1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils.h"
54 #include "llvm/Transforms/Utils/LoopSimplify.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
60 #include <forward_list>
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
69 static cl::opt
<unsigned> CheckPerElim(
70 "runtime-check-per-loop-load-elim", cl::Hidden
,
71 cl::desc("Max number of memchecks allowed per eliminated load on average"),
74 static cl::opt
<unsigned> LoadElimSCEVCheckThreshold(
75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden
,
76 cl::desc("The maximum number of SCEV checks allowed for Loop "
79 STATISTIC(NumLoopLoadEliminted
, "Number of loads eliminated by LLE");
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate
{
88 StoreToLoadForwardingCandidate(LoadInst
*Load
, StoreInst
*Store
)
89 : Load(Load
), Store(Store
) {}
91 /// Return true if the dependence from the store to the load has an
92 /// absolute distance of one.
93 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94 bool isDependenceDistanceOfOne(PredicatedScalarEvolution
&PSE
,
96 Value
*LoadPtr
= Load
->getPointerOperand();
97 Value
*StorePtr
= Store
->getPointerOperand();
98 Type
*LoadType
= getLoadStoreType(Load
);
99 auto &DL
= Load
->getParent()->getModule()->getDataLayout();
101 assert(LoadPtr
->getType()->getPointerAddressSpace() ==
102 StorePtr
->getType()->getPointerAddressSpace() &&
103 DL
.getTypeSizeInBits(LoadType
) ==
104 DL
.getTypeSizeInBits(getLoadStoreType(Store
)) &&
105 "Should be a known dependence");
107 int64_t StrideLoad
= getPtrStride(PSE
, LoadType
, LoadPtr
, L
).value_or(0);
108 int64_t StrideStore
= getPtrStride(PSE
, LoadType
, StorePtr
, L
).value_or(0);
109 if (!StrideLoad
|| !StrideStore
|| StrideLoad
!= StrideStore
)
112 // TODO: This check for stride values other than 1 and -1 can be eliminated.
113 // However, doing so may cause the LoopAccessAnalysis to overcompensate,
114 // generating numerous non-wrap runtime checks that may undermine the
115 // benefits of load elimination. To safely implement support for non-unit
116 // strides, we would need to ensure either that the processed case does not
117 // require these additional checks, or improve the LAA to handle them more
118 // efficiently, or potentially both.
119 if (std::abs(StrideLoad
) != 1)
122 unsigned TypeByteSize
= DL
.getTypeAllocSize(const_cast<Type
*>(LoadType
));
124 auto *LoadPtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(LoadPtr
));
125 auto *StorePtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(StorePtr
));
127 // We don't need to check non-wrapping here because forward/backward
128 // dependence wouldn't be valid if these weren't monotonic accesses.
129 auto *Dist
= cast
<SCEVConstant
>(
130 PSE
.getSE()->getMinusSCEV(StorePtrSCEV
, LoadPtrSCEV
));
131 const APInt
&Val
= Dist
->getAPInt();
132 return Val
== TypeByteSize
* StrideLoad
;
135 Value
*getLoadPtr() const { return Load
->getPointerOperand(); }
138 friend raw_ostream
&operator<<(raw_ostream
&OS
,
139 const StoreToLoadForwardingCandidate
&Cand
) {
140 OS
<< *Cand
.Store
<< " -->\n";
141 OS
.indent(2) << *Cand
.Load
<< "\n";
147 } // end anonymous namespace
149 /// Check if the store dominates all latches, so as long as there is no
150 /// intervening store this value will be loaded in the next iteration.
151 static bool doesStoreDominatesAllLatches(BasicBlock
*StoreBlock
, Loop
*L
,
153 SmallVector
<BasicBlock
*, 8> Latches
;
154 L
->getLoopLatches(Latches
);
155 return llvm::all_of(Latches
, [&](const BasicBlock
*Latch
) {
156 return DT
->dominates(StoreBlock
, Latch
);
160 /// Return true if the load is not executed on all paths in the loop.
161 static bool isLoadConditional(LoadInst
*Load
, Loop
*L
) {
162 return Load
->getParent() != L
->getHeader();
167 /// The per-loop class that does most of the work.
168 class LoadEliminationForLoop
{
170 LoadEliminationForLoop(Loop
*L
, LoopInfo
*LI
, const LoopAccessInfo
&LAI
,
171 DominatorTree
*DT
, BlockFrequencyInfo
*BFI
,
172 ProfileSummaryInfo
* PSI
)
173 : L(L
), LI(LI
), LAI(LAI
), DT(DT
), BFI(BFI
), PSI(PSI
), PSE(LAI
.getPSE()) {}
175 /// Look through the loop-carried and loop-independent dependences in
176 /// this loop and find store->load dependences.
178 /// Note that no candidate is returned if LAA has failed to analyze the loop
179 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
180 std::forward_list
<StoreToLoadForwardingCandidate
>
181 findStoreToLoadDependences(const LoopAccessInfo
&LAI
) {
182 std::forward_list
<StoreToLoadForwardingCandidate
> Candidates
;
184 const auto *Deps
= LAI
.getDepChecker().getDependences();
188 // Find store->load dependences (consequently true dep). Both lexically
189 // forward and backward dependences qualify. Disqualify loads that have
190 // other unknown dependences.
192 SmallPtrSet
<Instruction
*, 4> LoadsWithUnknownDepedence
;
194 for (const auto &Dep
: *Deps
) {
195 Instruction
*Source
= Dep
.getSource(LAI
);
196 Instruction
*Destination
= Dep
.getDestination(LAI
);
198 if (Dep
.Type
== MemoryDepChecker::Dependence::Unknown
) {
199 if (isa
<LoadInst
>(Source
))
200 LoadsWithUnknownDepedence
.insert(Source
);
201 if (isa
<LoadInst
>(Destination
))
202 LoadsWithUnknownDepedence
.insert(Destination
);
206 if (Dep
.isBackward())
207 // Note that the designations source and destination follow the program
208 // order, i.e. source is always first. (The direction is given by the
210 std::swap(Source
, Destination
);
212 assert(Dep
.isForward() && "Needs to be a forward dependence");
214 auto *Store
= dyn_cast
<StoreInst
>(Source
);
217 auto *Load
= dyn_cast
<LoadInst
>(Destination
);
221 // Only propagate if the stored values are bit/pointer castable.
222 if (!CastInst::isBitOrNoopPointerCastable(
223 getLoadStoreType(Store
), getLoadStoreType(Load
),
224 Store
->getParent()->getModule()->getDataLayout()))
227 Candidates
.emplace_front(Load
, Store
);
230 if (!LoadsWithUnknownDepedence
.empty())
231 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&C
) {
232 return LoadsWithUnknownDepedence
.count(C
.Load
);
238 /// Return the index of the instruction according to program order.
239 unsigned getInstrIndex(Instruction
*Inst
) {
240 auto I
= InstOrder
.find(Inst
);
241 assert(I
!= InstOrder
.end() && "No index for instruction");
245 /// If a load has multiple candidates associated (i.e. different
246 /// stores), it means that it could be forwarding from multiple stores
247 /// depending on control flow. Remove these candidates.
249 /// Here, we rely on LAA to include the relevant loop-independent dependences.
250 /// LAA is known to omit these in the very simple case when the read and the
251 /// write within an alias set always takes place using the *same* pointer.
253 /// However, we know that this is not the case here, i.e. we can rely on LAA
254 /// to provide us with loop-independent dependences for the cases we're
255 /// interested. Consider the case for example where a loop-independent
256 /// dependece S1->S2 invalidates the forwarding S3->S2.
260 /// A[i+1] = ... (S3)
262 /// LAA will perform dependence analysis here because there are two
263 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
264 void removeDependencesFromMultipleStores(
265 std::forward_list
<StoreToLoadForwardingCandidate
> &Candidates
) {
266 // If Store is nullptr it means that we have multiple stores forwarding to
268 using LoadToSingleCandT
=
269 DenseMap
<LoadInst
*, const StoreToLoadForwardingCandidate
*>;
270 LoadToSingleCandT LoadToSingleCand
;
272 for (const auto &Cand
: Candidates
) {
274 LoadToSingleCandT::iterator Iter
;
276 std::tie(Iter
, NewElt
) =
277 LoadToSingleCand
.insert(std::make_pair(Cand
.Load
, &Cand
));
279 const StoreToLoadForwardingCandidate
*&OtherCand
= Iter
->second
;
280 // Already multiple stores forward to this load.
281 if (OtherCand
== nullptr)
284 // Handle the very basic case when the two stores are in the same block
285 // so deciding which one forwards is easy. The later one forwards as
286 // long as they both have a dependence distance of one to the load.
287 if (Cand
.Store
->getParent() == OtherCand
->Store
->getParent() &&
288 Cand
.isDependenceDistanceOfOne(PSE
, L
) &&
289 OtherCand
->isDependenceDistanceOfOne(PSE
, L
)) {
290 // They are in the same block, the later one will forward to the load.
291 if (getInstrIndex(OtherCand
->Store
) < getInstrIndex(Cand
.Store
))
298 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&Cand
) {
299 if (LoadToSingleCand
[Cand
.Load
] != &Cand
) {
301 dbgs() << "Removing from candidates: \n"
303 << " The load may have multiple stores forwarding to "
311 /// Given two pointers operations by their RuntimePointerChecking
312 /// indices, return true if they require an alias check.
314 /// We need a check if one is a pointer for a candidate load and the other is
315 /// a pointer for a possibly intervening store.
316 bool needsChecking(unsigned PtrIdx1
, unsigned PtrIdx2
,
317 const SmallPtrSetImpl
<Value
*> &PtrsWrittenOnFwdingPath
,
318 const SmallPtrSetImpl
<Value
*> &CandLoadPtrs
) {
320 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx1
).PointerValue
;
322 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx2
).PointerValue
;
323 return ((PtrsWrittenOnFwdingPath
.count(Ptr1
) && CandLoadPtrs
.count(Ptr2
)) ||
324 (PtrsWrittenOnFwdingPath
.count(Ptr2
) && CandLoadPtrs
.count(Ptr1
)));
327 /// Return pointers that are possibly written to on the path from a
328 /// forwarding store to a load.
330 /// These pointers need to be alias-checked against the forwarding candidates.
331 SmallPtrSet
<Value
*, 4> findPointersWrittenOnForwardingPath(
332 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
333 // From FirstStore to LastLoad neither of the elimination candidate loads
334 // should overlap with any of the stores.
339 // ld1 B[i] <-------,
340 // ld0 A[i] <----, | * LastLoad
343 // st3 B[i+1] -- | -' * FirstStore
347 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
351 std::max_element(Candidates
.begin(), Candidates
.end(),
352 [&](const StoreToLoadForwardingCandidate
&A
,
353 const StoreToLoadForwardingCandidate
&B
) {
354 return getInstrIndex(A
.Load
) < getInstrIndex(B
.Load
);
357 StoreInst
*FirstStore
=
358 std::min_element(Candidates
.begin(), Candidates
.end(),
359 [&](const StoreToLoadForwardingCandidate
&A
,
360 const StoreToLoadForwardingCandidate
&B
) {
361 return getInstrIndex(A
.Store
) <
362 getInstrIndex(B
.Store
);
366 // We're looking for stores after the first forwarding store until the end
367 // of the loop, then from the beginning of the loop until the last
368 // forwarded-to load. Collect the pointer for the stores.
369 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
;
371 auto InsertStorePtr
= [&](Instruction
*I
) {
372 if (auto *S
= dyn_cast
<StoreInst
>(I
))
373 PtrsWrittenOnFwdingPath
.insert(S
->getPointerOperand());
375 const auto &MemInstrs
= LAI
.getDepChecker().getMemoryInstructions();
376 std::for_each(MemInstrs
.begin() + getInstrIndex(FirstStore
) + 1,
377 MemInstrs
.end(), InsertStorePtr
);
378 std::for_each(MemInstrs
.begin(), &MemInstrs
[getInstrIndex(LastLoad
)],
381 return PtrsWrittenOnFwdingPath
;
384 /// Determine the pointer alias checks to prove that there are no
385 /// intervening stores.
386 SmallVector
<RuntimePointerCheck
, 4> collectMemchecks(
387 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
389 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
=
390 findPointersWrittenOnForwardingPath(Candidates
);
392 // Collect the pointers of the candidate loads.
393 SmallPtrSet
<Value
*, 4> CandLoadPtrs
;
394 for (const auto &Candidate
: Candidates
)
395 CandLoadPtrs
.insert(Candidate
.getLoadPtr());
397 const auto &AllChecks
= LAI
.getRuntimePointerChecking()->getChecks();
398 SmallVector
<RuntimePointerCheck
, 4> Checks
;
400 copy_if(AllChecks
, std::back_inserter(Checks
),
401 [&](const RuntimePointerCheck
&Check
) {
402 for (auto PtrIdx1
: Check
.first
->Members
)
403 for (auto PtrIdx2
: Check
.second
->Members
)
404 if (needsChecking(PtrIdx1
, PtrIdx2
, PtrsWrittenOnFwdingPath
,
410 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks
.size()
412 LLVM_DEBUG(LAI
.getRuntimePointerChecking()->printChecks(dbgs(), Checks
));
417 /// Perform the transformation for a candidate.
419 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate
&Cand
,
424 // store %y, %gep_i_plus_1
429 // %x.initial = load %gep_0
431 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
432 // %x = load %gep_i <---- now dead
433 // = ... %x.storeforward
434 // store %y, %gep_i_plus_1
436 Value
*Ptr
= Cand
.Load
->getPointerOperand();
437 auto *PtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Ptr
));
438 auto *PH
= L
->getLoopPreheader();
439 assert(PH
&& "Preheader should exist!");
440 Value
*InitialPtr
= SEE
.expandCodeFor(PtrSCEV
->getStart(), Ptr
->getType(),
441 PH
->getTerminator());
442 Value
*Initial
= new LoadInst(
443 Cand
.Load
->getType(), InitialPtr
, "load_initial",
444 /* isVolatile */ false, Cand
.Load
->getAlign(), PH
->getTerminator());
446 PHINode
*PHI
= PHINode::Create(Initial
->getType(), 2, "store_forwarded");
447 PHI
->insertBefore(L
->getHeader()->begin());
448 PHI
->addIncoming(Initial
, PH
);
450 Type
*LoadType
= Initial
->getType();
451 Type
*StoreType
= Cand
.Store
->getValueOperand()->getType();
452 auto &DL
= Cand
.Load
->getParent()->getModule()->getDataLayout();
455 assert(DL
.getTypeSizeInBits(LoadType
) == DL
.getTypeSizeInBits(StoreType
) &&
456 "The type sizes should match!");
458 Value
*StoreValue
= Cand
.Store
->getValueOperand();
459 if (LoadType
!= StoreType
)
460 StoreValue
= CastInst::CreateBitOrPointerCast(
461 StoreValue
, LoadType
, "store_forward_cast", Cand
.Store
);
463 PHI
->addIncoming(StoreValue
, L
->getLoopLatch());
465 Cand
.Load
->replaceAllUsesWith(PHI
);
468 /// Top-level driver for each loop: find store->load forwarding
469 /// candidates, add run-time checks and perform transformation.
471 LLVM_DEBUG(dbgs() << "\nIn \"" << L
->getHeader()->getParent()->getName()
472 << "\" checking " << *L
<< "\n");
474 // Look for store-to-load forwarding cases across the
480 // store %y, %gep_i_plus_1
485 // %x.initial = load %gep_0
487 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
488 // %x = load %gep_i <---- now dead
489 // = ... %x.storeforward
490 // store %y, %gep_i_plus_1
492 // First start with store->load dependences.
493 auto StoreToLoadDependences
= findStoreToLoadDependences(LAI
);
494 if (StoreToLoadDependences
.empty())
497 // Generate an index for each load and store according to the original
498 // program order. This will be used later.
499 InstOrder
= LAI
.getDepChecker().generateInstructionOrderMap();
501 // To keep things simple for now, remove those where the load is potentially
502 // fed by multiple stores.
503 removeDependencesFromMultipleStores(StoreToLoadDependences
);
504 if (StoreToLoadDependences
.empty())
507 // Filter the candidates further.
508 SmallVector
<StoreToLoadForwardingCandidate
, 4> Candidates
;
509 for (const StoreToLoadForwardingCandidate
&Cand
: StoreToLoadDependences
) {
510 LLVM_DEBUG(dbgs() << "Candidate " << Cand
);
512 // Make sure that the stored values is available everywhere in the loop in
513 // the next iteration.
514 if (!doesStoreDominatesAllLatches(Cand
.Store
->getParent(), L
, DT
))
517 // If the load is conditional we can't hoist its 0-iteration instance to
518 // the preheader because that would make it unconditional. Thus we would
519 // access a memory location that the original loop did not access.
520 if (isLoadConditional(Cand
.Load
, L
))
523 // Check whether the SCEV difference is the same as the induction step,
524 // thus we load the value in the next iteration.
525 if (!Cand
.isDependenceDistanceOfOne(PSE
, L
))
528 assert(isa
<SCEVAddRecExpr
>(PSE
.getSCEV(Cand
.Load
->getPointerOperand())) &&
529 "Loading from something other than indvar?");
531 isa
<SCEVAddRecExpr
>(PSE
.getSCEV(Cand
.Store
->getPointerOperand())) &&
532 "Storing to something other than indvar?");
534 Candidates
.push_back(Cand
);
538 << ". Valid store-to-load forwarding across the loop backedge\n");
540 if (Candidates
.empty())
543 // Check intervening may-alias stores. These need runtime checks for alias
545 SmallVector
<RuntimePointerCheck
, 4> Checks
= collectMemchecks(Candidates
);
547 // Too many checks are likely to outweigh the benefits of forwarding.
548 if (Checks
.size() > Candidates
.size() * CheckPerElim
) {
549 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
553 if (LAI
.getPSE().getPredicate().getComplexity() >
554 LoadElimSCEVCheckThreshold
) {
555 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
559 if (!L
->isLoopSimplifyForm()) {
560 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
564 if (!Checks
.empty() || !LAI
.getPSE().getPredicate().isAlwaysTrue()) {
565 if (LAI
.hasConvergentOp()) {
566 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
567 "convergent calls\n");
571 auto *HeaderBB
= L
->getHeader();
572 auto *F
= HeaderBB
->getParent();
573 bool OptForSize
= F
->hasOptSize() ||
574 llvm::shouldOptimizeForSize(HeaderBB
, PSI
, BFI
,
575 PGSOQueryType::IRPass
);
578 dbgs() << "Versioning is needed but not allowed when optimizing "
583 // Point of no-return, start the transformation. First, version the loop
586 LoopVersioning
LV(LAI
, Checks
, L
, LI
, DT
, PSE
.getSE());
589 // After versioning, some of the candidates' pointers could stop being
590 // SCEVAddRecs. We need to filter them out.
591 auto NoLongerGoodCandidate
= [this](
592 const StoreToLoadForwardingCandidate
&Cand
) {
593 return !isa
<SCEVAddRecExpr
>(
594 PSE
.getSCEV(Cand
.Load
->getPointerOperand())) ||
595 !isa
<SCEVAddRecExpr
>(
596 PSE
.getSCEV(Cand
.Store
->getPointerOperand()));
598 llvm::erase_if(Candidates
, NoLongerGoodCandidate
);
601 // Next, propagate the value stored by the store to the users of the load.
602 // Also for the first iteration, generate the initial value of the load.
603 SCEVExpander
SEE(*PSE
.getSE(), L
->getHeader()->getModule()->getDataLayout(),
605 for (const auto &Cand
: Candidates
)
606 propagateStoredValueToLoadUsers(Cand
, SEE
);
607 NumLoopLoadEliminted
+= Candidates
.size();
615 /// Maps the load/store instructions to their index according to
617 DenseMap
<Instruction
*, unsigned> InstOrder
;
621 const LoopAccessInfo
&LAI
;
623 BlockFrequencyInfo
*BFI
;
624 ProfileSummaryInfo
*PSI
;
625 PredicatedScalarEvolution PSE
;
628 } // end anonymous namespace
630 static bool eliminateLoadsAcrossLoops(Function
&F
, LoopInfo
&LI
,
632 BlockFrequencyInfo
*BFI
,
633 ProfileSummaryInfo
*PSI
,
634 ScalarEvolution
*SE
, AssumptionCache
*AC
,
635 LoopAccessInfoManager
&LAIs
) {
636 // Build up a worklist of inner-loops to transform to avoid iterator
638 // FIXME: This logic comes from other passes that actually change the loop
639 // nest structure. It isn't clear this is necessary (or useful) for a pass
640 // which merely optimizes the use of loads in a loop.
641 SmallVector
<Loop
*, 8> Worklist
;
643 bool Changed
= false;
645 for (Loop
*TopLevelLoop
: LI
)
646 for (Loop
*L
: depth_first(TopLevelLoop
)) {
647 Changed
|= simplifyLoop(L
, &DT
, &LI
, SE
, AC
, /*MSSAU*/ nullptr, false);
648 // We only handle inner-most loops.
649 if (L
->isInnermost())
650 Worklist
.push_back(L
);
653 // Now walk the identified inner loops.
654 for (Loop
*L
: Worklist
) {
655 // Match historical behavior
656 if (!L
->isRotatedForm() || !L
->getExitingBlock())
658 // The actual work is performed by LoadEliminationForLoop.
659 LoadEliminationForLoop
LEL(L
, &LI
, LAIs
.getInfo(*L
), &DT
, BFI
, PSI
);
660 Changed
|= LEL
.processLoop();
667 PreservedAnalyses
LoopLoadEliminationPass::run(Function
&F
,
668 FunctionAnalysisManager
&AM
) {
669 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
670 // There are no loops in the function. Return before computing other expensive
673 return PreservedAnalyses::all();
674 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
675 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
676 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
677 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
678 auto *PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
679 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
680 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
681 LoopAccessInfoManager
&LAIs
= AM
.getResult
<LoopAccessAnalysis
>(F
);
683 bool Changed
= eliminateLoadsAcrossLoops(F
, LI
, DT
, BFI
, PSI
, &SE
, &AC
, LAIs
);
686 return PreservedAnalyses::all();
688 PreservedAnalyses PA
;
689 PA
.preserve
<DominatorTreeAnalysis
>();
690 PA
.preserve
<LoopAnalysis
>();