build-docs: Add option to disable doxygen/sphinx docs (#66928)
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopLoadElimination.cpp
blob8d75a45629486a666efbdea0bfd2574e0c93e588
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils.h"
54 #include "llvm/Transforms/Utils/LoopSimplify.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <forward_list>
61 #include <tuple>
62 #include <utility>
64 using namespace llvm;
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
69 static cl::opt<unsigned> CheckPerElim(
70 "runtime-check-per-loop-load-elim", cl::Hidden,
71 cl::desc("Max number of memchecks allowed per eliminated load on average"),
72 cl::init(1));
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76 cl::desc("The maximum number of SCEV checks allowed for Loop "
77 "Load Elimination"));
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
81 namespace {
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85 LoadInst *Load;
86 StoreInst *Store;
88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89 : Load(Load), Store(Store) {}
91 /// Return true if the dependence from the store to the load has an
92 /// absolute distance of one.
93 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
95 Loop *L) const {
96 Value *LoadPtr = Load->getPointerOperand();
97 Value *StorePtr = Store->getPointerOperand();
98 Type *LoadType = getLoadStoreType(Load);
99 auto &DL = Load->getParent()->getModule()->getDataLayout();
101 assert(LoadPtr->getType()->getPointerAddressSpace() ==
102 StorePtr->getType()->getPointerAddressSpace() &&
103 DL.getTypeSizeInBits(LoadType) ==
104 DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
105 "Should be a known dependence");
107 int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
108 int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
109 if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
110 return false;
112 // TODO: This check for stride values other than 1 and -1 can be eliminated.
113 // However, doing so may cause the LoopAccessAnalysis to overcompensate,
114 // generating numerous non-wrap runtime checks that may undermine the
115 // benefits of load elimination. To safely implement support for non-unit
116 // strides, we would need to ensure either that the processed case does not
117 // require these additional checks, or improve the LAA to handle them more
118 // efficiently, or potentially both.
119 if (std::abs(StrideLoad) != 1)
120 return false;
122 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
124 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
125 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
127 // We don't need to check non-wrapping here because forward/backward
128 // dependence wouldn't be valid if these weren't monotonic accesses.
129 auto *Dist = cast<SCEVConstant>(
130 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131 const APInt &Val = Dist->getAPInt();
132 return Val == TypeByteSize * StrideLoad;
135 Value *getLoadPtr() const { return Load->getPointerOperand(); }
137 #ifndef NDEBUG
138 friend raw_ostream &operator<<(raw_ostream &OS,
139 const StoreToLoadForwardingCandidate &Cand) {
140 OS << *Cand.Store << " -->\n";
141 OS.indent(2) << *Cand.Load << "\n";
142 return OS;
144 #endif
147 } // end anonymous namespace
149 /// Check if the store dominates all latches, so as long as there is no
150 /// intervening store this value will be loaded in the next iteration.
151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
152 DominatorTree *DT) {
153 SmallVector<BasicBlock *, 8> Latches;
154 L->getLoopLatches(Latches);
155 return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
156 return DT->dominates(StoreBlock, Latch);
160 /// Return true if the load is not executed on all paths in the loop.
161 static bool isLoadConditional(LoadInst *Load, Loop *L) {
162 return Load->getParent() != L->getHeader();
165 namespace {
167 /// The per-loop class that does most of the work.
168 class LoadEliminationForLoop {
169 public:
170 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
171 DominatorTree *DT, BlockFrequencyInfo *BFI,
172 ProfileSummaryInfo* PSI)
173 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
175 /// Look through the loop-carried and loop-independent dependences in
176 /// this loop and find store->load dependences.
178 /// Note that no candidate is returned if LAA has failed to analyze the loop
179 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
180 std::forward_list<StoreToLoadForwardingCandidate>
181 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
182 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
184 const auto *Deps = LAI.getDepChecker().getDependences();
185 if (!Deps)
186 return Candidates;
188 // Find store->load dependences (consequently true dep). Both lexically
189 // forward and backward dependences qualify. Disqualify loads that have
190 // other unknown dependences.
192 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
194 for (const auto &Dep : *Deps) {
195 Instruction *Source = Dep.getSource(LAI);
196 Instruction *Destination = Dep.getDestination(LAI);
198 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
199 if (isa<LoadInst>(Source))
200 LoadsWithUnknownDepedence.insert(Source);
201 if (isa<LoadInst>(Destination))
202 LoadsWithUnknownDepedence.insert(Destination);
203 continue;
206 if (Dep.isBackward())
207 // Note that the designations source and destination follow the program
208 // order, i.e. source is always first. (The direction is given by the
209 // DepType.)
210 std::swap(Source, Destination);
211 else
212 assert(Dep.isForward() && "Needs to be a forward dependence");
214 auto *Store = dyn_cast<StoreInst>(Source);
215 if (!Store)
216 continue;
217 auto *Load = dyn_cast<LoadInst>(Destination);
218 if (!Load)
219 continue;
221 // Only propagate if the stored values are bit/pointer castable.
222 if (!CastInst::isBitOrNoopPointerCastable(
223 getLoadStoreType(Store), getLoadStoreType(Load),
224 Store->getParent()->getModule()->getDataLayout()))
225 continue;
227 Candidates.emplace_front(Load, Store);
230 if (!LoadsWithUnknownDepedence.empty())
231 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
232 return LoadsWithUnknownDepedence.count(C.Load);
235 return Candidates;
238 /// Return the index of the instruction according to program order.
239 unsigned getInstrIndex(Instruction *Inst) {
240 auto I = InstOrder.find(Inst);
241 assert(I != InstOrder.end() && "No index for instruction");
242 return I->second;
245 /// If a load has multiple candidates associated (i.e. different
246 /// stores), it means that it could be forwarding from multiple stores
247 /// depending on control flow. Remove these candidates.
249 /// Here, we rely on LAA to include the relevant loop-independent dependences.
250 /// LAA is known to omit these in the very simple case when the read and the
251 /// write within an alias set always takes place using the *same* pointer.
253 /// However, we know that this is not the case here, i.e. we can rely on LAA
254 /// to provide us with loop-independent dependences for the cases we're
255 /// interested. Consider the case for example where a loop-independent
256 /// dependece S1->S2 invalidates the forwarding S3->S2.
258 /// A[i] = ... (S1)
259 /// ... = A[i] (S2)
260 /// A[i+1] = ... (S3)
262 /// LAA will perform dependence analysis here because there are two
263 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
264 void removeDependencesFromMultipleStores(
265 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
266 // If Store is nullptr it means that we have multiple stores forwarding to
267 // this store.
268 using LoadToSingleCandT =
269 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
270 LoadToSingleCandT LoadToSingleCand;
272 for (const auto &Cand : Candidates) {
273 bool NewElt;
274 LoadToSingleCandT::iterator Iter;
276 std::tie(Iter, NewElt) =
277 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
278 if (!NewElt) {
279 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
280 // Already multiple stores forward to this load.
281 if (OtherCand == nullptr)
282 continue;
284 // Handle the very basic case when the two stores are in the same block
285 // so deciding which one forwards is easy. The later one forwards as
286 // long as they both have a dependence distance of one to the load.
287 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
288 Cand.isDependenceDistanceOfOne(PSE, L) &&
289 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
290 // They are in the same block, the later one will forward to the load.
291 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
292 OtherCand = &Cand;
293 } else
294 OtherCand = nullptr;
298 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
299 if (LoadToSingleCand[Cand.Load] != &Cand) {
300 LLVM_DEBUG(
301 dbgs() << "Removing from candidates: \n"
302 << Cand
303 << " The load may have multiple stores forwarding to "
304 << "it\n");
305 return true;
307 return false;
311 /// Given two pointers operations by their RuntimePointerChecking
312 /// indices, return true if they require an alias check.
314 /// We need a check if one is a pointer for a candidate load and the other is
315 /// a pointer for a possibly intervening store.
316 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
317 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
318 const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
319 Value *Ptr1 =
320 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
321 Value *Ptr2 =
322 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
323 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
324 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
327 /// Return pointers that are possibly written to on the path from a
328 /// forwarding store to a load.
330 /// These pointers need to be alias-checked against the forwarding candidates.
331 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
332 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
333 // From FirstStore to LastLoad neither of the elimination candidate loads
334 // should overlap with any of the stores.
336 // E.g.:
338 // st1 C[i]
339 // ld1 B[i] <-------,
340 // ld0 A[i] <----, | * LastLoad
341 // ... | |
342 // st2 E[i] | |
343 // st3 B[i+1] -- | -' * FirstStore
344 // st0 A[i+1] ---'
345 // st4 D[i]
347 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
348 // ld0.
350 LoadInst *LastLoad =
351 std::max_element(Candidates.begin(), Candidates.end(),
352 [&](const StoreToLoadForwardingCandidate &A,
353 const StoreToLoadForwardingCandidate &B) {
354 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
356 ->Load;
357 StoreInst *FirstStore =
358 std::min_element(Candidates.begin(), Candidates.end(),
359 [&](const StoreToLoadForwardingCandidate &A,
360 const StoreToLoadForwardingCandidate &B) {
361 return getInstrIndex(A.Store) <
362 getInstrIndex(B.Store);
364 ->Store;
366 // We're looking for stores after the first forwarding store until the end
367 // of the loop, then from the beginning of the loop until the last
368 // forwarded-to load. Collect the pointer for the stores.
369 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
371 auto InsertStorePtr = [&](Instruction *I) {
372 if (auto *S = dyn_cast<StoreInst>(I))
373 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
375 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
376 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
377 MemInstrs.end(), InsertStorePtr);
378 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
379 InsertStorePtr);
381 return PtrsWrittenOnFwdingPath;
384 /// Determine the pointer alias checks to prove that there are no
385 /// intervening stores.
386 SmallVector<RuntimePointerCheck, 4> collectMemchecks(
387 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
389 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
390 findPointersWrittenOnForwardingPath(Candidates);
392 // Collect the pointers of the candidate loads.
393 SmallPtrSet<Value *, 4> CandLoadPtrs;
394 for (const auto &Candidate : Candidates)
395 CandLoadPtrs.insert(Candidate.getLoadPtr());
397 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
398 SmallVector<RuntimePointerCheck, 4> Checks;
400 copy_if(AllChecks, std::back_inserter(Checks),
401 [&](const RuntimePointerCheck &Check) {
402 for (auto PtrIdx1 : Check.first->Members)
403 for (auto PtrIdx2 : Check.second->Members)
404 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
405 CandLoadPtrs))
406 return true;
407 return false;
410 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
411 << "):\n");
412 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
414 return Checks;
417 /// Perform the transformation for a candidate.
418 void
419 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
420 SCEVExpander &SEE) {
421 // loop:
422 // %x = load %gep_i
423 // = ... %x
424 // store %y, %gep_i_plus_1
426 // =>
428 // ph:
429 // %x.initial = load %gep_0
430 // loop:
431 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
432 // %x = load %gep_i <---- now dead
433 // = ... %x.storeforward
434 // store %y, %gep_i_plus_1
436 Value *Ptr = Cand.Load->getPointerOperand();
437 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
438 auto *PH = L->getLoopPreheader();
439 assert(PH && "Preheader should exist!");
440 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
441 PH->getTerminator());
442 Value *Initial = new LoadInst(
443 Cand.Load->getType(), InitialPtr, "load_initial",
444 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
446 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded");
447 PHI->insertBefore(L->getHeader()->begin());
448 PHI->addIncoming(Initial, PH);
450 Type *LoadType = Initial->getType();
451 Type *StoreType = Cand.Store->getValueOperand()->getType();
452 auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
453 (void)DL;
455 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
456 "The type sizes should match!");
458 Value *StoreValue = Cand.Store->getValueOperand();
459 if (LoadType != StoreType)
460 StoreValue = CastInst::CreateBitOrPointerCast(
461 StoreValue, LoadType, "store_forward_cast", Cand.Store);
463 PHI->addIncoming(StoreValue, L->getLoopLatch());
465 Cand.Load->replaceAllUsesWith(PHI);
468 /// Top-level driver for each loop: find store->load forwarding
469 /// candidates, add run-time checks and perform transformation.
470 bool processLoop() {
471 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
472 << "\" checking " << *L << "\n");
474 // Look for store-to-load forwarding cases across the
475 // backedge. E.g.:
477 // loop:
478 // %x = load %gep_i
479 // = ... %x
480 // store %y, %gep_i_plus_1
482 // =>
484 // ph:
485 // %x.initial = load %gep_0
486 // loop:
487 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
488 // %x = load %gep_i <---- now dead
489 // = ... %x.storeforward
490 // store %y, %gep_i_plus_1
492 // First start with store->load dependences.
493 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
494 if (StoreToLoadDependences.empty())
495 return false;
497 // Generate an index for each load and store according to the original
498 // program order. This will be used later.
499 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
501 // To keep things simple for now, remove those where the load is potentially
502 // fed by multiple stores.
503 removeDependencesFromMultipleStores(StoreToLoadDependences);
504 if (StoreToLoadDependences.empty())
505 return false;
507 // Filter the candidates further.
508 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
509 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
510 LLVM_DEBUG(dbgs() << "Candidate " << Cand);
512 // Make sure that the stored values is available everywhere in the loop in
513 // the next iteration.
514 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
515 continue;
517 // If the load is conditional we can't hoist its 0-iteration instance to
518 // the preheader because that would make it unconditional. Thus we would
519 // access a memory location that the original loop did not access.
520 if (isLoadConditional(Cand.Load, L))
521 continue;
523 // Check whether the SCEV difference is the same as the induction step,
524 // thus we load the value in the next iteration.
525 if (!Cand.isDependenceDistanceOfOne(PSE, L))
526 continue;
528 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
529 "Loading from something other than indvar?");
530 assert(
531 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
532 "Storing to something other than indvar?");
534 Candidates.push_back(Cand);
535 LLVM_DEBUG(
536 dbgs()
537 << Candidates.size()
538 << ". Valid store-to-load forwarding across the loop backedge\n");
540 if (Candidates.empty())
541 return false;
543 // Check intervening may-alias stores. These need runtime checks for alias
544 // disambiguation.
545 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
547 // Too many checks are likely to outweigh the benefits of forwarding.
548 if (Checks.size() > Candidates.size() * CheckPerElim) {
549 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
550 return false;
553 if (LAI.getPSE().getPredicate().getComplexity() >
554 LoadElimSCEVCheckThreshold) {
555 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
556 return false;
559 if (!L->isLoopSimplifyForm()) {
560 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
561 return false;
564 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
565 if (LAI.hasConvergentOp()) {
566 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
567 "convergent calls\n");
568 return false;
571 auto *HeaderBB = L->getHeader();
572 auto *F = HeaderBB->getParent();
573 bool OptForSize = F->hasOptSize() ||
574 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
575 PGSOQueryType::IRPass);
576 if (OptForSize) {
577 LLVM_DEBUG(
578 dbgs() << "Versioning is needed but not allowed when optimizing "
579 "for size.\n");
580 return false;
583 // Point of no-return, start the transformation. First, version the loop
584 // if necessary.
586 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
587 LV.versionLoop();
589 // After versioning, some of the candidates' pointers could stop being
590 // SCEVAddRecs. We need to filter them out.
591 auto NoLongerGoodCandidate = [this](
592 const StoreToLoadForwardingCandidate &Cand) {
593 return !isa<SCEVAddRecExpr>(
594 PSE.getSCEV(Cand.Load->getPointerOperand())) ||
595 !isa<SCEVAddRecExpr>(
596 PSE.getSCEV(Cand.Store->getPointerOperand()));
598 llvm::erase_if(Candidates, NoLongerGoodCandidate);
601 // Next, propagate the value stored by the store to the users of the load.
602 // Also for the first iteration, generate the initial value of the load.
603 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
604 "storeforward");
605 for (const auto &Cand : Candidates)
606 propagateStoredValueToLoadUsers(Cand, SEE);
607 NumLoopLoadEliminted += Candidates.size();
609 return true;
612 private:
613 Loop *L;
615 /// Maps the load/store instructions to their index according to
616 /// program order.
617 DenseMap<Instruction *, unsigned> InstOrder;
619 // Analyses used.
620 LoopInfo *LI;
621 const LoopAccessInfo &LAI;
622 DominatorTree *DT;
623 BlockFrequencyInfo *BFI;
624 ProfileSummaryInfo *PSI;
625 PredicatedScalarEvolution PSE;
628 } // end anonymous namespace
630 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
631 DominatorTree &DT,
632 BlockFrequencyInfo *BFI,
633 ProfileSummaryInfo *PSI,
634 ScalarEvolution *SE, AssumptionCache *AC,
635 LoopAccessInfoManager &LAIs) {
636 // Build up a worklist of inner-loops to transform to avoid iterator
637 // invalidation.
638 // FIXME: This logic comes from other passes that actually change the loop
639 // nest structure. It isn't clear this is necessary (or useful) for a pass
640 // which merely optimizes the use of loads in a loop.
641 SmallVector<Loop *, 8> Worklist;
643 bool Changed = false;
645 for (Loop *TopLevelLoop : LI)
646 for (Loop *L : depth_first(TopLevelLoop)) {
647 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
648 // We only handle inner-most loops.
649 if (L->isInnermost())
650 Worklist.push_back(L);
653 // Now walk the identified inner loops.
654 for (Loop *L : Worklist) {
655 // Match historical behavior
656 if (!L->isRotatedForm() || !L->getExitingBlock())
657 continue;
658 // The actual work is performed by LoadEliminationForLoop.
659 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
660 Changed |= LEL.processLoop();
661 if (Changed)
662 LAIs.clear();
664 return Changed;
667 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
668 FunctionAnalysisManager &AM) {
669 auto &LI = AM.getResult<LoopAnalysis>(F);
670 // There are no loops in the function. Return before computing other expensive
671 // analyses.
672 if (LI.empty())
673 return PreservedAnalyses::all();
674 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
675 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
676 auto &AC = AM.getResult<AssumptionAnalysis>(F);
677 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
678 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
679 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
680 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
681 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
683 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
685 if (!Changed)
686 return PreservedAnalyses::all();
688 PreservedAnalyses PA;
689 PA.preserve<DominatorTreeAnalysis>();
690 PA.preserve<LoopAnalysis>();
691 return PA;