1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
67 #define DEBUG_TYPE "twoaddressinstruction"
69 STATISTIC(NumTwoAddressInstrs
, "Number of two-address instructions");
70 STATISTIC(NumCommuted
, "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted
, "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr
, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps
, "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns
, "Number of instructions re-scheduled down");
76 // Temporary flag to disable rescheduling.
78 EnableRescheduling("twoaddr-reschedule",
79 cl::desc("Coalesce copies by rescheduling (default=true)"),
80 cl::init(true), cl::Hidden
);
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt
<unsigned> MaxDataFlowEdge(
85 "dataflow-edge-limit", cl::Hidden
, cl::init(3),
86 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87 "the benefit of commuting operands"));
91 class TwoAddressInstructionPass
: public MachineFunctionPass
{
93 const TargetInstrInfo
*TII
;
94 const TargetRegisterInfo
*TRI
;
95 const InstrItineraryData
*InstrItins
;
96 MachineRegisterInfo
*MRI
;
100 CodeGenOpt::Level OptLevel
;
102 // The current basic block being processed.
103 MachineBasicBlock
*MBB
;
105 // Keep track the distance of a MI from the start of the current basic block.
106 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
108 // Set of already processed instructions in the current block.
109 SmallPtrSet
<MachineInstr
*, 8> Processed
;
111 // A map from virtual registers to physical registers which are likely targets
112 // to be coalesced to due to copies from physical registers to virtual
113 // registers. e.g. v1024 = move r0.
114 DenseMap
<Register
, Register
> SrcRegMap
;
116 // A map from virtual registers to physical registers which are likely targets
117 // to be coalesced to due to copies to physical registers from virtual
118 // registers. e.g. r1 = move v1024.
119 DenseMap
<Register
, Register
> DstRegMap
;
121 bool isRevCopyChain(Register FromReg
, Register ToReg
, int Maxlen
);
123 bool noUseAfterLastDef(Register Reg
, unsigned Dist
, unsigned &LastDef
);
125 bool isProfitableToCommute(Register RegA
, Register RegB
, Register RegC
,
126 MachineInstr
*MI
, unsigned Dist
);
128 bool commuteInstruction(MachineInstr
*MI
, unsigned DstIdx
,
129 unsigned RegBIdx
, unsigned RegCIdx
, unsigned Dist
);
131 bool isProfitableToConv3Addr(Register RegA
, Register RegB
);
133 bool convertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
134 MachineBasicBlock::iterator
&nmi
, Register RegA
,
135 Register RegB
, unsigned Dist
);
137 bool isDefTooClose(Register Reg
, unsigned Dist
, MachineInstr
*MI
);
139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator
&mi
,
140 MachineBasicBlock::iterator
&nmi
, Register Reg
);
141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator
&mi
,
142 MachineBasicBlock::iterator
&nmi
, Register Reg
);
144 bool tryInstructionTransform(MachineBasicBlock::iterator
&mi
,
145 MachineBasicBlock::iterator
&nmi
,
146 unsigned SrcIdx
, unsigned DstIdx
,
147 unsigned Dist
, bool shouldOnlyCommute
);
149 bool tryInstructionCommute(MachineInstr
*MI
,
154 void scanUses(Register DstReg
);
156 void processCopy(MachineInstr
*MI
);
158 using TiedPairList
= SmallVector
<std::pair
<unsigned, unsigned>, 4>;
159 using TiedOperandMap
= SmallDenseMap
<unsigned, TiedPairList
>;
161 bool collectTiedOperands(MachineInstr
*MI
, TiedOperandMap
&);
162 void processTiedPairs(MachineInstr
*MI
, TiedPairList
&, unsigned &Dist
);
163 void eliminateRegSequence(MachineBasicBlock::iterator
&);
166 static char ID
; // Pass identification, replacement for typeid
168 TwoAddressInstructionPass() : MachineFunctionPass(ID
) {
169 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
172 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
173 AU
.setPreservesCFG();
174 AU
.addUsedIfAvailable
<AAResultsWrapperPass
>();
175 AU
.addUsedIfAvailable
<LiveVariables
>();
176 AU
.addPreserved
<LiveVariables
>();
177 AU
.addPreserved
<SlotIndexes
>();
178 AU
.addPreserved
<LiveIntervals
>();
179 AU
.addPreservedID(MachineLoopInfoID
);
180 AU
.addPreservedID(MachineDominatorsID
);
181 MachineFunctionPass::getAnalysisUsage(AU
);
184 /// Pass entry point.
185 bool runOnMachineFunction(MachineFunction
&) override
;
188 } // end anonymous namespace
190 char TwoAddressInstructionPass::ID
= 0;
192 char &llvm::TwoAddressInstructionPassID
= TwoAddressInstructionPass::ID
;
194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass
, DEBUG_TYPE
,
195 "Two-Address instruction pass", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
197 INITIALIZE_PASS_END(TwoAddressInstructionPass
, DEBUG_TYPE
,
198 "Two-Address instruction pass", false, false)
200 static bool isPlainlyKilled(MachineInstr
*MI
, Register Reg
, LiveIntervals
*LIS
);
202 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
203 static MachineInstr
*getSingleDef(Register Reg
, MachineBasicBlock
*BB
,
204 const MachineRegisterInfo
*MRI
) {
205 MachineInstr
*Ret
= nullptr;
206 for (MachineInstr
&DefMI
: MRI
->def_instructions(Reg
)) {
207 if (DefMI
.getParent() != BB
|| DefMI
.isDebugValue())
211 else if (Ret
!= &DefMI
)
217 /// Check if there is a reversed copy chain from FromReg to ToReg:
218 /// %Tmp1 = copy %Tmp2;
219 /// %FromReg = copy %Tmp1;
220 /// %ToReg = add %FromReg ...
221 /// %Tmp2 = copy %ToReg;
222 /// MaxLen specifies the maximum length of the copy chain the func
223 /// can walk through.
224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg
, Register ToReg
,
226 Register TmpReg
= FromReg
;
227 for (int i
= 0; i
< Maxlen
; i
++) {
228 MachineInstr
*Def
= getSingleDef(TmpReg
, MBB
, MRI
);
229 if (!Def
|| !Def
->isCopy())
232 TmpReg
= Def
->getOperand(1).getReg();
240 /// Return true if there are no intervening uses between the last instruction
241 /// in the MBB that defines the specified register and the two-address
242 /// instruction which is being processed. It also returns the last def location
244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg
, unsigned Dist
,
247 unsigned LastUse
= Dist
;
248 for (MachineOperand
&MO
: MRI
->reg_operands(Reg
)) {
249 MachineInstr
*MI
= MO
.getParent();
250 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
252 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
253 if (DI
== DistanceMap
.end())
255 if (MO
.isUse() && DI
->second
< LastUse
)
256 LastUse
= DI
->second
;
257 if (MO
.isDef() && DI
->second
> LastDef
)
258 LastDef
= DI
->second
;
261 return !(LastUse
> LastDef
&& LastUse
< Dist
);
264 /// Return true if the specified MI is a copy instruction or an extract_subreg
265 /// instruction. It also returns the source and destination registers and
266 /// whether they are physical registers by reference.
267 static bool isCopyToReg(MachineInstr
&MI
, const TargetInstrInfo
*TII
,
268 Register
&SrcReg
, Register
&DstReg
, bool &IsSrcPhys
,
273 DstReg
= MI
.getOperand(0).getReg();
274 SrcReg
= MI
.getOperand(1).getReg();
275 } else if (MI
.isInsertSubreg() || MI
.isSubregToReg()) {
276 DstReg
= MI
.getOperand(0).getReg();
277 SrcReg
= MI
.getOperand(2).getReg();
282 IsSrcPhys
= SrcReg
.isPhysical();
283 IsDstPhys
= DstReg
.isPhysical();
287 /// Test if the given register value, which is used by the
288 /// given instruction, is killed by the given instruction.
289 static bool isPlainlyKilled(MachineInstr
*MI
, Register Reg
,
290 LiveIntervals
*LIS
) {
291 if (LIS
&& Reg
.isVirtual() && !LIS
->isNotInMIMap(*MI
)) {
292 // FIXME: Sometimes tryInstructionTransform() will add instructions and
293 // test whether they can be folded before keeping them. In this case it
294 // sets a kill before recursively calling tryInstructionTransform() again.
295 // If there is no interval available, we assume that this instruction is
296 // one of those. A kill flag is manually inserted on the operand so the
297 // check below will handle it.
298 LiveInterval
&LI
= LIS
->getInterval(Reg
);
299 // This is to match the kill flag version where undefs don't have kill
301 if (!LI
.hasAtLeastOneValue())
304 SlotIndex useIdx
= LIS
->getInstructionIndex(*MI
);
305 LiveInterval::const_iterator I
= LI
.find(useIdx
);
306 assert(I
!= LI
.end() && "Reg must be live-in to use.");
307 return !I
->end
.isBlock() && SlotIndex::isSameInstr(I
->end
, useIdx
);
310 return MI
->killsRegister(Reg
);
313 /// Test if the given register value, which is used by the given
314 /// instruction, is killed by the given instruction. This looks through
315 /// coalescable copies to see if the original value is potentially not killed.
317 /// For example, in this code:
319 /// %reg1034 = copy %reg1024
320 /// %reg1035 = copy killed %reg1025
321 /// %reg1036 = add killed %reg1034, killed %reg1035
323 /// %reg1034 is not considered to be killed, since it is copied from a
324 /// register which is not killed. Treating it as not killed lets the
325 /// normal heuristics commute the (two-address) add, which lets
326 /// coalescing eliminate the extra copy.
328 /// If allowFalsePositives is true then likely kills are treated as kills even
329 /// if it can't be proven that they are kills.
330 static bool isKilled(MachineInstr
&MI
, Register Reg
,
331 const MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
332 LiveIntervals
*LIS
, bool allowFalsePositives
) {
333 MachineInstr
*DefMI
= &MI
;
335 // All uses of physical registers are likely to be kills.
336 if (Reg
.isPhysical() && (allowFalsePositives
|| MRI
->hasOneUse(Reg
)))
338 if (!isPlainlyKilled(DefMI
, Reg
, LIS
))
340 if (Reg
.isPhysical())
342 MachineRegisterInfo::def_iterator Begin
= MRI
->def_begin(Reg
);
343 // If there are multiple defs, we can't do a simple analysis, so just
344 // go with what the kill flag says.
345 if (std::next(Begin
) != MRI
->def_end())
347 DefMI
= Begin
->getParent();
348 bool IsSrcPhys
, IsDstPhys
;
349 Register SrcReg
, DstReg
;
350 // If the def is something other than a copy, then it isn't going to
351 // be coalesced, so follow the kill flag.
352 if (!isCopyToReg(*DefMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
358 /// Return true if the specified MI uses the specified register as a two-address
359 /// use. If so, return the destination register by reference.
360 static bool isTwoAddrUse(MachineInstr
&MI
, Register Reg
, Register
&DstReg
) {
361 for (unsigned i
= 0, NumOps
= MI
.getNumOperands(); i
!= NumOps
; ++i
) {
362 const MachineOperand
&MO
= MI
.getOperand(i
);
363 if (!MO
.isReg() || !MO
.isUse() || MO
.getReg() != Reg
)
366 if (MI
.isRegTiedToDefOperand(i
, &ti
)) {
367 DstReg
= MI
.getOperand(ti
).getReg();
374 /// Given a register, if has a single in-basic block use, return the use
375 /// instruction if it's a copy or a two-address use.
376 static MachineInstr
*
377 findOnlyInterestingUse(Register Reg
, MachineBasicBlock
*MBB
,
378 MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
379 bool &IsCopy
, Register
&DstReg
, bool &IsDstPhys
) {
380 if (!MRI
->hasOneNonDBGUse(Reg
))
381 // None or more than one use.
383 MachineInstr
&UseMI
= *MRI
->use_instr_nodbg_begin(Reg
);
384 if (UseMI
.getParent() != MBB
)
388 if (isCopyToReg(UseMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
)) {
393 if (isTwoAddrUse(UseMI
, Reg
, DstReg
)) {
394 IsDstPhys
= DstReg
.isPhysical();
400 /// Return the physical register the specified virtual register might be mapped
402 static MCRegister
getMappedReg(Register Reg
,
403 DenseMap
<Register
, Register
> &RegMap
) {
404 while (Reg
.isVirtual()) {
405 DenseMap
<Register
, Register
>::iterator SI
= RegMap
.find(Reg
);
406 if (SI
== RegMap
.end())
410 if (Reg
.isPhysical())
415 /// Return true if the two registers are equal or aliased.
416 static bool regsAreCompatible(Register RegA
, Register RegB
,
417 const TargetRegisterInfo
*TRI
) {
422 return TRI
->regsOverlap(RegA
, RegB
);
425 // Returns true if Reg is equal or aliased to at least one register in Set.
426 static bool regOverlapsSet(const SmallVectorImpl
<Register
> &Set
, Register Reg
,
427 const TargetRegisterInfo
*TRI
) {
428 for (unsigned R
: Set
)
429 if (TRI
->regsOverlap(R
, Reg
))
435 /// Return true if it's potentially profitable to commute the two-address
436 /// instruction that's being processed.
437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA
,
442 if (OptLevel
== CodeGenOpt::None
)
445 // Determine if it's profitable to commute this two address instruction. In
446 // general, we want no uses between this instruction and the definition of
447 // the two-address register.
449 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
450 // %reg1029 = COPY %reg1028
451 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
452 // insert => %reg1030 = COPY %reg1028
453 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
454 // In this case, it might not be possible to coalesce the second COPY
455 // instruction if the first one is coalesced. So it would be profitable to
457 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
458 // %reg1029 = COPY %reg1028
459 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
460 // insert => %reg1030 = COPY %reg1029
461 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
463 if (!isPlainlyKilled(MI
, RegC
, LIS
))
466 // Ok, we have something like:
467 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
468 // let's see if it's worth commuting it.
470 // Look for situations like this:
473 // %reg1026 = ADD %reg1024, %reg1025
475 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
476 MCRegister ToRegA
= getMappedReg(RegA
, DstRegMap
);
478 MCRegister FromRegB
= getMappedReg(RegB
, SrcRegMap
);
479 MCRegister FromRegC
= getMappedReg(RegC
, SrcRegMap
);
480 bool CompB
= FromRegB
&& regsAreCompatible(FromRegB
, ToRegA
, TRI
);
481 bool CompC
= FromRegC
&& regsAreCompatible(FromRegC
, ToRegA
, TRI
);
483 // Compute if any of the following are true:
484 // -RegB is not tied to a register and RegC is compatible with RegA.
485 // -RegB is tied to the wrong physical register, but RegC is.
486 // -RegB is tied to the wrong physical register, and RegC isn't tied.
487 if ((!FromRegB
&& CompC
) || (FromRegB
&& !CompB
&& (!FromRegC
|| CompC
)))
489 // Don't compute if any of the following are true:
490 // -RegC is not tied to a register and RegB is compatible with RegA.
491 // -RegC is tied to the wrong physical register, but RegB is.
492 // -RegC is tied to the wrong physical register, and RegB isn't tied.
493 if ((!FromRegC
&& CompB
) || (FromRegC
&& !CompC
&& (!FromRegB
|| CompB
)))
497 // If there is a use of RegC between its last def (could be livein) and this
498 // instruction, then bail.
499 unsigned LastDefC
= 0;
500 if (!noUseAfterLastDef(RegC
, Dist
, LastDefC
))
503 // If there is a use of RegB between its last def (could be livein) and this
504 // instruction, then go ahead and make this transformation.
505 unsigned LastDefB
= 0;
506 if (!noUseAfterLastDef(RegB
, Dist
, LastDefB
))
509 // Look for situation like this:
510 // %reg101 = MOV %reg100
512 // %reg103 = ADD %reg102, %reg101
514 // %reg100 = MOV %reg103
515 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
516 // to eliminate an otherwise unavoidable copy.
518 // We can extend the logic further: If an pair of operands in an insn has
519 // been merged, the insn could be regarded as a virtual copy, and the virtual
520 // copy could also be used to construct a copy chain.
521 // To more generally minimize register copies, ideally the logic of two addr
522 // instruction pass should be integrated with register allocation pass where
523 // interference graph is available.
524 if (isRevCopyChain(RegC
, RegA
, MaxDataFlowEdge
))
527 if (isRevCopyChain(RegB
, RegA
, MaxDataFlowEdge
))
530 // Look for other target specific commute preference.
532 if (TII
->hasCommutePreference(*MI
, Commute
))
535 // Since there are no intervening uses for both registers, then commute
536 // if the def of RegC is closer. Its live interval is shorter.
537 return LastDefB
&& LastDefC
&& LastDefC
> LastDefB
;
540 /// Commute a two-address instruction and update the basic block, distance map,
541 /// and live variables if needed. Return true if it is successful.
542 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr
*MI
,
547 Register RegC
= MI
->getOperand(RegCIdx
).getReg();
548 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI
);
549 MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
, false, RegBIdx
, RegCIdx
);
551 if (NewMI
== nullptr) {
552 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
556 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI
);
557 assert(NewMI
== MI
&&
558 "TargetInstrInfo::commuteInstruction() should not return a new "
559 "instruction unless it was requested.");
561 // Update source register map.
562 MCRegister FromRegC
= getMappedReg(RegC
, SrcRegMap
);
564 Register RegA
= MI
->getOperand(DstIdx
).getReg();
565 SrcRegMap
[RegA
] = FromRegC
;
571 /// Return true if it is profitable to convert the given 2-address instruction
572 /// to a 3-address one.
573 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA
,
575 // Look for situations like this:
578 // %reg1026 = ADD %reg1024, %reg1025
580 // Turn ADD into a 3-address instruction to avoid a copy.
581 MCRegister FromRegB
= getMappedReg(RegB
, SrcRegMap
);
584 MCRegister ToRegA
= getMappedReg(RegA
, DstRegMap
);
585 return (ToRegA
&& !regsAreCompatible(FromRegB
, ToRegA
, TRI
));
588 /// Convert the specified two-address instruction into a three address one.
589 /// Return true if this transformation was successful.
590 bool TwoAddressInstructionPass::convertInstTo3Addr(
591 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
592 Register RegA
, Register RegB
, unsigned Dist
) {
593 // FIXME: Why does convertToThreeAddress() need an iterator reference?
594 MachineFunction::iterator MFI
= MBB
->getIterator();
595 MachineInstr
*NewMI
= TII
->convertToThreeAddress(MFI
, *mi
, LV
);
596 assert(MBB
->getIterator() == MFI
&&
597 "convertToThreeAddress changed iterator reference");
601 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi
);
602 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI
);
605 LIS
->ReplaceMachineInstrInMaps(*mi
, *NewMI
);
607 // If the old instruction is debug value tracked, an update is required.
608 if (auto OldInstrNum
= mi
->peekDebugInstrNum()) {
610 assert(mi
->getNumExplicitDefs() == 1);
611 assert(NewMI
->getNumExplicitDefs() == 1);
613 // Find the old and new def location.
614 auto OldIt
= mi
->defs().begin();
615 auto NewIt
= NewMI
->defs().begin();
616 unsigned OldIdx
= mi
->getOperandNo(OldIt
);
617 unsigned NewIdx
= NewMI
->getOperandNo(NewIt
);
619 // Record that one def has been replaced by the other.
620 unsigned NewInstrNum
= NewMI
->getDebugInstrNum();
621 MF
->makeDebugValueSubstitution(std::make_pair(OldInstrNum
, OldIdx
),
622 std::make_pair(NewInstrNum
, NewIdx
));
625 MBB
->erase(mi
); // Nuke the old inst.
627 DistanceMap
.insert(std::make_pair(NewMI
, Dist
));
631 // Update source and destination register maps.
632 SrcRegMap
.erase(RegA
);
633 DstRegMap
.erase(RegB
);
637 /// Scan forward recursively for only uses, update maps if the use is a copy or
638 /// a two-address instruction.
639 void TwoAddressInstructionPass::scanUses(Register DstReg
) {
640 SmallVector
<Register
, 4> VirtRegPairs
;
644 Register Reg
= DstReg
;
645 while (MachineInstr
*UseMI
= findOnlyInterestingUse(Reg
, MBB
, MRI
, TII
,IsCopy
,
646 NewReg
, IsDstPhys
)) {
647 if (IsCopy
&& !Processed
.insert(UseMI
).second
)
650 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
651 if (DI
!= DistanceMap
.end())
652 // Earlier in the same MBB.Reached via a back edge.
656 VirtRegPairs
.push_back(NewReg
);
659 bool isNew
= SrcRegMap
.insert(std::make_pair(NewReg
, Reg
)).second
;
661 assert(SrcRegMap
[NewReg
] == Reg
&& "Can't map to two src registers!");
662 VirtRegPairs
.push_back(NewReg
);
666 if (!VirtRegPairs
.empty()) {
667 unsigned ToReg
= VirtRegPairs
.back();
668 VirtRegPairs
.pop_back();
669 while (!VirtRegPairs
.empty()) {
670 unsigned FromReg
= VirtRegPairs
.back();
671 VirtRegPairs
.pop_back();
672 bool isNew
= DstRegMap
.insert(std::make_pair(FromReg
, ToReg
)).second
;
674 assert(DstRegMap
[FromReg
] == ToReg
&&"Can't map to two dst registers!");
677 bool isNew
= DstRegMap
.insert(std::make_pair(DstReg
, ToReg
)).second
;
679 assert(DstRegMap
[DstReg
] == ToReg
&& "Can't map to two dst registers!");
683 /// If the specified instruction is not yet processed, process it if it's a
684 /// copy. For a copy instruction, we find the physical registers the
685 /// source and destination registers might be mapped to. These are kept in
686 /// point-to maps used to determine future optimizations. e.g.
689 /// v1026 = add v1024, v1025
691 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
692 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
693 /// potentially joined with r1 on the output side. It's worthwhile to commute
694 /// 'add' to eliminate a copy.
695 void TwoAddressInstructionPass::processCopy(MachineInstr
*MI
) {
696 if (Processed
.count(MI
))
699 bool IsSrcPhys
, IsDstPhys
;
700 Register SrcReg
, DstReg
;
701 if (!isCopyToReg(*MI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
704 if (IsDstPhys
&& !IsSrcPhys
) {
705 DstRegMap
.insert(std::make_pair(SrcReg
, DstReg
));
706 } else if (!IsDstPhys
&& IsSrcPhys
) {
707 bool isNew
= SrcRegMap
.insert(std::make_pair(DstReg
, SrcReg
)).second
;
709 assert(SrcRegMap
[DstReg
] == SrcReg
&&
710 "Can't map to two src physical registers!");
715 Processed
.insert(MI
);
718 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
719 /// consider moving the instruction below the kill instruction in order to
720 /// eliminate the need for the copy.
721 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
722 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
724 // Bail immediately if we don't have LV or LIS available. We use them to find
725 // kills efficiently.
729 MachineInstr
*MI
= &*mi
;
730 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
731 if (DI
== DistanceMap
.end())
732 // Must be created from unfolded load. Don't waste time trying this.
735 MachineInstr
*KillMI
= nullptr;
737 LiveInterval
&LI
= LIS
->getInterval(Reg
);
738 assert(LI
.end() != LI
.begin() &&
739 "Reg should not have empty live interval.");
741 SlotIndex MBBEndIdx
= LIS
->getMBBEndIdx(MBB
).getPrevSlot();
742 LiveInterval::const_iterator I
= LI
.find(MBBEndIdx
);
743 if (I
!= LI
.end() && I
->start
< MBBEndIdx
)
747 KillMI
= LIS
->getInstructionFromIndex(I
->end
);
749 KillMI
= LV
->getVarInfo(Reg
).findKill(MBB
);
751 if (!KillMI
|| MI
== KillMI
|| KillMI
->isCopy() || KillMI
->isCopyLike())
752 // Don't mess with copies, they may be coalesced later.
755 if (KillMI
->hasUnmodeledSideEffects() || KillMI
->isCall() ||
756 KillMI
->isBranch() || KillMI
->isTerminator())
757 // Don't move pass calls, etc.
761 if (isTwoAddrUse(*KillMI
, Reg
, DstReg
))
764 bool SeenStore
= true;
765 if (!MI
->isSafeToMove(AA
, SeenStore
))
768 if (TII
->getInstrLatency(InstrItins
, *MI
) > 1)
769 // FIXME: Needs more sophisticated heuristics.
772 SmallVector
<Register
, 2> Uses
;
773 SmallVector
<Register
, 2> Kills
;
774 SmallVector
<Register
, 2> Defs
;
775 for (const MachineOperand
&MO
: MI
->operands()) {
778 Register MOReg
= MO
.getReg();
782 Defs
.push_back(MOReg
);
784 Uses
.push_back(MOReg
);
785 if (MOReg
!= Reg
&& (MO
.isKill() ||
786 (LIS
&& isPlainlyKilled(MI
, MOReg
, LIS
))))
787 Kills
.push_back(MOReg
);
791 // Move the copies connected to MI down as well.
792 MachineBasicBlock::iterator Begin
= MI
;
793 MachineBasicBlock::iterator AfterMI
= std::next(Begin
);
794 MachineBasicBlock::iterator End
= AfterMI
;
795 while (End
!= MBB
->end()) {
796 End
= skipDebugInstructionsForward(End
, MBB
->end());
797 if (End
->isCopy() && regOverlapsSet(Defs
, End
->getOperand(1).getReg(), TRI
))
798 Defs
.push_back(End
->getOperand(0).getReg());
804 // Check if the reschedule will not break dependencies.
805 unsigned NumVisited
= 0;
806 MachineBasicBlock::iterator KillPos
= KillMI
;
808 for (MachineInstr
&OtherMI
: make_range(End
, KillPos
)) {
809 // Debug or pseudo instructions cannot be counted against the limit.
810 if (OtherMI
.isDebugOrPseudoInstr())
812 if (NumVisited
> 10) // FIXME: Arbitrary limit to reduce compile time cost.
815 if (OtherMI
.hasUnmodeledSideEffects() || OtherMI
.isCall() ||
816 OtherMI
.isBranch() || OtherMI
.isTerminator())
817 // Don't move pass calls, etc.
819 for (const MachineOperand
&MO
: OtherMI
.operands()) {
822 Register MOReg
= MO
.getReg();
826 if (regOverlapsSet(Uses
, MOReg
, TRI
))
827 // Physical register use would be clobbered.
829 if (!MO
.isDead() && regOverlapsSet(Defs
, MOReg
, TRI
))
830 // May clobber a physical register def.
831 // FIXME: This may be too conservative. It's ok if the instruction
832 // is sunken completely below the use.
835 if (regOverlapsSet(Defs
, MOReg
, TRI
))
838 MO
.isKill() || (LIS
&& isPlainlyKilled(&OtherMI
, MOReg
, LIS
));
839 if (MOReg
!= Reg
&& ((isKill
&& regOverlapsSet(Uses
, MOReg
, TRI
)) ||
840 regOverlapsSet(Kills
, MOReg
, TRI
)))
841 // Don't want to extend other live ranges and update kills.
843 if (MOReg
== Reg
&& !isKill
)
844 // We can't schedule across a use of the register in question.
846 // Ensure that if this is register in question, its the kill we expect.
847 assert((MOReg
!= Reg
|| &OtherMI
== KillMI
) &&
848 "Found multiple kills of a register in a basic block");
853 // Move debug info as well.
854 while (Begin
!= MBB
->begin() && std::prev(Begin
)->isDebugInstr())
858 MachineBasicBlock::iterator InsertPos
= KillPos
;
860 // We have to move the copies first so that the MBB is still well-formed
861 // when calling handleMove().
862 for (MachineBasicBlock::iterator MBBI
= AfterMI
; MBBI
!= End
;) {
863 auto CopyMI
= MBBI
++;
864 MBB
->splice(InsertPos
, MBB
, CopyMI
);
865 LIS
->handleMove(*CopyMI
);
868 End
= std::next(MachineBasicBlock::iterator(MI
));
871 // Copies following MI may have been moved as well.
872 MBB
->splice(InsertPos
, MBB
, Begin
, End
);
873 DistanceMap
.erase(DI
);
875 // Update live variables
877 LIS
->handleMove(*MI
);
879 LV
->removeVirtualRegisterKilled(Reg
, *KillMI
);
880 LV
->addVirtualRegisterKilled(Reg
, *MI
);
883 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI
);
887 /// Return true if the re-scheduling will put the given instruction too close
888 /// to the defs of its register dependencies.
889 bool TwoAddressInstructionPass::isDefTooClose(Register Reg
, unsigned Dist
,
891 for (MachineInstr
&DefMI
: MRI
->def_instructions(Reg
)) {
892 if (DefMI
.getParent() != MBB
|| DefMI
.isCopy() || DefMI
.isCopyLike())
895 return true; // MI is defining something KillMI uses
896 DenseMap
<MachineInstr
*, unsigned>::iterator DDI
= DistanceMap
.find(&DefMI
);
897 if (DDI
== DistanceMap
.end())
898 return true; // Below MI
899 unsigned DefDist
= DDI
->second
;
900 assert(Dist
> DefDist
&& "Visited def already?");
901 if (TII
->getInstrLatency(InstrItins
, DefMI
) > (Dist
- DefDist
))
907 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
908 /// consider moving the kill instruction above the current two-address
909 /// instruction in order to eliminate the need for the copy.
910 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
911 MachineBasicBlock::iterator
&mi
, MachineBasicBlock::iterator
&nmi
,
913 // Bail immediately if we don't have LV or LIS available. We use them to find
914 // kills efficiently.
918 MachineInstr
*MI
= &*mi
;
919 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
920 if (DI
== DistanceMap
.end())
921 // Must be created from unfolded load. Don't waste time trying this.
924 MachineInstr
*KillMI
= nullptr;
926 LiveInterval
&LI
= LIS
->getInterval(Reg
);
927 assert(LI
.end() != LI
.begin() &&
928 "Reg should not have empty live interval.");
930 SlotIndex MBBEndIdx
= LIS
->getMBBEndIdx(MBB
).getPrevSlot();
931 LiveInterval::const_iterator I
= LI
.find(MBBEndIdx
);
932 if (I
!= LI
.end() && I
->start
< MBBEndIdx
)
936 KillMI
= LIS
->getInstructionFromIndex(I
->end
);
938 KillMI
= LV
->getVarInfo(Reg
).findKill(MBB
);
940 if (!KillMI
|| MI
== KillMI
|| KillMI
->isCopy() || KillMI
->isCopyLike())
941 // Don't mess with copies, they may be coalesced later.
945 if (isTwoAddrUse(*KillMI
, Reg
, DstReg
))
948 bool SeenStore
= true;
949 if (!KillMI
->isSafeToMove(AA
, SeenStore
))
952 SmallVector
<Register
, 2> Uses
;
953 SmallVector
<Register
, 2> Kills
;
954 SmallVector
<Register
, 2> Defs
;
955 SmallVector
<Register
, 2> LiveDefs
;
956 for (const MachineOperand
&MO
: KillMI
->operands()) {
959 Register MOReg
= MO
.getReg();
963 if (isDefTooClose(MOReg
, DI
->second
, MI
))
965 bool isKill
= MO
.isKill() || (LIS
&& isPlainlyKilled(KillMI
, MOReg
, LIS
));
966 if (MOReg
== Reg
&& !isKill
)
968 Uses
.push_back(MOReg
);
969 if (isKill
&& MOReg
!= Reg
)
970 Kills
.push_back(MOReg
);
971 } else if (MOReg
.isPhysical()) {
972 Defs
.push_back(MOReg
);
974 LiveDefs
.push_back(MOReg
);
978 // Check if the reschedule will not break depedencies.
979 unsigned NumVisited
= 0;
980 for (MachineInstr
&OtherMI
:
981 make_range(mi
, MachineBasicBlock::iterator(KillMI
))) {
982 // Debug or pseudo instructions cannot be counted against the limit.
983 if (OtherMI
.isDebugOrPseudoInstr())
985 if (NumVisited
> 10) // FIXME: Arbitrary limit to reduce compile time cost.
988 if (OtherMI
.hasUnmodeledSideEffects() || OtherMI
.isCall() ||
989 OtherMI
.isBranch() || OtherMI
.isTerminator())
990 // Don't move pass calls, etc.
992 SmallVector
<Register
, 2> OtherDefs
;
993 for (const MachineOperand
&MO
: OtherMI
.operands()) {
996 Register MOReg
= MO
.getReg();
1000 if (regOverlapsSet(Defs
, MOReg
, TRI
))
1001 // Moving KillMI can clobber the physical register if the def has
1004 if (regOverlapsSet(Kills
, MOReg
, TRI
))
1005 // Don't want to extend other live ranges and update kills.
1007 if (&OtherMI
!= MI
&& MOReg
== Reg
&&
1008 !(MO
.isKill() || (LIS
&& isPlainlyKilled(&OtherMI
, MOReg
, LIS
))))
1009 // We can't schedule across a use of the register in question.
1012 OtherDefs
.push_back(MOReg
);
1016 for (unsigned i
= 0, e
= OtherDefs
.size(); i
!= e
; ++i
) {
1017 Register MOReg
= OtherDefs
[i
];
1018 if (regOverlapsSet(Uses
, MOReg
, TRI
))
1020 if (MOReg
.isPhysical() && regOverlapsSet(LiveDefs
, MOReg
, TRI
))
1022 // Physical register def is seen.
1023 llvm::erase_value(Defs
, MOReg
);
1027 // Move the old kill above MI, don't forget to move debug info as well.
1028 MachineBasicBlock::iterator InsertPos
= mi
;
1029 while (InsertPos
!= MBB
->begin() && std::prev(InsertPos
)->isDebugInstr())
1031 MachineBasicBlock::iterator From
= KillMI
;
1032 MachineBasicBlock::iterator To
= std::next(From
);
1033 while (std::prev(From
)->isDebugInstr())
1035 MBB
->splice(InsertPos
, MBB
, From
, To
);
1037 nmi
= std::prev(InsertPos
); // Backtrack so we process the moved instr.
1038 DistanceMap
.erase(DI
);
1040 // Update live variables
1042 LIS
->handleMove(*KillMI
);
1044 LV
->removeVirtualRegisterKilled(Reg
, *KillMI
);
1045 LV
->addVirtualRegisterKilled(Reg
, *MI
);
1048 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI
);
1052 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1053 /// given machine instruction to improve opportunities for coalescing and
1054 /// elimination of a register to register copy.
1056 /// 'DstOpIdx' specifies the index of MI def operand.
1057 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1058 /// operand is killed by the given instruction.
1059 /// The 'Dist' arguments provides the distance of MI from the start of the
1060 /// current basic block and it is used to determine if it is profitable
1061 /// to commute operands in the instruction.
1063 /// Returns true if the transformation happened. Otherwise, returns false.
1064 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr
*MI
,
1069 if (!MI
->isCommutable())
1072 bool MadeChange
= false;
1073 Register DstOpReg
= MI
->getOperand(DstOpIdx
).getReg();
1074 Register BaseOpReg
= MI
->getOperand(BaseOpIdx
).getReg();
1075 unsigned OpsNum
= MI
->getDesc().getNumOperands();
1076 unsigned OtherOpIdx
= MI
->getDesc().getNumDefs();
1077 for (; OtherOpIdx
< OpsNum
; OtherOpIdx
++) {
1078 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1079 // and OtherOpIdx are commutable, it does not really search for
1080 // other commutable operands and does not change the values of passed
1082 if (OtherOpIdx
== BaseOpIdx
|| !MI
->getOperand(OtherOpIdx
).isReg() ||
1083 !TII
->findCommutedOpIndices(*MI
, BaseOpIdx
, OtherOpIdx
))
1086 Register OtherOpReg
= MI
->getOperand(OtherOpIdx
).getReg();
1087 bool AggressiveCommute
= false;
1089 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1090 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1091 bool OtherOpKilled
= isKilled(*MI
, OtherOpReg
, MRI
, TII
, LIS
, false);
1092 bool DoCommute
= !BaseOpKilled
&& OtherOpKilled
;
1095 isProfitableToCommute(DstOpReg
, BaseOpReg
, OtherOpReg
, MI
, Dist
)) {
1097 AggressiveCommute
= true;
1100 // If it's profitable to commute, try to do so.
1101 if (DoCommute
&& commuteInstruction(MI
, DstOpIdx
, BaseOpIdx
, OtherOpIdx
,
1105 if (AggressiveCommute
)
1108 // There might be more than two commutable operands, update BaseOp and
1109 // continue scanning.
1110 // FIXME: This assumes that the new instruction's operands are in the
1111 // same positions and were simply swapped.
1112 BaseOpReg
= OtherOpReg
;
1113 BaseOpKilled
= OtherOpKilled
;
1114 // Resamples OpsNum in case the number of operands was reduced. This
1115 // happens with X86.
1116 OpsNum
= MI
->getDesc().getNumOperands();
1122 /// For the case where an instruction has a single pair of tied register
1123 /// operands, attempt some transformations that may either eliminate the tied
1124 /// operands or improve the opportunities for coalescing away the register copy.
1125 /// Returns true if no copy needs to be inserted to untie mi's operands
1126 /// (either because they were untied, or because mi was rescheduled, and will
1127 /// be visited again later). If the shouldOnlyCommute flag is true, only
1128 /// instruction commutation is attempted.
1129 bool TwoAddressInstructionPass::
1130 tryInstructionTransform(MachineBasicBlock::iterator
&mi
,
1131 MachineBasicBlock::iterator
&nmi
,
1132 unsigned SrcIdx
, unsigned DstIdx
,
1133 unsigned Dist
, bool shouldOnlyCommute
) {
1134 if (OptLevel
== CodeGenOpt::None
)
1137 MachineInstr
&MI
= *mi
;
1138 Register regA
= MI
.getOperand(DstIdx
).getReg();
1139 Register regB
= MI
.getOperand(SrcIdx
).getReg();
1141 assert(regB
.isVirtual() && "cannot make instruction into two-address form");
1142 bool regBKilled
= isKilled(MI
, regB
, MRI
, TII
, LIS
, true);
1144 if (regA
.isVirtual())
1147 bool Commuted
= tryInstructionCommute(&MI
, DstIdx
, SrcIdx
, regBKilled
, Dist
);
1149 // If the instruction is convertible to 3 Addr, instead
1150 // of returning try 3 Addr transformation aggressively and
1151 // use this variable to check later. Because it might be better.
1152 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1153 // instead of the following code.
1157 if (Commuted
&& !MI
.isConvertibleTo3Addr())
1160 if (shouldOnlyCommute
)
1163 // If there is one more use of regB later in the same MBB, consider
1164 // re-schedule this MI below it.
1165 if (!Commuted
&& EnableRescheduling
&& rescheduleMIBelowKill(mi
, nmi
, regB
)) {
1170 // If we commuted, regB may have changed so we should re-sample it to avoid
1171 // confusing the three address conversion below.
1173 regB
= MI
.getOperand(SrcIdx
).getReg();
1174 regBKilled
= isKilled(MI
, regB
, MRI
, TII
, LIS
, true);
1177 if (MI
.isConvertibleTo3Addr()) {
1178 // This instruction is potentially convertible to a true
1179 // three-address instruction. Check if it is profitable.
1180 if (!regBKilled
|| isProfitableToConv3Addr(regA
, regB
)) {
1181 // Try to convert it.
1182 if (convertInstTo3Addr(mi
, nmi
, regA
, regB
, Dist
)) {
1183 ++NumConvertedTo3Addr
;
1184 return true; // Done with this instruction.
1189 // Return if it is commuted but 3 addr conversion is failed.
1193 // If there is one more use of regB later in the same MBB, consider
1194 // re-schedule it before this MI if it's legal.
1195 if (EnableRescheduling
&& rescheduleKillAboveMI(mi
, nmi
, regB
)) {
1200 // If this is an instruction with a load folded into it, try unfolding
1201 // the load, e.g. avoid this:
1203 // addq (%rax), %rcx
1204 // in favor of this:
1205 // movq (%rax), %rcx
1207 // because it's preferable to schedule a load than a register copy.
1208 if (MI
.mayLoad() && !regBKilled
) {
1209 // Determine if a load can be unfolded.
1210 unsigned LoadRegIndex
;
1212 TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(),
1213 /*UnfoldLoad=*/true,
1214 /*UnfoldStore=*/false,
1217 const MCInstrDesc
&UnfoldMCID
= TII
->get(NewOpc
);
1218 if (UnfoldMCID
.getNumDefs() == 1) {
1220 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI
);
1221 const TargetRegisterClass
*RC
=
1222 TRI
->getAllocatableClass(
1223 TII
->getRegClass(UnfoldMCID
, LoadRegIndex
, TRI
, *MF
));
1224 Register Reg
= MRI
->createVirtualRegister(RC
);
1225 SmallVector
<MachineInstr
*, 2> NewMIs
;
1226 if (!TII
->unfoldMemoryOperand(*MF
, MI
, Reg
,
1227 /*UnfoldLoad=*/true,
1228 /*UnfoldStore=*/false, NewMIs
)) {
1229 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1232 assert(NewMIs
.size() == 2 &&
1233 "Unfolded a load into multiple instructions!");
1234 // The load was previously folded, so this is the only use.
1235 NewMIs
[1]->addRegisterKilled(Reg
, TRI
);
1237 // Tentatively insert the instructions into the block so that they
1238 // look "normal" to the transformation logic.
1239 MBB
->insert(mi
, NewMIs
[0]);
1240 MBB
->insert(mi
, NewMIs
[1]);
1242 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs
[0]
1243 << "2addr: NEW INST: " << *NewMIs
[1]);
1245 // Transform the instruction, now that it no longer has a load.
1246 unsigned NewDstIdx
= NewMIs
[1]->findRegisterDefOperandIdx(regA
);
1247 unsigned NewSrcIdx
= NewMIs
[1]->findRegisterUseOperandIdx(regB
);
1248 MachineBasicBlock::iterator NewMI
= NewMIs
[1];
1249 bool TransformResult
=
1250 tryInstructionTransform(NewMI
, mi
, NewSrcIdx
, NewDstIdx
, Dist
, true);
1251 (void)TransformResult
;
1252 assert(!TransformResult
&&
1253 "tryInstructionTransform() should return false.");
1254 if (NewMIs
[1]->getOperand(NewSrcIdx
).isKill()) {
1255 // Success, or at least we made an improvement. Keep the unfolded
1256 // instructions and discard the original.
1258 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1259 MachineOperand
&MO
= MI
.getOperand(i
);
1260 if (MO
.isReg() && MO
.getReg().isVirtual()) {
1263 if (NewMIs
[0]->killsRegister(MO
.getReg()))
1264 LV
->replaceKillInstruction(MO
.getReg(), MI
, *NewMIs
[0]);
1266 assert(NewMIs
[1]->killsRegister(MO
.getReg()) &&
1267 "Kill missing after load unfold!");
1268 LV
->replaceKillInstruction(MO
.getReg(), MI
, *NewMIs
[1]);
1271 } else if (LV
->removeVirtualRegisterDead(MO
.getReg(), MI
)) {
1272 if (NewMIs
[1]->registerDefIsDead(MO
.getReg()))
1273 LV
->addVirtualRegisterDead(MO
.getReg(), *NewMIs
[1]);
1275 assert(NewMIs
[0]->registerDefIsDead(MO
.getReg()) &&
1276 "Dead flag missing after load unfold!");
1277 LV
->addVirtualRegisterDead(MO
.getReg(), *NewMIs
[0]);
1282 LV
->addVirtualRegisterKilled(Reg
, *NewMIs
[1]);
1285 SmallVector
<Register
, 4> OrigRegs
;
1287 for (const MachineOperand
&MO
: MI
.operands()) {
1289 OrigRegs
.push_back(MO
.getReg());
1293 MI
.eraseFromParent();
1295 // Update LiveIntervals.
1297 MachineBasicBlock::iterator
Begin(NewMIs
[0]);
1298 MachineBasicBlock::iterator
End(NewMIs
[1]);
1299 LIS
->repairIntervalsInRange(MBB
, Begin
, End
, OrigRegs
);
1304 // Transforming didn't eliminate the tie and didn't lead to an
1305 // improvement. Clean up the unfolded instructions and keep the
1307 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1308 NewMIs
[0]->eraseFromParent();
1309 NewMIs
[1]->eraseFromParent();
1318 // Collect tied operands of MI that need to be handled.
1319 // Rewrite trivial cases immediately.
1320 // Return true if any tied operands where found, including the trivial ones.
1321 bool TwoAddressInstructionPass::
1322 collectTiedOperands(MachineInstr
*MI
, TiedOperandMap
&TiedOperands
) {
1323 const MCInstrDesc
&MCID
= MI
->getDesc();
1324 bool AnyOps
= false;
1325 unsigned NumOps
= MI
->getNumOperands();
1327 for (unsigned SrcIdx
= 0; SrcIdx
< NumOps
; ++SrcIdx
) {
1328 unsigned DstIdx
= 0;
1329 if (!MI
->isRegTiedToDefOperand(SrcIdx
, &DstIdx
))
1332 MachineOperand
&SrcMO
= MI
->getOperand(SrcIdx
);
1333 MachineOperand
&DstMO
= MI
->getOperand(DstIdx
);
1334 Register SrcReg
= SrcMO
.getReg();
1335 Register DstReg
= DstMO
.getReg();
1336 // Tied constraint already satisfied?
1337 if (SrcReg
== DstReg
)
1340 assert(SrcReg
&& SrcMO
.isUse() && "two address instruction invalid");
1342 // Deal with undef uses immediately - simply rewrite the src operand.
1343 if (SrcMO
.isUndef() && !DstMO
.getSubReg()) {
1344 // Constrain the DstReg register class if required.
1345 if (DstReg
.isVirtual())
1346 if (const TargetRegisterClass
*RC
= TII
->getRegClass(MCID
, SrcIdx
,
1348 MRI
->constrainRegClass(DstReg
, RC
);
1349 SrcMO
.setReg(DstReg
);
1351 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI
);
1354 TiedOperands
[SrcReg
].push_back(std::make_pair(SrcIdx
, DstIdx
));
1359 // Process a list of tied MI operands that all use the same source register.
1360 // The tied pairs are of the form (SrcIdx, DstIdx).
1362 TwoAddressInstructionPass::processTiedPairs(MachineInstr
*MI
,
1363 TiedPairList
&TiedPairs
,
1365 bool IsEarlyClobber
= llvm::find_if(TiedPairs
, [MI
](auto const &TP
) {
1366 return MI
->getOperand(TP
.second
).isEarlyClobber();
1367 }) != TiedPairs
.end();
1369 bool RemovedKillFlag
= false;
1370 bool AllUsesCopied
= true;
1371 unsigned LastCopiedReg
= 0;
1372 SlotIndex LastCopyIdx
;
1374 unsigned SubRegB
= 0;
1375 for (auto &TP
: TiedPairs
) {
1376 unsigned SrcIdx
= TP
.first
;
1377 unsigned DstIdx
= TP
.second
;
1379 const MachineOperand
&DstMO
= MI
->getOperand(DstIdx
);
1380 Register RegA
= DstMO
.getReg();
1382 // Grab RegB from the instruction because it may have changed if the
1383 // instruction was commuted.
1384 RegB
= MI
->getOperand(SrcIdx
).getReg();
1385 SubRegB
= MI
->getOperand(SrcIdx
).getSubReg();
1388 // The register is tied to multiple destinations (or else we would
1389 // not have continued this far), but this use of the register
1390 // already matches the tied destination. Leave it.
1391 AllUsesCopied
= false;
1394 LastCopiedReg
= RegA
;
1396 assert(RegB
.isVirtual() && "cannot make instruction into two-address form");
1399 // First, verify that we don't have a use of "a" in the instruction
1400 // (a = b + a for example) because our transformation will not
1401 // work. This should never occur because we are in SSA form.
1402 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
)
1403 assert(i
== DstIdx
||
1404 !MI
->getOperand(i
).isReg() ||
1405 MI
->getOperand(i
).getReg() != RegA
);
1409 MachineInstrBuilder MIB
= BuildMI(*MI
->getParent(), MI
, MI
->getDebugLoc(),
1410 TII
->get(TargetOpcode::COPY
), RegA
);
1411 // If this operand is folding a truncation, the truncation now moves to the
1412 // copy so that the register classes remain valid for the operands.
1413 MIB
.addReg(RegB
, 0, SubRegB
);
1414 const TargetRegisterClass
*RC
= MRI
->getRegClass(RegB
);
1416 if (RegA
.isVirtual()) {
1417 assert(TRI
->getMatchingSuperRegClass(RC
, MRI
->getRegClass(RegA
),
1419 "tied subregister must be a truncation");
1420 // The superreg class will not be used to constrain the subreg class.
1423 assert(TRI
->getMatchingSuperReg(RegA
, SubRegB
, MRI
->getRegClass(RegB
))
1424 && "tied subregister must be a truncation");
1428 // Update DistanceMap.
1429 MachineBasicBlock::iterator PrevMI
= MI
;
1431 DistanceMap
.insert(std::make_pair(&*PrevMI
, Dist
));
1432 DistanceMap
[MI
] = ++Dist
;
1435 LastCopyIdx
= LIS
->InsertMachineInstrInMaps(*PrevMI
).getRegSlot();
1437 if (RegA
.isVirtual()) {
1438 LiveInterval
&LI
= LIS
->getInterval(RegA
);
1439 VNInfo
*VNI
= LI
.getNextValue(LastCopyIdx
, LIS
->getVNInfoAllocator());
1441 LIS
->getInstructionIndex(*MI
).getRegSlot(IsEarlyClobber
);
1442 LI
.addSegment(LiveInterval::Segment(LastCopyIdx
, endIdx
, VNI
));
1446 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB
);
1448 MachineOperand
&MO
= MI
->getOperand(SrcIdx
);
1449 assert(MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse() &&
1450 "inconsistent operand info for 2-reg pass");
1452 MO
.setIsKill(false);
1453 RemovedKillFlag
= true;
1456 // Make sure regA is a legal regclass for the SrcIdx operand.
1457 if (RegA
.isVirtual() && RegB
.isVirtual())
1458 MRI
->constrainRegClass(RegA
, RC
);
1460 // The getMatchingSuper asserts guarantee that the register class projected
1461 // by SubRegB is compatible with RegA with no subregister. So regardless of
1462 // whether the dest oper writes a subreg, the source oper should not.
1465 // Propagate SrcRegMap.
1466 SrcRegMap
[RegA
] = RegB
;
1469 if (AllUsesCopied
) {
1470 bool ReplacedAllUntiedUses
= true;
1471 if (!IsEarlyClobber
) {
1472 // Replace other (un-tied) uses of regB with LastCopiedReg.
1473 for (MachineOperand
&MO
: MI
->operands()) {
1474 if (MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse()) {
1475 if (MO
.getSubReg() == SubRegB
) {
1477 MO
.setIsKill(false);
1478 RemovedKillFlag
= true;
1480 MO
.setReg(LastCopiedReg
);
1483 ReplacedAllUntiedUses
= false;
1489 // Update live variables for regB.
1490 if (RemovedKillFlag
&& ReplacedAllUntiedUses
&&
1491 LV
&& LV
->getVarInfo(RegB
).removeKill(*MI
)) {
1492 MachineBasicBlock::iterator PrevMI
= MI
;
1494 LV
->addVirtualRegisterKilled(RegB
, *PrevMI
);
1497 // Update LiveIntervals.
1499 LiveInterval
&LI
= LIS
->getInterval(RegB
);
1500 SlotIndex MIIdx
= LIS
->getInstructionIndex(*MI
);
1501 LiveInterval::const_iterator I
= LI
.find(MIIdx
);
1502 assert(I
!= LI
.end() && "RegB must be live-in to use.");
1504 SlotIndex UseIdx
= MIIdx
.getRegSlot(IsEarlyClobber
);
1505 if (I
->end
== UseIdx
)
1506 LI
.removeSegment(LastCopyIdx
, UseIdx
);
1508 } else if (RemovedKillFlag
) {
1509 // Some tied uses of regB matched their destination registers, so
1510 // regB is still used in this instruction, but a kill flag was
1511 // removed from a different tied use of regB, so now we need to add
1512 // a kill flag to one of the remaining uses of regB.
1513 for (MachineOperand
&MO
: MI
->operands()) {
1514 if (MO
.isReg() && MO
.getReg() == RegB
&& MO
.isUse()) {
1522 /// Reduce two-address instructions to two operands.
1523 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction
&Func
) {
1525 const TargetMachine
&TM
= MF
->getTarget();
1526 MRI
= &MF
->getRegInfo();
1527 TII
= MF
->getSubtarget().getInstrInfo();
1528 TRI
= MF
->getSubtarget().getRegisterInfo();
1529 InstrItins
= MF
->getSubtarget().getInstrItineraryData();
1530 LV
= getAnalysisIfAvailable
<LiveVariables
>();
1531 LIS
= getAnalysisIfAvailable
<LiveIntervals
>();
1532 if (auto *AAPass
= getAnalysisIfAvailable
<AAResultsWrapperPass
>())
1533 AA
= &AAPass
->getAAResults();
1536 OptLevel
= TM
.getOptLevel();
1537 // Disable optimizations if requested. We cannot skip the whole pass as some
1538 // fixups are necessary for correctness.
1539 if (skipFunction(Func
.getFunction()))
1540 OptLevel
= CodeGenOpt::None
;
1542 bool MadeChange
= false;
1544 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1545 LLVM_DEBUG(dbgs() << "********** Function: " << MF
->getName() << '\n');
1547 // This pass takes the function out of SSA form.
1550 // This pass will rewrite the tied-def to meet the RegConstraint.
1552 .set(MachineFunctionProperties::Property::TiedOpsRewritten
);
1554 TiedOperandMap TiedOperands
;
1555 for (MachineBasicBlock
&MBBI
: *MF
) {
1558 DistanceMap
.clear();
1562 for (MachineBasicBlock::iterator mi
= MBB
->begin(), me
= MBB
->end();
1564 MachineBasicBlock::iterator nmi
= std::next(mi
);
1565 // Skip debug instructions.
1566 if (mi
->isDebugInstr()) {
1571 // Expand REG_SEQUENCE instructions. This will position mi at the first
1572 // expanded instruction.
1573 if (mi
->isRegSequence())
1574 eliminateRegSequence(mi
);
1576 DistanceMap
.insert(std::make_pair(&*mi
, ++Dist
));
1580 // First scan through all the tied register uses in this instruction
1581 // and record a list of pairs of tied operands for each register.
1582 if (!collectTiedOperands(&*mi
, TiedOperands
)) {
1587 ++NumTwoAddressInstrs
;
1589 LLVM_DEBUG(dbgs() << '\t' << *mi
);
1591 // If the instruction has a single pair of tied operands, try some
1592 // transformations that may either eliminate the tied operands or
1593 // improve the opportunities for coalescing away the register copy.
1594 if (TiedOperands
.size() == 1) {
1595 SmallVectorImpl
<std::pair
<unsigned, unsigned>> &TiedPairs
1596 = TiedOperands
.begin()->second
;
1597 if (TiedPairs
.size() == 1) {
1598 unsigned SrcIdx
= TiedPairs
[0].first
;
1599 unsigned DstIdx
= TiedPairs
[0].second
;
1600 Register SrcReg
= mi
->getOperand(SrcIdx
).getReg();
1601 Register DstReg
= mi
->getOperand(DstIdx
).getReg();
1602 if (SrcReg
!= DstReg
&&
1603 tryInstructionTransform(mi
, nmi
, SrcIdx
, DstIdx
, Dist
, false)) {
1604 // The tied operands have been eliminated or shifted further down
1605 // the block to ease elimination. Continue processing with 'nmi'.
1606 TiedOperands
.clear();
1613 // Now iterate over the information collected above.
1614 for (auto &TO
: TiedOperands
) {
1615 processTiedPairs(&*mi
, TO
.second
, Dist
);
1616 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi
);
1619 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1620 if (mi
->isInsertSubreg()) {
1621 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1622 // To %reg:subidx = COPY %subreg
1623 unsigned SubIdx
= mi
->getOperand(3).getImm();
1624 mi
->RemoveOperand(3);
1625 assert(mi
->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1626 mi
->getOperand(0).setSubReg(SubIdx
);
1627 mi
->getOperand(0).setIsUndef(mi
->getOperand(1).isUndef());
1628 mi
->RemoveOperand(1);
1629 mi
->setDesc(TII
->get(TargetOpcode::COPY
));
1630 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi
);
1633 // Clear TiedOperands here instead of at the top of the loop
1634 // since most instructions do not have tied operands.
1635 TiedOperands
.clear();
1641 MF
->verify(this, "After two-address instruction pass");
1646 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1648 /// The instruction is turned into a sequence of sub-register copies:
1650 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1654 /// undef %dst:ssub0 = COPY %v1
1655 /// %dst:ssub1 = COPY %v2
1656 void TwoAddressInstructionPass::
1657 eliminateRegSequence(MachineBasicBlock::iterator
&MBBI
) {
1658 MachineInstr
&MI
= *MBBI
;
1659 Register DstReg
= MI
.getOperand(0).getReg();
1660 if (MI
.getOperand(0).getSubReg() || DstReg
.isPhysical() ||
1661 !(MI
.getNumOperands() & 1)) {
1662 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI
);
1663 llvm_unreachable(nullptr);
1666 SmallVector
<Register
, 4> OrigRegs
;
1668 OrigRegs
.push_back(MI
.getOperand(0).getReg());
1669 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
< e
; i
+= 2)
1670 OrigRegs
.push_back(MI
.getOperand(i
).getReg());
1673 bool DefEmitted
= false;
1674 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
< e
; i
+= 2) {
1675 MachineOperand
&UseMO
= MI
.getOperand(i
);
1676 Register SrcReg
= UseMO
.getReg();
1677 unsigned SubIdx
= MI
.getOperand(i
+1).getImm();
1678 // Nothing needs to be inserted for undef operands.
1679 if (UseMO
.isUndef())
1682 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1683 // might insert a COPY that uses SrcReg after is was killed.
1684 bool isKill
= UseMO
.isKill();
1686 for (unsigned j
= i
+ 2; j
< e
; j
+= 2)
1687 if (MI
.getOperand(j
).getReg() == SrcReg
) {
1688 MI
.getOperand(j
).setIsKill();
1689 UseMO
.setIsKill(false);
1694 // Insert the sub-register copy.
1695 MachineInstr
*CopyMI
= BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(),
1696 TII
->get(TargetOpcode::COPY
))
1697 .addReg(DstReg
, RegState::Define
, SubIdx
)
1700 // The first def needs an undef flag because there is no live register
1703 CopyMI
->getOperand(0).setIsUndef(true);
1704 // Return an iterator pointing to the first inserted instr.
1709 // Update LiveVariables' kill info.
1710 if (LV
&& isKill
&& !SrcReg
.isPhysical())
1711 LV
->replaceKillInstruction(SrcReg
, MI
, *CopyMI
);
1713 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI
);
1716 MachineBasicBlock::iterator EndMBBI
=
1717 std::next(MachineBasicBlock::iterator(MI
));
1720 LLVM_DEBUG(dbgs() << "Turned: " << MI
<< " into an IMPLICIT_DEF");
1721 MI
.setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1722 for (int j
= MI
.getNumOperands() - 1, ee
= 0; j
> ee
; --j
)
1723 MI
.RemoveOperand(j
);
1725 LLVM_DEBUG(dbgs() << "Eliminated: " << MI
);
1726 MI
.eraseFromParent();
1729 // Udpate LiveIntervals.
1731 LIS
->repairIntervalsInRange(MBB
, MBBI
, EndMBBI
, OrigRegs
);