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17651 // Break early when size is too large to be legal.
17652 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
17655 bool IsFastSt
= false;
17656 bool IsFastLd
= false;
17657 if (TLI
.isTypeLegal(StoreTy
) &&
17658 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17659 DAG
.getMachineFunction()) &&
17660 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17661 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17663 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17664 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17666 LastLegalVectorType
= i
+ 1;
17669 // Find a legal type for the integer store.
17670 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
17671 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
17672 if (TLI
.isTypeLegal(StoreTy
) &&
17673 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
,
17674 DAG
.getMachineFunction()) &&
17675 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17676 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17678 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17679 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17681 LastLegalIntegerType
= i
+ 1;
17682 DoIntegerTruncate
= false;
17683 // Or check whether a truncstore and extload is legal.
17684 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
17685 TargetLowering::TypePromoteInteger
) {
17686 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
17687 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
17688 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
,
17689 DAG
.getMachineFunction()) &&
17690 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17691 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17692 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
17693 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17694 *FirstInChain
->getMemOperand(), &IsFastSt
) &&
17696 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
,
17697 *FirstLoad
->getMemOperand(), &IsFastLd
) &&
17699 LastLegalIntegerType
= i
+ 1;
17700 DoIntegerTruncate
= true;
17705 // Only use vector types if the vector type is larger than the integer
17706 // type. If they are the same, use integers.
17708 LastLegalVectorType
> LastLegalIntegerType
&& AllowVectors
;
17709 unsigned LastLegalType
=
17710 std::max(LastLegalVectorType
, LastLegalIntegerType
);
17712 // We add +1 here because the LastXXX variables refer to location while
17713 // the NumElem refers to array/index size.
17714 unsigned NumElem
= std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
17715 NumElem
= std::min(LastLegalType
, NumElem
);
17716 Align FirstLoadAlign
= FirstLoad
->getAlign();
17719 // We know that candidate stores are in order and of correct
17720 // shape. While there is no mergeable sequence from the
17721 // beginning one may start later in the sequence. The only
17722 // reason a merge of size N could have failed where another of
17723 // the same size would not have is if the alignment or either
17724 // the load or store has improved. Drop as many candidates as we
17726 unsigned NumSkip
= 1;
17727 while ((NumSkip
< LoadNodes
.size()) &&
17728 (LoadNodes
[NumSkip
].MemNode
->getAlign() <= FirstLoadAlign
) &&
17729 (StoreNodes
[NumSkip
].MemNode
->getAlign() <= FirstStoreAlign
))
17731 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
17732 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
17733 NumConsecutiveStores
-= NumSkip
;
17737 // Check that we can merge these candidates without causing a cycle.
17738 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
17740 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17741 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
17742 NumConsecutiveStores
-= NumElem
;
17746 // Find if it is better to use vectors or integers to load and store
17750 // Find a legal type for the vector store.
17751 unsigned Elts
= NumElem
* NumMemElts
;
17752 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
17754 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
17755 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
17758 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
17759 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
17761 // The merged loads are required to have the same incoming chain, so
17762 // using the first's chain is acceptable.
17764 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
17765 AddToWorklist(NewStoreChain
.getNode());
17767 MachineMemOperand::Flags LdMMOFlags
=
17768 isDereferenceable
? MachineMemOperand::MODereferenceable
17769 : MachineMemOperand::MONone
;
17770 if (IsNonTemporalLoad
)
17771 LdMMOFlags
|= MachineMemOperand::MONonTemporal
;
17773 MachineMemOperand::Flags StMMOFlags
= IsNonTemporalStore
17774 ? MachineMemOperand::MONonTemporal
17775 : MachineMemOperand::MONone
;
17777 SDValue NewLoad
, NewStore
;
17778 if (UseVectorTy
|| !DoIntegerTruncate
) {
17779 NewLoad
= DAG
.getLoad(
17780 JointMemOpVT
, LoadDL
, FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
17781 FirstLoad
->getPointerInfo(), FirstLoadAlign
, LdMMOFlags
);
17782 SDValue StoreOp
= NewLoad
;
17784 unsigned LoadWidth
= ElementSizeBytes
* 8 * 2;
17785 assert(JointMemOpVT
== EVT::getIntegerVT(Context
, LoadWidth
) &&
17786 "Unexpected type for rotate-able load pair");
17788 DAG
.getShiftAmountConstant(LoadWidth
/ 2, JointMemOpVT
, LoadDL
);
17789 // Target can convert to the identical ROTR if it does not have ROTL.
17790 StoreOp
= DAG
.getNode(ISD::ROTL
, LoadDL
, JointMemOpVT
, NewLoad
, RotAmt
);
17792 NewStore
= DAG
.getStore(
17793 NewStoreChain
, StoreDL
, StoreOp
, FirstInChain
->getBasePtr(),
17794 FirstInChain
->getPointerInfo(), FirstStoreAlign
, StMMOFlags
);
17795 } else { // This must be the truncstore/extload case
17797 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
17798 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
17799 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
17800 FirstLoad
->getPointerInfo(), JointMemOpVT
,
17801 FirstLoadAlign
, LdMMOFlags
);
17802 NewStore
= DAG
.getTruncStore(
17803 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
17804 FirstInChain
->getPointerInfo(), JointMemOpVT
,
17805 FirstInChain
->getAlign(), FirstInChain
->getMemOperand()->getFlags());
17808 // Transfer chain users from old loads to the new load.
17809 for (unsigned i
= 0; i
< NumElem
; ++i
) {
17810 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
17811 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
17812 SDValue(NewLoad
.getNode(), 1));
17815 // Replace all stores with the new store. Recursively remove corresponding
17816 // values if they are no longer used.
17817 for (unsigned i
= 0; i
< NumElem
; ++i
) {
17818 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
17819 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
17820 if (Val
.getNode()->use_empty())
17821 recursivelyDeleteUnusedNodes(Val
.getNode());
17825 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
17826 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
17827 NumConsecutiveStores
-= NumElem
;
17832 bool DAGCombiner::mergeConsecutiveStores(StoreSDNode
*St
) {
17833 if (OptLevel
== CodeGenOpt::None
|| !EnableStoreMerging
)
17836 // TODO: Extend this function to merge stores of scalable vectors.
17837 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
17838 // store since we know <vscale x 16 x i8> is exactly twice as large as
17839 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
17840 EVT MemVT
= St
->getMemoryVT();
17841 if (MemVT
.isScalableVector())
17843 if (!MemVT
.isSimple() || MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
17846 // This function cannot currently deal with non-byte-sized memory sizes.
17847 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
17848 if (ElementSizeBytes
* 8 != (int64_t)MemVT
.getSizeInBits())
17851 // Do not bother looking at stored values that are not constants, loads, or
17852 // extracted vector elements.
17853 SDValue StoredVal
= peekThroughBitcasts(St
->getValue());
17854 const StoreSource StoreSrc
= getStoreSource(StoredVal
);
17855 if (StoreSrc
== StoreSource::Unknown
)
17858 SmallVector
<MemOpLink
, 8> StoreNodes
;
17860 // Find potential store merge candidates by searching through chain sub-DAG
17861 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
17863 // Check if there is anything to merge.
17864 if (StoreNodes
.size() < 2)
17867 // Sort the memory operands according to their distance from the
17869 llvm::sort(StoreNodes
, [](MemOpLink LHS
, MemOpLink RHS
) {
17870 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
17873 bool AllowVectors
= !DAG
.getMachineFunction().getFunction().hasFnAttribute(
17874 Attribute::NoImplicitFloat
);
17875 bool IsNonTemporalStore
= St
->isNonTemporal();
17876 bool IsNonTemporalLoad
= StoreSrc
== StoreSource::Load
&&
17877 cast
<LoadSDNode
>(StoredVal
)->isNonTemporal();
17879 // Store Merge attempts to merge the lowest stores. This generally
17880 // works out as if successful, as the remaining stores are checked
17881 // after the first collection of stores is merged. However, in the
17882 // case that a non-mergeable store is found first, e.g., {p[-2],
17883 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
17884 // mergeable cases. To prevent this, we prune such stores from the
17885 // front of StoreNodes here.
17886 bool MadeChange
= false;
17887 while (StoreNodes
.size() > 1) {
17888 unsigned NumConsecutiveStores
=
17889 getConsecutiveStores(StoreNodes
, ElementSizeBytes
);
17890 // There are no more stores in the list to examine.
17891 if (NumConsecutiveStores
== 0)
17894 // We have at least 2 consecutive stores. Try to merge them.
17895 assert(NumConsecutiveStores
>= 2 && "Expected at least 2 stores");
17896 switch (StoreSrc
) {
17897 case StoreSource::Constant
:
17898 MadeChange
|= tryStoreMergeOfConstants(StoreNodes
, NumConsecutiveStores
,
17899 MemVT
, RootNode
, AllowVectors
);
17902 case StoreSource::Extract
:
17903 MadeChange
|= tryStoreMergeOfExtracts(StoreNodes
, NumConsecutiveStores
,
17907 case StoreSource::Load
:
17908 MadeChange
|= tryStoreMergeOfLoads(StoreNodes
, NumConsecutiveStores
,
17909 MemVT
, RootNode
, AllowVectors
,
17910 IsNonTemporalStore
, IsNonTemporalLoad
);
17914 llvm_unreachable("Unhandled store source type");
17920 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
17924 // Replace the chain to avoid dependency.
17925 if (ST
->isTruncatingStore()) {
17926 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
17927 ST
->getBasePtr(), ST
->getMemoryVT(),
17928 ST
->getMemOperand());
17930 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
17931 ST
->getMemOperand());
17934 // Create token to keep both nodes around.
17935 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
17936 MVT::Other
, ST
->getChain(), ReplStore
);
17938 // Make sure the new and old chains are cleaned up.
17939 AddToWorklist(Token
.getNode());
17941 // Don't add users to work list.
17942 return CombineTo(ST
, Token
, false);
17945 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
17946 SDValue Value
= ST
->getValue();
17947 if (Value
.getOpcode() == ISD::TargetConstantFP
)
17950 if (!ISD::isNormalStore(ST
))
17955 SDValue Chain
= ST
->getChain();
17956 SDValue Ptr
= ST
->getBasePtr();
17958 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
17960 // NOTE: If the original store is volatile, this transform must not increase
17961 // the number of stores. For example, on x86-32 an f64 can be stored in one
17962 // processor operation but an i64 (which is not legal) requires two. So the
17963 // transform should not be done in this case.
17966 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
17968 llvm_unreachable("Unknown FP type");
17969 case MVT::f16
: // We don't do this for these yet.
17975 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& ST
->isSimple()) ||
17976 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
17978 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
17979 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
17981 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
17986 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
17988 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
17990 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
17991 getZExtValue(), SDLoc(CFP
), MVT::i64
);
17992 return DAG
.getStore(Chain
, DL
, Tmp
,
17993 Ptr
, ST
->getMemOperand());
17996 if (ST
->isSimple() &&
17997 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
17998 // Many FP stores are not made apparent until after legalize, e.g. for
17999 // argument passing. Since this is so common, custom legalize the
18000 // 64-bit integer store into two 32-bit stores.
18001 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
18002 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
18003 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
18004 if (DAG
.getDataLayout().isBigEndian())
18007 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
18008 AAMDNodes AAInfo
= ST
->getAAInfo();
18010 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
18011 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18012 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(4), DL
);
18013 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
18014 ST
->getPointerInfo().getWithOffset(4),
18015 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18016 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
18024 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
18025 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
18026 SDValue Chain
= ST
->getChain();
18027 SDValue Value
= ST
->getValue();
18028 SDValue Ptr
= ST
->getBasePtr();
18030 // If this is a store of a bit convert, store the input value if the
18031 // resultant store does not need a higher alignment than the original.
18032 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
18033 ST
->isUnindexed()) {
18034 EVT SVT
= Value
.getOperand(0).getValueType();
18035 // If the store is volatile, we only want to change the store type if the
18036 // resulting store is legal. Otherwise we might increase the number of
18037 // memory accesses. We don't care if the original type was legal or not
18038 // as we assume software couldn't rely on the number of accesses of an
18040 // TODO: May be able to relax for unordered atomics (see D66309)
18041 if (((!LegalOperations
&& ST
->isSimple()) ||
18042 TLI
.isOperationLegal(ISD::STORE
, SVT
)) &&
18043 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
,
18044 DAG
, *ST
->getMemOperand())) {
18045 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
18046 ST
->getMemOperand());
18050 // Turn 'store undef, Ptr' -> nothing.
18051 if (Value
.isUndef() && ST
->isUnindexed())
18054 // Try to infer better alignment information than the store already has.
18055 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed() && !ST
->isAtomic()) {
18056 if (MaybeAlign Alignment
= DAG
.InferPtrAlign(Ptr
)) {
18057 if (*Alignment
> ST
->getAlign() &&
18058 isAligned(*Alignment
, ST
->getSrcValueOffset())) {
18060 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
18061 ST
->getMemoryVT(), *Alignment
,
18062 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
18063 // NewStore will always be N as we are only refining the alignment
18064 assert(NewStore
.getNode() == N
);
18070 // Try transforming a pair floating point load / store ops to integer
18071 // load / store ops.
18072 if (SDValue NewST
= TransformFPLoadStorePair(N
))
18075 // Try transforming several stores into STORE (BSWAP).
18076 if (SDValue Store
= mergeTruncStores(ST
))
18079 if (ST
->isUnindexed()) {
18080 // Walk up chain skipping non-aliasing memory nodes, on this store and any
18081 // adjacent stores.
18082 if (findBetterNeighborChains(ST
)) {
18083 // replaceStoreChain uses CombineTo, which handled all of the worklist
18084 // manipulation. Return the original node to not do anything else.
18085 return SDValue(ST
, 0);
18087 Chain
= ST
->getChain();
18090 // FIXME: is there such a thing as a truncating indexed store?
18091 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
18092 Value
.getValueType().isInteger() &&
18093 (!isa
<ConstantSDNode
>(Value
) ||
18094 !cast
<ConstantSDNode
>(Value
)->isOpaque())) {
18095 APInt TruncDemandedBits
=
18096 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
18097 ST
->getMemoryVT().getScalarSizeInBits());
18099 // See if we can simplify the input to this truncstore with knowledge that
18100 // only the low bits are being used. For example:
18101 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
18102 AddToWorklist(Value
.getNode());
18103 if (SDValue Shorter
= DAG
.GetDemandedBits(Value
, TruncDemandedBits
))
18104 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
, Ptr
, ST
->getMemoryVT(),
18105 ST
->getMemOperand());
18107 // Otherwise, see if we can simplify the operation with
18108 // SimplifyDemandedBits, which only works if the value has a single use.
18109 if (SimplifyDemandedBits(Value
, TruncDemandedBits
)) {
18110 // Re-visit the store if anything changed and the store hasn't been merged
18111 // with another node (N is deleted) SimplifyDemandedBits will add Value's
18112 // node back to the worklist if necessary, but we also need to re-visit
18113 // the Store node itself.
18114 if (N
->getOpcode() != ISD::DELETED_NODE
)
18116 return SDValue(N
, 0);
18120 // If this is a load followed by a store to the same location, then the store
18122 // TODO: Can relax for unordered atomics (see D66309)
18123 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
18124 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
18125 ST
->isUnindexed() && ST
->isSimple() &&
18126 Ld
->getAddressSpace() == ST
->getAddressSpace() &&
18127 // There can't be any side effects between the load and store, such as
18128 // a call or store.
18129 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
18130 // The store is dead, remove it.
18135 // TODO: Can relax for unordered atomics (see D66309)
18136 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
18137 if (ST
->isUnindexed() && ST
->isSimple() &&
18138 ST1
->isUnindexed() && ST1
->isSimple()) {
18139 if (ST1
->getBasePtr() == Ptr
&& ST1
->getValue() == Value
&&
18140 ST
->getMemoryVT() == ST1
->getMemoryVT() &&
18141 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18142 // If this is a store followed by a store with the same value to the
18143 // same location, then the store is dead/noop.
18147 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
18148 !ST1
->getBasePtr().isUndef() &&
18149 // BaseIndexOffset and the code below requires knowing the size
18150 // of a vector, so bail out if MemoryVT is scalable.
18151 !ST
->getMemoryVT().isScalableVector() &&
18152 !ST1
->getMemoryVT().isScalableVector() &&
18153 ST
->getAddressSpace() == ST1
->getAddressSpace()) {
18154 const BaseIndexOffset STBase
= BaseIndexOffset::match(ST
, DAG
);
18155 const BaseIndexOffset ChainBase
= BaseIndexOffset::match(ST1
, DAG
);
18156 unsigned STBitSize
= ST
->getMemoryVT().getFixedSizeInBits();
18157 unsigned ChainBitSize
= ST1
->getMemoryVT().getFixedSizeInBits();
18158 // If this is a store who's preceding store to a subset of the current
18159 // location and no one other node is chained to that store we can
18160 // effectively drop the store. Do not remove stores to undef as they may
18161 // be used as data sinks.
18162 if (STBase
.contains(DAG
, STBitSize
, ChainBase
, ChainBitSize
)) {
18163 CombineTo(ST1
, ST1
->getChain());
18170 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
18171 // truncating store. We can do this even if this is already a truncstore.
18172 if ((Value
.getOpcode() == ISD::FP_ROUND
||
18173 Value
.getOpcode() == ISD::TRUNCATE
) &&
18174 Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
18175 TLI
.canCombineTruncStore(Value
.getOperand(0).getValueType(),
18176 ST
->getMemoryVT(), LegalOperations
)) {
18177 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
18178 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
18181 // Always perform this optimization before types are legal. If the target
18182 // prefers, also try this after legalization to catch stores that were created
18183 // by intrinsics or other nodes.
18184 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization(ST
->getMemoryVT()))) {
18186 // There can be multiple store sequences on the same chain.
18187 // Keep trying to merge store sequences until we are unable to do so
18188 // or until we merge the last store on the chain.
18189 bool Changed
= mergeConsecutiveStores(ST
);
18190 if (!Changed
) break;
18191 // Return N as merge only uses CombineTo and no worklist clean
18192 // up is necessary.
18193 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
18194 return SDValue(N
, 0);
18198 // Try transforming N to an indexed store.
18199 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
18200 return SDValue(N
, 0);
18202 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
18204 // Make sure to do this only after attempting to merge stores in order to
18205 // avoid changing the types of some subset of stores due to visit order,
18206 // preventing their merging.
18207 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
18208 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
18212 if (SDValue NewSt
= splitMergedValStore(ST
))
18215 return ReduceLoadOpStoreWidth(N
);
18218 SDValue
DAGCombiner::visitLIFETIME_END(SDNode
*N
) {
18219 const auto *LifetimeEnd
= cast
<LifetimeSDNode
>(N
);
18220 if (!LifetimeEnd
->hasOffset())
18223 const BaseIndexOffset
LifetimeEndBase(N
->getOperand(1), SDValue(),
18224 LifetimeEnd
->getOffset(), false);
18226 // We walk up the chains to find stores.
18227 SmallVector
<SDValue
, 8> Chains
= {N
->getOperand(0)};
18228 while (!Chains
.empty()) {
18229 SDValue Chain
= Chains
.pop_back_val();
18230 if (!Chain
.hasOneUse())
18232 switch (Chain
.getOpcode()) {
18233 case ISD::TokenFactor
:
18234 for (unsigned Nops
= Chain
.getNumOperands(); Nops
;)
18235 Chains
.push_back(Chain
.getOperand(--Nops
));
18237 case ISD::LIFETIME_START
:
18238 case ISD::LIFETIME_END
:
18239 // We can forward past any lifetime start/end that can be proven not to
18241 if (!isAlias(Chain
.getNode(), N
))
18242 Chains
.push_back(Chain
.getOperand(0));
18245 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Chain
);
18246 // TODO: Can relax for unordered atomics (see D66309)
18247 if (!ST
->isSimple() || ST
->isIndexed())
18249 const TypeSize StoreSize
= ST
->getMemoryVT().getStoreSize();
18250 // The bounds of a scalable store are not known until runtime, so this
18251 // store cannot be elided.
18252 if (StoreSize
.isScalable())
18254 const BaseIndexOffset StoreBase
= BaseIndexOffset::match(ST
, DAG
);
18255 // If we store purely within object bounds just before its lifetime ends,
18256 // we can remove the store.
18257 if (LifetimeEndBase
.contains(DAG
, LifetimeEnd
->getSize() * 8, StoreBase
,
18258 StoreSize
.getFixedSize() * 8)) {
18259 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase
.dump();
18260 dbgs() << "\nwithin LIFETIME_END of : ";
18261 LifetimeEndBase
.dump(); dbgs() << "\n");
18262 CombineTo(ST
, ST
->getChain());
18263 return SDValue(N
, 0);
18271 /// For the instruction sequence of store below, F and I values
18272 /// are bundled together as an i64 value before being stored into memory.
18273 /// Sometimes it is more efficent to generate separate stores for F and I,
18274 /// which can remove the bitwise instructions or sink them to colder places.
18276 /// (store (or (zext (bitcast F to i32) to i64),
18277 /// (shl (zext I to i64), 32)), addr) -->
18278 /// (store F, addr) and (store I, addr+4)
18280 /// Similarly, splitting for other merged store can also be beneficial, like:
18281 /// For pair of {i32, i32}, i64 store --> two i32 stores.
18282 /// For pair of {i32, i16}, i64 store --> two i32 stores.
18283 /// For pair of {i16, i16}, i32 store --> two i16 stores.
18284 /// For pair of {i16, i8}, i32 store --> two i16 stores.
18285 /// For pair of {i8, i8}, i16 store --> two i8 stores.
18287 /// We allow each target to determine specifically which kind of splitting is
18290 /// The store patterns are commonly seen from the simple code snippet below
18291 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
18292 /// void goo(const std::pair<int, float> &);
18295 /// goo(std::make_pair(tmp, ftmp));
18299 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
18300 if (OptLevel
== CodeGenOpt::None
)
18303 // Can't change the number of memory accesses for a volatile store or break
18304 // atomicity for an atomic one.
18305 if (!ST
->isSimple())
18308 SDValue Val
= ST
->getValue();
18311 // Match OR operand.
18312 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
18315 // Match SHL operand and get Lower and Higher parts of Val.
18316 SDValue Op1
= Val
.getOperand(0);
18317 SDValue Op2
= Val
.getOperand(1);
18319 if (Op1
.getOpcode() != ISD::SHL
) {
18320 std::swap(Op1
, Op2
);
18321 if (Op1
.getOpcode() != ISD::SHL
)
18325 Hi
= Op1
.getOperand(0);
18326 if (!Op1
.hasOneUse())
18329 // Match shift amount to HalfValBitSize.
18330 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
18331 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
18332 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
18335 // Lo and Hi are zero-extended from int with size less equal than 32
18337 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
18338 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
18339 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
18340 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
18341 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
18342 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
18345 // Use the EVT of low and high parts before bitcast as the input
18346 // of target query.
18347 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
18348 ? Lo
.getOperand(0).getValueType()
18349 : Lo
.getValueType();
18350 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
18351 ? Hi
.getOperand(0).getValueType()
18352 : Hi
.getValueType();
18353 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
18356 // Start to split store.
18357 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
18358 AAMDNodes AAInfo
= ST
->getAAInfo();
18360 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
18361 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
18362 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
18363 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
18365 SDValue Chain
= ST
->getChain();
18366 SDValue Ptr
= ST
->getBasePtr();
18367 // Lower value store.
18368 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
18369 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18370 Ptr
= DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(HalfValBitSize
/ 8), DL
);
18371 // Higher value store.
18372 SDValue St1
= DAG
.getStore(
18373 St0
, DL
, Hi
, Ptr
, ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
18374 ST
->getOriginalAlign(), MMOFlags
, AAInfo
);
18378 /// Convert a disguised subvector insertion into a shuffle:
18379 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
18380 assert(N
->getOpcode() == ISD::INSERT_VECTOR_ELT
&&
18381 "Expected extract_vector_elt");
18382 SDValue InsertVal
= N
->getOperand(1);
18383 SDValue Vec
= N
->getOperand(0);
18385 // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
18387 // --> (vector_shuffle X, Y) and variations where shuffle operands may be
18389 if (Vec
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Vec
.hasOneUse() &&
18390 InsertVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18391 isa
<ConstantSDNode
>(InsertVal
.getOperand(1))) {
18392 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Vec
.getNode());
18393 ArrayRef
<int> Mask
= SVN
->getMask();
18395 SDValue X
= Vec
.getOperand(0);
18396 SDValue Y
= Vec
.getOperand(1);
18398 // Vec's operand 0 is using indices from 0 to N-1 and
18399 // operand 1 from N to 2N - 1, where N is the number of
18400 // elements in the vectors.
18401 SDValue InsertVal0
= InsertVal
.getOperand(0);
18402 int ElementOffset
= -1;
18404 // We explore the inputs of the shuffle in order to see if we find the
18405 // source of the extract_vector_elt. If so, we can use it to modify the
18406 // shuffle rather than perform an insert_vector_elt.
18407 SmallVector
<std::pair
<int, SDValue
>, 8> ArgWorkList
;
18408 ArgWorkList
.emplace_back(Mask
.size(), Y
);
18409 ArgWorkList
.emplace_back(0, X
);
18411 while (!ArgWorkList
.empty()) {
18414 std::tie(ArgOffset
, ArgVal
) = ArgWorkList
.pop_back_val();
18416 if (ArgVal
== InsertVal0
) {
18417 ElementOffset
= ArgOffset
;
18421 // Peek through concat_vector.
18422 if (ArgVal
.getOpcode() == ISD::CONCAT_VECTORS
) {
18423 int CurrentArgOffset
=
18424 ArgOffset
+ ArgVal
.getValueType().getVectorNumElements();
18425 int Step
= ArgVal
.getOperand(0).getValueType().getVectorNumElements();
18426 for (SDValue Op
: reverse(ArgVal
->ops())) {
18427 CurrentArgOffset
-= Step
;
18428 ArgWorkList
.emplace_back(CurrentArgOffset
, Op
);
18431 // Make sure we went through all the elements and did not screw up index
18433 assert(CurrentArgOffset
== ArgOffset
);
18437 if (ElementOffset
!= -1) {
18438 SmallVector
<int, 16> NewMask(Mask
.begin(), Mask
.end());
18440 auto *ExtrIndex
= cast
<ConstantSDNode
>(InsertVal
.getOperand(1));
18441 NewMask
[InsIndex
] = ElementOffset
+ ExtrIndex
->getZExtValue();
18442 assert(NewMask
[InsIndex
] <
18443 (int)(2 * Vec
.getValueType().getVectorNumElements()) &&
18444 NewMask
[InsIndex
] >= 0 && "NewMask[InsIndex] is out of bound");
18446 SDValue LegalShuffle
=
18447 TLI
.buildLegalVectorShuffle(Vec
.getValueType(), SDLoc(N
), X
,
18450 return LegalShuffle
;
18454 // insert_vector_elt V, (bitcast X from vector type), IdxC -->
18455 // bitcast(shuffle (bitcast V), (extended X), Mask)
18456 // Note: We do not use an insert_subvector node because that requires a
18457 // legal subvector type.
18458 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
18459 !InsertVal
.getOperand(0).getValueType().isVector())
18462 SDValue SubVec
= InsertVal
.getOperand(0);
18463 SDValue DestVec
= N
->getOperand(0);
18464 EVT SubVecVT
= SubVec
.getValueType();
18465 EVT VT
= DestVec
.getValueType();
18466 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
18467 // If the source only has a single vector element, the cost of creating adding
18468 // it to a vector is likely to exceed the cost of a insert_vector_elt.
18469 if (NumSrcElts
== 1)
18471 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
18472 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
18474 // Step 1: Create a shuffle mask that implements this insert operation. The
18475 // vector that we are inserting into will be operand 0 of the shuffle, so
18476 // those elements are just 'i'. The inserted subvector is in the first
18477 // positions of operand 1 of the shuffle. Example:
18478 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
18479 SmallVector
<int, 16> Mask(NumMaskVals
);
18480 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
18481 if (i
/ NumSrcElts
== InsIndex
)
18482 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
18487 // Bail out if the target can not handle the shuffle we want to create.
18488 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
18489 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
18490 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
18493 // Step 2: Create a wide vector from the inserted source vector by appending
18494 // undefined elements. This is the same size as our destination vector.
18496 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
18497 ConcatOps
[0] = SubVec
;
18498 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
18500 // Step 3: Shuffle in the padded subvector.
18501 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
18502 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
18503 AddToWorklist(PaddedSubV
.getNode());
18504 AddToWorklist(DestVecBC
.getNode());
18505 AddToWorklist(Shuf
.getNode());
18506 return DAG
.getBitcast(VT
, Shuf
);
18509 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
18510 SDValue InVec
= N
->getOperand(0);
18511 SDValue InVal
= N
->getOperand(1);
18512 SDValue EltNo
= N
->getOperand(2);
18515 EVT VT
= InVec
.getValueType();
18516 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
18518 // Insert into out-of-bounds element is undefined.
18519 if (IndexC
&& VT
.isFixedLengthVector() &&
18520 IndexC
->getZExtValue() >= VT
.getVectorNumElements())
18521 return DAG
.getUNDEF(VT
);
18523 // Remove redundant insertions:
18524 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
18525 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18526 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
18530 // If this is variable insert to undef vector, it might be better to splat:
18531 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
18532 if (InVec
.isUndef() && TLI
.shouldSplatInsEltVarIndex(VT
)) {
18533 if (VT
.isScalableVector())
18534 return DAG
.getSplatVector(VT
, DL
, InVal
);
18536 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), InVal
);
18537 return DAG
.getBuildVector(VT
, DL
, Ops
);
18543 if (VT
.isScalableVector())
18546 unsigned NumElts
= VT
.getVectorNumElements();
18548 // We must know which element is being inserted for folds below here.
18549 unsigned Elt
= IndexC
->getZExtValue();
18550 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
18553 // Canonicalize insert_vector_elt dag nodes.
18555 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
18556 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
18558 // Do this only if the child insert_vector node has one use; also
18559 // do this only if indices are both constants and Idx1 < Idx0.
18560 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
18561 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
18562 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
18563 if (Elt
< OtherElt
) {
18565 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
18566 InVec
.getOperand(0), InVal
, EltNo
);
18567 AddToWorklist(NewOp
.getNode());
18568 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
18569 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
18573 // If we can't generate a legal BUILD_VECTOR, exit
18574 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
18577 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
18578 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
18579 // vector elements.
18580 SmallVector
<SDValue
, 8> Ops
;
18581 // Do not combine these two vectors if the output vector will not replace
18582 // the input vector.
18583 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
18584 Ops
.append(InVec
.getNode()->op_begin(),
18585 InVec
.getNode()->op_end());
18586 } else if (InVec
.isUndef()) {
18587 Ops
.append(NumElts
, DAG
.getUNDEF(InVal
.getValueType()));
18591 assert(Ops
.size() == NumElts
&& "Unexpected vector size");
18593 // Insert the element
18594 if (Elt
< Ops
.size()) {
18595 // All the operands of BUILD_VECTOR must have the same type;
18596 // we enforce that here.
18597 EVT OpVT
= Ops
[0].getValueType();
18598 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
18601 // Return the new vector
18602 return DAG
.getBuildVector(VT
, DL
, Ops
);
18605 SDValue
DAGCombiner::scalarizeExtractedVectorLoad(SDNode
*EVE
, EVT InVecVT
,
18607 LoadSDNode
*OriginalLoad
) {
18608 assert(OriginalLoad
->isSimple());
18610 EVT ResultVT
= EVE
->getValueType(0);
18611 EVT VecEltVT
= InVecVT
.getVectorElementType();
18613 // If the vector element type is not a multiple of a byte then we are unable
18614 // to correctly compute an address to load only the extracted element as a
18616 if (!VecEltVT
.isByteSized())
18619 Align Alignment
= OriginalLoad
->getAlign();
18620 Align NewAlign
= DAG
.getDataLayout().getABITypeAlign(
18621 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
18623 if (NewAlign
> Alignment
||
18624 !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
18627 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
18628 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
18629 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
18632 Alignment
= NewAlign
;
18634 MachinePointerInfo MPI
;
18636 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
18637 int Elt
= ConstEltNo
->getZExtValue();
18638 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
18639 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
18641 // Discard the pointer info except the address space because the memory
18642 // operand can't represent this new access since the offset is variable.
18643 MPI
= MachinePointerInfo(OriginalLoad
->getPointerInfo().getAddrSpace());
18645 SDValue NewPtr
= TLI
.getVectorElementPointer(DAG
, OriginalLoad
->getBasePtr(),
18648 // The replacement we need to do here is a little tricky: we need to
18649 // replace an extractelement of a load with a load.
18650 // Use ReplaceAllUsesOfValuesWith to do the replacement.
18651 // Note that this replacement assumes that the extractvalue is the only
18652 // use of the load; that's okay because we don't want to perform this
18653 // transformation in other cases anyway.
18656 if (ResultVT
.bitsGT(VecEltVT
)) {
18657 // If the result type of vextract is wider than the load, then issue an
18658 // extending load instead.
18659 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
18663 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
18664 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
18665 Alignment
, OriginalLoad
->getMemOperand()->getFlags(),
18666 OriginalLoad
->getAAInfo());
18667 Chain
= Load
.getValue(1);
18669 Load
= DAG
.getLoad(
18670 VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
, MPI
, Alignment
,
18671 OriginalLoad
->getMemOperand()->getFlags(), OriginalLoad
->getAAInfo());
18672 Chain
= Load
.getValue(1);
18673 if (ResultVT
.bitsLT(VecEltVT
))
18674 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
18676 Load
= DAG
.getBitcast(ResultVT
, Load
);
18678 WorklistRemover
DeadNodes(*this);
18679 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
18680 SDValue To
[] = { Load
, Chain
};
18681 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
18682 // Make sure to revisit this node to clean it up; it will usually be dead.
18683 AddToWorklist(EVE
);
18684 // Since we're explicitly calling ReplaceAllUses, add the new node to the
18685 // worklist explicitly as well.
18686 AddToWorklistWithUsers(Load
.getNode());
18688 return SDValue(EVE
, 0);
18691 /// Transform a vector binary operation into a scalar binary operation by moving
18692 /// the math/logic after an extract element of a vector.
18693 static SDValue
scalarizeExtractedBinop(SDNode
*ExtElt
, SelectionDAG
&DAG
,
18694 bool LegalOperations
) {
18695 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
18696 SDValue Vec
= ExtElt
->getOperand(0);
18697 SDValue Index
= ExtElt
->getOperand(1);
18698 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
18699 if (!IndexC
|| !TLI
.isBinOp(Vec
.getOpcode()) || !Vec
.hasOneUse() ||
18700 Vec
.getNode()->getNumValues() != 1)
18703 // Targets may want to avoid this to prevent an expensive register transfer.
18704 if (!TLI
.shouldScalarizeBinop(Vec
))
18707 // Extracting an element of a vector constant is constant-folded, so this
18708 // transform is just replacing a vector op with a scalar op while moving the
18710 SDValue Op0
= Vec
.getOperand(0);
18711 SDValue Op1
= Vec
.getOperand(1);
18712 if (isAnyConstantBuildVector(Op0
, true) ||
18713 isAnyConstantBuildVector(Op1
, true)) {
18714 // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
18715 // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
18717 EVT VT
= ExtElt
->getValueType(0);
18718 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op0
, Index
);
18719 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, Op1
, Index
);
18720 return DAG
.getNode(Vec
.getOpcode(), DL
, VT
, Ext0
, Ext1
);
18726 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
18727 SDValue VecOp
= N
->getOperand(0);
18728 SDValue Index
= N
->getOperand(1);
18729 EVT ScalarVT
= N
->getValueType(0);
18730 EVT VecVT
= VecOp
.getValueType();
18731 if (VecOp
.isUndef())
18732 return DAG
.getUNDEF(ScalarVT
);
18734 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
18736 // This only really matters if the index is non-constant since other combines
18737 // on the constant elements already work.
18739 if (VecOp
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
18740 Index
== VecOp
.getOperand(2)) {
18741 SDValue Elt
= VecOp
.getOperand(1);
18742 return VecVT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, DL
, ScalarVT
) : Elt
;
18745 // (vextract (scalar_to_vector val, 0) -> val
18746 if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18747 // Only 0'th element of SCALAR_TO_VECTOR is defined.
18748 if (DAG
.isKnownNeverZero(Index
))
18749 return DAG
.getUNDEF(ScalarVT
);
18751 // Check if the result type doesn't match the inserted element type. A
18752 // SCALAR_TO_VECTOR may truncate the inserted element and the
18753 // EXTRACT_VECTOR_ELT may widen the extracted vector.
18754 SDValue InOp
= VecOp
.getOperand(0);
18755 if (InOp
.getValueType() != ScalarVT
) {
18756 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
18757 return DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
18762 // extract_vector_elt of out-of-bounds element -> UNDEF
18763 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
18764 if (IndexC
&& VecVT
.isFixedLengthVector() &&
18765 IndexC
->getAPIntValue().uge(VecVT
.getVectorNumElements()))
18766 return DAG
.getUNDEF(ScalarVT
);
18768 // extract_vector_elt (build_vector x, y), 1 -> y
18769 if (((IndexC
&& VecOp
.getOpcode() == ISD::BUILD_VECTOR
) ||
18770 VecOp
.getOpcode() == ISD::SPLAT_VECTOR
) &&
18771 TLI
.isTypeLegal(VecVT
) &&
18772 (VecOp
.hasOneUse() || TLI
.aggressivelyPreferBuildVectorSources(VecVT
))) {
18773 assert((VecOp
.getOpcode() != ISD::BUILD_VECTOR
||
18774 VecVT
.isFixedLengthVector()) &&
18775 "BUILD_VECTOR used for scalable vectors");
18776 unsigned IndexVal
=
18777 VecOp
.getOpcode() == ISD::BUILD_VECTOR
? IndexC
->getZExtValue() : 0;
18778 SDValue Elt
= VecOp
.getOperand(IndexVal
);
18779 EVT InEltVT
= Elt
.getValueType();
18781 // Sometimes build_vector's scalar input types do not match result type.
18782 if (ScalarVT
== InEltVT
)
18785 // TODO: It may be useful to truncate if free if the build_vector implicitly
18789 if (VecVT
.isScalableVector())
18792 // All the code from this point onwards assumes fixed width vectors, but it's
18793 // possible that some of the combinations could be made to work for scalable
18795 unsigned NumElts
= VecVT
.getVectorNumElements();
18796 unsigned VecEltBitWidth
= VecVT
.getScalarSizeInBits();
18798 // TODO: These transforms should not require the 'hasOneUse' restriction, but
18799 // there are regressions on multiple targets without it. We can end up with a
18800 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
18801 if (IndexC
&& VecOp
.getOpcode() == ISD::BITCAST
&& VecVT
.isInteger() &&
18802 VecOp
.hasOneUse()) {
18803 // The vector index of the LSBs of the source depend on the endian-ness.
18804 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
18805 unsigned ExtractIndex
= IndexC
->getZExtValue();
18806 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
18807 unsigned BCTruncElt
= IsLE
? 0 : NumElts
- 1;
18808 SDValue BCSrc
= VecOp
.getOperand(0);
18809 if (ExtractIndex
== BCTruncElt
&& BCSrc
.getValueType().isScalarInteger())
18810 return DAG
.getNode(ISD::TRUNCATE
, DL
, ScalarVT
, BCSrc
);
18812 if (LegalTypes
&& BCSrc
.getValueType().isInteger() &&
18813 BCSrc
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
18814 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
18815 // trunc i64 X to i32
18816 SDValue X
= BCSrc
.getOperand(0);
18817 assert(X
.getValueType().isScalarInteger() && ScalarVT
.isScalarInteger() &&
18818 "Extract element and scalar to vector can't change element type "
18819 "from FP to integer.");
18820 unsigned XBitWidth
= X
.getValueSizeInBits();
18821 BCTruncElt
= IsLE
? 0 : XBitWidth
/ VecEltBitWidth
- 1;
18823 // An extract element return value type can be wider than its vector
18824 // operand element type. In that case, the high bits are undefined, so
18825 // it's possible that we may need to extend rather than truncate.
18826 if (ExtractIndex
== BCTruncElt
&& XBitWidth
> VecEltBitWidth
) {
18827 assert(XBitWidth
% VecEltBitWidth
== 0 &&
18828 "Scalar bitwidth must be a multiple of vector element bitwidth");
18829 return DAG
.getAnyExtOrTrunc(X
, DL
, ScalarVT
);
18834 if (SDValue BO
= scalarizeExtractedBinop(N
, DAG
, LegalOperations
))
18837 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
18838 // We only perform this optimization before the op legalization phase because
18839 // we may introduce new vector instructions which are not backed by TD
18840 // patterns. For example on AVX, extracting elements from a wide vector
18841 // without using extract_subvector. However, if we can find an underlying
18842 // scalar value, then we can always use that.
18843 if (IndexC
&& VecOp
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
18844 auto *Shuf
= cast
<ShuffleVectorSDNode
>(VecOp
);
18845 // Find the new index to extract from.
18846 int OrigElt
= Shuf
->getMaskElt(IndexC
->getZExtValue());
18848 // Extracting an undef index is undef.
18850 return DAG
.getUNDEF(ScalarVT
);
18852 // Select the right vector half to extract from.
18854 if (OrigElt
< (int)NumElts
) {
18855 SVInVec
= VecOp
.getOperand(0);
18857 SVInVec
= VecOp
.getOperand(1);
18858 OrigElt
-= NumElts
;
18861 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
18862 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
18863 if (InOp
.getValueType() != ScalarVT
) {
18864 assert(InOp
.getValueType().isInteger() && ScalarVT
.isInteger());
18865 InOp
= DAG
.getSExtOrTrunc(InOp
, DL
, ScalarVT
);
18871 // FIXME: We should handle recursing on other vector shuffles and
18872 // scalar_to_vector here as well.
18874 if (!LegalOperations
||
18875 // FIXME: Should really be just isOperationLegalOrCustom.
18876 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VecVT
) ||
18877 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VecVT
)) {
18878 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
, SVInVec
,
18879 DAG
.getVectorIdxConstant(OrigElt
, DL
));
18883 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
18884 // simplify it based on the (valid) extraction indices.
18885 if (llvm::all_of(VecOp
->uses(), [&](SDNode
*Use
) {
18886 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
18887 Use
->getOperand(0) == VecOp
&&
18888 isa
<ConstantSDNode
>(Use
->getOperand(1));
18890 APInt DemandedElts
= APInt::getNullValue(NumElts
);
18891 for (SDNode
*Use
: VecOp
->uses()) {
18892 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
18893 if (CstElt
->getAPIntValue().ult(NumElts
))
18894 DemandedElts
.setBit(CstElt
->getZExtValue());
18896 if (SimplifyDemandedVectorElts(VecOp
, DemandedElts
, true)) {
18897 // We simplified the vector operand of this extract element. If this
18898 // extract is not dead, visit it again so it is folded properly.
18899 if (N
->getOpcode() != ISD::DELETED_NODE
)
18901 return SDValue(N
, 0);
18903 APInt DemandedBits
= APInt::getAllOnesValue(VecEltBitWidth
);
18904 if (SimplifyDemandedBits(VecOp
, DemandedBits
, DemandedElts
, true)) {
18905 // We simplified the vector operand of this extract element. If this
18906 // extract is not dead, visit it again so it is folded properly.
18907 if (N
->getOpcode() != ISD::DELETED_NODE
)
18909 return SDValue(N
, 0);
18913 // Everything under here is trying to match an extract of a loaded value.
18914 // If the result of load has to be truncated, then it's not necessarily
18916 bool BCNumEltsChanged
= false;
18917 EVT ExtVT
= VecVT
.getVectorElementType();
18919 if (ScalarVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, ScalarVT
))
18922 if (VecOp
.getOpcode() == ISD::BITCAST
) {
18923 // Don't duplicate a load with other uses.
18924 if (!VecOp
.hasOneUse())
18927 EVT BCVT
= VecOp
.getOperand(0).getValueType();
18928 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
18930 if (NumElts
!= BCVT
.getVectorNumElements())
18931 BCNumEltsChanged
= true;
18932 VecOp
= VecOp
.getOperand(0);
18933 ExtVT
= BCVT
.getVectorElementType();
18936 // extract (vector load $addr), i --> load $addr + i * size
18937 if (!LegalOperations
&& !IndexC
&& VecOp
.hasOneUse() &&
18938 ISD::isNormalLoad(VecOp
.getNode()) &&
18939 !Index
->hasPredecessor(VecOp
.getNode())) {
18940 auto *VecLoad
= dyn_cast
<LoadSDNode
>(VecOp
);
18941 if (VecLoad
&& VecLoad
->isSimple())
18942 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, VecLoad
);
18945 // Perform only after legalization to ensure build_vector / vector_shuffle
18946 // optimizations have already been done.
18947 if (!LegalOperations
|| !IndexC
)
18950 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
18951 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
18952 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
18953 int Elt
= IndexC
->getZExtValue();
18954 LoadSDNode
*LN0
= nullptr;
18955 if (ISD::isNormalLoad(VecOp
.getNode())) {
18956 LN0
= cast
<LoadSDNode
>(VecOp
);
18957 } else if (VecOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
18958 VecOp
.getOperand(0).getValueType() == ExtVT
&&
18959 ISD::isNormalLoad(VecOp
.getOperand(0).getNode())) {
18960 // Don't duplicate a load with other uses.
18961 if (!VecOp
.hasOneUse())
18964 LN0
= cast
<LoadSDNode
>(VecOp
.getOperand(0));
18966 if (auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(VecOp
)) {
18967 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
18969 // (load $addr+1*size)
18971 // Don't duplicate a load with other uses.
18972 if (!VecOp
.hasOneUse())
18975 // If the bit convert changed the number of elements, it is unsafe
18976 // to examine the mask.
18977 if (BCNumEltsChanged
)
18980 // Select the input vector, guarding against out of range extract vector.
18981 int Idx
= (Elt
> (int)NumElts
) ? -1 : Shuf
->getMaskElt(Elt
);
18982 VecOp
= (Idx
< (int)NumElts
) ? VecOp
.getOperand(0) : VecOp
.getOperand(1);
18984 if (VecOp
.getOpcode() == ISD::BITCAST
) {
18985 // Don't duplicate a load with other uses.
18986 if (!VecOp
.hasOneUse())
18989 VecOp
= VecOp
.getOperand(0);
18991 if (ISD::isNormalLoad(VecOp
.getNode())) {
18992 LN0
= cast
<LoadSDNode
>(VecOp
);
18993 Elt
= (Idx
< (int)NumElts
) ? Idx
: Idx
- (int)NumElts
;
18994 Index
= DAG
.getConstant(Elt
, DL
, Index
.getValueType());
18996 } else if (VecOp
.getOpcode() == ISD::CONCAT_VECTORS
&& !BCNumEltsChanged
&&
18997 VecVT
.getVectorElementType() == ScalarVT
&&
19000 VecOp
.getOperand(0).getValueType().getVectorElementType()))) {
19001 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
19002 // -> extract_vector_elt a, 0
19003 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
19004 // -> extract_vector_elt a, 1
19005 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
19006 // -> extract_vector_elt b, 0
19007 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
19008 // -> extract_vector_elt b, 1
19010 EVT ConcatVT
= VecOp
.getOperand(0).getValueType();
19011 unsigned ConcatNumElts
= ConcatVT
.getVectorNumElements();
19012 SDValue NewIdx
= DAG
.getConstant(Elt
% ConcatNumElts
, SL
,
19013 Index
.getValueType());
19015 SDValue ConcatOp
= VecOp
.getOperand(Elt
/ ConcatNumElts
);
19016 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
,
19017 ConcatVT
.getVectorElementType(),
19019 return DAG
.getNode(ISD::BITCAST
, SL
, ScalarVT
, Elt
);
19022 // Make sure we found a non-volatile load and the extractelement is
19024 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || !LN0
->isSimple())
19027 // If Idx was -1 above, Elt is going to be -1, so just return undef.
19029 return DAG
.getUNDEF(LVT
);
19031 return scalarizeExtractedVectorLoad(N
, VecVT
, Index
, LN0
);
19034 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
19035 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
19036 // We perform this optimization post type-legalization because
19037 // the type-legalizer often scalarizes integer-promoted vectors.
19038 // Performing this optimization before may create bit-casts which
19039 // will be type-legalized to complex code sequences.
19040 // We perform this optimization only before the operation legalizer because we
19041 // may introduce illegal operations.
19042 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
19045 unsigned NumInScalars
= N
->getNumOperands();
19047 EVT VT
= N
->getValueType(0);
19049 // Check to see if this is a BUILD_VECTOR of a bunch of values
19050 // which come from any_extend or zero_extend nodes. If so, we can create
19051 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
19052 // optimizations. We do not handle sign-extend because we can't fill the sign
19054 EVT SourceType
= MVT::Other
;
19055 bool AllAnyExt
= true;
19057 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
19058 SDValue In
= N
->getOperand(i
);
19059 // Ignore undef inputs.
19060 if (In
.isUndef()) continue;
19062 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
19063 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
19065 // Abort if the element is not an extension.
19066 if (!ZeroExt
&& !AnyExt
) {
19067 SourceType
= MVT::Other
;
19071 // The input is a ZeroExt or AnyExt. Check the original type.
19072 EVT InTy
= In
.getOperand(0).getValueType();
19074 // Check that all of the widened source types are the same.
19075 if (SourceType
== MVT::Other
)
19078 else if (InTy
!= SourceType
) {
19079 // Multiple income types. Abort.
19080 SourceType
= MVT::Other
;
19084 // Check if all of the extends are ANY_EXTENDs.
19085 AllAnyExt
&= AnyExt
;
19088 // In order to have valid types, all of the inputs must be extended from the
19089 // same source type and all of the inputs must be any or zero extend.
19090 // Scalar sizes must be a power of two.
19091 EVT OutScalarTy
= VT
.getScalarType();
19092 bool ValidTypes
= SourceType
!= MVT::Other
&&
19093 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
19094 isPowerOf2_32(SourceType
.getSizeInBits());
19096 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
19097 // turn into a single shuffle instruction.
19101 // If we already have a splat buildvector, then don't fold it if it means
19102 // introducing zeros.
19103 if (!AllAnyExt
&& DAG
.isSplatValue(SDValue(N
, 0), /*AllowUndefs*/ true))
19106 bool isLE
= DAG
.getDataLayout().isLittleEndian();
19107 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
19108 assert(ElemRatio
> 1 && "Invalid element size ratio");
19109 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
19110 DAG
.getConstant(0, DL
, SourceType
);
19112 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
19113 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
19115 // Populate the new build_vector
19116 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
19117 SDValue Cast
= N
->getOperand(i
);
19118 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
19119 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
19120 Cast
.isUndef()) && "Invalid cast opcode");
19122 if (Cast
.isUndef())
19123 In
= DAG
.getUNDEF(SourceType
);
19125 In
= Cast
->getOperand(0);
19126 unsigned Index
= isLE
? (i
* ElemRatio
) :
19127 (i
* ElemRatio
+ (ElemRatio
- 1));
19129 assert(Index
< Ops
.size() && "Invalid index");
19133 // The type of the new BUILD_VECTOR node.
19134 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
19135 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
19136 "Invalid vector size");
19137 // Check if the new vector type is legal.
19138 if (!isTypeLegal(VecVT
) ||
19139 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
19140 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
19143 // Make the new BUILD_VECTOR.
19144 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
19146 // The new BUILD_VECTOR node has the potential to be further optimized.
19147 AddToWorklist(BV
.getNode());
19148 // Bitcast to the desired type.
19149 return DAG
.getBitcast(VT
, BV
);
19152 // Simplify (build_vec (trunc $1)
19153 // (trunc (srl $1 half-width))
19154 // (trunc (srl $1 (2 * half-width))) …)
19156 SDValue
DAGCombiner::reduceBuildVecTruncToBitCast(SDNode
*N
) {
19157 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19159 // Only for little endian
19160 if (!DAG
.getDataLayout().isLittleEndian())
19164 EVT VT
= N
->getValueType(0);
19165 EVT OutScalarTy
= VT
.getScalarType();
19166 uint64_t ScalarTypeBitsize
= OutScalarTy
.getSizeInBits();
19168 // Only for power of two types to be sure that bitcast works well
19169 if (!isPowerOf2_64(ScalarTypeBitsize
))
19172 unsigned NumInScalars
= N
->getNumOperands();
19174 // Look through bitcasts
19175 auto PeekThroughBitcast
= [](SDValue Op
) {
19176 if (Op
.getOpcode() == ISD::BITCAST
)
19177 return Op
.getOperand(0);
19181 // The source value where all the parts are extracted.
19183 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
19184 SDValue In
= PeekThroughBitcast(N
->getOperand(i
));
19185 // Ignore undef inputs.
19186 if (In
.isUndef()) continue;
19188 if (In
.getOpcode() != ISD::TRUNCATE
)
19191 In
= PeekThroughBitcast(In
.getOperand(0));
19193 if (In
.getOpcode() != ISD::SRL
) {
19194 // For now only build_vec without shuffling, handle shifts here in the
19202 SDValue part
= PeekThroughBitcast(In
.getOperand(0));
19206 } else if (Src
!= part
) {
19207 // Vector parts do not stem from the same variable
19211 SDValue ShiftAmtVal
= In
.getOperand(1);
19212 if (!isa
<ConstantSDNode
>(ShiftAmtVal
))
19215 uint64_t ShiftAmt
= In
.getNode()->getConstantOperandVal(1);
19217 // The extracted value is not extracted at the right position
19218 if (ShiftAmt
!= i
* ScalarTypeBitsize
)
19223 // Only cast if the size is the same
19224 if (Src
.getValueType().getSizeInBits() != VT
.getSizeInBits())
19227 return DAG
.getBitcast(VT
, Src
);
19230 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
19231 ArrayRef
<int> VectorMask
,
19232 SDValue VecIn1
, SDValue VecIn2
,
19233 unsigned LeftIdx
, bool DidSplitVec
) {
19234 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, DL
);
19236 EVT VT
= N
->getValueType(0);
19237 EVT InVT1
= VecIn1
.getValueType();
19238 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
19240 unsigned NumElems
= VT
.getVectorNumElements();
19241 unsigned ShuffleNumElems
= NumElems
;
19243 // If we artificially split a vector in two already, then the offsets in the
19244 // operands will all be based off of VecIn1, even those in VecIn2.
19245 unsigned Vec2Offset
= DidSplitVec
? 0 : InVT1
.getVectorNumElements();
19247 uint64_t VTSize
= VT
.getFixedSizeInBits();
19248 uint64_t InVT1Size
= InVT1
.getFixedSizeInBits();
19249 uint64_t InVT2Size
= InVT2
.getFixedSizeInBits();
19251 assert(InVT2Size
<= InVT1Size
&&
19252 "Inputs must be sorted to be in non-increasing vector size order.");
19254 // We can't generate a shuffle node with mismatched input and output types.
19255 // Try to make the types match the type of the output.
19256 if (InVT1
!= VT
|| InVT2
!= VT
) {
19257 if ((VTSize
% InVT1Size
== 0) && InVT1
== InVT2
) {
19258 // If the output vector length is a multiple of both input lengths,
19259 // we can concatenate them and pad the rest with undefs.
19260 unsigned NumConcats
= VTSize
/ InVT1Size
;
19261 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
19262 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
19263 ConcatOps
[0] = VecIn1
;
19264 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
19265 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19266 VecIn2
= SDValue();
19267 } else if (InVT1Size
== VTSize
* 2) {
19268 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
19271 if (!VecIn2
.getNode()) {
19272 // If we only have one input vector, and it's twice the size of the
19273 // output, split it in two.
19274 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
19275 DAG
.getVectorIdxConstant(NumElems
, DL
));
19276 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
19277 // Since we now have shorter input vectors, adjust the offset of the
19278 // second vector's start.
19279 Vec2Offset
= NumElems
;
19281 assert(InVT2Size
<= InVT1Size
&&
19282 "Second input is not going to be larger than the first one.");
19284 // VecIn1 is wider than the output, and we have another, possibly
19285 // smaller input. Pad the smaller input with undefs, shuffle at the
19286 // input vector width, and extract the output.
19287 // The shuffle type is different than VT, so check legality again.
19288 if (LegalOperations
&&
19289 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
19292 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
19293 // lower it back into a BUILD_VECTOR. So if the inserted type is
19294 // illegal, don't even try.
19295 if (InVT1
!= InVT2
) {
19296 if (!TLI
.isTypeLegal(InVT2
))
19298 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
19299 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
19301 ShuffleNumElems
= NumElems
* 2;
19303 } else if (InVT2Size
* 2 == VTSize
&& InVT1Size
== VTSize
) {
19304 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
19305 ConcatOps
[0] = VecIn2
;
19306 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
19308 // TODO: Support cases where the length mismatch isn't exactly by a
19310 // TODO: Move this check upwards, so that if we have bad type
19311 // mismatches, we don't create any DAG nodes.
19316 // Initialize mask to undef.
19317 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
19319 // Only need to run up to the number of elements actually used, not the
19320 // total number of elements in the shuffle - if we are shuffling a wider
19321 // vector, the high lanes should be set to undef.
19322 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19323 if (VectorMask
[i
] <= 0)
19326 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
19327 if (VectorMask
[i
] == (int)LeftIdx
) {
19328 Mask
[i
] = ExtIndex
;
19329 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
19330 Mask
[i
] = Vec2Offset
+ ExtIndex
;
19334 // The type the input vectors may have changed above.
19335 InVT1
= VecIn1
.getValueType();
19337 // If we already have a VecIn2, it should have the same type as VecIn1.
19338 // If we don't, get an undef/zero vector of the appropriate type.
19339 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
19340 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
19342 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
19343 if (ShuffleNumElems
> NumElems
)
19344 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
19349 static SDValue
reduceBuildVecToShuffleWithZero(SDNode
*BV
, SelectionDAG
&DAG
) {
19350 assert(BV
->getOpcode() == ISD::BUILD_VECTOR
&& "Expected build vector");
19352 // First, determine where the build vector is not undef.
19353 // TODO: We could extend this to handle zero elements as well as undefs.
19354 int NumBVOps
= BV
->getNumOperands();
19356 for (int i
= 0; i
!= NumBVOps
; ++i
) {
19357 SDValue Op
= BV
->getOperand(i
);
19365 // Bail out if there's no non-undef element.
19369 // The build vector contains some number of undef elements and exactly
19370 // one other element. That other element must be a zero-extended scalar
19371 // extracted from a vector at a constant index to turn this into a shuffle.
19372 // Also, require that the build vector does not implicitly truncate/extend
19374 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
19375 EVT VT
= BV
->getValueType(0);
19376 SDValue Zext
= BV
->getOperand(ZextElt
);
19377 if (Zext
.getOpcode() != ISD::ZERO_EXTEND
|| !Zext
.hasOneUse() ||
19378 Zext
.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19379 !isa
<ConstantSDNode
>(Zext
.getOperand(0).getOperand(1)) ||
19380 Zext
.getValueSizeInBits() != VT
.getScalarSizeInBits())
19383 // The zero-extend must be a multiple of the source size, and we must be
19384 // building a vector of the same size as the source of the extract element.
19385 SDValue Extract
= Zext
.getOperand(0);
19386 unsigned DestSize
= Zext
.getValueSizeInBits();
19387 unsigned SrcSize
= Extract
.getValueSizeInBits();
19388 if (DestSize
% SrcSize
!= 0 ||
19389 Extract
.getOperand(0).getValueSizeInBits() != VT
.getSizeInBits())
19392 // Create a shuffle mask that will combine the extracted element with zeros
19394 int ZextRatio
= DestSize
/ SrcSize
;
19395 int NumMaskElts
= NumBVOps
* ZextRatio
;
19396 SmallVector
<int, 32> ShufMask(NumMaskElts
, -1);
19397 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
19398 if (i
/ ZextRatio
== ZextElt
) {
19399 // The low bits of the (potentially translated) extracted element map to
19400 // the source vector. The high bits map to zero. We will use a zero vector
19401 // as the 2nd source operand of the shuffle, so use the 1st element of
19402 // that vector (mask value is number-of-elements) for the high bits.
19403 if (i
% ZextRatio
== 0)
19404 ShufMask
[i
] = Extract
.getConstantOperandVal(1);
19406 ShufMask
[i
] = NumMaskElts
;
19409 // Undef elements of the build vector remain undef because we initialize
19410 // the shuffle mask with -1.
19413 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
19414 // bitcast (shuffle V, ZeroVec, VectorMask)
19416 EVT VecVT
= Extract
.getOperand(0).getValueType();
19417 SDValue ZeroVec
= DAG
.getConstant(0, DL
, VecVT
);
19418 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19419 SDValue Shuf
= TLI
.buildLegalVectorShuffle(VecVT
, DL
, Extract
.getOperand(0),
19420 ZeroVec
, ShufMask
, DAG
);
19423 return DAG
.getBitcast(VT
, Shuf
);
19426 // FIXME: promote to STLExtras.
19427 template <typename R
, typename T
>
19428 static auto getFirstIndexOf(R
&&Range
, const T
&Val
) {
19429 auto I
= find(Range
, Val
);
19430 if (I
== Range
.end())
19431 return static_cast<decltype(std::distance(Range
.begin(), I
))>(-1);
19432 return std::distance(Range
.begin(), I
);
19435 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
19436 // operations. If the types of the vectors we're extracting from allow it,
19437 // turn this into a vector_shuffle node.
19438 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
19440 EVT VT
= N
->getValueType(0);
19442 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
19443 if (!isTypeLegal(VT
))
19446 if (SDValue V
= reduceBuildVecToShuffleWithZero(N
, DAG
))
19449 // May only combine to shuffle after legalize if shuffle is legal.
19450 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
19453 bool UsesZeroVector
= false;
19454 unsigned NumElems
= N
->getNumOperands();
19456 // Record, for each element of the newly built vector, which input vector
19457 // that element comes from. -1 stands for undef, 0 for the zero vector,
19458 // and positive values for the input vectors.
19459 // VectorMask maps each element to its vector number, and VecIn maps vector
19460 // numbers to their initial SDValues.
19462 SmallVector
<int, 8> VectorMask(NumElems
, -1);
19463 SmallVector
<SDValue
, 8> VecIn
;
19464 VecIn
.push_back(SDValue());
19466 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19467 SDValue Op
= N
->getOperand(i
);
19472 // See if we can use a blend with a zero vector.
19473 // TODO: Should we generalize this to a blend with an arbitrary constant
19475 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
19476 UsesZeroVector
= true;
19481 // Not an undef or zero. If the input is something other than an
19482 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
19483 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
19484 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
19486 SDValue ExtractedFromVec
= Op
.getOperand(0);
19488 if (ExtractedFromVec
.getValueType().isScalableVector())
19491 const APInt
&ExtractIdx
= Op
.getConstantOperandAPInt(1);
19492 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
19495 // All inputs must have the same element type as the output.
19496 if (VT
.getVectorElementType() !=
19497 ExtractedFromVec
.getValueType().getVectorElementType())
19500 // Have we seen this input vector before?
19501 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
19502 // a map back from SDValues to numbers isn't worth it.
19503 int Idx
= getFirstIndexOf(VecIn
, ExtractedFromVec
);
19504 if (Idx
== -1) { // A new source vector?
19505 Idx
= VecIn
.size();
19506 VecIn
.push_back(ExtractedFromVec
);
19509 VectorMask
[i
] = Idx
;
19512 // If we didn't find at least one input vector, bail out.
19513 if (VecIn
.size() < 2)
19516 // If all the Operands of BUILD_VECTOR extract from same
19517 // vector, then split the vector efficiently based on the maximum
19518 // vector access index and adjust the VectorMask and
19519 // VecIn accordingly.
19520 bool DidSplitVec
= false;
19521 if (VecIn
.size() == 2) {
19522 unsigned MaxIndex
= 0;
19523 unsigned NearestPow2
= 0;
19524 SDValue Vec
= VecIn
.back();
19525 EVT InVT
= Vec
.getValueType();
19526 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
19528 for (unsigned i
= 0; i
< NumElems
; i
++) {
19529 if (VectorMask
[i
] <= 0)
19531 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
19532 IndexVec
[i
] = Index
;
19533 MaxIndex
= std::max(MaxIndex
, Index
);
19536 NearestPow2
= PowerOf2Ceil(MaxIndex
);
19537 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
19538 NumElems
* 2 < NearestPow2
) {
19539 unsigned SplitSize
= NearestPow2
/ 2;
19540 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
19541 InVT
.getVectorElementType(), SplitSize
);
19542 if (TLI
.isTypeLegal(SplitVT
) &&
19543 SplitSize
+ SplitVT
.getVectorNumElements() <=
19544 InVT
.getVectorNumElements()) {
19545 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19546 DAG
.getVectorIdxConstant(SplitSize
, DL
));
19547 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
19548 DAG
.getVectorIdxConstant(0, DL
));
19550 VecIn
.push_back(VecIn1
);
19551 VecIn
.push_back(VecIn2
);
19552 DidSplitVec
= true;
19554 for (unsigned i
= 0; i
< NumElems
; i
++) {
19555 if (VectorMask
[i
] <= 0)
19557 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
19563 // Sort input vectors by decreasing vector element count,
19564 // while preserving the relative order of equally-sized vectors.
19565 // Note that we keep the first "implicit zero vector as-is.
19566 SmallVector
<SDValue
, 8> SortedVecIn(VecIn
);
19567 llvm::stable_sort(MutableArrayRef
<SDValue
>(SortedVecIn
).drop_front(),
19568 [](const SDValue
&a
, const SDValue
&b
) {
19569 return a
.getValueType().getVectorNumElements() >
19570 b
.getValueType().getVectorNumElements();
19573 // We now also need to rebuild the VectorMask, because it referenced element
19574 // order in VecIn, and we just sorted them.
19575 for (int &SourceVectorIndex
: VectorMask
) {
19576 if (SourceVectorIndex
<= 0)
19578 unsigned Idx
= getFirstIndexOf(SortedVecIn
, VecIn
[SourceVectorIndex
]);
19579 assert(Idx
> 0 && Idx
< SortedVecIn
.size() &&
19580 VecIn
[SourceVectorIndex
] == SortedVecIn
[Idx
] && "Remapping failure");
19581 SourceVectorIndex
= Idx
;
19584 VecIn
= std::move(SortedVecIn
);
19586 // TODO: Should this fire if some of the input vectors has illegal type (like
19587 // it does now), or should we let legalization run its course first?
19590 // Take pairs of vectors, and shuffle them so that the result has elements
19591 // from these vectors in the correct places.
19592 // For example, given:
19593 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
19594 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
19595 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
19596 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
19597 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
19598 // We will generate:
19599 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
19600 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
19601 SmallVector
<SDValue
, 4> Shuffles
;
19602 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
19603 unsigned LeftIdx
= 2 * In
+ 1;
19604 SDValue VecLeft
= VecIn
[LeftIdx
];
19606 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
19608 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
19609 VecRight
, LeftIdx
, DidSplitVec
))
19610 Shuffles
.push_back(Shuffle
);
19615 // If we need the zero vector as an "ingredient" in the blend tree, add it
19616 // to the list of shuffles.
19617 if (UsesZeroVector
)
19618 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
19619 : DAG
.getConstantFP(0.0, DL
, VT
));
19621 // If we only have one shuffle, we're done.
19622 if (Shuffles
.size() == 1)
19623 return Shuffles
[0];
19625 // Update the vector mask to point to the post-shuffle vectors.
19626 for (int &Vec
: VectorMask
)
19628 Vec
= Shuffles
.size() - 1;
19630 Vec
= (Vec
- 1) / 2;
19632 // More than one shuffle. Generate a binary tree of blends, e.g. if from
19633 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
19635 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
19636 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
19637 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
19638 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
19639 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
19640 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
19641 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
19643 // Make sure the initial size of the shuffle list is even.
19644 if (Shuffles
.size() % 2)
19645 Shuffles
.push_back(DAG
.getUNDEF(VT
));
19647 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
19649 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
19652 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
19654 int Right
= 2 * In
+ 1;
19655 SmallVector
<int, 8> Mask(NumElems
, -1);
19656 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
19657 if (VectorMask
[i
] == Left
) {
19659 VectorMask
[i
] = In
;
19660 } else if (VectorMask
[i
] == Right
) {
19661 Mask
[i
] = i
+ NumElems
;
19662 VectorMask
[i
] = In
;
19667 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
19670 return Shuffles
[0];
19673 // Try to turn a build vector of zero extends of extract vector elts into a
19674 // a vector zero extend and possibly an extract subvector.
19675 // TODO: Support sign extend?
19676 // TODO: Allow undef elements?
19677 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
19678 if (LegalOperations
)
19681 EVT VT
= N
->getValueType(0);
19683 bool FoundZeroExtend
= false;
19684 SDValue Op0
= N
->getOperand(0);
19685 auto checkElem
= [&](SDValue Op
) -> int64_t {
19686 unsigned Opc
= Op
.getOpcode();
19687 FoundZeroExtend
|= (Opc
== ISD::ZERO_EXTEND
);
19688 if ((Opc
== ISD::ZERO_EXTEND
|| Opc
== ISD::ANY_EXTEND
) &&
19689 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
19690 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
19691 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
19692 return C
->getZExtValue();
19696 // Make sure the first element matches
19697 // (zext (extract_vector_elt X, C))
19698 int64_t Offset
= checkElem(Op0
);
19702 unsigned NumElems
= N
->getNumOperands();
19703 SDValue In
= Op0
.getOperand(0).getOperand(0);
19704 EVT InSVT
= In
.getValueType().getScalarType();
19705 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
19707 // Don't create an illegal input type after type legalization.
19708 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
19711 // Ensure all the elements come from the same vector and are adjacent.
19712 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
19713 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
19718 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
19719 Op0
.getOperand(0).getOperand(1));
19720 return DAG
.getNode(FoundZeroExtend
? ISD::ZERO_EXTEND
: ISD::ANY_EXTEND
, DL
,
19724 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
19725 EVT VT
= N
->getValueType(0);
19727 // A vector built entirely of undefs is undef.
19728 if (ISD::allOperandsUndef(N
))
19729 return DAG
.getUNDEF(VT
);
19731 // If this is a splat of a bitcast from another vector, change to a
19734 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
19735 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
19737 // If X is a build_vector itself, the concat can become a larger build_vector.
19738 // TODO: Maybe this is useful for non-splat too?
19739 if (!LegalOperations
) {
19740 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
19741 Splat
= peekThroughBitcasts(Splat
);
19742 EVT SrcVT
= Splat
.getValueType();
19743 if (SrcVT
.isVector()) {
19744 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
19745 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
19746 SrcVT
.getVectorElementType(), NumElts
);
19747 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
19748 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
19749 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
19751 return DAG
.getBitcast(VT
, Concat
);
19757 // Check if we can express BUILD VECTOR via subvector extract.
19758 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
19759 SDValue Op0
= N
->getOperand(0);
19760 auto checkElem
= [&](SDValue Op
) -> uint64_t {
19761 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
19762 (Op0
.getOperand(0) == Op
.getOperand(0)))
19763 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
19764 return CNode
->getZExtValue();
19768 int Offset
= checkElem(Op0
);
19769 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
19770 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
19776 if ((Offset
== 0) &&
19777 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
19778 return Op0
.getOperand(0);
19779 if ((Offset
!= -1) &&
19780 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
19781 0)) // IDX must be multiple of output size.
19782 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
19783 Op0
.getOperand(0), Op0
.getOperand(1));
19786 if (SDValue V
= convertBuildVecZextToZext(N
))
19789 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
19792 if (SDValue V
= reduceBuildVecTruncToBitCast(N
))
19795 if (SDValue V
= reduceBuildVecToShuffle(N
))
19798 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
19799 // Do this late as some of the above may replace the splat.
19800 if (TLI
.getOperationAction(ISD::SPLAT_VECTOR
, VT
) != TargetLowering::Expand
)
19801 if (SDValue V
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
19802 assert(!V
.isUndef() && "Splat of undef should have been handled earlier");
19803 return DAG
.getNode(ISD::SPLAT_VECTOR
, SDLoc(N
), VT
, V
);
19809 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
19810 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19811 EVT OpVT
= N
->getOperand(0).getValueType();
19813 // If the operands are legal vectors, leave them alone.
19814 if (TLI
.isTypeLegal(OpVT
))
19818 EVT VT
= N
->getValueType(0);
19819 SmallVector
<SDValue
, 8> Ops
;
19821 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
19822 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
19824 // Keep track of what we encounter.
19825 bool AnyInteger
= false;
19826 bool AnyFP
= false;
19827 for (const SDValue
&Op
: N
->ops()) {
19828 if (ISD::BITCAST
== Op
.getOpcode() &&
19829 !Op
.getOperand(0).getValueType().isVector())
19830 Ops
.push_back(Op
.getOperand(0));
19831 else if (ISD::UNDEF
== Op
.getOpcode())
19832 Ops
.push_back(ScalarUndef
);
19836 // Note whether we encounter an integer or floating point scalar.
19837 // If it's neither, bail out, it could be something weird like x86mmx.
19838 EVT LastOpVT
= Ops
.back().getValueType();
19839 if (LastOpVT
.isFloatingPoint())
19841 else if (LastOpVT
.isInteger())
19847 // If any of the operands is a floating point scalar bitcast to a vector,
19848 // use floating point types throughout, and bitcast everything.
19849 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
19851 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
19852 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
19854 for (SDValue
&Op
: Ops
) {
19855 if (Op
.getValueType() == SVT
)
19860 Op
= DAG
.getBitcast(SVT
, Op
);
19865 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
19866 VT
.getSizeInBits() / SVT
.getSizeInBits());
19867 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
19870 // Attempt to merge nested concat_vectors/undefs.
19871 // Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
19872 // --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
19873 static SDValue
combineConcatVectorOfConcatVectors(SDNode
*N
,
19874 SelectionDAG
&DAG
) {
19875 EVT VT
= N
->getValueType(0);
19877 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
19879 SDValue FirstConcat
;
19880 for (const SDValue
&Op
: N
->ops()) {
19883 if (Op
.getOpcode() != ISD::CONCAT_VECTORS
)
19885 if (!FirstConcat
) {
19886 SubVT
= Op
.getOperand(0).getValueType();
19887 if (!DAG
.getTargetLoweringInfo().isTypeLegal(SubVT
))
19892 if (SubVT
!= Op
.getOperand(0).getValueType())
19895 assert(FirstConcat
&& "Concat of all-undefs found");
19897 SmallVector
<SDValue
> ConcatOps
;
19898 for (const SDValue
&Op
: N
->ops()) {
19899 if (Op
.isUndef()) {
19900 ConcatOps
.append(FirstConcat
->getNumOperands(), DAG
.getUNDEF(SubVT
));
19903 ConcatOps
.append(Op
->op_begin(), Op
->op_end());
19905 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, ConcatOps
);
19908 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
19909 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
19910 // most two distinct vectors the same size as the result, attempt to turn this
19911 // into a legal shuffle.
19912 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
19913 EVT VT
= N
->getValueType(0);
19914 EVT OpVT
= N
->getOperand(0).getValueType();
19916 // We currently can't generate an appropriate shuffle for a scalable vector.
19917 if (VT
.isScalableVector())
19920 int NumElts
= VT
.getVectorNumElements();
19921 int NumOpElts
= OpVT
.getVectorNumElements();
19923 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
19924 SmallVector
<int, 8> Mask
;
19926 for (SDValue Op
: N
->ops()) {
19927 Op
= peekThroughBitcasts(Op
);
19929 // UNDEF nodes convert to UNDEF shuffle mask values.
19930 if (Op
.isUndef()) {
19931 Mask
.append((unsigned)NumOpElts
, -1);
19935 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
19938 // What vector are we extracting the subvector from and at what index?
19939 SDValue ExtVec
= Op
.getOperand(0);
19940 int ExtIdx
= Op
.getConstantOperandVal(1);
19942 // We want the EVT of the original extraction to correctly scale the
19943 // extraction index.
19944 EVT ExtVT
= ExtVec
.getValueType();
19945 ExtVec
= peekThroughBitcasts(ExtVec
);
19947 // UNDEF nodes convert to UNDEF shuffle mask values.
19948 if (ExtVec
.isUndef()) {
19949 Mask
.append((unsigned)NumOpElts
, -1);
19953 // Ensure that we are extracting a subvector from a vector the same
19954 // size as the result.
19955 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
19958 // Scale the subvector index to account for any bitcast.
19959 int NumExtElts
= ExtVT
.getVectorNumElements();
19960 if (0 == (NumExtElts
% NumElts
))
19961 ExtIdx
/= (NumExtElts
/ NumElts
);
19962 else if (0 == (NumElts
% NumExtElts
))
19963 ExtIdx
*= (NumElts
/ NumExtElts
);
19967 // At most we can reference 2 inputs in the final shuffle.
19968 if (SV0
.isUndef() || SV0
== ExtVec
) {
19970 for (int i
= 0; i
!= NumOpElts
; ++i
)
19971 Mask
.push_back(i
+ ExtIdx
);
19972 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
19974 for (int i
= 0; i
!= NumOpElts
; ++i
)
19975 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
19981 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
19982 return TLI
.buildLegalVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
19983 DAG
.getBitcast(VT
, SV1
), Mask
, DAG
);
19986 static SDValue
combineConcatVectorOfCasts(SDNode
*N
, SelectionDAG
&DAG
) {
19987 unsigned CastOpcode
= N
->getOperand(0).getOpcode();
19988 switch (CastOpcode
) {
19989 case ISD::SINT_TO_FP
:
19990 case ISD::UINT_TO_FP
:
19991 case ISD::FP_TO_SINT
:
19992 case ISD::FP_TO_UINT
:
19993 // TODO: Allow more opcodes?
19994 // case ISD::BITCAST:
19995 // case ISD::TRUNCATE:
19996 // case ISD::ZERO_EXTEND:
19997 // case ISD::SIGN_EXTEND:
19998 // case ISD::FP_EXTEND:
20004 EVT SrcVT
= N
->getOperand(0).getOperand(0).getValueType();
20005 if (!SrcVT
.isVector())
20008 // All operands of the concat must be the same kind of cast from the same
20010 SmallVector
<SDValue
, 4> SrcOps
;
20011 for (SDValue Op
: N
->ops()) {
20012 if (Op
.getOpcode() != CastOpcode
|| !Op
.hasOneUse() ||
20013 Op
.getOperand(0).getValueType() != SrcVT
)
20015 SrcOps
.push_back(Op
.getOperand(0));
20018 // The wider cast must be supported by the target. This is unusual because
20019 // the operation support type parameter depends on the opcode. In addition,
20020 // check the other type in the cast to make sure this is really legal.
20021 EVT VT
= N
->getValueType(0);
20022 EVT SrcEltVT
= SrcVT
.getVectorElementType();
20023 ElementCount NumElts
= SrcVT
.getVectorElementCount() * N
->getNumOperands();
20024 EVT ConcatSrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcEltVT
, NumElts
);
20025 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20026 switch (CastOpcode
) {
20027 case ISD::SINT_TO_FP
:
20028 case ISD::UINT_TO_FP
:
20029 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, ConcatSrcVT
) ||
20030 !TLI
.isTypeLegal(VT
))
20033 case ISD::FP_TO_SINT
:
20034 case ISD::FP_TO_UINT
:
20035 if (!TLI
.isOperationLegalOrCustom(CastOpcode
, VT
) ||
20036 !TLI
.isTypeLegal(ConcatSrcVT
))
20040 llvm_unreachable("Unexpected cast opcode");
20043 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
20045 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ConcatSrcVT
, SrcOps
);
20046 return DAG
.getNode(CastOpcode
, DL
, VT
, NewConcat
);
20049 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
20050 // If we only have one input vector, we don't need to do any concatenation.
20051 if (N
->getNumOperands() == 1)
20052 return N
->getOperand(0);
20054 // Check if all of the operands are undefs.
20055 EVT VT
= N
->getValueType(0);
20056 if (ISD::allOperandsUndef(N
))
20057 return DAG
.getUNDEF(VT
);
20059 // Optimize concat_vectors where all but the first of the vectors are undef.
20060 if (all_of(drop_begin(N
->ops()),
20061 [](const SDValue
&Op
) { return Op
.isUndef(); })) {
20062 SDValue In
= N
->getOperand(0);
20063 assert(In
.getValueType().isVector() && "Must concat vectors");
20065 // If the input is a concat_vectors, just make a larger concat by padding
20066 // with smaller undefs.
20067 if (In
.getOpcode() == ISD::CONCAT_VECTORS
&& In
.hasOneUse()) {
20068 unsigned NumOps
= N
->getNumOperands() * In
.getNumOperands();
20069 SmallVector
<SDValue
, 4> Ops(In
->op_begin(), In
->op_end());
20070 Ops
.resize(NumOps
, DAG
.getUNDEF(Ops
[0].getValueType()));
20071 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
20074 SDValue Scalar
= peekThroughOneUseBitcasts(In
);
20076 // concat_vectors(scalar_to_vector(scalar), undef) ->
20077 // scalar_to_vector(scalar)
20078 if (!LegalOperations
&& Scalar
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
20079 Scalar
.hasOneUse()) {
20080 EVT SVT
= Scalar
.getValueType().getVectorElementType();
20081 if (SVT
== Scalar
.getOperand(0).getValueType())
20082 Scalar
= Scalar
.getOperand(0);
20085 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
20086 if (!Scalar
.getValueType().isVector()) {
20087 // If the bitcast type isn't legal, it might be a trunc of a legal type;
20088 // look through the trunc so we can still do the transform:
20089 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
20090 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
20091 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
20092 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
20093 Scalar
= Scalar
->getOperand(0);
20095 EVT SclTy
= Scalar
.getValueType();
20097 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
20100 // Bail out if the vector size is not a multiple of the scalar size.
20101 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
20104 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
20105 if (VNTNumElms
< 2)
20108 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
20109 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
20112 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
20113 return DAG
.getBitcast(VT
, Res
);
20117 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
20118 // We have already tested above for an UNDEF only concatenation.
20119 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
20120 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
20121 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
20122 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
20124 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
20125 SmallVector
<SDValue
, 8> Opnds
;
20126 EVT SVT
= VT
.getScalarType();
20129 if (!SVT
.isFloatingPoint()) {
20130 // If BUILD_VECTOR are from built from integer, they may have different
20131 // operand types. Get the smallest type and truncate all operands to it.
20132 bool FoundMinVT
= false;
20133 for (const SDValue
&Op
: N
->ops())
20134 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20135 EVT OpSVT
= Op
.getOperand(0).getValueType();
20136 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
20139 assert(FoundMinVT
&& "Concat vector type mismatch");
20142 for (const SDValue
&Op
: N
->ops()) {
20143 EVT OpVT
= Op
.getValueType();
20144 unsigned NumElts
= OpVT
.getVectorNumElements();
20146 if (ISD::UNDEF
== Op
.getOpcode())
20147 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
20149 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
20150 if (SVT
.isFloatingPoint()) {
20151 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
20152 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
20154 for (unsigned i
= 0; i
!= NumElts
; ++i
)
20156 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
20161 assert(VT
.getVectorNumElements() == Opnds
.size() &&
20162 "Concat vector type mismatch");
20163 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
20166 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
20167 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
20168 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
20171 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
)) {
20172 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
20173 if (SDValue V
= combineConcatVectorOfConcatVectors(N
, DAG
))
20176 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
20177 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
20181 if (SDValue V
= combineConcatVectorOfCasts(N
, DAG
))
20184 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
20185 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
20186 // operands and look for a CONCAT operations that place the incoming vectors
20187 // at the exact same location.
20189 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
20190 SDValue SingleSource
= SDValue();
20191 unsigned PartNumElem
=
20192 N
->getOperand(0).getValueType().getVectorMinNumElements();
20194 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
20195 SDValue Op
= N
->getOperand(i
);
20200 // Check if this is the identity extract:
20201 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
20204 // Find the single incoming vector for the extract_subvector.
20205 if (SingleSource
.getNode()) {
20206 if (Op
.getOperand(0) != SingleSource
)
20209 SingleSource
= Op
.getOperand(0);
20211 // Check the source type is the same as the type of the result.
20212 // If not, this concat may extend the vector, so we can not
20213 // optimize it away.
20214 if (SingleSource
.getValueType() != N
->getValueType(0))
20218 // Check that we are reading from the identity index.
20219 unsigned IdentityIndex
= i
* PartNumElem
;
20220 if (Op
.getConstantOperandAPInt(1) != IdentityIndex
)
20224 if (SingleSource
.getNode())
20225 return SingleSource
;
20230 // Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
20231 // if the subvector can be sourced for free.
20232 static SDValue
getSubVectorSrc(SDValue V
, SDValue Index
, EVT SubVT
) {
20233 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
20234 V
.getOperand(1).getValueType() == SubVT
&& V
.getOperand(2) == Index
) {
20235 return V
.getOperand(1);
20237 auto *IndexC
= dyn_cast
<ConstantSDNode
>(Index
);
20238 if (IndexC
&& V
.getOpcode() == ISD::CONCAT_VECTORS
&&
20239 V
.getOperand(0).getValueType() == SubVT
&&
20240 (IndexC
->getZExtValue() % SubVT
.getVectorMinNumElements()) == 0) {
20241 uint64_t SubIdx
= IndexC
->getZExtValue() / SubVT
.getVectorMinNumElements();
20242 return V
.getOperand(SubIdx
);
20247 static SDValue
narrowInsertExtractVectorBinOp(SDNode
*Extract
,
20249 bool LegalOperations
) {
20250 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20251 SDValue BinOp
= Extract
->getOperand(0);
20252 unsigned BinOpcode
= BinOp
.getOpcode();
20253 if (!TLI
.isBinOp(BinOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20256 EVT VecVT
= BinOp
.getValueType();
20257 SDValue Bop0
= BinOp
.getOperand(0), Bop1
= BinOp
.getOperand(1);
20258 if (VecVT
!= Bop0
.getValueType() || VecVT
!= Bop1
.getValueType())
20261 SDValue Index
= Extract
->getOperand(1);
20262 EVT SubVT
= Extract
->getValueType(0);
20263 if (!TLI
.isOperationLegalOrCustom(BinOpcode
, SubVT
, LegalOperations
))
20266 SDValue Sub0
= getSubVectorSrc(Bop0
, Index
, SubVT
);
20267 SDValue Sub1
= getSubVectorSrc(Bop1
, Index
, SubVT
);
20269 // TODO: We could handle the case where only 1 operand is being inserted by
20270 // creating an extract of the other operand, but that requires checking
20271 // number of uses and/or costs.
20272 if (!Sub0
|| !Sub1
)
20275 // We are inserting both operands of the wide binop only to extract back
20276 // to the narrow vector size. Eliminate all of the insert/extract:
20277 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
20278 return DAG
.getNode(BinOpcode
, SDLoc(Extract
), SubVT
, Sub0
, Sub1
,
20279 BinOp
->getFlags());
20282 /// If we are extracting a subvector produced by a wide binary operator try
20283 /// to use a narrow binary operator and/or avoid concatenation and extraction.
20284 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
,
20285 bool LegalOperations
) {
20286 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
20287 // some of these bailouts with other transforms.
20289 if (SDValue V
= narrowInsertExtractVectorBinOp(Extract
, DAG
, LegalOperations
))
20292 // The extract index must be a constant, so we can map it to a concat operand.
20293 auto *ExtractIndexC
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
20294 if (!ExtractIndexC
)
20297 // We are looking for an optionally bitcasted wide vector binary operator
20298 // feeding an extract subvector.
20299 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20300 SDValue BinOp
= peekThroughBitcasts(Extract
->getOperand(0));
20301 unsigned BOpcode
= BinOp
.getOpcode();
20302 if (!TLI
.isBinOp(BOpcode
) || BinOp
.getNode()->getNumValues() != 1)
20305 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
20306 // reduced to the unary fneg when it is visited, and we probably want to deal
20307 // with fneg in a target-specific way.
20308 if (BOpcode
== ISD::FSUB
) {
20309 auto *C
= isConstOrConstSplatFP(BinOp
.getOperand(0), /*AllowUndefs*/ true);
20310 if (C
&& C
->getValueAPF().isNegZero())
20314 // The binop must be a vector type, so we can extract some fraction of it.
20315 EVT WideBVT
= BinOp
.getValueType();
20316 // The optimisations below currently assume we are dealing with fixed length
20317 // vectors. It is possible to add support for scalable vectors, but at the
20318 // moment we've done no analysis to prove whether they are profitable or not.
20319 if (!WideBVT
.isFixedLengthVector())
20322 EVT VT
= Extract
->getValueType(0);
20323 unsigned ExtractIndex
= ExtractIndexC
->getZExtValue();
20324 assert(ExtractIndex
% VT
.getVectorNumElements() == 0 &&
20325 "Extract index is not a multiple of the vector length.");
20327 // Bail out if this is not a proper multiple width extraction.
20328 unsigned WideWidth
= WideBVT
.getSizeInBits();
20329 unsigned NarrowWidth
= VT
.getSizeInBits();
20330 if (WideWidth
% NarrowWidth
!= 0)
20333 // Bail out if we are extracting a fraction of a single operation. This can
20334 // occur because we potentially looked through a bitcast of the binop.
20335 unsigned NarrowingRatio
= WideWidth
/ NarrowWidth
;
20336 unsigned WideNumElts
= WideBVT
.getVectorNumElements();
20337 if (WideNumElts
% NarrowingRatio
!= 0)
20340 // Bail out if the target does not support a narrower version of the binop.
20341 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
20342 WideNumElts
/ NarrowingRatio
);
20343 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
20346 // If extraction is cheap, we don't need to look at the binop operands
20347 // for concat ops. The narrow binop alone makes this transform profitable.
20348 // We can't just reuse the original extract index operand because we may have
20350 unsigned ConcatOpNum
= ExtractIndex
/ VT
.getVectorNumElements();
20351 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
20352 if (TLI
.isExtractSubvectorCheap(NarrowBVT
, WideBVT
, ExtBOIdx
) &&
20353 BinOp
.hasOneUse() && Extract
->getOperand(0)->hasOneUse()) {
20354 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
20356 SDValue NewExtIndex
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20357 SDValue X
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20358 BinOp
.getOperand(0), NewExtIndex
);
20359 SDValue Y
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20360 BinOp
.getOperand(1), NewExtIndex
);
20361 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
,
20362 BinOp
.getNode()->getFlags());
20363 return DAG
.getBitcast(VT
, NarrowBinOp
);
20366 // Only handle the case where we are doubling and then halving. A larger ratio
20367 // may require more than two narrow binops to replace the wide binop.
20368 if (NarrowingRatio
!= 2)
20371 // TODO: The motivating case for this transform is an x86 AVX1 target. That
20372 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
20373 // flavors, but no other 256-bit integer support. This could be extended to
20374 // handle any binop, but that may require fixing/adding other folds to avoid
20375 // codegen regressions.
20376 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
20379 // We need at least one concatenation operation of a binop operand to make
20380 // this transform worthwhile. The concat must double the input vector sizes.
20381 auto GetSubVector
= [ConcatOpNum
](SDValue V
) -> SDValue
{
20382 if (V
.getOpcode() == ISD::CONCAT_VECTORS
&& V
.getNumOperands() == 2)
20383 return V
.getOperand(ConcatOpNum
);
20386 SDValue SubVecL
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(0)));
20387 SDValue SubVecR
= GetSubVector(peekThroughBitcasts(BinOp
.getOperand(1)));
20389 if (SubVecL
|| SubVecR
) {
20390 // If a binop operand was not the result of a concat, we must extract a
20391 // half-sized operand for our new narrow binop:
20392 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
20393 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
20394 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
20396 SDValue IndexC
= DAG
.getVectorIdxConstant(ExtBOIdx
, DL
);
20397 SDValue X
= SubVecL
? DAG
.getBitcast(NarrowBVT
, SubVecL
)
20398 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20399 BinOp
.getOperand(0), IndexC
);
20401 SDValue Y
= SubVecR
? DAG
.getBitcast(NarrowBVT
, SubVecR
)
20402 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
20403 BinOp
.getOperand(1), IndexC
);
20405 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
20406 return DAG
.getBitcast(VT
, NarrowBinOp
);
20412 /// If we are extracting a subvector from a wide vector load, convert to a
20413 /// narrow load to eliminate the extraction:
20414 /// (extract_subvector (load wide vector)) --> (load narrow vector)
20415 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
20416 // TODO: Add support for big-endian. The offset calculation must be adjusted.
20417 if (DAG
.getDataLayout().isBigEndian())
20420 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
20421 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
20422 if (!Ld
|| Ld
->getExtensionType() || !Ld
->isSimple() ||
20426 // Allow targets to opt-out.
20427 EVT VT
= Extract
->getValueType(0);
20429 // We can only create byte sized loads.
20430 if (!VT
.isByteSized())
20433 unsigned Index
= ExtIdx
->getZExtValue();
20434 unsigned NumElts
= VT
.getVectorMinNumElements();
20436 // The definition of EXTRACT_SUBVECTOR states that the index must be a
20437 // multiple of the minimum number of elements in the result type.
20438 assert(Index
% NumElts
== 0 && "The extract subvector index is not a "
20439 "multiple of the result's element count");
20441 // It's fine to use TypeSize here as we know the offset will not be negative.
20442 TypeSize Offset
= VT
.getStoreSize() * (Index
/ NumElts
);
20444 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20445 if (!TLI
.shouldReduceLoadWidth(Ld
, Ld
->getExtensionType(), VT
))
20448 // The narrow load will be offset from the base address of the old load if
20449 // we are extracting from something besides index 0 (little-endian).
20452 // TODO: Use "BaseIndexOffset" to make this more effective.
20453 SDValue NewAddr
= DAG
.getMemBasePlusOffset(Ld
->getBasePtr(), Offset
, DL
);
20455 uint64_t StoreSize
= MemoryLocation::getSizeOrUnknown(VT
.getStoreSize());
20456 MachineFunction
&MF
= DAG
.getMachineFunction();
20457 MachineMemOperand
*MMO
;
20458 if (Offset
.isScalable()) {
20459 MachinePointerInfo MPI
=
20460 MachinePointerInfo(Ld
->getPointerInfo().getAddrSpace());
20461 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), MPI
, StoreSize
);
20463 MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
.getFixedSize(),
20466 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
20467 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
20471 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
*N
) {
20472 EVT NVT
= N
->getValueType(0);
20473 SDValue V
= N
->getOperand(0);
20474 uint64_t ExtIdx
= N
->getConstantOperandVal(1);
20476 // Extract from UNDEF is UNDEF.
20478 return DAG
.getUNDEF(NVT
);
20480 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
20481 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
20484 // Combine an extract of an extract into a single extract_subvector.
20485 // ext (ext X, C), 0 --> ext X, C
20486 if (ExtIdx
== 0 && V
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&& V
.hasOneUse()) {
20487 if (TLI
.isExtractSubvectorCheap(NVT
, V
.getOperand(0).getValueType(),
20488 V
.getConstantOperandVal(1)) &&
20489 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NVT
)) {
20490 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
, V
.getOperand(0),
20495 // Try to move vector bitcast after extract_subv by scaling extraction index:
20496 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
20497 if (V
.getOpcode() == ISD::BITCAST
&&
20498 V
.getOperand(0).getValueType().isVector() &&
20499 (!LegalOperations
|| TLI
.isOperationLegal(ISD::BITCAST
, NVT
))) {
20500 SDValue SrcOp
= V
.getOperand(0);
20501 EVT SrcVT
= SrcOp
.getValueType();
20502 unsigned SrcNumElts
= SrcVT
.getVectorMinNumElements();
20503 unsigned DestNumElts
= V
.getValueType().getVectorMinNumElements();
20504 if ((SrcNumElts
% DestNumElts
) == 0) {
20505 unsigned SrcDestRatio
= SrcNumElts
/ DestNumElts
;
20506 ElementCount NewExtEC
= NVT
.getVectorElementCount() * SrcDestRatio
;
20507 EVT NewExtVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
20509 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20511 SDValue NewIndex
= DAG
.getVectorIdxConstant(ExtIdx
* SrcDestRatio
, DL
);
20512 SDValue NewExtract
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20513 V
.getOperand(0), NewIndex
);
20514 return DAG
.getBitcast(NVT
, NewExtract
);
20517 if ((DestNumElts
% SrcNumElts
) == 0) {
20518 unsigned DestSrcRatio
= DestNumElts
/ SrcNumElts
;
20519 if (NVT
.getVectorElementCount().isKnownMultipleOf(DestSrcRatio
)) {
20520 ElementCount NewExtEC
=
20521 NVT
.getVectorElementCount().divideCoefficientBy(DestSrcRatio
);
20522 EVT ScalarVT
= SrcVT
.getScalarType();
20523 if ((ExtIdx
% DestSrcRatio
) == 0) {
20525 unsigned IndexValScaled
= ExtIdx
/ DestSrcRatio
;
20527 EVT::getVectorVT(*DAG
.getContext(), ScalarVT
, NewExtEC
);
20528 if (TLI
.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, NewExtVT
)) {
20529 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20530 SDValue NewExtract
=
20531 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewExtVT
,
20532 V
.getOperand(0), NewIndex
);
20533 return DAG
.getBitcast(NVT
, NewExtract
);
20535 if (NewExtEC
.isScalar() &&
20536 TLI
.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT
, ScalarVT
)) {
20537 SDValue NewIndex
= DAG
.getVectorIdxConstant(IndexValScaled
, DL
);
20538 SDValue NewExtract
=
20539 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarVT
,
20540 V
.getOperand(0), NewIndex
);
20541 return DAG
.getBitcast(NVT
, NewExtract
);
20548 if (V
.getOpcode() == ISD::CONCAT_VECTORS
) {
20549 unsigned ExtNumElts
= NVT
.getVectorMinNumElements();
20550 EVT ConcatSrcVT
= V
.getOperand(0).getValueType();
20551 assert(ConcatSrcVT
.getVectorElementType() == NVT
.getVectorElementType() &&
20552 "Concat and extract subvector do not change element type");
20553 assert((ExtIdx
% ExtNumElts
) == 0 &&
20554 "Extract index is not a multiple of the input vector length.");
20556 unsigned ConcatSrcNumElts
= ConcatSrcVT
.getVectorMinNumElements();
20557 unsigned ConcatOpIdx
= ExtIdx
/ ConcatSrcNumElts
;
20559 // If the concatenated source types match this extract, it's a direct
20561 // extract_subvec (concat V1, V2, ...), i --> Vi
20562 if (ConcatSrcNumElts
== ExtNumElts
)
20563 return V
.getOperand(ConcatOpIdx
);
20565 // If the concatenated source vectors are a multiple length of this extract,
20566 // then extract a fraction of one of those source vectors directly from a
20567 // concat operand. Example:
20568 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
20569 // v2i8 extract_subvec v8i8 Y, 6
20570 if (NVT
.isFixedLengthVector() && ConcatSrcNumElts
% ExtNumElts
== 0) {
20572 unsigned NewExtIdx
= ExtIdx
- ConcatOpIdx
* ConcatSrcNumElts
;
20573 assert(NewExtIdx
+ ExtNumElts
<= ConcatSrcNumElts
&&
20574 "Trying to extract from >1 concat operand?");
20575 assert(NewExtIdx
% ExtNumElts
== 0 &&
20576 "Extract index is not a multiple of the input vector length.");
20577 SDValue NewIndexC
= DAG
.getVectorIdxConstant(NewExtIdx
, DL
);
20578 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NVT
,
20579 V
.getOperand(ConcatOpIdx
), NewIndexC
);
20583 V
= peekThroughBitcasts(V
);
20585 // If the input is a build vector. Try to make a smaller build vector.
20586 if (V
.getOpcode() == ISD::BUILD_VECTOR
) {
20587 EVT InVT
= V
.getValueType();
20588 unsigned ExtractSize
= NVT
.getSizeInBits();
20589 unsigned EltSize
= InVT
.getScalarSizeInBits();
20590 // Only do this if we won't split any elements.
20591 if (ExtractSize
% EltSize
== 0) {
20592 unsigned NumElems
= ExtractSize
/ EltSize
;
20593 EVT EltVT
= InVT
.getVectorElementType();
20595 NumElems
== 1 ? EltVT
20596 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElems
);
20597 if ((Level
< AfterLegalizeDAG
||
20599 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
20600 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
20601 unsigned IdxVal
= (ExtIdx
* NVT
.getScalarSizeInBits()) / EltSize
;
20603 if (NumElems
== 1) {
20604 SDValue Src
= V
->getOperand(IdxVal
);
20605 if (EltVT
!= Src
.getValueType())
20606 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
20607 return DAG
.getBitcast(NVT
, Src
);
20610 // Extract the pieces from the original build_vector.
20611 SDValue BuildVec
= DAG
.getBuildVector(ExtractVT
, SDLoc(N
),
20612 V
->ops().slice(IdxVal
, NumElems
));
20613 return DAG
.getBitcast(NVT
, BuildVec
);
20618 if (V
.getOpcode() == ISD::INSERT_SUBVECTOR
) {
20619 // Handle only simple case where vector being inserted and vector
20620 // being extracted are of same size.
20621 EVT SmallVT
= V
.getOperand(1).getValueType();
20622 if (!NVT
.bitsEq(SmallVT
))
20626 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
20628 // indices are equal or bit offsets are equal => V1
20629 // otherwise => (extract_subvec V1, ExtIdx)
20630 uint64_t InsIdx
= V
.getConstantOperandVal(2);
20631 if (InsIdx
* SmallVT
.getScalarSizeInBits() ==
20632 ExtIdx
* NVT
.getScalarSizeInBits()) {
20633 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BITCAST
, NVT
))
20636 return DAG
.getBitcast(NVT
, V
.getOperand(1));
20638 return DAG
.getNode(
20639 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
20640 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
.getOperand(0)),
20644 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
, LegalOperations
))
20647 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
20648 return SDValue(N
, 0);
20653 /// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
20654 /// followed by concatenation. Narrow vector ops may have better performance
20655 /// than wide ops, and this can unlock further narrowing of other vector ops.
20656 /// Targets can invert this transform later if it is not profitable.
20657 static SDValue
foldShuffleOfConcatUndefs(ShuffleVectorSDNode
*Shuf
,
20658 SelectionDAG
&DAG
) {
20659 SDValue N0
= Shuf
->getOperand(0), N1
= Shuf
->getOperand(1);
20660 if (N0
.getOpcode() != ISD::CONCAT_VECTORS
|| N0
.getNumOperands() != 2 ||
20661 N1
.getOpcode() != ISD::CONCAT_VECTORS
|| N1
.getNumOperands() != 2 ||
20662 !N0
.getOperand(1).isUndef() || !N1
.getOperand(1).isUndef())
20665 // Split the wide shuffle mask into halves. Any mask element that is accessing
20666 // operand 1 is offset down to account for narrowing of the vectors.
20667 ArrayRef
<int> Mask
= Shuf
->getMask();
20668 EVT VT
= Shuf
->getValueType(0);
20669 unsigned NumElts
= VT
.getVectorNumElements();
20670 unsigned HalfNumElts
= NumElts
/ 2;
20671 SmallVector
<int, 16> Mask0(HalfNumElts
, -1);
20672 SmallVector
<int, 16> Mask1(HalfNumElts
, -1);
20673 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20676 // If we reference the upper (undef) subvector then the element is undef.
20677 if ((Mask
[i
] % NumElts
) >= HalfNumElts
)
20679 int M
= Mask
[i
] < (int)NumElts
? Mask
[i
] : Mask
[i
] - (int)HalfNumElts
;
20680 if (i
< HalfNumElts
)
20683 Mask1
[i
- HalfNumElts
] = M
;
20686 // Ask the target if this is a valid transform.
20687 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
20688 EVT HalfVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
20690 if (!TLI
.isShuffleMaskLegal(Mask0
, HalfVT
) ||
20691 !TLI
.isShuffleMaskLegal(Mask1
, HalfVT
))
20694 // shuffle (concat X, undef), (concat Y, undef), Mask -->
20695 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
20696 SDValue X
= N0
.getOperand(0), Y
= N1
.getOperand(0);
20698 SDValue Shuf0
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask0
);
20699 SDValue Shuf1
= DAG
.getVectorShuffle(HalfVT
, DL
, X
, Y
, Mask1
);
20700 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Shuf0
, Shuf1
);
20703 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
20704 // or turn a shuffle of a single concat into simpler shuffle then concat.
20705 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
20706 EVT VT
= N
->getValueType(0);
20707 unsigned NumElts
= VT
.getVectorNumElements();
20709 SDValue N0
= N
->getOperand(0);
20710 SDValue N1
= N
->getOperand(1);
20711 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
20712 ArrayRef
<int> Mask
= SVN
->getMask();
20714 SmallVector
<SDValue
, 4> Ops
;
20715 EVT ConcatVT
= N0
.getOperand(0).getValueType();
20716 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
20717 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
20719 auto IsUndefMaskElt
= [](int i
) { return i
== -1; };
20721 // Special case: shuffle(concat(A,B)) can be more efficiently represented
20722 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
20723 // half vector elements.
20724 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
20725 llvm::all_of(Mask
.slice(NumElemsPerConcat
, NumElemsPerConcat
),
20727 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0),
20729 Mask
.slice(0, NumElemsPerConcat
));
20730 N1
= DAG
.getUNDEF(ConcatVT
);
20731 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
20734 // Look at every vector that's inserted. We're looking for exact
20735 // subvector-sized copies from a concatenated vector
20736 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
20737 unsigned Begin
= I
* NumElemsPerConcat
;
20738 ArrayRef
<int> SubMask
= Mask
.slice(Begin
, NumElemsPerConcat
);
20740 // Make sure we're dealing with a copy.
20741 if (llvm::all_of(SubMask
, IsUndefMaskElt
)) {
20742 Ops
.push_back(DAG
.getUNDEF(ConcatVT
));
20747 for (int i
= 0; i
!= (int)NumElemsPerConcat
; ++i
) {
20748 if (IsUndefMaskElt(SubMask
[i
]))
20750 if ((SubMask
[i
] % (int)NumElemsPerConcat
) != i
)
20752 int EltOpIdx
= SubMask
[i
] / NumElemsPerConcat
;
20753 if (0 <= OpIdx
&& EltOpIdx
!= OpIdx
)
20757 assert(0 <= OpIdx
&& "Unknown concat_vectors op");
20759 if (OpIdx
< (int)N0
.getNumOperands())
20760 Ops
.push_back(N0
.getOperand(OpIdx
));
20762 Ops
.push_back(N1
.getOperand(OpIdx
- N0
.getNumOperands()));
20765 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
20768 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
20769 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
20771 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
20772 // a simplification in some sense, but it isn't appropriate in general: some
20773 // BUILD_VECTORs are substantially cheaper than others. The general case
20774 // of a BUILD_VECTOR requires inserting each element individually (or
20775 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
20776 // all constants is a single constant pool load. A BUILD_VECTOR where each
20777 // element is identical is a splat. A BUILD_VECTOR where most of the operands
20778 // are undef lowers to a small number of element insertions.
20780 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
20781 // We don't fold shuffles where one side is a non-zero constant, and we don't
20782 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
20783 // non-constant operands. This seems to work out reasonably well in practice.
20784 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
20786 const TargetLowering
&TLI
) {
20787 EVT VT
= SVN
->getValueType(0);
20788 unsigned NumElts
= VT
.getVectorNumElements();
20789 SDValue N0
= SVN
->getOperand(0);
20790 SDValue N1
= SVN
->getOperand(1);
20792 if (!N0
->hasOneUse())
20795 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
20796 // discussed above.
20797 if (!N1
.isUndef()) {
20798 if (!N1
->hasOneUse())
20801 bool N0AnyConst
= isAnyConstantBuildVector(N0
);
20802 bool N1AnyConst
= isAnyConstantBuildVector(N1
);
20803 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
20805 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
20809 // If both inputs are splats of the same value then we can safely merge this
20810 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
20811 bool IsSplat
= false;
20812 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
20813 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
20815 if (SDValue Splat0
= BV0
->getSplatValue())
20816 IsSplat
= (Splat0
== BV1
->getSplatValue());
20818 SmallVector
<SDValue
, 8> Ops
;
20819 SmallSet
<SDValue
, 16> DuplicateOps
;
20820 for (int M
: SVN
->getMask()) {
20821 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
20823 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
20824 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
20825 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
20826 Op
= S
.getOperand(Idx
);
20827 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
20828 SDValue Op0
= S
.getOperand(0);
20829 Op
= Idx
== 0 ? Op0
: DAG
.getUNDEF(Op0
.getValueType());
20831 // Operand can't be combined - bail out.
20836 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
20837 // generating a splat; semantically, this is fine, but it's likely to
20838 // generate low-quality code if the target can't reconstruct an appropriate
20840 if (!Op
.isUndef() && !isIntOrFPConstant(Op
))
20841 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
20847 // BUILD_VECTOR requires all inputs to be of the same type, find the
20848 // maximum type and extend them all.
20849 EVT SVT
= VT
.getScalarType();
20850 if (SVT
.isInteger())
20851 for (SDValue
&Op
: Ops
)
20852 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
20853 if (SVT
!= VT
.getScalarType())
20854 for (SDValue
&Op
: Ops
)
20855 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
20856 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
20857 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
20858 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
20861 // Match shuffles that can be converted to any_vector_extend_in_reg.
20862 // This is often generated during legalization.
20863 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
20864 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
20865 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
20867 const TargetLowering
&TLI
,
20868 bool LegalOperations
) {
20869 EVT VT
= SVN
->getValueType(0);
20870 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
20872 // TODO Add support for big-endian when we have a test case.
20873 if (!VT
.isInteger() || IsBigEndian
)
20876 unsigned NumElts
= VT
.getVectorNumElements();
20877 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
20878 ArrayRef
<int> Mask
= SVN
->getMask();
20879 SDValue N0
= SVN
->getOperand(0);
20881 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
20882 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
20883 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20886 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
20893 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
20894 // power-of-2 extensions as they are the most likely.
20895 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
20896 // Check for non power of 2 vector sizes
20897 if (NumElts
% Scale
!= 0)
20899 if (!isAnyExtend(Scale
))
20902 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
20903 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
20904 // Never create an illegal type. Only create unsupported operations if we
20905 // are pre-legalization.
20906 if (TLI
.isTypeLegal(OutVT
))
20907 if (!LegalOperations
||
20908 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
20909 return DAG
.getBitcast(VT
,
20910 DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
,
20911 SDLoc(SVN
), OutVT
, N0
));
20917 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
20918 // each source element of a large type into the lowest elements of a smaller
20919 // destination type. This is often generated during legalization.
20920 // If the source node itself was a '*_extend_vector_inreg' node then we should
20921 // then be able to remove it.
20922 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
20923 SelectionDAG
&DAG
) {
20924 EVT VT
= SVN
->getValueType(0);
20925 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
20927 // TODO Add support for big-endian when we have a test case.
20928 if (!VT
.isInteger() || IsBigEndian
)
20931 SDValue N0
= peekThroughBitcasts(SVN
->getOperand(0));
20933 unsigned Opcode
= N0
.getOpcode();
20934 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
20935 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
20936 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
20939 SDValue N00
= N0
.getOperand(0);
20940 ArrayRef
<int> Mask
= SVN
->getMask();
20941 unsigned NumElts
= VT
.getVectorNumElements();
20942 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
20943 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
20944 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
20946 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
20948 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
20950 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
20951 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
20952 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
20953 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
20954 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
20957 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
20964 // At the moment we just handle the case where we've truncated back to the
20965 // same size as before the extension.
20966 // TODO: handle more extension/truncation cases as cases arise.
20967 if (EltSizeInBits
!= ExtSrcSizeInBits
)
20970 // We can remove *extend_vector_inreg only if the truncation happens at
20971 // the same scale as the extension.
20972 if (isTruncate(ExtScale
))
20973 return DAG
.getBitcast(VT
, N00
);
20978 // Combine shuffles of splat-shuffles of the form:
20979 // shuffle (shuffle V, undef, splat-mask), undef, M
20980 // If splat-mask contains undef elements, we need to be careful about
20981 // introducing undef's in the folded mask which are not the result of composing
20982 // the masks of the shuffles.
20983 static SDValue
combineShuffleOfSplatVal(ShuffleVectorSDNode
*Shuf
,
20984 SelectionDAG
&DAG
) {
20985 if (!Shuf
->getOperand(1).isUndef())
20987 auto *Splat
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
20988 if (!Splat
|| !Splat
->isSplat())
20991 ArrayRef
<int> ShufMask
= Shuf
->getMask();
20992 ArrayRef
<int> SplatMask
= Splat
->getMask();
20993 assert(ShufMask
.size() == SplatMask
.size() && "Mask length mismatch");
20995 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
20996 // every undef mask element in the splat-shuffle has a corresponding undef
20997 // element in the user-shuffle's mask or if the composition of mask elements
20998 // would result in undef.
20999 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
21000 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
21001 // In this case it is not legal to simplify to the splat-shuffle because we
21002 // may be exposing the users of the shuffle an undef element at index 1
21003 // which was not there before the combine.
21004 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
21005 // In this case the composition of masks yields SplatMask, so it's ok to
21006 // simplify to the splat-shuffle.
21007 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
21008 // In this case the composed mask includes all undef elements of SplatMask
21009 // and in addition sets element zero to undef. It is safe to simplify to
21010 // the splat-shuffle.
21011 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
21012 ArrayRef
<int> SplatMask
) {
21013 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
21014 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
21015 SplatMask
[UserMask
[i
]] != -1)
21019 if (CanSimplifyToExistingSplat(ShufMask
, SplatMask
))
21020 return Shuf
->getOperand(0);
21022 // Create a new shuffle with a mask that is composed of the two shuffles'
21024 SmallVector
<int, 32> NewMask
;
21025 for (int Idx
: ShufMask
)
21026 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
21028 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
21029 Splat
->getOperand(0), Splat
->getOperand(1),
21033 /// Combine shuffle of shuffle of the form:
21034 /// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
21035 static SDValue
formSplatFromShuffles(ShuffleVectorSDNode
*OuterShuf
,
21036 SelectionDAG
&DAG
) {
21037 if (!OuterShuf
->getOperand(1).isUndef())
21039 auto *InnerShuf
= dyn_cast
<ShuffleVectorSDNode
>(OuterShuf
->getOperand(0));
21040 if (!InnerShuf
|| !InnerShuf
->getOperand(1).isUndef())
21043 ArrayRef
<int> OuterMask
= OuterShuf
->getMask();
21044 ArrayRef
<int> InnerMask
= InnerShuf
->getMask();
21045 unsigned NumElts
= OuterMask
.size();
21046 assert(NumElts
== InnerMask
.size() && "Mask length mismatch");
21047 SmallVector
<int, 32> CombinedMask(NumElts
, -1);
21048 int SplatIndex
= -1;
21049 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21050 // Undef lanes remain undef.
21051 int OuterMaskElt
= OuterMask
[i
];
21052 if (OuterMaskElt
== -1)
21055 // Peek through the shuffle masks to get the underlying source element.
21056 int InnerMaskElt
= InnerMask
[OuterMaskElt
];
21057 if (InnerMaskElt
== -1)
21060 // Initialize the splatted element.
21061 if (SplatIndex
== -1)
21062 SplatIndex
= InnerMaskElt
;
21064 // Non-matching index - this is not a splat.
21065 if (SplatIndex
!= InnerMaskElt
)
21068 CombinedMask
[i
] = InnerMaskElt
;
21070 assert((all_of(CombinedMask
, [](int M
) { return M
== -1; }) ||
21071 getSplatIndex(CombinedMask
) != -1) &&
21072 "Expected a splat mask");
21074 // TODO: The transform may be a win even if the mask is not legal.
21075 EVT VT
= OuterShuf
->getValueType(0);
21076 assert(VT
== InnerShuf
->getValueType(0) && "Expected matching shuffle types");
21077 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask
, VT
))
21080 return DAG
.getVectorShuffle(VT
, SDLoc(OuterShuf
), InnerShuf
->getOperand(0),
21081 InnerShuf
->getOperand(1), CombinedMask
);
21084 /// If the shuffle mask is taking exactly one element from the first vector
21085 /// operand and passing through all other elements from the second vector
21086 /// operand, return the index of the mask element that is choosing an element
21087 /// from the first operand. Otherwise, return -1.
21088 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
21089 int MaskSize
= Mask
.size();
21090 int EltFromOp0
= -1;
21091 // TODO: This does not match if there are undef elements in the shuffle mask.
21092 // Should we ignore undefs in the shuffle mask instead? The trade-off is
21093 // removing an instruction (a shuffle), but losing the knowledge that some
21094 // vector lanes are not needed.
21095 for (int i
= 0; i
!= MaskSize
; ++i
) {
21096 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
21097 // We're looking for a shuffle of exactly one element from operand 0.
21098 if (EltFromOp0
!= -1)
21101 } else if (Mask
[i
] != i
+ MaskSize
) {
21102 // Nothing from operand 1 can change lanes.
21109 /// If a shuffle inserts exactly one element from a source vector operand into
21110 /// another vector operand and we can access the specified element as a scalar,
21111 /// then we can eliminate the shuffle.
21112 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
21113 SelectionDAG
&DAG
) {
21114 // First, check if we are taking one element of a vector and shuffling that
21115 // element into another vector.
21116 ArrayRef
<int> Mask
= Shuf
->getMask();
21117 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
21118 SDValue Op0
= Shuf
->getOperand(0);
21119 SDValue Op1
= Shuf
->getOperand(1);
21120 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
21121 if (ShufOp0Index
== -1) {
21122 // Commute mask and check again.
21123 ShuffleVectorSDNode::commuteMask(CommutedMask
);
21124 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
21125 if (ShufOp0Index
== -1)
21127 // Commute operands to match the commuted shuffle mask.
21128 std::swap(Op0
, Op1
);
21129 Mask
= CommutedMask
;
21132 // The shuffle inserts exactly one element from operand 0 into operand 1.
21133 // Now see if we can access that element as a scalar via a real insert element
21135 // TODO: We can try harder to locate the element as a scalar. Examples: it
21136 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
21137 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
21138 "Shuffle mask value must be from operand 0");
21139 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
21142 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
21143 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
21146 // There's an existing insertelement with constant insertion index, so we
21147 // don't need to check the legality/profitability of a replacement operation
21148 // that differs at most in the constant value. The target should be able to
21149 // lower any of those in a similar way. If not, legalization will expand this
21150 // to a scalar-to-vector plus shuffle.
21152 // Note that the shuffle may move the scalar from the position that the insert
21153 // element used. Therefore, our new insert element occurs at the shuffle's
21154 // mask index value, not the insert's index value.
21155 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
21156 SDValue NewInsIndex
= DAG
.getVectorIdxConstant(ShufOp0Index
, SDLoc(Shuf
));
21157 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
21158 Op1
, Op0
.getOperand(1), NewInsIndex
);
21161 /// If we have a unary shuffle of a shuffle, see if it can be folded away
21162 /// completely. This has the potential to lose undef knowledge because the first
21163 /// shuffle may not have an undef mask element where the second one does. So
21164 /// only call this after doing simplifications based on demanded elements.
21165 static SDValue
simplifyShuffleOfShuffle(ShuffleVectorSDNode
*Shuf
) {
21166 // shuf (shuf0 X, Y, Mask0), undef, Mask
21167 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(Shuf
->getOperand(0));
21168 if (!Shuf0
|| !Shuf
->getOperand(1).isUndef())
21171 ArrayRef
<int> Mask
= Shuf
->getMask();
21172 ArrayRef
<int> Mask0
= Shuf0
->getMask();
21173 for (int i
= 0, e
= (int)Mask
.size(); i
!= e
; ++i
) {
21174 // Ignore undef elements.
21177 assert(Mask
[i
] >= 0 && Mask
[i
] < e
&& "Unexpected shuffle mask value");
21179 // Is the element of the shuffle operand chosen by this shuffle the same as
21180 // the element chosen by the shuffle operand itself?
21181 if (Mask0
[Mask
[i
]] != Mask0
[i
])
21184 // Every element of this shuffle is identical to the result of the previous
21185 // shuffle, so we can replace this value.
21186 return Shuf
->getOperand(0);
21189 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
21190 EVT VT
= N
->getValueType(0);
21191 unsigned NumElts
= VT
.getVectorNumElements();
21193 SDValue N0
= N
->getOperand(0);
21194 SDValue N1
= N
->getOperand(1);
21196 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
21198 // Canonicalize shuffle undef, undef -> undef
21199 if (N0
.isUndef() && N1
.isUndef())
21200 return DAG
.getUNDEF(VT
);
21202 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
21204 // Canonicalize shuffle v, v -> v, undef
21206 SmallVector
<int, 8> NewMask
;
21207 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21208 int Idx
= SVN
->getMaskElt(i
);
21209 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
21210 NewMask
.push_back(Idx
);
21212 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
21215 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
21217 return DAG
.getCommutedVectorShuffle(*SVN
);
21219 // Remove references to rhs if it is undef
21220 if (N1
.isUndef()) {
21221 bool Changed
= false;
21222 SmallVector
<int, 8> NewMask
;
21223 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21224 int Idx
= SVN
->getMaskElt(i
);
21225 if (Idx
>= (int)NumElts
) {
21229 NewMask
.push_back(Idx
);
21232 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
21235 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
21238 // A shuffle of a single vector that is a splatted value can always be folded.
21239 if (SDValue V
= combineShuffleOfSplatVal(SVN
, DAG
))
21242 if (SDValue V
= formSplatFromShuffles(SVN
, DAG
))
21245 // If it is a splat, check if the argument vector is another splat or a
21247 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
21248 int SplatIndex
= SVN
->getSplatIndex();
21249 if (N0
.hasOneUse() && TLI
.isExtractVecEltCheap(VT
, SplatIndex
) &&
21250 TLI
.isBinOp(N0
.getOpcode()) && N0
.getNode()->getNumValues() == 1) {
21251 // splat (vector_bo L, R), Index -->
21252 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
21253 SDValue L
= N0
.getOperand(0), R
= N0
.getOperand(1);
21255 EVT EltVT
= VT
.getScalarType();
21256 SDValue Index
= DAG
.getVectorIdxConstant(SplatIndex
, DL
);
21257 SDValue ExtL
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, L
, Index
);
21258 SDValue ExtR
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, R
, Index
);
21259 SDValue NewBO
= DAG
.getNode(N0
.getOpcode(), DL
, EltVT
, ExtL
, ExtR
,
21260 N0
.getNode()->getFlags());
21261 SDValue Insert
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, VT
, NewBO
);
21262 SmallVector
<int, 16> ZeroMask(VT
.getVectorNumElements(), 0);
21263 return DAG
.getVectorShuffle(VT
, DL
, Insert
, DAG
.getUNDEF(VT
), ZeroMask
);
21266 // If this is a bit convert that changes the element type of the vector but
21267 // not the number of vector elements, look through it. Be careful not to
21268 // look though conversions that change things like v4f32 to v2f64.
21269 SDNode
*V
= N0
.getNode();
21270 if (V
->getOpcode() == ISD::BITCAST
) {
21271 SDValue ConvInput
= V
->getOperand(0);
21272 if (ConvInput
.getValueType().isVector() &&
21273 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
21274 V
= ConvInput
.getNode();
21277 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
21278 assert(V
->getNumOperands() == NumElts
&&
21279 "BUILD_VECTOR has wrong number of operands");
21281 bool AllSame
= true;
21282 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21283 if (!V
->getOperand(i
).isUndef()) {
21284 Base
= V
->getOperand(i
);
21288 // Splat of <u, u, u, u>, return <u, u, u, u>
21289 if (!Base
.getNode())
21291 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21292 if (V
->getOperand(i
) != Base
) {
21297 // Splat of <x, x, x, x>, return <x, x, x, x>
21301 // Canonicalize any other splat as a build_vector.
21302 SDValue Splatted
= V
->getOperand(SplatIndex
);
21303 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
21304 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
21306 // We may have jumped through bitcasts, so the type of the
21307 // BUILD_VECTOR may not match the type of the shuffle.
21308 if (V
->getValueType(0) != VT
)
21309 NewBV
= DAG
.getBitcast(VT
, NewBV
);
21314 // Simplify source operands based on shuffle mask.
21315 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21316 return SDValue(N
, 0);
21318 // This is intentionally placed after demanded elements simplification because
21319 // it could eliminate knowledge of undef elements created by this shuffle.
21320 if (SDValue ShufOp
= simplifyShuffleOfShuffle(SVN
))
21323 // Match shuffles that can be converted to any_vector_extend_in_reg.
21324 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
))
21327 // Combine "truncate_vector_in_reg" style shuffles.
21328 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
21331 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
21332 Level
< AfterLegalizeVectorOps
&&
21334 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
21335 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
21336 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
21340 // A shuffle of a concat of the same narrow vector can be reduced to use
21341 // only low-half elements of a concat with undef:
21342 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
21343 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N1
.isUndef() &&
21344 N0
.getNumOperands() == 2 &&
21345 N0
.getOperand(0) == N0
.getOperand(1)) {
21346 int HalfNumElts
= (int)NumElts
/ 2;
21347 SmallVector
<int, 8> NewMask
;
21348 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21349 int Idx
= SVN
->getMaskElt(i
);
21350 if (Idx
>= HalfNumElts
) {
21351 assert(Idx
< (int)NumElts
&& "Shuffle mask chooses undef op");
21352 Idx
-= HalfNumElts
;
21354 NewMask
.push_back(Idx
);
21356 if (TLI
.isShuffleMaskLegal(NewMask
, VT
)) {
21357 SDValue UndefVec
= DAG
.getUNDEF(N0
.getOperand(0).getValueType());
21358 SDValue NewCat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
21359 N0
.getOperand(0), UndefVec
);
21360 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewCat
, N1
, NewMask
);
21364 // See if we can replace a shuffle with an insert_subvector.
21365 // e.g. v2i32 into v8i32:
21366 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
21367 // --> insert_subvector(lhs,rhs1,4).
21368 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
) &&
21369 TLI
.isOperationLegalOrCustom(ISD::INSERT_SUBVECTOR
, VT
)) {
21370 auto ShuffleToInsert
= [&](SDValue LHS
, SDValue RHS
, ArrayRef
<int> Mask
) {
21371 // Ensure RHS subvectors are legal.
21372 assert(RHS
.getOpcode() == ISD::CONCAT_VECTORS
&& "Can't find subvectors");
21373 EVT SubVT
= RHS
.getOperand(0).getValueType();
21374 int NumSubVecs
= RHS
.getNumOperands();
21375 int NumSubElts
= SubVT
.getVectorNumElements();
21376 assert((NumElts
% NumSubElts
) == 0 && "Subvector mismatch");
21377 if (!TLI
.isTypeLegal(SubVT
))
21380 // Don't bother if we have an unary shuffle (matches undef + LHS elts).
21381 if (all_of(Mask
, [NumElts
](int M
) { return M
< (int)NumElts
; }))
21384 // Search [NumSubElts] spans for RHS sequence.
21385 // TODO: Can we avoid nested loops to increase performance?
21386 SmallVector
<int> InsertionMask(NumElts
);
21387 for (int SubVec
= 0; SubVec
!= NumSubVecs
; ++SubVec
) {
21388 for (int SubIdx
= 0; SubIdx
!= (int)NumElts
; SubIdx
+= NumSubElts
) {
21389 // Reset mask to identity.
21390 std::iota(InsertionMask
.begin(), InsertionMask
.end(), 0);
21392 // Add subvector insertion.
21393 std::iota(InsertionMask
.begin() + SubIdx
,
21394 InsertionMask
.begin() + SubIdx
+ NumSubElts
,
21395 NumElts
+ (SubVec
* NumSubElts
));
21397 // See if the shuffle mask matches the reference insertion mask.
21398 bool MatchingShuffle
= true;
21399 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
21400 int ExpectIdx
= InsertionMask
[i
];
21401 int ActualIdx
= Mask
[i
];
21402 if (0 <= ActualIdx
&& ExpectIdx
!= ActualIdx
) {
21403 MatchingShuffle
= false;
21408 if (MatchingShuffle
)
21409 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, LHS
,
21410 RHS
.getOperand(SubVec
),
21411 DAG
.getVectorIdxConstant(SubIdx
, SDLoc(N
)));
21416 ArrayRef
<int> Mask
= SVN
->getMask();
21417 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
)
21418 if (SDValue InsertN1
= ShuffleToInsert(N0
, N1
, Mask
))
21420 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
) {
21421 SmallVector
<int> CommuteMask(Mask
.begin(), Mask
.end());
21422 ShuffleVectorSDNode::commuteMask(CommuteMask
);
21423 if (SDValue InsertN0
= ShuffleToInsert(N1
, N0
, CommuteMask
))
21428 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
21429 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
21430 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
))
21431 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
21434 // If this shuffle only has a single input that is a bitcasted shuffle,
21435 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
21436 // back to their original types.
21437 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
21438 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
21439 TLI
.isTypeLegal(VT
)) {
21441 SDValue BC0
= peekThroughOneUseBitcasts(N0
);
21442 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
21443 EVT SVT
= VT
.getScalarType();
21444 EVT InnerVT
= BC0
->getValueType(0);
21445 EVT InnerSVT
= InnerVT
.getScalarType();
21447 // Determine which shuffle works with the smaller scalar type.
21448 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
21449 EVT ScaleSVT
= ScaleVT
.getScalarType();
21451 if (TLI
.isTypeLegal(ScaleVT
) &&
21452 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
21453 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
21454 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21455 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
21457 // Scale the shuffle masks to the smaller scalar type.
21458 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
21459 SmallVector
<int, 8> InnerMask
;
21460 SmallVector
<int, 8> OuterMask
;
21461 narrowShuffleMaskElts(InnerScale
, InnerSVN
->getMask(), InnerMask
);
21462 narrowShuffleMaskElts(OuterScale
, SVN
->getMask(), OuterMask
);
21464 // Merge the shuffle masks.
21465 SmallVector
<int, 8> NewMask
;
21466 for (int M
: OuterMask
)
21467 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
21469 // Test for shuffle mask legality over both commutations.
21470 SDValue SV0
= BC0
->getOperand(0);
21471 SDValue SV1
= BC0
->getOperand(1);
21472 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21474 std::swap(SV0
, SV1
);
21475 ShuffleVectorSDNode::commuteMask(NewMask
);
21476 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
21480 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
21481 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
21482 return DAG
.getBitcast(
21483 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
21489 // Compute the combined shuffle mask for a shuffle with SV0 as the first
21490 // operand, and SV1 as the second operand.
21491 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
21492 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
21493 auto MergeInnerShuffle
=
21494 [NumElts
, &VT
](bool Commute
, ShuffleVectorSDNode
*SVN
,
21495 ShuffleVectorSDNode
*OtherSVN
, SDValue N1
,
21496 const TargetLowering
&TLI
, SDValue
&SV0
, SDValue
&SV1
,
21497 SmallVectorImpl
<int> &Mask
) -> bool {
21498 // Don't try to fold splats; they're likely to simplify somehow, or they
21500 if (OtherSVN
->isSplat())
21503 SV0
= SV1
= SDValue();
21506 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
21507 int Idx
= SVN
->getMaskElt(i
);
21509 // Propagate Undef.
21510 Mask
.push_back(Idx
);
21515 Idx
= (Idx
< (int)NumElts
) ? (Idx
+ NumElts
) : (Idx
- NumElts
);
21517 SDValue CurrentVec
;
21518 if (Idx
< (int)NumElts
) {
21519 // This shuffle index refers to the inner shuffle N0. Lookup the inner
21520 // shuffle mask to identify which vector is actually referenced.
21521 Idx
= OtherSVN
->getMaskElt(Idx
);
21523 // Propagate Undef.
21524 Mask
.push_back(Idx
);
21527 CurrentVec
= (Idx
< (int)NumElts
) ? OtherSVN
->getOperand(0)
21528 : OtherSVN
->getOperand(1);
21530 // This shuffle index references an element within N1.
21534 // Simple case where 'CurrentVec' is UNDEF.
21535 if (CurrentVec
.isUndef()) {
21536 Mask
.push_back(-1);
21540 // Canonicalize the shuffle index. We don't know yet if CurrentVec
21541 // will be the first or second operand of the combined shuffle.
21542 Idx
= Idx
% NumElts
;
21543 if (!SV0
.getNode() || SV0
== CurrentVec
) {
21544 // Ok. CurrentVec is the left hand side.
21545 // Update the mask accordingly.
21547 Mask
.push_back(Idx
);
21550 if (!SV1
.getNode() || SV1
== CurrentVec
) {
21551 // Ok. CurrentVec is the right hand side.
21552 // Update the mask accordingly.
21554 Mask
.push_back(Idx
+ NumElts
);
21558 // Last chance - see if the vector is another shuffle and if it
21559 // uses one of the existing candidate shuffle ops.
21560 if (auto *CurrentSVN
= dyn_cast
<ShuffleVectorSDNode
>(CurrentVec
)) {
21561 int InnerIdx
= CurrentSVN
->getMaskElt(Idx
);
21562 if (InnerIdx
< 0) {
21563 Mask
.push_back(-1);
21566 SDValue InnerVec
= (InnerIdx
< (int)NumElts
)
21567 ? CurrentSVN
->getOperand(0)
21568 : CurrentSVN
->getOperand(1);
21569 if (InnerVec
.isUndef()) {
21570 Mask
.push_back(-1);
21573 InnerIdx
%= NumElts
;
21574 if (InnerVec
== SV0
) {
21575 Mask
.push_back(InnerIdx
);
21578 if (InnerVec
== SV1
) {
21579 Mask
.push_back(InnerIdx
+ NumElts
);
21584 // Bail out if we cannot convert the shuffle pair into a single shuffle.
21588 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
21591 // Avoid introducing shuffles with illegal mask.
21592 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21593 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21594 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21595 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
21596 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
21597 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
21598 if (TLI
.isShuffleMaskLegal(Mask
, VT
))
21601 std::swap(SV0
, SV1
);
21602 ShuffleVectorSDNode::commuteMask(Mask
);
21603 return TLI
.isShuffleMaskLegal(Mask
, VT
);
21606 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
21607 // Canonicalize shuffles according to rules:
21608 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
21609 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
21610 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
21611 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21612 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
) {
21613 // The incoming shuffle must be of the same type as the result of the
21614 // current shuffle.
21615 assert(N1
->getOperand(0).getValueType() == VT
&&
21616 "Shuffle types don't match");
21618 SDValue SV0
= N1
->getOperand(0);
21619 SDValue SV1
= N1
->getOperand(1);
21620 bool HasSameOp0
= N0
== SV0
;
21621 bool IsSV1Undef
= SV1
.isUndef();
21622 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
21623 // Commute the operands of this shuffle so merging below will trigger.
21624 return DAG
.getCommutedVectorShuffle(*SVN
);
21627 // Canonicalize splat shuffles to the RHS to improve merging below.
21628 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
21629 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21630 N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
21631 cast
<ShuffleVectorSDNode
>(N0
)->isSplat() &&
21632 !cast
<ShuffleVectorSDNode
>(N1
)->isSplat()) {
21633 return DAG
.getCommutedVectorShuffle(*SVN
);
21636 // Try to fold according to rules:
21637 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
21638 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
21639 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
21640 // Don't try to fold shuffles with illegal type.
21641 // Only fold if this shuffle is the only user of the other shuffle.
21642 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
21643 for (int i
= 0; i
!= 2; ++i
) {
21644 if (N
->getOperand(i
).getOpcode() == ISD::VECTOR_SHUFFLE
&&
21645 N
->isOnlyUserOf(N
->getOperand(i
).getNode())) {
21646 // The incoming shuffle must be of the same type as the result of the
21647 // current shuffle.
21648 auto *OtherSV
= cast
<ShuffleVectorSDNode
>(N
->getOperand(i
));
21649 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
21650 "Shuffle types don't match");
21653 SmallVector
<int, 4> Mask
;
21654 if (MergeInnerShuffle(i
!= 0, SVN
, OtherSV
, N
->getOperand(1 - i
), TLI
,
21656 // Check if all indices in Mask are Undef. In case, propagate Undef.
21657 if (llvm::all_of(Mask
, [](int M
) { return M
< 0; }))
21658 return DAG
.getUNDEF(VT
);
21660 return DAG
.getVectorShuffle(VT
, SDLoc(N
),
21661 SV0
? SV0
: DAG
.getUNDEF(VT
),
21662 SV1
? SV1
: DAG
.getUNDEF(VT
), Mask
);
21667 // Merge shuffles through binops if we are able to merge it with at least
21668 // one other shuffles.
21669 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
21670 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
21671 unsigned SrcOpcode
= N0
.getOpcode();
21672 if (TLI
.isBinOp(SrcOpcode
) && N
->isOnlyUserOf(N0
.getNode()) &&
21674 (SrcOpcode
== N1
.getOpcode() && N
->isOnlyUserOf(N1
.getNode())))) {
21675 // Get binop source ops, or just pass on the undef.
21676 SDValue Op00
= N0
.getOperand(0);
21677 SDValue Op01
= N0
.getOperand(1);
21678 SDValue Op10
= N1
.isUndef() ? N1
: N1
.getOperand(0);
21679 SDValue Op11
= N1
.isUndef() ? N1
: N1
.getOperand(1);
21680 // TODO: We might be able to relax the VT check but we don't currently
21681 // have any isBinOp() that has different result/ops VTs so play safe until
21682 // we have test coverage.
21683 if (Op00
.getValueType() == VT
&& Op10
.getValueType() == VT
&&
21684 Op01
.getValueType() == VT
&& Op11
.getValueType() == VT
&&
21685 (Op00
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21686 Op10
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21687 Op01
.getOpcode() == ISD::VECTOR_SHUFFLE
||
21688 Op11
.getOpcode() == ISD::VECTOR_SHUFFLE
)) {
21689 auto CanMergeInnerShuffle
= [&](SDValue
&SV0
, SDValue
&SV1
,
21690 SmallVectorImpl
<int> &Mask
, bool LeftOp
,
21692 SDValue InnerN
= Commute
? N1
: N0
;
21693 SDValue Op0
= LeftOp
? Op00
: Op01
;
21694 SDValue Op1
= LeftOp
? Op10
: Op11
;
21696 std::swap(Op0
, Op1
);
21697 // Only accept the merged shuffle if we don't introduce undef elements,
21698 // or the inner shuffle already contained undef elements.
21699 auto *SVN0
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
21700 return SVN0
&& InnerN
->isOnlyUserOf(SVN0
) &&
21701 MergeInnerShuffle(Commute
, SVN
, SVN0
, Op1
, TLI
, SV0
, SV1
,
21703 (llvm::any_of(SVN0
->getMask(), [](int M
) { return M
< 0; }) ||
21704 llvm::none_of(Mask
, [](int M
) { return M
< 0; }));
21707 // Ensure we don't increase the number of shuffles - we must merge a
21708 // shuffle from at least one of the LHS and RHS ops.
21709 bool MergedLeft
= false;
21710 SDValue LeftSV0
, LeftSV1
;
21711 SmallVector
<int, 4> LeftMask
;
21712 if (CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, false) ||
21713 CanMergeInnerShuffle(LeftSV0
, LeftSV1
, LeftMask
, true, true)) {
21716 LeftMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
21717 LeftSV0
= Op00
, LeftSV1
= Op10
;
21720 bool MergedRight
= false;
21721 SDValue RightSV0
, RightSV1
;
21722 SmallVector
<int, 4> RightMask
;
21723 if (CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, false) ||
21724 CanMergeInnerShuffle(RightSV0
, RightSV1
, RightMask
, false, true)) {
21725 MergedRight
= true;
21727 RightMask
.assign(SVN
->getMask().begin(), SVN
->getMask().end());
21728 RightSV0
= Op01
, RightSV1
= Op11
;
21731 if (MergedLeft
|| MergedRight
) {
21733 SDValue LHS
= DAG
.getVectorShuffle(
21734 VT
, DL
, LeftSV0
? LeftSV0
: DAG
.getUNDEF(VT
),
21735 LeftSV1
? LeftSV1
: DAG
.getUNDEF(VT
), LeftMask
);
21736 SDValue RHS
= DAG
.getVectorShuffle(
21737 VT
, DL
, RightSV0
? RightSV0
: DAG
.getUNDEF(VT
),
21738 RightSV1
? RightSV1
: DAG
.getUNDEF(VT
), RightMask
);
21739 return DAG
.getNode(SrcOpcode
, DL
, VT
, LHS
, RHS
);
21745 if (SDValue V
= foldShuffleOfConcatUndefs(SVN
, DAG
))
21751 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
21752 SDValue InVal
= N
->getOperand(0);
21753 EVT VT
= N
->getValueType(0);
21755 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
21756 // with a VECTOR_SHUFFLE and possible truncate.
21757 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
21758 VT
.isFixedLengthVector() &&
21759 InVal
->getOperand(0).getValueType().isFixedLengthVector()) {
21760 SDValue InVec
= InVal
->getOperand(0);
21761 SDValue EltNo
= InVal
->getOperand(1);
21762 auto InVecT
= InVec
.getValueType();
21763 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
21764 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
21765 int Elt
= C0
->getZExtValue();
21767 // If we have an implict truncate do truncate here as long as it's legal.
21768 // if it's not legal, this should
21769 if (VT
.getScalarType() != InVal
.getValueType() &&
21770 InVal
.getValueType().isScalarInteger() &&
21771 isTypeLegal(VT
.getScalarType())) {
21773 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
21774 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
21776 if (VT
.getScalarType() == InVecT
.getScalarType() &&
21777 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements()) {
21778 SDValue LegalShuffle
=
21779 TLI
.buildLegalVectorShuffle(InVecT
, SDLoc(N
), InVec
,
21780 DAG
.getUNDEF(InVecT
), NewMask
, DAG
);
21781 if (LegalShuffle
) {
21782 // If the initial vector is the correct size this shuffle is a
21785 return LegalShuffle
;
21786 // If not we must truncate the vector.
21787 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
21788 SDValue ZeroIdx
= DAG
.getVectorIdxConstant(0, SDLoc(N
));
21789 EVT SubVT
= EVT::getVectorVT(*DAG
.getContext(),
21790 InVecT
.getVectorElementType(),
21791 VT
.getVectorNumElements());
21792 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
,
21793 LegalShuffle
, ZeroIdx
);
21803 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
21804 EVT VT
= N
->getValueType(0);
21805 SDValue N0
= N
->getOperand(0);
21806 SDValue N1
= N
->getOperand(1);
21807 SDValue N2
= N
->getOperand(2);
21808 uint64_t InsIdx
= N
->getConstantOperandVal(2);
21810 // If inserting an UNDEF, just return the original vector.
21814 // If this is an insert of an extracted vector into an undef vector, we can
21815 // just use the input to the extract.
21816 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
21817 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
21818 return N1
.getOperand(0);
21820 // If we are inserting a bitcast value into an undef, with the same
21821 // number of elements, just use the bitcast input of the extract.
21822 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
21823 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
21824 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
21825 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
21826 N1
.getOperand(0).getOperand(1) == N2
&&
21827 N1
.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
21828 VT
.getVectorElementCount() &&
21829 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
21830 VT
.getSizeInBits()) {
21831 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
21834 // If both N1 and N2 are bitcast values on which insert_subvector
21835 // would makes sense, pull the bitcast through.
21836 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
21837 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
21838 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
21839 SDValue CN0
= N0
.getOperand(0);
21840 SDValue CN1
= N1
.getOperand(0);
21841 EVT CN0VT
= CN0
.getValueType();
21842 EVT CN1VT
= CN1
.getValueType();
21843 if (CN0VT
.isVector() && CN1VT
.isVector() &&
21844 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
21845 CN0VT
.getVectorElementCount() == VT
.getVectorElementCount()) {
21846 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
21847 CN0
.getValueType(), CN0
, CN1
, N2
);
21848 return DAG
.getBitcast(VT
, NewINSERT
);
21852 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
21853 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
21854 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
21855 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
21856 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
21857 N0
.getOperand(2) == N2
)
21858 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
21861 // Eliminate an intermediate insert into an undef vector:
21862 // insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
21863 // insert_subvector undef, X, N2
21864 if (N0
.isUndef() && N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
21865 N1
.getOperand(0).isUndef() && isNullConstant(N1
.getOperand(2)))
21866 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
,
21867 N1
.getOperand(1), N2
);
21869 // Push subvector bitcasts to the output, adjusting the index as we go.
21870 // insert_subvector(bitcast(v), bitcast(s), c1)
21871 // -> bitcast(insert_subvector(v, s, c2))
21872 if ((N0
.isUndef() || N0
.getOpcode() == ISD::BITCAST
) &&
21873 N1
.getOpcode() == ISD::BITCAST
) {
21874 SDValue N0Src
= peekThroughBitcasts(N0
);
21875 SDValue N1Src
= peekThroughBitcasts(N1
);
21876 EVT N0SrcSVT
= N0Src
.getValueType().getScalarType();
21877 EVT N1SrcSVT
= N1Src
.getValueType().getScalarType();
21878 if ((N0
.isUndef() || N0SrcSVT
== N1SrcSVT
) &&
21879 N0Src
.getValueType().isVector() && N1Src
.getValueType().isVector()) {
21883 LLVMContext
&Ctx
= *DAG
.getContext();
21884 ElementCount NumElts
= VT
.getVectorElementCount();
21885 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
21886 if ((EltSizeInBits
% N1SrcSVT
.getSizeInBits()) == 0) {
21887 unsigned Scale
= EltSizeInBits
/ N1SrcSVT
.getSizeInBits();
21888 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
, NumElts
* Scale
);
21889 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
* Scale
, DL
);
21890 } else if ((N1SrcSVT
.getSizeInBits() % EltSizeInBits
) == 0) {
21891 unsigned Scale
= N1SrcSVT
.getSizeInBits() / EltSizeInBits
;
21892 if (NumElts
.isKnownMultipleOf(Scale
) && (InsIdx
% Scale
) == 0) {
21893 NewVT
= EVT::getVectorVT(Ctx
, N1SrcSVT
,
21894 NumElts
.divideCoefficientBy(Scale
));
21895 NewIdx
= DAG
.getVectorIdxConstant(InsIdx
/ Scale
, DL
);
21898 if (NewIdx
&& hasOperation(ISD::INSERT_SUBVECTOR
, NewVT
)) {
21899 SDValue Res
= DAG
.getBitcast(NewVT
, N0Src
);
21900 Res
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, NewVT
, Res
, N1Src
, NewIdx
);
21901 return DAG
.getBitcast(VT
, Res
);
21906 // Canonicalize insert_subvector dag nodes.
21908 // (insert_subvector (insert_subvector A, Idx0), Idx1)
21909 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
21910 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
21911 N1
.getValueType() == N0
.getOperand(1).getValueType()) {
21912 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
21913 if (InsIdx
< OtherIdx
) {
21915 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
21916 N0
.getOperand(0), N1
, N2
);
21917 AddToWorklist(NewOp
.getNode());
21918 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
21919 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
21923 // If the input vector is a concatenation, and the insert replaces
21924 // one of the pieces, we can optimize into a single concat_vectors.
21925 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
21926 N0
.getOperand(0).getValueType() == N1
.getValueType() &&
21927 N0
.getOperand(0).getValueType().isScalableVector() ==
21928 N1
.getValueType().isScalableVector()) {
21929 unsigned Factor
= N1
.getValueType().getVectorMinNumElements();
21930 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
21931 Ops
[InsIdx
/ Factor
] = N1
;
21932 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
21935 // Simplify source operands based on insertion.
21936 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
21937 return SDValue(N
, 0);
21942 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
21943 SDValue N0
= N
->getOperand(0);
21945 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
21946 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
21947 return N0
->getOperand(0);
21952 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
21953 SDValue N0
= N
->getOperand(0);
21955 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
21956 if (!TLI
.shouldKeepZExtForFP16Conv() && N0
->getOpcode() == ISD::AND
) {
21957 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
21958 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
21959 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
21967 SDValue
DAGCombiner::visitVECREDUCE(SDNode
*N
) {
21968 SDValue N0
= N
->getOperand(0);
21969 EVT VT
= N0
.getValueType();
21970 unsigned Opcode
= N
->getOpcode();
21972 // VECREDUCE over 1-element vector is just an extract.
21973 if (VT
.getVectorElementCount().isScalar()) {
21976 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getVectorElementType(), N0
,
21977 DAG
.getVectorIdxConstant(0, dl
));
21978 if (Res
.getValueType() != N
->getValueType(0))
21979 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, N
->getValueType(0), Res
);
21983 // On an boolean vector an and/or reduction is the same as a umin/umax
21984 // reduction. Convert them if the latter is legal while the former isn't.
21985 if (Opcode
== ISD::VECREDUCE_AND
|| Opcode
== ISD::VECREDUCE_OR
) {
21986 unsigned NewOpcode
= Opcode
== ISD::VECREDUCE_AND
21987 ? ISD::VECREDUCE_UMIN
: ISD::VECREDUCE_UMAX
;
21988 if (!TLI
.isOperationLegalOrCustom(Opcode
, VT
) &&
21989 TLI
.isOperationLegalOrCustom(NewOpcode
, VT
) &&
21990 DAG
.ComputeNumSignBits(N0
) == VT
.getScalarSizeInBits())
21991 return DAG
.getNode(NewOpcode
, SDLoc(N
), N
->getValueType(0), N0
);
21997 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
21998 /// with the destination vector and a zero vector.
21999 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
22000 /// vector_shuffle V, Zero, <0, 4, 2, 4>
22001 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
22002 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
22004 EVT VT
= N
->getValueType(0);
22005 SDValue LHS
= N
->getOperand(0);
22006 SDValue RHS
= peekThroughBitcasts(N
->getOperand(1));
22009 // Make sure we're not running after operation legalization where it
22010 // may have custom lowered the vector shuffles.
22011 if (LegalOperations
)
22014 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
22017 EVT RVT
= RHS
.getValueType();
22018 unsigned NumElts
= RHS
.getNumOperands();
22020 // Attempt to create a valid clear mask, splitting the mask into
22021 // sub elements and checking to see if each is
22022 // all zeros or all ones - suitable for shuffle masking.
22023 auto BuildClearMask
= [&](int Split
) {
22024 int NumSubElts
= NumElts
* Split
;
22025 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
22027 SmallVector
<int, 8> Indices
;
22028 for (int i
= 0; i
!= NumSubElts
; ++i
) {
22029 int EltIdx
= i
/ Split
;
22030 int SubIdx
= i
% Split
;
22031 SDValue Elt
= RHS
.getOperand(EltIdx
);
22032 // X & undef --> 0 (not undef). So this lane must be converted to choose
22033 // from the zero constant vector (same as if the element had all 0-bits).
22034 if (Elt
.isUndef()) {
22035 Indices
.push_back(i
+ NumSubElts
);
22040 if (isa
<ConstantSDNode
>(Elt
))
22041 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
22042 else if (isa
<ConstantFPSDNode
>(Elt
))
22043 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
22047 // Extract the sub element from the constant bit mask.
22048 if (DAG
.getDataLayout().isBigEndian())
22049 Bits
= Bits
.extractBits(NumSubBits
, (Split
- SubIdx
- 1) * NumSubBits
);
22051 Bits
= Bits
.extractBits(NumSubBits
, SubIdx
* NumSubBits
);
22053 if (Bits
.isAllOnesValue())
22054 Indices
.push_back(i
);
22055 else if (Bits
== 0)
22056 Indices
.push_back(i
+ NumSubElts
);
22061 // Let's see if the target supports this vector_shuffle.
22062 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
22063 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
22064 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
22067 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
22068 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
22069 DAG
.getBitcast(ClearVT
, LHS
),
22073 // Determine maximum split level (byte level masking).
22075 if (RVT
.getScalarSizeInBits() % 8 == 0)
22076 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
22078 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
22079 if (RVT
.getScalarSizeInBits() % Split
== 0)
22080 if (SDValue S
= BuildClearMask(Split
))
22086 /// If a vector binop is performed on splat values, it may be profitable to
22087 /// extract, scalarize, and insert/splat.
22088 static SDValue
scalarizeBinOpOfSplats(SDNode
*N
, SelectionDAG
&DAG
) {
22089 SDValue N0
= N
->getOperand(0);
22090 SDValue N1
= N
->getOperand(1);
22091 unsigned Opcode
= N
->getOpcode();
22092 EVT VT
= N
->getValueType(0);
22093 EVT EltVT
= VT
.getVectorElementType();
22094 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
22096 // TODO: Remove/replace the extract cost check? If the elements are available
22097 // as scalars, then there may be no extract cost. Should we ask if
22098 // inserting a scalar back into a vector is cheap instead?
22099 int Index0
, Index1
;
22100 SDValue Src0
= DAG
.getSplatSourceVector(N0
, Index0
);
22101 SDValue Src1
= DAG
.getSplatSourceVector(N1
, Index1
);
22102 if (!Src0
|| !Src1
|| Index0
!= Index1
||
22103 Src0
.getValueType().getVectorElementType() != EltVT
||
22104 Src1
.getValueType().getVectorElementType() != EltVT
||
22105 !TLI
.isExtractVecEltCheap(VT
, Index0
) ||
22106 !TLI
.isOperationLegalOrCustom(Opcode
, EltVT
))
22110 SDValue IndexC
= DAG
.getVectorIdxConstant(Index0
, DL
);
22111 SDValue X
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src0
, IndexC
);
22112 SDValue Y
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src1
, IndexC
);
22113 SDValue ScalarBO
= DAG
.getNode(Opcode
, DL
, EltVT
, X
, Y
, N
->getFlags());
22115 // If all lanes but 1 are undefined, no need to splat the scalar result.
22116 // TODO: Keep track of undefs and use that info in the general case.
22117 if (N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getOpcode() == N1
.getOpcode() &&
22118 count_if(N0
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1 &&
22119 count_if(N1
->ops(), [](SDValue V
) { return !V
.isUndef(); }) == 1) {
22120 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
22121 // build_vec ..undef, (bo X, Y), undef...
22122 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), DAG
.getUNDEF(EltVT
));
22123 Ops
[Index0
] = ScalarBO
;
22124 return DAG
.getBuildVector(VT
, DL
, Ops
);
22127 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
22128 SmallVector
<SDValue
, 8> Ops(VT
.getVectorNumElements(), ScalarBO
);
22129 return DAG
.getBuildVector(VT
, DL
, Ops
);
22132 /// Visit a binary vector operation, like ADD.
22133 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
22134 assert(N
->getValueType(0).isVector() &&
22135 "SimplifyVBinOp only works on vectors!");
22137 SDValue LHS
= N
->getOperand(0);
22138 SDValue RHS
= N
->getOperand(1);
22139 SDValue Ops
[] = {LHS
, RHS
};
22140 EVT VT
= N
->getValueType(0);
22141 unsigned Opcode
= N
->getOpcode();
22142 SDNodeFlags Flags
= N
->getFlags();
22144 // See if we can constant fold the vector operation.
22145 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
22146 Opcode
, SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
22149 // Move unary shuffles with identical masks after a vector binop:
22150 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
22151 // --> shuffle (VBinOp A, B), Undef, Mask
22152 // This does not require type legality checks because we are creating the
22153 // same types of operations that are in the original sequence. We do have to
22154 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
22155 // though. This code is adapted from the identical transform in instcombine.
22156 if (Opcode
!= ISD::UDIV
&& Opcode
!= ISD::SDIV
&&
22157 Opcode
!= ISD::UREM
&& Opcode
!= ISD::SREM
&&
22158 Opcode
!= ISD::UDIVREM
&& Opcode
!= ISD::SDIVREM
) {
22159 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
22160 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
22161 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
22162 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
22163 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
22165 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
.getOperand(0),
22166 RHS
.getOperand(0), Flags
);
22167 SDValue UndefV
= LHS
.getOperand(1);
22168 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
22171 // Try to sink a splat shuffle after a binop with a uniform constant.
22172 // This is limited to cases where neither the shuffle nor the constant have
22173 // undefined elements because that could be poison-unsafe or inhibit
22174 // demanded elements analysis. It is further limited to not change a splat
22175 // of an inserted scalar because that may be optimized better by
22176 // load-folding or other target-specific behaviors.
22177 if (isConstOrConstSplat(RHS
) && Shuf0
&& is_splat(Shuf0
->getMask()) &&
22178 Shuf0
->hasOneUse() && Shuf0
->getOperand(1).isUndef() &&
22179 Shuf0
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
22180 // binop (splat X), (splat C) --> splat (binop X, C)
22182 SDValue X
= Shuf0
->getOperand(0);
22183 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, X
, RHS
, Flags
);
22184 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
22187 if (isConstOrConstSplat(LHS
) && Shuf1
&& is_splat(Shuf1
->getMask()) &&
22188 Shuf1
->hasOneUse() && Shuf1
->getOperand(1).isUndef() &&
22189 Shuf1
->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT
) {
22190 // binop (splat C), (splat X) --> splat (binop C, X)
22192 SDValue X
= Shuf1
->getOperand(0);
22193 SDValue NewBinOp
= DAG
.getNode(Opcode
, DL
, VT
, LHS
, X
, Flags
);
22194 return DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, DAG
.getUNDEF(VT
),
22199 // The following pattern is likely to emerge with vector reduction ops. Moving
22200 // the binary operation ahead of insertion may allow using a narrower vector
22201 // instruction that has better performance than the wide version of the op:
22202 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
22203 if (LHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& LHS
.getOperand(0).isUndef() &&
22204 RHS
.getOpcode() == ISD::INSERT_SUBVECTOR
&& RHS
.getOperand(0).isUndef() &&
22205 LHS
.getOperand(2) == RHS
.getOperand(2) &&
22206 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22207 SDValue X
= LHS
.getOperand(1);
22208 SDValue Y
= RHS
.getOperand(1);
22209 SDValue Z
= LHS
.getOperand(2);
22210 EVT NarrowVT
= X
.getValueType();
22211 if (NarrowVT
== Y
.getValueType() &&
22212 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
,
22213 LegalOperations
)) {
22214 // (binop undef, undef) may not return undef, so compute that result.
22217 DAG
.getNode(Opcode
, DL
, VT
, DAG
.getUNDEF(VT
), DAG
.getUNDEF(VT
));
22218 SDValue NarrowBO
= DAG
.getNode(Opcode
, DL
, NarrowVT
, X
, Y
);
22219 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, VT
, VecC
, NarrowBO
, Z
);
22223 // Make sure all but the first op are undef or constant.
22224 auto ConcatWithConstantOrUndef
= [](SDValue Concat
) {
22225 return Concat
.getOpcode() == ISD::CONCAT_VECTORS
&&
22226 all_of(drop_begin(Concat
->ops()), [](const SDValue
&Op
) {
22227 return Op
.isUndef() ||
22228 ISD::isBuildVectorOfConstantSDNodes(Op
.getNode());
22232 // The following pattern is likely to emerge with vector reduction ops. Moving
22233 // the binary operation ahead of the concat may allow using a narrower vector
22234 // instruction that has better performance than the wide version of the op:
22235 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
22236 // concat (VBinOp X, Y), VecC
22237 if (ConcatWithConstantOrUndef(LHS
) && ConcatWithConstantOrUndef(RHS
) &&
22238 (LHS
.hasOneUse() || RHS
.hasOneUse())) {
22239 EVT NarrowVT
= LHS
.getOperand(0).getValueType();
22240 if (NarrowVT
== RHS
.getOperand(0).getValueType() &&
22241 TLI
.isOperationLegalOrCustomOrPromote(Opcode
, NarrowVT
)) {
22243 unsigned NumOperands
= LHS
.getNumOperands();
22244 SmallVector
<SDValue
, 4> ConcatOps
;
22245 for (unsigned i
= 0; i
!= NumOperands
; ++i
) {
22246 // This constant fold for operands 1 and up.
22247 ConcatOps
.push_back(DAG
.getNode(Opcode
, DL
, NarrowVT
, LHS
.getOperand(i
),
22248 RHS
.getOperand(i
)));
22251 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
22255 if (SDValue V
= scalarizeBinOpOfSplats(N
, DAG
))
22261 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
22263 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
22265 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
22266 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
22268 // If we got a simplified select_cc node back from SimplifySelectCC, then
22269 // break it down into a new SETCC node, and a new SELECT node, and then return
22270 // the SELECT node, since we were called with a SELECT node.
22271 if (SCC
.getNode()) {
22272 // Check to see if we got a select_cc back (to turn into setcc/select).
22273 // Otherwise, just return whatever node we got back, like fabs.
22274 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
22275 const SDNodeFlags Flags
= N0
.getNode()->getFlags();
22276 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
22278 SCC
.getOperand(0), SCC
.getOperand(1),
22279 SCC
.getOperand(4), Flags
);
22280 AddToWorklist(SETCC
.getNode());
22281 SDValue SelectNode
= DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
22282 SCC
.getOperand(2), SCC
.getOperand(3));
22283 SelectNode
->setFlags(Flags
);
22292 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
22293 /// being selected between, see if we can simplify the select. Callers of this
22294 /// should assume that TheSelect is deleted if this returns true. As such, they
22295 /// should return the appropriate thing (e.g. the node) back to the top-level of
22296 /// the DAG combiner loop to avoid it being looked at.
22297 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
22299 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22300 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
22301 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
22302 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
22303 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
22304 SDValue Sqrt
= RHS
;
22307 const ConstantFPSDNode
*Zero
= nullptr;
22309 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
22310 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
22311 CmpLHS
= TheSelect
->getOperand(0);
22312 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
22314 // SELECT or VSELECT
22315 SDValue Cmp
= TheSelect
->getOperand(0);
22316 if (Cmp
.getOpcode() == ISD::SETCC
) {
22317 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
22318 CmpLHS
= Cmp
.getOperand(0);
22319 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
22322 if (Zero
&& Zero
->isZero() &&
22323 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
22324 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
22325 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
22326 CombineTo(TheSelect
, Sqrt
);
22331 // Cannot simplify select with vector condition
22332 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
22334 // If this is a select from two identical things, try to pull the operation
22335 // through the select.
22336 if (LHS
.getOpcode() != RHS
.getOpcode() ||
22337 !LHS
.hasOneUse() || !RHS
.hasOneUse())
22340 // If this is a load and the token chain is identical, replace the select
22341 // of two loads with a load through a select of the address to load from.
22342 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
22343 // constants have been dropped into the constant pool.
22344 if (LHS
.getOpcode() == ISD::LOAD
) {
22345 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
22346 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
22348 // Token chains must be identical.
22349 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
22350 // Do not let this transformation reduce the number of volatile loads.
22351 // Be conservative for atomics for the moment
22352 // TODO: This does appear to be legal for unordered atomics (see D66309)
22353 !LLD
->isSimple() || !RLD
->isSimple() ||
22354 // FIXME: If either is a pre/post inc/dec load,
22355 // we'd need to split out the address adjustment.
22356 LLD
->isIndexed() || RLD
->isIndexed() ||
22357 // If this is an EXTLOAD, the VT's must match.
22358 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
22359 // If this is an EXTLOAD, the kind of extension must match.
22360 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
22361 // The only exception is if one of the extensions is anyext.
22362 LLD
->getExtensionType() != ISD::EXTLOAD
&&
22363 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
22364 // FIXME: this discards src value information. This is
22365 // over-conservative. It would be beneficial to be able to remember
22366 // both potential memory locations. Since we are discarding
22367 // src value info, don't do the transformation if the memory
22368 // locations are not in the default address space.
22369 LLD
->getPointerInfo().getAddrSpace() != 0 ||
22370 RLD
->getPointerInfo().getAddrSpace() != 0 ||
22371 // We can't produce a CMOV of a TargetFrameIndex since we won't
22372 // generate the address generation required.
22373 LLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22374 RLD
->getBasePtr().getOpcode() == ISD::TargetFrameIndex
||
22375 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
22376 LLD
->getBasePtr().getValueType()))
22379 // The loads must not depend on one another.
22380 if (LLD
->isPredecessorOf(RLD
) || RLD
->isPredecessorOf(LLD
))
22383 // Check that the select condition doesn't reach either load. If so,
22384 // folding this will induce a cycle into the DAG. If not, this is safe to
22385 // xform, so create a select of the addresses.
22387 SmallPtrSet
<const SDNode
*, 32> Visited
;
22388 SmallVector
<const SDNode
*, 16> Worklist
;
22390 // Always fail if LLD and RLD are not independent. TheSelect is a
22391 // predecessor to all Nodes in question so we need not search past it.
22393 Visited
.insert(TheSelect
);
22394 Worklist
.push_back(LLD
);
22395 Worklist
.push_back(RLD
);
22397 if (SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
) ||
22398 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
))
22402 if (TheSelect
->getOpcode() == ISD::SELECT
) {
22403 // We cannot do this optimization if any pair of {RLD, LLD} is a
22404 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
22405 // Loads, we only need to check if CondNode is a successor to one of the
22406 // loads. We can further avoid this if there's no use of their chain
22408 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
22409 Worklist
.push_back(CondNode
);
22411 if ((LLD
->hasAnyUseOfValue(1) &&
22412 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22413 (RLD
->hasAnyUseOfValue(1) &&
22414 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22417 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
22418 LLD
->getBasePtr().getValueType(),
22419 TheSelect
->getOperand(0), LLD
->getBasePtr(),
22420 RLD
->getBasePtr());
22421 } else { // Otherwise SELECT_CC
22422 // We cannot do this optimization if any pair of {RLD, LLD} is a
22423 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
22424 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
22425 // one of the loads. We can further avoid this if there's no use of their
22428 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
22429 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
22430 Worklist
.push_back(CondLHS
);
22431 Worklist
.push_back(CondRHS
);
22433 if ((LLD
->hasAnyUseOfValue(1) &&
22434 SDNode::hasPredecessorHelper(LLD
, Visited
, Worklist
)) ||
22435 (RLD
->hasAnyUseOfValue(1) &&
22436 SDNode::hasPredecessorHelper(RLD
, Visited
, Worklist
)))
22439 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
22440 LLD
->getBasePtr().getValueType(),
22441 TheSelect
->getOperand(0),
22442 TheSelect
->getOperand(1),
22443 LLD
->getBasePtr(), RLD
->getBasePtr(),
22444 TheSelect
->getOperand(4));
22448 // It is safe to replace the two loads if they have different alignments,
22449 // but the new load must be the minimum (most restrictive) alignment of the
22451 Align Alignment
= std::min(LLD
->getAlign(), RLD
->getAlign());
22452 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
22453 if (!RLD
->isInvariant())
22454 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
22455 if (!RLD
->isDereferenceable())
22456 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
22457 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
22458 // FIXME: Discards pointer and AA info.
22459 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
22460 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
22463 // FIXME: Discards pointer and AA info.
22464 Load
= DAG
.getExtLoad(
22465 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
22466 : LLD
->getExtensionType(),
22467 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
22468 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
22471 // Users of the select now use the result of the load.
22472 CombineTo(TheSelect
, Load
);
22474 // Users of the old loads now use the new load's chain. We know the
22475 // old-load value is dead now.
22476 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22477 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
22484 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
22486 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
22487 SDValue N1
, SDValue N2
, SDValue N3
,
22488 ISD::CondCode CC
) {
22489 // If this is a select where the false operand is zero and the compare is a
22490 // check of the sign bit, see if we can perform the "gzip trick":
22491 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
22492 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
22493 EVT XType
= N0
.getValueType();
22494 EVT AType
= N2
.getValueType();
22495 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
22498 // If the comparison is testing for a positive value, we have to invert
22499 // the sign bit mask, so only do that transform if the target has a bitwise
22500 // 'and not' instruction (the invert is free).
22501 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
22502 // (X > -1) ? A : 0
22503 // (X > 0) ? X : 0 <-- This is canonical signed max.
22504 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
22506 } else if (CC
== ISD::SETLT
) {
22508 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
22509 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
22515 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
22517 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
22518 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
22519 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
22520 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
22521 if (!TLI
.shouldAvoidTransformToShift(XType
, ShCt
)) {
22522 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
22523 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
22524 AddToWorklist(Shift
.getNode());
22526 if (XType
.bitsGT(AType
)) {
22527 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
22528 AddToWorklist(Shift
.getNode());
22531 if (CC
== ISD::SETGT
)
22532 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
22534 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
22538 unsigned ShCt
= XType
.getSizeInBits() - 1;
22539 if (TLI
.shouldAvoidTransformToShift(XType
, ShCt
))
22542 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
22543 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
22544 AddToWorklist(Shift
.getNode());
22546 if (XType
.bitsGT(AType
)) {
22547 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
22548 AddToWorklist(Shift
.getNode());
22551 if (CC
== ISD::SETGT
)
22552 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
22554 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
22557 // Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
22558 SDValue
DAGCombiner::foldSelectOfBinops(SDNode
*N
) {
22559 SDValue N0
= N
->getOperand(0);
22560 SDValue N1
= N
->getOperand(1);
22561 SDValue N2
= N
->getOperand(2);
22562 EVT VT
= N
->getValueType(0);
22565 unsigned BinOpc
= N1
.getOpcode();
22566 if (!TLI
.isBinOp(BinOpc
) || (N2
.getOpcode() != BinOpc
))
22569 if (!N
->isOnlyUserOf(N0
.getNode()) || !N
->isOnlyUserOf(N1
.getNode()))
22572 // Fold select(cond, binop(x, y), binop(z, y))
22573 // --> binop(select(cond, x, z), y)
22574 if (N1
.getOperand(1) == N2
.getOperand(1)) {
22576 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(0), N2
.getOperand(0));
22577 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, VT
, NewSel
, N1
.getOperand(1));
22578 NewBinOp
->setFlags(N1
->getFlags());
22579 NewBinOp
->intersectFlagsWith(N2
->getFlags());
22583 // Fold select(cond, binop(x, y), binop(x, z))
22584 // --> binop(x, select(cond, y, z))
22585 // Second op VT might be different (e.g. shift amount type)
22586 if (N1
.getOperand(0) == N2
.getOperand(0) &&
22587 VT
== N1
.getOperand(1).getValueType() &&
22588 VT
== N2
.getOperand(1).getValueType()) {
22590 DAG
.getSelect(DL
, VT
, N0
, N1
.getOperand(1), N2
.getOperand(1));
22591 SDValue NewBinOp
= DAG
.getNode(BinOpc
, DL
, VT
, N1
.getOperand(0), NewSel
);
22592 NewBinOp
->setFlags(N1
->getFlags());
22593 NewBinOp
->intersectFlagsWith(N2
->getFlags());
22597 // TODO: Handle isCommutativeBinOp patterns as well?
22601 // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
22602 SDValue
DAGCombiner::foldSignChangeInBitcast(SDNode
*N
) {
22603 SDValue N0
= N
->getOperand(0);
22604 EVT VT
= N
->getValueType(0);
22605 bool IsFabs
= N
->getOpcode() == ISD::FABS
;
22606 bool IsFree
= IsFabs
? TLI
.isFAbsFree(VT
) : TLI
.isFNegFree(VT
);
22608 if (IsFree
|| N0
.getOpcode() != ISD::BITCAST
|| !N0
.hasOneUse())
22611 SDValue Int
= N0
.getOperand(0);
22612 EVT IntVT
= Int
.getValueType();
22614 // The operand to cast should be integer.
22615 if (!IntVT
.isInteger() || IntVT
.isVector())
22618 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
22619 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
22621 if (N0
.getValueType().isVector()) {
22622 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
22623 // 0x7f...) per element and splat it.
22624 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
22626 SignMask
= ~SignMask
;
22627 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
22629 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
22630 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
22632 SignMask
= ~SignMask
;
22635 Int
= DAG
.getNode(IsFabs
? ISD::AND
: ISD::XOR
, DL
, IntVT
, Int
,
22636 DAG
.getConstant(SignMask
, DL
, IntVT
));
22637 AddToWorklist(Int
.getNode());
22638 return DAG
.getBitcast(VT
, Int
);
22641 /// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
22642 /// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
22643 /// in it. This may be a win when the constant is not otherwise available
22644 /// because it replaces two constant pool loads with one.
22645 SDValue
DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
22646 const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
, SDValue N3
,
22647 ISD::CondCode CC
) {
22648 if (!TLI
.reduceSelectOfFPConstantLoads(N0
.getValueType()))
22651 // If we are before legalize types, we want the other legalization to happen
22652 // first (for example, to avoid messing with soft float).
22653 auto *TV
= dyn_cast
<ConstantFPSDNode
>(N2
);
22654 auto *FV
= dyn_cast
<ConstantFPSDNode
>(N3
);
22655 EVT VT
= N2
.getValueType();
22656 if (!TV
|| !FV
|| !TLI
.isTypeLegal(VT
))
22659 // If a constant can be materialized without loads, this does not make sense.
22660 if (TLI
.getOperationAction(ISD::ConstantFP
, VT
) == TargetLowering::Legal
||
22661 TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0), ForCodeSize
) ||
22662 TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0), ForCodeSize
))
22665 // If both constants have multiple uses, then we won't need to do an extra
22666 // load. The values are likely around in registers for other users.
22667 if (!TV
->hasOneUse() && !FV
->hasOneUse())
22670 Constant
*Elts
[] = { const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
22671 const_cast<ConstantFP
*>(TV
->getConstantFPValue()) };
22672 Type
*FPTy
= Elts
[0]->getType();
22673 const DataLayout
&TD
= DAG
.getDataLayout();
22675 // Create a ConstantArray of the two constants.
22676 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
22677 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
22678 TD
.getPrefTypeAlign(FPTy
));
22679 Align Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlign();
22681 // Get offsets to the 0 and 1 elements of the array, so we can select between
22683 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
22684 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
22685 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
22687 DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()), N0
, N1
, CC
);
22688 AddToWorklist(Cond
.getNode());
22689 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(), Cond
, One
, Zero
);
22690 AddToWorklist(CstOffset
.getNode());
22691 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
22692 AddToWorklist(CPIdx
.getNode());
22693 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
22694 MachinePointerInfo::getConstantPool(
22695 DAG
.getMachineFunction()), Alignment
);
22698 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
22699 /// where 'cond' is the comparison specified by CC.
22700 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
22701 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
22702 bool NotExtCompare
) {
22703 // (x ? y : y) -> y.
22704 if (N2
== N3
) return N2
;
22706 EVT CmpOpVT
= N0
.getValueType();
22707 EVT CmpResVT
= getSetCCResultType(CmpOpVT
);
22708 EVT VT
= N2
.getValueType();
22709 auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
22710 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
22711 auto *N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
22713 // Determine if the condition we're dealing with is constant.
22714 if (SDValue SCC
= DAG
.FoldSetCC(CmpResVT
, N0
, N1
, CC
, DL
)) {
22715 AddToWorklist(SCC
.getNode());
22716 if (auto *SCCC
= dyn_cast
<ConstantSDNode
>(SCC
)) {
22717 // fold select_cc true, x, y -> x
22718 // fold select_cc false, x, y -> y
22719 return !(SCCC
->isNullValue()) ? N2
: N3
;
22724 convertSelectOfFPConstantsToLoadOffset(DL
, N0
, N1
, N2
, N3
, CC
))
22727 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
22730 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
22731 // where y is has a single bit set.
22732 // A plaintext description would be, we can turn the SELECT_CC into an AND
22733 // when the condition can be materialized as an all-ones register. Any
22734 // single bit-test can be materialized as an all-ones register with
22735 // shift-left and shift-right-arith.
22736 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
22737 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
22738 SDValue AndLHS
= N0
->getOperand(0);
22739 auto *ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
22740 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
22741 // Shift the tested bit over the sign bit.
22742 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
22743 unsigned ShCt
= AndMask
.getBitWidth() - 1;
22744 if (!TLI
.shouldAvoidTransformToShift(VT
, ShCt
)) {
22746 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
22747 getShiftAmountTy(AndLHS
.getValueType()));
22748 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
22750 // Now arithmetic right shift it all the way over, so the result is
22751 // either all-ones, or zero.
22753 DAG
.getConstant(ShCt
, SDLoc(Shl
),
22754 getShiftAmountTy(Shl
.getValueType()));
22755 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
22757 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
22762 // fold select C, 16, 0 -> shl C, 4
22763 bool Fold
= N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2();
22764 bool Swap
= N3C
&& isNullConstant(N2
) && N3C
->getAPIntValue().isPowerOf2();
22766 if ((Fold
|| Swap
) &&
22767 TLI
.getBooleanContents(CmpOpVT
) ==
22768 TargetLowering::ZeroOrOneBooleanContent
&&
22769 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, CmpOpVT
))) {
22772 CC
= ISD::getSetCCInverse(CC
, CmpOpVT
);
22773 std::swap(N2C
, N3C
);
22776 // If the caller doesn't want us to simplify this into a zext of a compare,
22778 if (NotExtCompare
&& N2C
->isOne())
22782 // zext (setcc n0, n1)
22784 SCC
= DAG
.getSetCC(DL
, CmpResVT
, N0
, N1
, CC
);
22785 if (VT
.bitsLT(SCC
.getValueType()))
22786 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
), VT
);
22788 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
22790 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
22791 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
), VT
, SCC
);
22794 AddToWorklist(SCC
.getNode());
22795 AddToWorklist(Temp
.getNode());
22800 unsigned ShCt
= N2C
->getAPIntValue().logBase2();
22801 if (TLI
.shouldAvoidTransformToShift(VT
, ShCt
))
22804 // shl setcc result by log2 n2c
22805 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
22806 DAG
.getConstant(ShCt
, SDLoc(Temp
),
22807 getShiftAmountTy(Temp
.getValueType())));
22810 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
22811 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
22812 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
22813 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
22814 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
22815 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
22816 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
22817 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
22818 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
22819 SDValue ValueOnZero
= N2
;
22820 SDValue Count
= N3
;
22821 // If the condition is NE instead of E, swap the operands.
22822 if (CC
== ISD::SETNE
)
22823 std::swap(ValueOnZero
, Count
);
22824 // Check if the value on zero is a constant equal to the bits in the type.
22825 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
22826 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
22827 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
22828 // legal, combine to just cttz.
22829 if ((Count
.getOpcode() == ISD::CTTZ
||
22830 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
22831 N0
== Count
.getOperand(0) &&
22832 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
22833 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
22834 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
22835 // legal, combine to just ctlz.
22836 if ((Count
.getOpcode() == ISD::CTLZ
||
22837 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
22838 N0
== Count
.getOperand(0) &&
22839 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
22840 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
22848 /// This is a stub for TargetLowering::SimplifySetCC.
22849 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
22850 ISD::CondCode Cond
, const SDLoc
&DL
,
22851 bool foldBooleans
) {
22852 TargetLowering::DAGCombinerInfo
22853 DagCombineInfo(DAG
, Level
, false, this);
22854 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
22857 /// Given an ISD::SDIV node expressing a divide by constant, return
22858 /// a DAG expression to select that will generate the same value by multiplying
22859 /// by a magic number.
22860 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22861 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
22862 // when optimising for minimum size, we don't want to expand a div to a mul
22864 if (DAG
.getMachineFunction().getFunction().hasMinSize())
22867 SmallVector
<SDNode
*, 8> Built
;
22868 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
22869 for (SDNode
*N
: Built
)
22877 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
22878 /// DAG expression that will generate the same value by right shifting.
22879 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
22880 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
22884 // Avoid division by zero.
22885 if (C
->isNullValue())
22888 SmallVector
<SDNode
*, 8> Built
;
22889 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
22890 for (SDNode
*N
: Built
)
22898 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
22899 /// expression that will generate the same value by multiplying by a magic
22901 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
22902 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
22903 // when optimising for minimum size, we don't want to expand a div to a mul
22905 if (DAG
.getMachineFunction().getFunction().hasMinSize())
22908 SmallVector
<SDNode
*, 8> Built
;
22909 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
22910 for (SDNode
*N
: Built
)
22918 /// Determines the LogBase2 value for a non-null input value using the
22919 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
22920 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
22921 EVT VT
= V
.getValueType();
22922 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
22923 SDValue Base
= DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
);
22924 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
22928 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22929 /// For the reciprocal, we need to find the zero of the function:
22930 /// F(X) = 1/X - A [which has a zero at X = 1/A]
22932 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
22933 /// does not require additional intermediate precision]
22934 /// For the last iteration, put numerator N into it to gain more precision:
22935 /// Result = N X_i + X_i (N - N A X_i)
22936 SDValue
DAGCombiner::BuildDivEstimate(SDValue N
, SDValue Op
,
22937 SDNodeFlags Flags
) {
22941 // TODO: Handle half and/or extended types?
22942 EVT VT
= Op
.getValueType();
22943 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
22946 // If estimates are explicitly disabled for this function, we're done.
22947 MachineFunction
&MF
= DAG
.getMachineFunction();
22948 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
22949 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
22952 // Estimates may be explicitly enabled for this type with a custom number of
22953 // refinement steps.
22954 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
22955 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
22956 AddToWorklist(Est
.getNode());
22960 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
22962 // Newton iterations: Est = Est + Est (N - Arg * Est)
22963 // If this is the last iteration, also multiply by the numerator.
22964 for (int i
= 0; i
< Iterations
; ++i
) {
22965 SDValue MulEst
= Est
;
22967 if (i
== Iterations
- 1) {
22968 MulEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N
, Est
, Flags
);
22969 AddToWorklist(MulEst
.getNode());
22972 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, MulEst
, Flags
);
22973 AddToWorklist(NewEst
.getNode());
22975 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
,
22976 (i
== Iterations
- 1 ? N
: FPOne
), NewEst
, Flags
);
22977 AddToWorklist(NewEst
.getNode());
22979 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
22980 AddToWorklist(NewEst
.getNode());
22982 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, MulEst
, NewEst
, Flags
);
22983 AddToWorklist(Est
.getNode());
22986 // If no iterations are available, multiply with N.
22987 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, N
, Flags
);
22988 AddToWorklist(Est
.getNode());
22997 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
22998 /// For the reciprocal sqrt, we need to find the zero of the function:
22999 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
23001 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
23002 /// As a result, we precompute A/2 prior to the iteration loop.
23003 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
23004 unsigned Iterations
,
23005 SDNodeFlags Flags
, bool Reciprocal
) {
23006 EVT VT
= Arg
.getValueType();
23008 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
23010 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
23011 // this entire sequence requires only one FP constant.
23012 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
23013 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
23015 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
23016 for (unsigned i
= 0; i
< Iterations
; ++i
) {
23017 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
23018 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
23019 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
23020 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
23023 // If non-reciprocal square root is requested, multiply the result by Arg.
23025 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
23030 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
23031 /// For the reciprocal sqrt, we need to find the zero of the function:
23032 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
23034 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
23035 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
23036 unsigned Iterations
,
23037 SDNodeFlags Flags
, bool Reciprocal
) {
23038 EVT VT
= Arg
.getValueType();
23040 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
23041 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
23043 // This routine must enter the loop below to work correctly
23044 // when (Reciprocal == false).
23045 assert(Iterations
> 0);
23047 // Newton iterations for reciprocal square root:
23048 // E = (E * -0.5) * ((A * E) * E + -3.0)
23049 for (unsigned i
= 0; i
< Iterations
; ++i
) {
23050 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
23051 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
23052 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
23054 // When calculating a square root at the last iteration build:
23055 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
23056 // (notice a common subexpression)
23058 if (Reciprocal
|| (i
+ 1) < Iterations
) {
23059 // RSQRT: LHS = (E * -0.5)
23060 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
23062 // SQRT: LHS = (A * E) * -0.5
23063 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
23066 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
23072 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
23073 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
23074 /// Op can be zero.
23075 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
23080 // TODO: Handle half and/or extended types?
23081 EVT VT
= Op
.getValueType();
23082 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
23085 // If estimates are explicitly disabled for this function, we're done.
23086 MachineFunction
&MF
= DAG
.getMachineFunction();
23087 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
23088 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
23091 // Estimates may be explicitly enabled for this type with a custom number of
23092 // refinement steps.
23093 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
23095 bool UseOneConstNR
= false;
23097 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
23099 AddToWorklist(Est
.getNode());
23102 Est
= UseOneConstNR
23103 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
23104 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
23107 // Try the target specific test first.
23108 SDValue Test
= TLI
.getSqrtInputTest(Op
, DAG
, DAG
.getDenormalMode(VT
));
23110 // The estimate is now completely wrong if the input was exactly 0.0 or
23111 // possibly a denormal. Force the answer to 0.0 or value provided by
23112 // target for those cases.
23114 Test
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
, VT
,
23115 Test
, TLI
.getSqrtResultForDenormInput(Op
, DAG
), Est
);
23123 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
23124 return buildSqrtEstimateImpl(Op
, Flags
, true);
23127 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
23128 return buildSqrtEstimateImpl(Op
, Flags
, false);
23131 /// Return true if there is any possibility that the two addresses overlap.
23132 bool DAGCombiner::isAlias(SDNode
*Op0
, SDNode
*Op1
) const {
23134 struct MemUseCharacteristics
{
23139 Optional
<int64_t> NumBytes
;
23140 MachineMemOperand
*MMO
;
23143 auto getCharacteristics
= [](SDNode
*N
) -> MemUseCharacteristics
{
23144 if (const auto *LSN
= dyn_cast
<LSBaseSDNode
>(N
)) {
23145 int64_t Offset
= 0;
23146 if (auto *C
= dyn_cast
<ConstantSDNode
>(LSN
->getOffset()))
23147 Offset
= (LSN
->getAddressingMode() == ISD::PRE_INC
)
23148 ? C
->getSExtValue()
23149 : (LSN
->getAddressingMode() == ISD::PRE_DEC
)
23150 ? -1 * C
->getSExtValue()
23153 MemoryLocation::getSizeOrUnknown(LSN
->getMemoryVT().getStoreSize());
23154 return {LSN
->isVolatile(), LSN
->isAtomic(), LSN
->getBasePtr(),
23155 Offset
/*base offset*/,
23156 Optional
<int64_t>(Size
),
23157 LSN
->getMemOperand()};
23159 if (const auto *LN
= cast
<LifetimeSDNode
>(N
))
23160 return {false /*isVolatile*/, /*isAtomic*/ false, LN
->getOperand(1),
23161 (LN
->hasOffset()) ? LN
->getOffset() : 0,
23162 (LN
->hasOffset()) ? Optional
<int64_t>(LN
->getSize())
23163 : Optional
<int64_t>(),
23164 (MachineMemOperand
*)nullptr};
23166 return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
23167 (int64_t)0 /*offset*/,
23168 Optional
<int64_t>() /*size*/, (MachineMemOperand
*)nullptr};
23171 MemUseCharacteristics MUC0
= getCharacteristics(Op0
),
23172 MUC1
= getCharacteristics(Op1
);
23174 // If they are to the same address, then they must be aliases.
23175 if (MUC0
.BasePtr
.getNode() && MUC0
.BasePtr
== MUC1
.BasePtr
&&
23176 MUC0
.Offset
== MUC1
.Offset
)
23179 // If they are both volatile then they cannot be reordered.
23180 if (MUC0
.IsVolatile
&& MUC1
.IsVolatile
)
23183 // Be conservative about atomics for the moment
23184 // TODO: This is way overconservative for unordered atomics (see D66309)
23185 if (MUC0
.IsAtomic
&& MUC1
.IsAtomic
)
23188 if (MUC0
.MMO
&& MUC1
.MMO
) {
23189 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
23190 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23194 // Try to prove that there is aliasing, or that there is no aliasing. Either
23195 // way, we can return now. If nothing can be proved, proceed with more tests.
23197 if (BaseIndexOffset::computeAliasing(Op0
, MUC0
.NumBytes
, Op1
, MUC1
.NumBytes
,
23201 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
23202 // either are not known.
23203 if (!MUC0
.MMO
|| !MUC1
.MMO
)
23206 // If one operation reads from invariant memory, and the other may store, they
23207 // cannot alias. These should really be checking the equivalent of mayWrite,
23208 // but it only matters for memory nodes other than load /store.
23209 if ((MUC0
.MMO
->isInvariant() && MUC1
.MMO
->isStore()) ||
23210 (MUC1
.MMO
->isInvariant() && MUC0
.MMO
->isStore()))
23213 // If we know required SrcValue1 and SrcValue2 have relatively large
23214 // alignment compared to the size and offset of the access, we may be able
23215 // to prove they do not alias. This check is conservative for now to catch
23216 // cases created by splitting vector types, it only works when the offsets are
23217 // multiples of the size of the data.
23218 int64_t SrcValOffset0
= MUC0
.MMO
->getOffset();
23219 int64_t SrcValOffset1
= MUC1
.MMO
->getOffset();
23220 Align OrigAlignment0
= MUC0
.MMO
->getBaseAlign();
23221 Align OrigAlignment1
= MUC1
.MMO
->getBaseAlign();
23222 auto &Size0
= MUC0
.NumBytes
;
23223 auto &Size1
= MUC1
.NumBytes
;
23224 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
23225 Size0
.hasValue() && Size1
.hasValue() && *Size0
== *Size1
&&
23226 OrigAlignment0
> *Size0
&& SrcValOffset0
% *Size0
== 0 &&
23227 SrcValOffset1
% *Size1
== 0) {
23228 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
.value();
23229 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
.value();
23231 // There is no overlap between these relatively aligned accesses of
23232 // similar size. Return no alias.
23233 if ((OffAlign0
+ *Size0
) <= OffAlign1
|| (OffAlign1
+ *Size1
) <= OffAlign0
)
23237 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
23239 : DAG
.getSubtarget().useAA();
23241 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
23242 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
23246 if (UseAA
&& AA
&& MUC0
.MMO
->getValue() && MUC1
.MMO
->getValue() &&
23247 Size0
.hasValue() && Size1
.hasValue()) {
23248 // Use alias analysis information.
23249 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
23250 int64_t Overlap0
= *Size0
+ SrcValOffset0
- MinOffset
;
23251 int64_t Overlap1
= *Size1
+ SrcValOffset1
- MinOffset
;
23253 MemoryLocation(MUC0
.MMO
->getValue(), Overlap0
,
23254 UseTBAA
? MUC0
.MMO
->getAAInfo() : AAMDNodes()),
23255 MemoryLocation(MUC1
.MMO
->getValue(), Overlap1
,
23256 UseTBAA
? MUC1
.MMO
->getAAInfo() : AAMDNodes())))
23260 // Otherwise we have to assume they alias.
23264 /// Walk up chain skipping non-aliasing memory nodes,
23265 /// looking for aliasing nodes and adding them to the Aliases vector.
23266 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
23267 SmallVectorImpl
<SDValue
> &Aliases
) {
23268 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
23269 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
23271 // Get alias information for node.
23272 // TODO: relax aliasing for unordered atomics (see D66309)
23273 const bool IsLoad
= isa
<LoadSDNode
>(N
) && cast
<LoadSDNode
>(N
)->isSimple();
23276 Chains
.push_back(OriginalChain
);
23277 unsigned Depth
= 0;
23279 // Attempt to improve chain by a single step
23280 std::function
<bool(SDValue
&)> ImproveChain
= [&](SDValue
&C
) -> bool {
23281 switch (C
.getOpcode()) {
23282 case ISD::EntryToken
:
23283 // No need to mark EntryToken.
23288 // Get alias information for C.
23289 // TODO: Relax aliasing for unordered atomics (see D66309)
23290 bool IsOpLoad
= isa
<LoadSDNode
>(C
.getNode()) &&
23291 cast
<LSBaseSDNode
>(C
.getNode())->isSimple();
23292 if ((IsLoad
&& IsOpLoad
) || !isAlias(N
, C
.getNode())) {
23293 // Look further up the chain.
23294 C
= C
.getOperand(0);
23297 // Alias, so stop here.
23301 case ISD::CopyFromReg
:
23302 // Always forward past past CopyFromReg.
23303 C
= C
.getOperand(0);
23306 case ISD::LIFETIME_START
:
23307 case ISD::LIFETIME_END
: {
23308 // We can forward past any lifetime start/end that can be proven not to
23309 // alias the memory access.
23310 if (!isAlias(N
, C
.getNode())) {
23311 // Look further up the chain.
23312 C
= C
.getOperand(0);
23322 // Look at each chain and determine if it is an alias. If so, add it to the
23323 // aliases list. If not, then continue up the chain looking for the next
23325 while (!Chains
.empty()) {
23326 SDValue Chain
= Chains
.pop_back_val();
23328 // Don't bother if we've seen Chain before.
23329 if (!Visited
.insert(Chain
.getNode()).second
)
23332 // For TokenFactor nodes, look at each operand and only continue up the
23333 // chain until we reach the depth limit.
23335 // FIXME: The depth check could be made to return the last non-aliasing
23336 // chain we found before we hit a tokenfactor rather than the original
23338 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
23340 Aliases
.push_back(OriginalChain
);
23344 if (Chain
.getOpcode() == ISD::TokenFactor
) {
23345 // We have to check each of the operands of the token factor for "small"
23346 // token factors, so we queue them up. Adding the operands to the queue
23347 // (stack) in reverse order maintains the original order and increases the
23348 // likelihood that getNode will find a matching token factor (CSE.)
23349 if (Chain
.getNumOperands() > 16) {
23350 Aliases
.push_back(Chain
);
23353 for (unsigned n
= Chain
.getNumOperands(); n
;)
23354 Chains
.push_back(Chain
.getOperand(--n
));
23359 if (ImproveChain(Chain
)) {
23360 // Updated Chain Found, Consider new chain if one exists.
23361 if (Chain
.getNode())
23362 Chains
.push_back(Chain
);
23366 // No Improved Chain Possible, treat as Alias.
23367 Aliases
.push_back(Chain
);
23371 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
23372 /// (aliasing node.)
23373 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
23374 if (OptLevel
== CodeGenOpt::None
)
23377 // Ops for replacing token factor.
23378 SmallVector
<SDValue
, 8> Aliases
;
23380 // Accumulate all the aliases to this node.
23381 GatherAllAliases(N
, OldChain
, Aliases
);
23383 // If no operands then chain to entry token.
23384 if (Aliases
.size() == 0)
23385 return DAG
.getEntryNode();
23387 // If a single operand then chain to it. We don't need to revisit it.
23388 if (Aliases
.size() == 1)
23391 // Construct a custom tailored token factor.
23392 return DAG
.getTokenFactor(SDLoc(N
), Aliases
);
23396 // TODO: Replace with with std::monostate when we move to C++17.
23397 struct UnitT
{ } Unit
;
23398 bool operator==(const UnitT
&, const UnitT
&) { return true; }
23399 bool operator!=(const UnitT
&, const UnitT
&) { return false; }
23402 // This function tries to collect a bunch of potentially interesting
23403 // nodes to improve the chains of, all at once. This might seem
23404 // redundant, as this function gets called when visiting every store
23405 // node, so why not let the work be done on each store as it's visited?
23407 // I believe this is mainly important because mergeConsecutiveStores
23408 // is unable to deal with merging stores of different sizes, so unless
23409 // we improve the chains of all the potential candidates up-front
23410 // before running mergeConsecutiveStores, it might only see some of
23411 // the nodes that will eventually be candidates, and then not be able
23412 // to go from a partially-merged state to the desired final
23413 // fully-merged state.
23415 bool DAGCombiner::parallelizeChainedStores(StoreSDNode
*St
) {
23416 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
23417 StoreSDNode
*STChain
= St
;
23418 // Intervals records which offsets from BaseIndex have been covered. In
23419 // the common case, every store writes to the immediately previous address
23420 // space and thus merged with the previous interval at insertion time.
23423 llvm::IntervalMap
<int64_t, UnitT
, 8, IntervalMapHalfOpenInfo
<int64_t>>;
23427 // This holds the base pointer, index, and the offset in bytes from the base
23429 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
23431 // We must have a base and an offset.
23432 if (!BasePtr
.getBase().getNode())
23435 // Do not handle stores to undef base pointers.
23436 if (BasePtr
.getBase().isUndef())
23439 // Do not handle stores to opaque types
23440 if (St
->getMemoryVT().isZeroSized())
23443 // BaseIndexOffset assumes that offsets are fixed-size, which
23444 // is not valid for scalable vectors where the offsets are
23445 // scaled by `vscale`, so bail out early.
23446 if (St
->getMemoryVT().isScalableVector())
23449 // Add ST's interval.
23450 Intervals
.insert(0, (St
->getMemoryVT().getSizeInBits() + 7) / 8, Unit
);
23452 while (StoreSDNode
*Chain
= dyn_cast
<StoreSDNode
>(STChain
->getChain())) {
23453 if (Chain
->getMemoryVT().isScalableVector())
23456 // If the chain has more than one use, then we can't reorder the mem ops.
23457 if (!SDValue(Chain
, 0)->hasOneUse())
23459 // TODO: Relax for unordered atomics (see D66309)
23460 if (!Chain
->isSimple() || Chain
->isIndexed())
23463 // Find the base pointer and offset for this memory node.
23464 const BaseIndexOffset Ptr
= BaseIndexOffset::match(Chain
, DAG
);
23465 // Check that the base pointer is the same as the original one.
23467 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
))
23469 int64_t Length
= (Chain
->getMemoryVT().getSizeInBits() + 7) / 8;
23470 // Make sure we don't overlap with other intervals by checking the ones to
23471 // the left or right before inserting.
23472 auto I
= Intervals
.find(Offset
);
23473 // If there's a next interval, we should end before it.
23474 if (I
!= Intervals
.end() && I
.start() < (Offset
+ Length
))
23476 // If there's a previous interval, we should start after it.
23477 if (I
!= Intervals
.begin() && (--I
).stop() <= Offset
)
23479 Intervals
.insert(Offset
, Offset
+ Length
, Unit
);
23481 ChainedStores
.push_back(Chain
);
23485 // If we didn't find a chained store, exit.
23486 if (ChainedStores
.size() == 0)
23489 // Improve all chained stores (St and ChainedStores members) starting from
23490 // where the store chain ended and return single TokenFactor.
23491 SDValue NewChain
= STChain
->getChain();
23492 SmallVector
<SDValue
, 8> TFOps
;
23493 for (unsigned I
= ChainedStores
.size(); I
;) {
23494 StoreSDNode
*S
= ChainedStores
[--I
];
23495 SDValue BetterChain
= FindBetterChain(S
, NewChain
);
23496 S
= cast
<StoreSDNode
>(DAG
.UpdateNodeOperands(
23497 S
, BetterChain
, S
->getOperand(1), S
->getOperand(2), S
->getOperand(3)));
23498 TFOps
.push_back(SDValue(S
, 0));
23499 ChainedStores
[I
] = S
;
23502 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
23503 SDValue BetterChain
= FindBetterChain(St
, NewChain
);
23505 if (St
->isTruncatingStore())
23506 NewST
= DAG
.getTruncStore(BetterChain
, SDLoc(St
), St
->getValue(),
23507 St
->getBasePtr(), St
->getMemoryVT(),
23508 St
->getMemOperand());
23510 NewST
= DAG
.getStore(BetterChain
, SDLoc(St
), St
->getValue(),
23511 St
->getBasePtr(), St
->getMemOperand());
23513 TFOps
.push_back(NewST
);
23515 // If we improved every element of TFOps, then we've lost the dependence on
23516 // NewChain to successors of St and we need to add it back to TFOps. Do so at
23517 // the beginning to keep relative order consistent with FindBetterChains.
23518 auto hasImprovedChain
= [&](SDValue ST
) -> bool {
23519 return ST
->getOperand(0) != NewChain
;
23521 bool AddNewChain
= llvm::all_of(TFOps
, hasImprovedChain
);
23523 TFOps
.insert(TFOps
.begin(), NewChain
);
23525 SDValue TF
= DAG
.getTokenFactor(SDLoc(STChain
), TFOps
);
23528 // Add TF and its operands to the worklist.
23529 AddToWorklist(TF
.getNode());
23530 for (const SDValue
&Op
: TF
->ops())
23531 AddToWorklist(Op
.getNode());
23532 AddToWorklist(STChain
);
23536 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
23537 if (OptLevel
== CodeGenOpt::None
)
23540 const BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
23542 // We must have a base and an offset.
23543 if (!BasePtr
.getBase().getNode())
23546 // Do not handle stores to undef base pointers.
23547 if (BasePtr
.getBase().isUndef())
23550 // Directly improve a chain of disjoint stores starting at St.
23551 if (parallelizeChainedStores(St
))
23554 // Improve St's Chain..
23555 SDValue BetterChain
= FindBetterChain(St
, St
->getChain());
23556 if (St
->getChain() != BetterChain
) {
23557 replaceStoreChain(St
, BetterChain
);
23563 /// This is the entry point for the file.
23564 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
23565 CodeGenOpt::Level OptLevel
) {
23566 /// This is the main entry point to this class.
23567 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);