1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/LoopPassManager.h"
38 #include "llvm/Transforms/Utils.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
44 #define DEBUG_TYPE "loop-simplifycfg"
46 static cl::opt
<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
49 STATISTIC(NumTerminatorsFolded
,
50 "Number of terminators folded to unconditional branches");
51 STATISTIC(NumLoopBlocksDeleted
,
52 "Number of loop blocks deleted");
53 STATISTIC(NumLoopExitsDeleted
,
54 "Number of loop exiting edges deleted");
56 /// If \p BB is a switch or a conditional branch, but only one of its successors
57 /// can be reached from this block in runtime, return this successor. Otherwise,
59 static BasicBlock
*getOnlyLiveSuccessor(BasicBlock
*BB
) {
60 Instruction
*TI
= BB
->getTerminator();
61 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
62 if (BI
->isUnconditional())
64 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
65 return BI
->getSuccessor(0);
66 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition());
69 return Cond
->isZero() ? BI
->getSuccessor(1) : BI
->getSuccessor(0);
72 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
73 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
76 for (auto Case
: SI
->cases())
77 if (Case
.getCaseValue() == CI
)
78 return Case
.getCaseSuccessor();
79 return SI
->getDefaultDest();
85 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
86 static void removeBlockFromLoops(BasicBlock
*BB
, Loop
*FirstLoop
,
87 Loop
*LastLoop
= nullptr) {
88 assert((!LastLoop
|| LastLoop
->contains(FirstLoop
->getHeader())) &&
89 "First loop is supposed to be inside of last loop!");
90 assert(FirstLoop
->contains(BB
) && "Must be a loop block!");
91 for (Loop
*Current
= FirstLoop
; Current
!= LastLoop
;
92 Current
= Current
->getParentLoop())
93 Current
->removeBlockFromLoop(BB
);
96 /// Find innermost loop that contains at least one block from \p BBs and
97 /// contains the header of loop \p L.
98 static Loop
*getInnermostLoopFor(SmallPtrSetImpl
<BasicBlock
*> &BBs
,
99 Loop
&L
, LoopInfo
&LI
) {
100 Loop
*Innermost
= nullptr;
101 for (BasicBlock
*BB
: BBs
) {
102 Loop
*BBL
= LI
.getLoopFor(BB
);
103 while (BBL
&& !BBL
->contains(L
.getHeader()))
104 BBL
= BBL
->getParentLoop();
106 BBL
= BBL
->getParentLoop();
109 if (!Innermost
|| BBL
->getLoopDepth() > Innermost
->getLoopDepth())
116 /// Helper class that can turn branches and switches with constant conditions
117 /// into unconditional branches.
118 class ConstantTerminatorFoldingImpl
{
124 MemorySSAUpdater
*MSSAU
;
127 SmallVector
<DominatorTree::UpdateType
, 16> DTUpdates
;
129 // Whether or not the current loop has irreducible CFG.
130 bool HasIrreducibleCFG
= false;
131 // Whether or not the current loop will still exist after terminator constant
132 // folding will be done. In theory, there are two ways how it can happen:
133 // 1. Loop's latch(es) become unreachable from loop header;
134 // 2. Loop's header becomes unreachable from method entry.
135 // In practice, the second situation is impossible because we only modify the
136 // current loop and its preheader and do not affect preheader's reachibility
137 // from any other block. So this variable set to true means that loop's latch
138 // has become unreachable from loop header.
139 bool DeleteCurrentLoop
= false;
141 // The blocks of the original loop that will still be reachable from entry
142 // after the constant folding.
143 SmallPtrSet
<BasicBlock
*, 8> LiveLoopBlocks
;
144 // The blocks of the original loop that will become unreachable from entry
145 // after the constant folding.
146 SmallVector
<BasicBlock
*, 8> DeadLoopBlocks
;
147 // The exits of the original loop that will still be reachable from entry
148 // after the constant folding.
149 SmallPtrSet
<BasicBlock
*, 8> LiveExitBlocks
;
150 // The exits of the original loop that will become unreachable from entry
151 // after the constant folding.
152 SmallVector
<BasicBlock
*, 8> DeadExitBlocks
;
153 // The blocks that will still be a part of the current loop after folding.
154 SmallPtrSet
<BasicBlock
*, 8> BlocksInLoopAfterFolding
;
155 // The blocks that have terminators with constant condition that can be
156 // folded. Note: fold candidates should be in L but not in any of its
157 // subloops to avoid complex LI updates.
158 SmallVector
<BasicBlock
*, 8> FoldCandidates
;
161 dbgs() << "Constant terminator folding for loop " << L
<< "\n";
162 dbgs() << "After terminator constant-folding, the loop will";
163 if (!DeleteCurrentLoop
)
165 dbgs() << " be destroyed\n";
166 auto PrintOutVector
= [&](const char *Message
,
167 const SmallVectorImpl
<BasicBlock
*> &S
) {
168 dbgs() << Message
<< "\n";
169 for (const BasicBlock
*BB
: S
)
170 dbgs() << "\t" << BB
->getName() << "\n";
172 auto PrintOutSet
= [&](const char *Message
,
173 const SmallPtrSetImpl
<BasicBlock
*> &S
) {
174 dbgs() << Message
<< "\n";
175 for (const BasicBlock
*BB
: S
)
176 dbgs() << "\t" << BB
->getName() << "\n";
178 PrintOutVector("Blocks in which we can constant-fold terminator:",
180 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks
);
181 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks
);
182 PrintOutSet("Live exit blocks:", LiveExitBlocks
);
183 PrintOutVector("Dead exit blocks:", DeadExitBlocks
);
184 if (!DeleteCurrentLoop
)
185 PrintOutSet("The following blocks will still be part of the loop:",
186 BlocksInLoopAfterFolding
);
189 /// Whether or not the current loop has irreducible CFG.
190 bool hasIrreducibleCFG(LoopBlocksDFS
&DFS
) {
191 assert(DFS
.isComplete() && "DFS is expected to be finished");
192 // Index of a basic block in RPO traversal.
193 DenseMap
<const BasicBlock
*, unsigned> RPO
;
194 unsigned Current
= 0;
195 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
)
198 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
200 for (auto *Succ
: successors(BB
))
201 if (L
.contains(Succ
) && !LI
.isLoopHeader(Succ
) && RPO
[BB
] > RPO
[Succ
])
202 // If an edge goes from a block with greater order number into a block
203 // with lesses number, and it is not a loop backedge, then it can only
204 // be a part of irreducible non-loop cycle.
210 /// Fill all information about status of blocks and exits of the current loop
211 /// if constant folding of all branches will be done.
214 assert(DFS
.isComplete() && "DFS is expected to be finished");
216 // TODO: The algorithm below relies on both RPO and Postorder traversals.
217 // When the loop has only reducible CFG inside, then the invariant "all
218 // predecessors of X are processed before X in RPO" is preserved. However
219 // an irreducible loop can break this invariant (e.g. latch does not have to
220 // be the last block in the traversal in this case, and the algorithm relies
221 // on this). We can later decide to support such cases by altering the
222 // algorithms, but so far we just give up analyzing them.
223 if (hasIrreducibleCFG(DFS
)) {
224 HasIrreducibleCFG
= true;
228 // Collect live and dead loop blocks and exits.
229 LiveLoopBlocks
.insert(L
.getHeader());
230 for (auto I
= DFS
.beginRPO(), E
= DFS
.endRPO(); I
!= E
; ++I
) {
233 // If a loop block wasn't marked as live so far, then it's dead.
234 if (!LiveLoopBlocks
.count(BB
)) {
235 DeadLoopBlocks
.push_back(BB
);
239 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
241 // If a block has only one live successor, it's a candidate on constant
242 // folding. Only handle blocks from current loop: branches in child loops
243 // are skipped because if they can be folded, they should be folded during
244 // the processing of child loops.
245 bool TakeFoldCandidate
= TheOnlySucc
&& LI
.getLoopFor(BB
) == &L
;
246 if (TakeFoldCandidate
)
247 FoldCandidates
.push_back(BB
);
249 // Handle successors.
250 for (BasicBlock
*Succ
: successors(BB
))
251 if (!TakeFoldCandidate
|| TheOnlySucc
== Succ
) {
252 if (L
.contains(Succ
))
253 LiveLoopBlocks
.insert(Succ
);
255 LiveExitBlocks
.insert(Succ
);
259 // Sanity check: amount of dead and live loop blocks should match the total
260 // number of blocks in loop.
261 assert(L
.getNumBlocks() == LiveLoopBlocks
.size() + DeadLoopBlocks
.size() &&
262 "Malformed block sets?");
264 // Now, all exit blocks that are not marked as live are dead.
265 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
266 L
.getExitBlocks(ExitBlocks
);
267 SmallPtrSet
<BasicBlock
*, 8> UniqueDeadExits
;
268 for (auto *ExitBlock
: ExitBlocks
)
269 if (!LiveExitBlocks
.count(ExitBlock
) &&
270 UniqueDeadExits
.insert(ExitBlock
).second
)
271 DeadExitBlocks
.push_back(ExitBlock
);
273 // Whether or not the edge From->To will still be present in graph after the
275 auto IsEdgeLive
= [&](BasicBlock
*From
, BasicBlock
*To
) {
276 if (!LiveLoopBlocks
.count(From
))
278 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(From
);
279 return !TheOnlySucc
|| TheOnlySucc
== To
|| LI
.getLoopFor(From
) != &L
;
282 // The loop will not be destroyed if its latch is live.
283 DeleteCurrentLoop
= !IsEdgeLive(L
.getLoopLatch(), L
.getHeader());
285 // If we are going to delete the current loop completely, no extra analysis
287 if (DeleteCurrentLoop
)
290 // Otherwise, we should check which blocks will still be a part of the
291 // current loop after the transform.
292 BlocksInLoopAfterFolding
.insert(L
.getLoopLatch());
293 // If the loop is live, then we should compute what blocks are still in
294 // loop after all branch folding has been done. A block is in loop if
295 // it has a live edge to another block that is in the loop; by definition,
296 // latch is in the loop.
297 auto BlockIsInLoop
= [&](BasicBlock
*BB
) {
298 return any_of(successors(BB
), [&](BasicBlock
*Succ
) {
299 return BlocksInLoopAfterFolding
.count(Succ
) && IsEdgeLive(BB
, Succ
);
302 for (auto I
= DFS
.beginPostorder(), E
= DFS
.endPostorder(); I
!= E
; ++I
) {
304 if (BlockIsInLoop(BB
))
305 BlocksInLoopAfterFolding
.insert(BB
);
308 // Sanity check: header must be in loop.
309 assert(BlocksInLoopAfterFolding
.count(L
.getHeader()) &&
310 "Header not in loop?");
311 assert(BlocksInLoopAfterFolding
.size() <= LiveLoopBlocks
.size() &&
312 "All blocks that stay in loop should be live!");
315 /// We need to preserve static reachibility of all loop exit blocks (this is)
316 /// required by loop pass manager. In order to do it, we make the following
321 /// br label %loop_header
325 /// br i1 false, label %dead_exit, label %loop_block
328 /// We cannot simply remove edge from the loop to dead exit because in this
329 /// case dead_exit (and its successors) may become unreachable. To avoid that,
330 /// we insert the following fictive preheader:
334 /// switch i32 0, label %preheader-split,
335 /// [i32 1, label %dead_exit_1],
336 /// [i32 2, label %dead_exit_2],
338 /// [i32 N, label %dead_exit_N],
341 /// br label %loop_header
345 /// br i1 false, label %dead_exit_N, label %loop_block
348 /// Doing so, we preserve static reachibility of all dead exits and can later
349 /// remove edges from the loop to these blocks.
350 void handleDeadExits() {
351 // If no dead exits, nothing to do.
352 if (DeadExitBlocks
.empty())
355 // Construct split preheader and the dummy switch to thread edges from it to
357 BasicBlock
*Preheader
= L
.getLoopPreheader();
358 BasicBlock
*NewPreheader
= llvm::SplitBlock(
359 Preheader
, Preheader
->getTerminator(), &DT
, &LI
, MSSAU
);
361 IRBuilder
<> Builder(Preheader
->getTerminator());
362 SwitchInst
*DummySwitch
=
363 Builder
.CreateSwitch(Builder
.getInt32(0), NewPreheader
);
364 Preheader
->getTerminator()->eraseFromParent();
366 unsigned DummyIdx
= 1;
367 for (BasicBlock
*BB
: DeadExitBlocks
) {
368 // Eliminate all Phis and LandingPads from dead exits.
369 // TODO: Consider removing all instructions in this dead block.
370 SmallVector
<Instruction
*, 4> DeadInstructions
;
371 for (auto &PN
: BB
->phis())
372 DeadInstructions
.push_back(&PN
);
374 if (auto *LandingPad
= dyn_cast
<LandingPadInst
>(BB
->getFirstNonPHI()))
375 DeadInstructions
.emplace_back(LandingPad
);
377 for (Instruction
*I
: DeadInstructions
) {
378 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
379 I
->eraseFromParent();
382 assert(DummyIdx
!= 0 && "Too many dead exits!");
383 DummySwitch
->addCase(Builder
.getInt32(DummyIdx
++), BB
);
384 DTUpdates
.push_back({DominatorTree::Insert
, Preheader
, BB
});
385 ++NumLoopExitsDeleted
;
388 assert(L
.getLoopPreheader() == NewPreheader
&& "Malformed CFG?");
389 if (Loop
*OuterLoop
= LI
.getLoopFor(Preheader
)) {
390 // When we break dead edges, the outer loop may become unreachable from
391 // the current loop. We need to fix loop info accordingly. For this, we
392 // find the most nested loop that still contains L and remove L from all
393 // loops that are inside of it.
394 Loop
*StillReachable
= getInnermostLoopFor(LiveExitBlocks
, L
, LI
);
396 // Okay, our loop is no longer in the outer loop (and maybe not in some of
397 // its parents as well). Make the fixup.
398 if (StillReachable
!= OuterLoop
) {
399 LI
.changeLoopFor(NewPreheader
, StillReachable
);
400 removeBlockFromLoops(NewPreheader
, OuterLoop
, StillReachable
);
401 for (auto *BB
: L
.blocks())
402 removeBlockFromLoops(BB
, OuterLoop
, StillReachable
);
403 OuterLoop
->removeChildLoop(&L
);
405 StillReachable
->addChildLoop(&L
);
407 LI
.addTopLevelLoop(&L
);
409 // Some values from loops in [OuterLoop, StillReachable) could be used
410 // in the current loop. Now it is not their child anymore, so such uses
411 // require LCSSA Phis.
412 Loop
*FixLCSSALoop
= OuterLoop
;
413 while (FixLCSSALoop
->getParentLoop() != StillReachable
)
414 FixLCSSALoop
= FixLCSSALoop
->getParentLoop();
415 assert(FixLCSSALoop
&& "Should be a loop!");
416 // We need all DT updates to be done before forming LCSSA.
418 MSSAU
->applyUpdates(DTUpdates
, DT
, /*UpdateDT=*/true);
420 DTU
.applyUpdates(DTUpdates
);
422 formLCSSARecursively(*FixLCSSALoop
, DT
, &LI
, &SE
);
427 // Clear all updates now. Facilitates deletes that follow.
428 MSSAU
->applyUpdates(DTUpdates
, DT
, /*UpdateDT=*/true);
431 MSSAU
->getMemorySSA()->verifyMemorySSA();
435 /// Delete loop blocks that have become unreachable after folding. Make all
436 /// relevant updates to DT and LI.
437 void deleteDeadLoopBlocks() {
439 SmallSetVector
<BasicBlock
*, 8> DeadLoopBlocksSet(DeadLoopBlocks
.begin(),
440 DeadLoopBlocks
.end());
441 MSSAU
->removeBlocks(DeadLoopBlocksSet
);
444 // The function LI.erase has some invariants that need to be preserved when
445 // it tries to remove a loop which is not the top-level loop. In particular,
446 // it requires loop's preheader to be strictly in loop's parent. We cannot
447 // just remove blocks one by one, because after removal of preheader we may
448 // break this invariant for the dead loop. So we detatch and erase all dead
450 for (auto *BB
: DeadLoopBlocks
)
451 if (LI
.isLoopHeader(BB
)) {
452 assert(LI
.getLoopFor(BB
) != &L
&& "Attempt to remove current loop!");
453 Loop
*DL
= LI
.getLoopFor(BB
);
454 if (!DL
->isOutermost()) {
455 for (auto *PL
= DL
->getParentLoop(); PL
; PL
= PL
->getParentLoop())
456 for (auto *BB
: DL
->getBlocks())
457 PL
->removeBlockFromLoop(BB
);
458 DL
->getParentLoop()->removeChildLoop(DL
);
459 LI
.addTopLevelLoop(DL
);
464 for (auto *BB
: DeadLoopBlocks
) {
465 assert(BB
!= L
.getHeader() &&
466 "Header of the current loop cannot be dead!");
467 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB
->getName()
472 DetatchDeadBlocks(DeadLoopBlocks
, &DTUpdates
, /*KeepOneInputPHIs*/true);
473 DTU
.applyUpdates(DTUpdates
);
475 for (auto *BB
: DeadLoopBlocks
)
478 NumLoopBlocksDeleted
+= DeadLoopBlocks
.size();
481 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
482 /// unconditional branches.
483 void foldTerminators() {
484 for (BasicBlock
*BB
: FoldCandidates
) {
485 assert(LI
.getLoopFor(BB
) == &L
&& "Should be a loop block!");
486 BasicBlock
*TheOnlySucc
= getOnlyLiveSuccessor(BB
);
487 assert(TheOnlySucc
&& "Should have one live successor!");
489 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB
->getName()
490 << " with an unconditional branch to the block "
491 << TheOnlySucc
->getName() << "\n");
493 SmallPtrSet
<BasicBlock
*, 2> DeadSuccessors
;
494 // Remove all BB's successors except for the live one.
495 unsigned TheOnlySuccDuplicates
= 0;
496 for (auto *Succ
: successors(BB
))
497 if (Succ
!= TheOnlySucc
) {
498 DeadSuccessors
.insert(Succ
);
499 // If our successor lies in a different loop, we don't want to remove
500 // the one-input Phi because it is a LCSSA Phi.
501 bool PreserveLCSSAPhi
= !L
.contains(Succ
);
502 Succ
->removePredecessor(BB
, PreserveLCSSAPhi
);
504 MSSAU
->removeEdge(BB
, Succ
);
506 ++TheOnlySuccDuplicates
;
508 assert(TheOnlySuccDuplicates
> 0 && "Should be!");
509 // If TheOnlySucc was BB's successor more than once, after transform it
510 // will be its successor only once. Remove redundant inputs from
511 // TheOnlySucc's Phis.
512 bool PreserveLCSSAPhi
= !L
.contains(TheOnlySucc
);
513 for (unsigned Dup
= 1; Dup
< TheOnlySuccDuplicates
; ++Dup
)
514 TheOnlySucc
->removePredecessor(BB
, PreserveLCSSAPhi
);
515 if (MSSAU
&& TheOnlySuccDuplicates
> 1)
516 MSSAU
->removeDuplicatePhiEdgesBetween(BB
, TheOnlySucc
);
518 IRBuilder
<> Builder(BB
->getContext());
519 Instruction
*Term
= BB
->getTerminator();
520 Builder
.SetInsertPoint(Term
);
521 Builder
.CreateBr(TheOnlySucc
);
522 Term
->eraseFromParent();
524 for (auto *DeadSucc
: DeadSuccessors
)
525 DTUpdates
.push_back({DominatorTree::Delete
, BB
, DeadSucc
});
527 ++NumTerminatorsFolded
;
532 ConstantTerminatorFoldingImpl(Loop
&L
, LoopInfo
&LI
, DominatorTree
&DT
,
534 MemorySSAUpdater
*MSSAU
)
535 : L(L
), LI(LI
), DT(DT
), SE(SE
), MSSAU(MSSAU
), DFS(&L
),
536 DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
) {}
538 assert(L
.getLoopLatch() && "Should be single latch!");
540 // Collect all available information about status of blocks after constant
543 BasicBlock
*Header
= L
.getHeader();
546 LLVM_DEBUG(dbgs() << "In function " << Header
->getParent()->getName()
549 if (HasIrreducibleCFG
) {
550 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
554 // Nothing to constant-fold.
555 if (FoldCandidates
.empty()) {
557 dbgs() << "No constant terminator folding candidates found in loop "
558 << Header
->getName() << "\n");
562 // TODO: Support deletion of the current loop.
563 if (DeleteCurrentLoop
) {
566 << "Give up constant terminator folding in loop " << Header
->getName()
567 << ": we don't currently support deletion of the current loop.\n");
571 // TODO: Support blocks that are not dead, but also not in loop after the
573 if (BlocksInLoopAfterFolding
.size() + DeadLoopBlocks
.size() !=
576 dbgs() << "Give up constant terminator folding in loop "
577 << Header
->getName() << ": we don't currently"
578 " support blocks that are not dead, but will stop "
579 "being a part of the loop after constant-folding.\n");
583 SE
.forgetTopmostLoop(&L
);
584 // Dump analysis results.
587 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates
.size()
588 << " terminators in loop " << Header
->getName() << "\n");
590 // Make the actual transforms.
594 if (!DeadLoopBlocks
.empty()) {
595 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks
.size()
596 << " dead blocks in loop " << Header
->getName() << "\n");
597 deleteDeadLoopBlocks();
599 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
600 DTU
.applyUpdates(DTUpdates
);
604 if (MSSAU
&& VerifyMemorySSA
)
605 MSSAU
->getMemorySSA()->verifyMemorySSA();
608 // Make sure that we have preserved all data structures after the transform.
609 #if defined(EXPENSIVE_CHECKS)
610 assert(DT
.verify(DominatorTree::VerificationLevel::Full
) &&
611 "DT broken after transform!");
613 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
) &&
614 "DT broken after transform!");
616 assert(DT
.isReachableFromEntry(Header
));
623 bool foldingBreaksCurrentLoop() const {
624 return DeleteCurrentLoop
;
629 /// Turn branches and switches with known constant conditions into unconditional
631 static bool constantFoldTerminators(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
633 MemorySSAUpdater
*MSSAU
,
634 bool &IsLoopDeleted
) {
635 if (!EnableTermFolding
)
638 // To keep things simple, only process loops with single latch. We
639 // canonicalize most loops to this form. We can support multi-latch if needed.
640 if (!L
.getLoopLatch())
643 ConstantTerminatorFoldingImpl
BranchFolder(L
, LI
, DT
, SE
, MSSAU
);
644 bool Changed
= BranchFolder
.run();
645 IsLoopDeleted
= Changed
&& BranchFolder
.foldingBreaksCurrentLoop();
649 static bool mergeBlocksIntoPredecessors(Loop
&L
, DominatorTree
&DT
,
650 LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
651 bool Changed
= false;
652 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
653 // Copy blocks into a temporary array to avoid iterator invalidation issues
654 // as we remove them.
655 SmallVector
<WeakTrackingVH
, 16> Blocks(L
.blocks());
657 for (auto &Block
: Blocks
) {
658 // Attempt to merge blocks in the trivial case. Don't modify blocks which
659 // belong to other loops.
660 BasicBlock
*Succ
= cast_or_null
<BasicBlock
>(Block
);
664 BasicBlock
*Pred
= Succ
->getSinglePredecessor();
665 if (!Pred
|| !Pred
->getSingleSuccessor() || LI
.getLoopFor(Pred
) != &L
)
668 // Merge Succ into Pred and delete it.
669 MergeBlockIntoPredecessor(Succ
, &DTU
, &LI
, MSSAU
);
671 if (MSSAU
&& VerifyMemorySSA
)
672 MSSAU
->getMemorySSA()->verifyMemorySSA();
680 static bool simplifyLoopCFG(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
,
681 ScalarEvolution
&SE
, MemorySSAUpdater
*MSSAU
,
682 bool &IsLoopDeleted
) {
683 bool Changed
= false;
685 // Constant-fold terminators with known constant conditions.
686 Changed
|= constantFoldTerminators(L
, DT
, LI
, SE
, MSSAU
, IsLoopDeleted
);
691 // Eliminate unconditional branches by merging blocks into their predecessors.
692 Changed
|= mergeBlocksIntoPredecessors(L
, DT
, LI
, MSSAU
);
695 SE
.forgetTopmostLoop(&L
);
700 PreservedAnalyses
LoopSimplifyCFGPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
701 LoopStandardAnalysisResults
&AR
,
703 Optional
<MemorySSAUpdater
> MSSAU
;
705 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
706 bool DeleteCurrentLoop
= false;
707 if (!simplifyLoopCFG(L
, AR
.DT
, AR
.LI
, AR
.SE
,
708 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr,
710 return PreservedAnalyses::all();
712 if (DeleteCurrentLoop
)
713 LPMU
.markLoopAsDeleted(L
, "loop-simplifycfg");
715 auto PA
= getLoopPassPreservedAnalyses();
717 PA
.preserve
<MemorySSAAnalysis
>();
722 class LoopSimplifyCFGLegacyPass
: public LoopPass
{
724 static char ID
; // Pass ID, replacement for typeid
725 LoopSimplifyCFGLegacyPass() : LoopPass(ID
) {
726 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
729 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
733 DominatorTree
&DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
734 LoopInfo
&LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
735 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
736 auto *MSSAA
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
737 Optional
<MemorySSAUpdater
> MSSAU
;
739 MSSAU
= MemorySSAUpdater(&MSSAA
->getMSSA());
740 if (MSSAA
&& VerifyMemorySSA
)
741 MSSAU
->getMemorySSA()->verifyMemorySSA();
742 bool DeleteCurrentLoop
= false;
743 bool Changed
= simplifyLoopCFG(
744 *L
, DT
, LI
, SE
, MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr,
746 if (DeleteCurrentLoop
)
747 LPM
.markLoopAsDeleted(*L
);
751 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
752 AU
.addPreserved
<MemorySSAWrapperPass
>();
753 AU
.addPreserved
<DependenceAnalysisWrapperPass
>();
754 getLoopAnalysisUsage(AU
);
759 char LoopSimplifyCFGLegacyPass::ID
= 0;
760 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
761 "Simplify loop CFG", false, false)
762 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
763 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
764 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass
, "loop-simplifycfg",
765 "Simplify loop CFG", false, false)
767 Pass
*llvm::createLoopSimplifyCFGPass() {
768 return new LoopSimplifyCFGLegacyPass();