1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
13 // for (i = 0; i < n; i++) {
20 // for (i = 0; i < n; i++) {
21 // guard(n - 1 < len);
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
30 // for (i = 0; i < n; i++) {
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 // for (int i = b; i != e; i++)
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 // Informal proof that the transformation above is correct:
79 // By the definition of guards we can rewrite the guard condition to:
82 // Let's prove that for each iteration of the loop:
84 // And the condition above can be simplified to G(Start) && M.
89 // Induction step. Assuming G(0) && M => G(I) on the subsequent
92 // B(I) is true because it's the backedge condition.
93 // G(I) is true because the backedge is guarded by this condition.
95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 // Note that we can use anything stronger than M, i.e. any condition which
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // * The loop has a single latch with the condition of the form:
103 // B(X) = latchStart + X <pred> latchLimit,
104 // where <pred> is u<, u<=, s<, or s<=.
105 // * The guard condition is of the form
106 // G(X) = guardStart + X u< guardLimit
108 // For the ult latch comparison case M is:
109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 // guardStart + X + 1 u< guardLimit
112 // The only way the antecedent can be true and the consequent can be false is
114 // X == guardLimit - 1 - guardStart
115 // (and guardLimit is non-zero, but we won't use this latter fact).
116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 // latchStart + guardLimit - 1 - guardStart u< latchLimit
118 // and its negation is
119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 // In other words, if
122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 // (the ranges below are written in ConstantRange notation, where [A, B) is the
125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 // forall X . guardStart + X u< guardLimit &&
128 // latchStart + X u< latchLimit =>
129 // guardStart + X + 1 u< guardLimit
130 // == forall X . guardStart + X u< guardLimit &&
131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 // guardStart + X + 1 u< guardLimit
133 // == forall X . (guardStart + X) in [0, guardLimit) &&
134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 // (guardStart + X + 1) in [0, guardLimit)
136 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 // X in [-latchStart, guardLimit - 1 - guardStart) =>
138 // X in [-guardStart - 1, guardLimit - guardStart - 1)
141 // So the widened condition is:
142 // guardStart u< guardLimit &&
143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 // Similarly for ule condition the widened condition is:
145 // guardStart u< guardLimit &&
146 // latchStart + guardLimit - 1 - guardStart u> latchLimit
147 // For slt condition the widened condition is:
148 // guardStart u< guardLimit &&
149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 // For sle condition the widened condition is:
151 // guardStart u< guardLimit &&
152 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // * The loop has a single latch with the condition of the form:
157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 // * The guard condition is of the form
159 // G(X) = X - 1 u< guardLimit
161 // For the ugt latch comparison case M is:
162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 // The only way the antecedent can be true and the consequent can be false is if
166 // If X == 1 then the second half of the antecedent is
167 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 // So the widened condition is:
170 // guardStart u< guardLimit && latchLimit u>= 1.
171 // Similarly for sgt condition the widened condition is:
172 // guardStart u< guardLimit && latchLimit s>= 1.
173 // For uge condition the widened condition is:
174 // guardStart u< guardLimit && latchLimit u> 1.
175 // For sge condition the widened condition is:
176 // guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/IR/ProfDataUtils.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
206 #define DEBUG_TYPE "loop-predication"
208 STATISTIC(TotalConsidered
, "Number of guards considered");
209 STATISTIC(TotalWidened
, "Number of checks widened");
211 using namespace llvm
;
213 static cl::opt
<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214 cl::Hidden
, cl::init(true));
216 static cl::opt
<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217 cl::Hidden
, cl::init(true));
220 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221 cl::Hidden
, cl::init(false));
223 // This is the scale factor for the latch probability. We use this during
224 // profitability analysis to find other exiting blocks that have a much higher
225 // probability of exiting the loop instead of loop exiting via latch.
226 // This value should be greater than 1 for a sane profitability check.
227 static cl::opt
<float> LatchExitProbabilityScale(
228 "loop-predication-latch-probability-scale", cl::Hidden
, cl::init(2.0),
229 cl::desc("scale factor for the latch probability. Value should be greater "
230 "than 1. Lower values are ignored"));
232 static cl::opt
<bool> PredicateWidenableBranchGuards(
233 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden
,
234 cl::desc("Whether or not we should predicate guards "
235 "expressed as widenable branches to deoptimize blocks"),
238 static cl::opt
<bool> InsertAssumesOfPredicatedGuardsConditions(
239 "loop-predication-insert-assumes-of-predicated-guards-conditions",
241 cl::desc("Whether or not we should insert assumes of conditions of "
242 "predicated guards"),
246 /// Represents an induction variable check:
247 /// icmp Pred, <induction variable>, <loop invariant limit>
249 ICmpInst::Predicate Pred
;
250 const SCEVAddRecExpr
*IV
;
252 LoopICmp(ICmpInst::Predicate Pred
, const SCEVAddRecExpr
*IV
,
254 : Pred(Pred
), IV(IV
), Limit(Limit
) {}
255 LoopICmp() = default;
257 dbgs() << "LoopICmp Pred = " << Pred
<< ", IV = " << *IV
258 << ", Limit = " << *Limit
<< "\n";
262 class LoopPredication
{
267 MemorySSAUpdater
*MSSAU
;
270 const DataLayout
*DL
;
271 BasicBlock
*Preheader
;
274 bool isSupportedStep(const SCEV
* Step
);
275 std::optional
<LoopICmp
> parseLoopICmp(ICmpInst
*ICI
);
276 std::optional
<LoopICmp
> parseLoopLatchICmp();
278 /// Return an insertion point suitable for inserting a safe to speculate
279 /// instruction whose only user will be 'User' which has operands 'Ops'. A
280 /// trivial result would be the at the User itself, but we try to return a
281 /// loop invariant location if possible.
282 Instruction
*findInsertPt(Instruction
*User
, ArrayRef
<Value
*> Ops
);
283 /// Same as above, *except* that this uses the SCEV definition of invariant
284 /// which is that an expression *can be made* invariant via SCEVExpander.
285 /// Thus, this version is only suitable for finding an insert point to be
286 /// passed to SCEVExpander!
287 Instruction
*findInsertPt(const SCEVExpander
&Expander
, Instruction
*User
,
288 ArrayRef
<const SCEV
*> Ops
);
290 /// Return true if the value is known to produce a single fixed value across
291 /// all iterations on which it executes. Note that this does not imply
292 /// speculation safety. That must be established separately.
293 bool isLoopInvariantValue(const SCEV
* S
);
295 Value
*expandCheck(SCEVExpander
&Expander
, Instruction
*Guard
,
296 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
299 std::optional
<Value
*> widenICmpRangeCheck(ICmpInst
*ICI
,
300 SCEVExpander
&Expander
,
302 std::optional
<Value
*>
303 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck
, LoopICmp RangeCheck
,
304 SCEVExpander
&Expander
,
306 std::optional
<Value
*>
307 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck
, LoopICmp RangeCheck
,
308 SCEVExpander
&Expander
,
310 void widenChecks(SmallVectorImpl
<Value
*> &Checks
,
311 SmallVectorImpl
<Value
*> &WidenedChecks
,
312 SCEVExpander
&Expander
, Instruction
*Guard
);
313 bool widenGuardConditions(IntrinsicInst
*II
, SCEVExpander
&Expander
);
314 bool widenWidenableBranchGuardConditions(BranchInst
*Guard
, SCEVExpander
&Expander
);
315 // If the loop always exits through another block in the loop, we should not
316 // predicate based on the latch check. For example, the latch check can be a
317 // very coarse grained check and there can be more fine grained exit checks
319 bool isLoopProfitableToPredicate();
321 bool predicateLoopExits(Loop
*L
, SCEVExpander
&Rewriter
);
324 LoopPredication(AliasAnalysis
*AA
, DominatorTree
*DT
, ScalarEvolution
*SE
,
325 LoopInfo
*LI
, MemorySSAUpdater
*MSSAU
)
326 : AA(AA
), DT(DT
), SE(SE
), LI(LI
), MSSAU(MSSAU
){};
327 bool runOnLoop(Loop
*L
);
330 class LoopPredicationLegacyPass
: public LoopPass
{
333 LoopPredicationLegacyPass() : LoopPass(ID
) {
334 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
337 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
338 AU
.addRequired
<BranchProbabilityInfoWrapperPass
>();
339 getLoopAnalysisUsage(AU
);
340 AU
.addPreserved
<MemorySSAWrapperPass
>();
343 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
346 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
347 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
348 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
349 auto *MSSAWP
= getAnalysisIfAvailable
<MemorySSAWrapperPass
>();
350 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
352 MSSAU
= std::make_unique
<MemorySSAUpdater
>(&MSSAWP
->getMSSA());
353 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
354 LoopPredication
LP(AA
, DT
, SE
, LI
, MSSAU
? MSSAU
.get() : nullptr);
355 return LP
.runOnLoop(L
);
359 char LoopPredicationLegacyPass::ID
= 0;
362 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass
, "loop-predication",
363 "Loop predication", false, false)
364 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass
)
365 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
366 INITIALIZE_PASS_END(LoopPredicationLegacyPass
, "loop-predication",
367 "Loop predication", false, false)
369 Pass
*llvm::createLoopPredicationPass() {
370 return new LoopPredicationLegacyPass();
373 PreservedAnalyses
LoopPredicationPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
374 LoopStandardAnalysisResults
&AR
,
376 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
378 MSSAU
= std::make_unique
<MemorySSAUpdater
>(AR
.MSSA
);
379 LoopPredication
LP(&AR
.AA
, &AR
.DT
, &AR
.SE
, &AR
.LI
,
380 MSSAU
? MSSAU
.get() : nullptr);
381 if (!LP
.runOnLoop(&L
))
382 return PreservedAnalyses::all();
384 auto PA
= getLoopPassPreservedAnalyses();
386 PA
.preserve
<MemorySSAAnalysis
>();
390 std::optional
<LoopICmp
> LoopPredication::parseLoopICmp(ICmpInst
*ICI
) {
391 auto Pred
= ICI
->getPredicate();
392 auto *LHS
= ICI
->getOperand(0);
393 auto *RHS
= ICI
->getOperand(1);
395 const SCEV
*LHSS
= SE
->getSCEV(LHS
);
396 if (isa
<SCEVCouldNotCompute
>(LHSS
))
398 const SCEV
*RHSS
= SE
->getSCEV(RHS
);
399 if (isa
<SCEVCouldNotCompute
>(RHSS
))
402 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
403 if (SE
->isLoopInvariant(LHSS
, L
)) {
405 std::swap(LHSS
, RHSS
);
406 Pred
= ICmpInst::getSwappedPredicate(Pred
);
409 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHSS
);
410 if (!AR
|| AR
->getLoop() != L
)
413 return LoopICmp(Pred
, AR
, RHSS
);
416 Value
*LoopPredication::expandCheck(SCEVExpander
&Expander
,
418 ICmpInst::Predicate Pred
, const SCEV
*LHS
,
420 Type
*Ty
= LHS
->getType();
421 assert(Ty
== RHS
->getType() && "expandCheck operands have different types?");
423 if (SE
->isLoopInvariant(LHS
, L
) && SE
->isLoopInvariant(RHS
, L
)) {
424 IRBuilder
<> Builder(Guard
);
425 if (SE
->isLoopEntryGuardedByCond(L
, Pred
, LHS
, RHS
))
426 return Builder
.getTrue();
427 if (SE
->isLoopEntryGuardedByCond(L
, ICmpInst::getInversePredicate(Pred
),
429 return Builder
.getFalse();
433 Expander
.expandCodeFor(LHS
, Ty
, findInsertPt(Expander
, Guard
, {LHS
}));
435 Expander
.expandCodeFor(RHS
, Ty
, findInsertPt(Expander
, Guard
, {RHS
}));
436 IRBuilder
<> Builder(findInsertPt(Guard
, {LHSV
, RHSV
}));
437 return Builder
.CreateICmp(Pred
, LHSV
, RHSV
);
440 // Returns true if its safe to truncate the IV to RangeCheckType.
441 // When the IV type is wider than the range operand type, we can still do loop
442 // predication, by generating SCEVs for the range and latch that are of the
443 // same type. We achieve this by generating a SCEV truncate expression for the
444 // latch IV. This is done iff truncation of the IV is a safe operation,
445 // without loss of information.
446 // Another way to achieve this is by generating a wider type SCEV for the
447 // range check operand, however, this needs a more involved check that
448 // operands do not overflow. This can lead to loss of information when the
449 // range operand is of the form: add i32 %offset, %iv. We need to prove that
450 // sext(x + y) is same as sext(x) + sext(y).
451 // This function returns true if we can safely represent the IV type in
452 // the RangeCheckType without loss of information.
453 static bool isSafeToTruncateWideIVType(const DataLayout
&DL
,
455 const LoopICmp LatchCheck
,
456 Type
*RangeCheckType
) {
457 if (!EnableIVTruncation
)
459 assert(DL
.getTypeSizeInBits(LatchCheck
.IV
->getType()).getFixedValue() >
460 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue() &&
461 "Expected latch check IV type to be larger than range check operand "
463 // The start and end values of the IV should be known. This is to guarantee
464 // that truncating the wide type will not lose information.
465 auto *Limit
= dyn_cast
<SCEVConstant
>(LatchCheck
.Limit
);
466 auto *Start
= dyn_cast
<SCEVConstant
>(LatchCheck
.IV
->getStart());
467 if (!Limit
|| !Start
)
469 // This check makes sure that the IV does not change sign during loop
470 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
471 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
472 // IV wraps around, and the truncation of the IV would lose the range of
473 // iterations between 2^32 and 2^64.
474 if (!SE
.getMonotonicPredicateType(LatchCheck
.IV
, LatchCheck
.Pred
))
476 // The active bits should be less than the bits in the RangeCheckType. This
477 // guarantees that truncating the latch check to RangeCheckType is a safe
479 auto RangeCheckTypeBitSize
=
480 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue();
481 return Start
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
&&
482 Limit
->getAPInt().getActiveBits() < RangeCheckTypeBitSize
;
486 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
487 // the requested type if safe to do so. May involve the use of a new IV.
488 static std::optional
<LoopICmp
> generateLoopLatchCheck(const DataLayout
&DL
,
490 const LoopICmp LatchCheck
,
491 Type
*RangeCheckType
) {
493 auto *LatchType
= LatchCheck
.IV
->getType();
494 if (RangeCheckType
== LatchType
)
496 // For now, bail out if latch type is narrower than range type.
497 if (DL
.getTypeSizeInBits(LatchType
).getFixedValue() <
498 DL
.getTypeSizeInBits(RangeCheckType
).getFixedValue())
500 if (!isSafeToTruncateWideIVType(DL
, SE
, LatchCheck
, RangeCheckType
))
502 // We can now safely identify the truncated version of the IV and limit for
504 LoopICmp NewLatchCheck
;
505 NewLatchCheck
.Pred
= LatchCheck
.Pred
;
506 NewLatchCheck
.IV
= dyn_cast
<SCEVAddRecExpr
>(
507 SE
.getTruncateExpr(LatchCheck
.IV
, RangeCheckType
));
508 if (!NewLatchCheck
.IV
)
510 NewLatchCheck
.Limit
= SE
.getTruncateExpr(LatchCheck
.Limit
, RangeCheckType
);
511 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
512 << "can be represented as range check type:"
513 << *RangeCheckType
<< "\n");
514 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck
.IV
<< "\n");
515 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck
.Limit
<< "\n");
516 return NewLatchCheck
;
519 bool LoopPredication::isSupportedStep(const SCEV
* Step
) {
520 return Step
->isOne() || (Step
->isAllOnesValue() && EnableCountDownLoop
);
523 Instruction
*LoopPredication::findInsertPt(Instruction
*Use
,
524 ArrayRef
<Value
*> Ops
) {
525 for (Value
*Op
: Ops
)
526 if (!L
->isLoopInvariant(Op
))
528 return Preheader
->getTerminator();
531 Instruction
*LoopPredication::findInsertPt(const SCEVExpander
&Expander
,
533 ArrayRef
<const SCEV
*> Ops
) {
534 // Subtlety: SCEV considers things to be invariant if the value produced is
535 // the same across iterations. This is not the same as being able to
536 // evaluate outside the loop, which is what we actually need here.
537 for (const SCEV
*Op
: Ops
)
538 if (!SE
->isLoopInvariant(Op
, L
) ||
539 !Expander
.isSafeToExpandAt(Op
, Preheader
->getTerminator()))
541 return Preheader
->getTerminator();
544 bool LoopPredication::isLoopInvariantValue(const SCEV
* S
) {
545 // Handling expressions which produce invariant results, but *haven't* yet
546 // been removed from the loop serves two important purposes.
547 // 1) Most importantly, it resolves a pass ordering cycle which would
548 // otherwise need us to iteration licm, loop-predication, and either
549 // loop-unswitch or loop-peeling to make progress on examples with lots of
550 // predicable range checks in a row. (Since, in the general case, we can't
551 // hoist the length checks until the dominating checks have been discharged
552 // as we can't prove doing so is safe.)
553 // 2) As a nice side effect, this exposes the value of peeling or unswitching
554 // much more obviously in the IR. Otherwise, the cost modeling for other
555 // transforms would end up needing to duplicate all of this logic to model a
556 // check which becomes predictable based on a modeled peel or unswitch.
558 // The cost of doing so in the worst case is an extra fill from the stack in
559 // the loop to materialize the loop invariant test value instead of checking
560 // against the original IV which is presumable in a register inside the loop.
561 // Such cases are presumably rare, and hint at missing oppurtunities for
564 if (SE
->isLoopInvariant(S
, L
))
565 // Note: This the SCEV variant, so the original Value* may be within the
566 // loop even though SCEV has proven it is loop invariant.
569 // Handle a particular important case which SCEV doesn't yet know about which
570 // shows up in range checks on arrays with immutable lengths.
571 // TODO: This should be sunk inside SCEV.
572 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
))
573 if (const auto *LI
= dyn_cast
<LoadInst
>(U
->getValue()))
574 if (LI
->isUnordered() && L
->hasLoopInvariantOperands(LI
))
575 if (!isModSet(AA
->getModRefInfoMask(LI
->getOperand(0))) ||
576 LI
->hasMetadata(LLVMContext::MD_invariant_load
))
581 std::optional
<Value
*> LoopPredication::widenICmpRangeCheckIncrementingLoop(
582 LoopICmp LatchCheck
, LoopICmp RangeCheck
, SCEVExpander
&Expander
,
583 Instruction
*Guard
) {
584 auto *Ty
= RangeCheck
.IV
->getType();
585 // Generate the widened condition for the forward loop:
586 // guardStart u< guardLimit &&
587 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
588 // where <pred> depends on the latch condition predicate. See the file
589 // header comment for the reasoning.
590 // guardLimit - guardStart + latchStart - 1
591 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
592 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
593 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
594 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
595 // Subtlety: We need all the values to be *invariant* across all iterations,
596 // but we only need to check expansion safety for those which *aren't*
597 // already guaranteed to dominate the guard.
598 if (!isLoopInvariantValue(GuardStart
) ||
599 !isLoopInvariantValue(GuardLimit
) ||
600 !isLoopInvariantValue(LatchStart
) ||
601 !isLoopInvariantValue(LatchLimit
)) {
602 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
605 if (!Expander
.isSafeToExpandAt(LatchStart
, Guard
) ||
606 !Expander
.isSafeToExpandAt(LatchLimit
, Guard
)) {
607 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
611 // guardLimit - guardStart + latchStart - 1
613 SE
->getAddExpr(SE
->getMinusSCEV(GuardLimit
, GuardStart
),
614 SE
->getMinusSCEV(LatchStart
, SE
->getOne(Ty
)));
615 auto LimitCheckPred
=
616 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
618 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit
<< "\n");
619 LLVM_DEBUG(dbgs() << "RHS: " << *RHS
<< "\n");
620 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred
<< "\n");
623 expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
, RHS
);
624 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
, RangeCheck
.Pred
,
625 GuardStart
, GuardLimit
);
626 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
627 return Builder
.CreateFreeze(
628 Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
));
631 std::optional
<Value
*> LoopPredication::widenICmpRangeCheckDecrementingLoop(
632 LoopICmp LatchCheck
, LoopICmp RangeCheck
, SCEVExpander
&Expander
,
633 Instruction
*Guard
) {
634 auto *Ty
= RangeCheck
.IV
->getType();
635 const SCEV
*GuardStart
= RangeCheck
.IV
->getStart();
636 const SCEV
*GuardLimit
= RangeCheck
.Limit
;
637 const SCEV
*LatchStart
= LatchCheck
.IV
->getStart();
638 const SCEV
*LatchLimit
= LatchCheck
.Limit
;
639 // Subtlety: We need all the values to be *invariant* across all iterations,
640 // but we only need to check expansion safety for those which *aren't*
641 // already guaranteed to dominate the guard.
642 if (!isLoopInvariantValue(GuardStart
) ||
643 !isLoopInvariantValue(GuardLimit
) ||
644 !isLoopInvariantValue(LatchStart
) ||
645 !isLoopInvariantValue(LatchLimit
)) {
646 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
649 if (!Expander
.isSafeToExpandAt(LatchStart
, Guard
) ||
650 !Expander
.isSafeToExpandAt(LatchLimit
, Guard
)) {
651 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
654 // The decrement of the latch check IV should be the same as the
656 auto *PostDecLatchCheckIV
= LatchCheck
.IV
->getPostIncExpr(*SE
);
657 if (RangeCheck
.IV
!= PostDecLatchCheckIV
) {
658 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
659 << *PostDecLatchCheckIV
660 << " and RangeCheckIV: " << *RangeCheck
.IV
<< "\n");
664 // Generate the widened condition for CountDownLoop:
665 // guardStart u< guardLimit &&
666 // latchLimit <pred> 1.
667 // See the header comment for reasoning of the checks.
668 auto LimitCheckPred
=
669 ICmpInst::getFlippedStrictnessPredicate(LatchCheck
.Pred
);
670 auto *FirstIterationCheck
= expandCheck(Expander
, Guard
,
672 GuardStart
, GuardLimit
);
673 auto *LimitCheck
= expandCheck(Expander
, Guard
, LimitCheckPred
, LatchLimit
,
675 IRBuilder
<> Builder(findInsertPt(Guard
, {FirstIterationCheck
, LimitCheck
}));
676 return Builder
.CreateFreeze(
677 Builder
.CreateAnd(FirstIterationCheck
, LimitCheck
));
680 static void normalizePredicate(ScalarEvolution
*SE
, Loop
*L
,
682 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
683 // ULT/UGE form for ease of handling by our caller.
684 if (ICmpInst::isEquality(RC
.Pred
) &&
685 RC
.IV
->getStepRecurrence(*SE
)->isOne() &&
686 SE
->isKnownPredicate(ICmpInst::ICMP_ULE
, RC
.IV
->getStart(), RC
.Limit
))
687 RC
.Pred
= RC
.Pred
== ICmpInst::ICMP_NE
?
688 ICmpInst::ICMP_ULT
: ICmpInst::ICMP_UGE
;
691 /// If ICI can be widened to a loop invariant condition emits the loop
692 /// invariant condition in the loop preheader and return it, otherwise
693 /// returns std::nullopt.
694 std::optional
<Value
*>
695 LoopPredication::widenICmpRangeCheck(ICmpInst
*ICI
, SCEVExpander
&Expander
,
696 Instruction
*Guard
) {
697 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
698 LLVM_DEBUG(ICI
->dump());
700 // parseLoopStructure guarantees that the latch condition is:
701 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
702 // We are looking for the range checks of the form:
704 auto RangeCheck
= parseLoopICmp(ICI
);
706 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
709 LLVM_DEBUG(dbgs() << "Guard check:\n");
710 LLVM_DEBUG(RangeCheck
->dump());
711 if (RangeCheck
->Pred
!= ICmpInst::ICMP_ULT
) {
712 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
713 << RangeCheck
->Pred
<< ")!\n");
716 auto *RangeCheckIV
= RangeCheck
->IV
;
717 if (!RangeCheckIV
->isAffine()) {
718 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
721 auto *Step
= RangeCheckIV
->getStepRecurrence(*SE
);
722 // We cannot just compare with latch IV step because the latch and range IVs
723 // may have different types.
724 if (!isSupportedStep(Step
)) {
725 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
728 auto *Ty
= RangeCheckIV
->getType();
729 auto CurrLatchCheckOpt
= generateLoopLatchCheck(*DL
, *SE
, LatchCheck
, Ty
);
730 if (!CurrLatchCheckOpt
) {
731 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
732 "corresponding to range type: "
737 LoopICmp CurrLatchCheck
= *CurrLatchCheckOpt
;
738 // At this point, the range and latch step should have the same type, but need
739 // not have the same value (we support both 1 and -1 steps).
740 assert(Step
->getType() ==
741 CurrLatchCheck
.IV
->getStepRecurrence(*SE
)->getType() &&
742 "Range and latch steps should be of same type!");
743 if (Step
!= CurrLatchCheck
.IV
->getStepRecurrence(*SE
)) {
744 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
749 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck
, *RangeCheck
,
752 assert(Step
->isAllOnesValue() && "Step should be -1!");
753 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck
, *RangeCheck
,
758 void LoopPredication::widenChecks(SmallVectorImpl
<Value
*> &Checks
,
759 SmallVectorImpl
<Value
*> &WidenedChecks
,
760 SCEVExpander
&Expander
, Instruction
*Guard
) {
761 for (auto &Check
: Checks
)
762 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Check
))
763 if (auto NewRangeCheck
= widenICmpRangeCheck(ICI
, Expander
, Guard
)) {
764 WidenedChecks
.push_back(Check
);
765 Check
= *NewRangeCheck
;
769 bool LoopPredication::widenGuardConditions(IntrinsicInst
*Guard
,
770 SCEVExpander
&Expander
) {
771 LLVM_DEBUG(dbgs() << "Processing guard:\n");
772 LLVM_DEBUG(Guard
->dump());
775 SmallVector
<Value
*, 4> Checks
;
776 SmallVector
<Value
*> WidenedChecks
;
777 parseWidenableGuard(Guard
, Checks
);
778 widenChecks(Checks
, WidenedChecks
, Expander
, Guard
);
779 if (WidenedChecks
.empty())
782 TotalWidened
+= WidenedChecks
.size();
784 // Emit the new guard condition
785 IRBuilder
<> Builder(findInsertPt(Guard
, Checks
));
786 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
787 auto *OldCond
= Guard
->getOperand(0);
788 Guard
->setOperand(0, AllChecks
);
789 if (InsertAssumesOfPredicatedGuardsConditions
) {
790 Builder
.SetInsertPoint(&*++BasicBlock::iterator(Guard
));
791 Builder
.CreateAssumption(OldCond
);
793 RecursivelyDeleteTriviallyDeadInstructions(OldCond
, nullptr /* TLI */, MSSAU
);
795 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks
.size() << "\n");
799 bool LoopPredication::widenWidenableBranchGuardConditions(
800 BranchInst
*BI
, SCEVExpander
&Expander
) {
801 assert(isGuardAsWidenableBranch(BI
) && "Must be!");
802 LLVM_DEBUG(dbgs() << "Processing guard:\n");
803 LLVM_DEBUG(BI
->dump());
806 SmallVector
<Value
*, 4> Checks
;
807 SmallVector
<Value
*> WidenedChecks
;
808 parseWidenableGuard(BI
, Checks
);
809 // At the moment, our matching logic for wideable conditions implicitly
810 // assumes we preserve the form: (br (and Cond, WC())). FIXME
811 auto WC
= extractWidenableCondition(BI
);
812 Checks
.push_back(WC
);
813 widenChecks(Checks
, WidenedChecks
, Expander
, BI
);
814 if (WidenedChecks
.empty())
817 TotalWidened
+= WidenedChecks
.size();
819 // Emit the new guard condition
820 IRBuilder
<> Builder(findInsertPt(BI
, Checks
));
821 Value
*AllChecks
= Builder
.CreateAnd(Checks
);
822 auto *OldCond
= BI
->getCondition();
823 BI
->setCondition(AllChecks
);
824 if (InsertAssumesOfPredicatedGuardsConditions
) {
825 BasicBlock
*IfTrueBB
= BI
->getSuccessor(0);
826 Builder
.SetInsertPoint(IfTrueBB
, IfTrueBB
->getFirstInsertionPt());
827 // If this block has other predecessors, we might not be able to use Cond.
828 // In this case, create a Phi where every other input is `true` and input
829 // from guard block is Cond.
830 Value
*AssumeCond
= Builder
.CreateAnd(WidenedChecks
);
831 if (!IfTrueBB
->getUniquePredecessor()) {
832 auto *GuardBB
= BI
->getParent();
833 auto *PN
= Builder
.CreatePHI(AssumeCond
->getType(), pred_size(IfTrueBB
),
835 for (auto *Pred
: predecessors(IfTrueBB
))
836 PN
->addIncoming(Pred
== GuardBB
? AssumeCond
: Builder
.getTrue(), Pred
);
839 Builder
.CreateAssumption(AssumeCond
);
841 RecursivelyDeleteTriviallyDeadInstructions(OldCond
, nullptr /* TLI */, MSSAU
);
842 assert(isGuardAsWidenableBranch(BI
) &&
843 "Stopped being a guard after transform?");
845 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks
.size() << "\n");
849 std::optional
<LoopICmp
> LoopPredication::parseLoopLatchICmp() {
850 using namespace PatternMatch
;
852 BasicBlock
*LoopLatch
= L
->getLoopLatch();
854 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
858 auto *BI
= dyn_cast
<BranchInst
>(LoopLatch
->getTerminator());
859 if (!BI
|| !BI
->isConditional()) {
860 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
863 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
865 (TrueDest
== L
->getHeader() || BI
->getSuccessor(1) == L
->getHeader()) &&
866 "One of the latch's destinations must be the header");
868 auto *ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition());
870 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
873 auto Result
= parseLoopICmp(ICI
);
875 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
879 if (TrueDest
!= L
->getHeader())
880 Result
->Pred
= ICmpInst::getInversePredicate(Result
->Pred
);
882 // Check affine first, so if it's not we don't try to compute the step
884 if (!Result
->IV
->isAffine()) {
885 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
889 auto *Step
= Result
->IV
->getStepRecurrence(*SE
);
890 if (!isSupportedStep(Step
)) {
891 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step
<< ")!\n");
895 auto IsUnsupportedPredicate
= [](const SCEV
*Step
, ICmpInst::Predicate Pred
) {
897 return Pred
!= ICmpInst::ICMP_ULT
&& Pred
!= ICmpInst::ICMP_SLT
&&
898 Pred
!= ICmpInst::ICMP_ULE
&& Pred
!= ICmpInst::ICMP_SLE
;
900 assert(Step
->isAllOnesValue() && "Step should be -1!");
901 return Pred
!= ICmpInst::ICMP_UGT
&& Pred
!= ICmpInst::ICMP_SGT
&&
902 Pred
!= ICmpInst::ICMP_UGE
&& Pred
!= ICmpInst::ICMP_SGE
;
906 normalizePredicate(SE
, L
, *Result
);
907 if (IsUnsupportedPredicate(Step
, Result
->Pred
)) {
908 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result
->Pred
916 bool LoopPredication::isLoopProfitableToPredicate() {
917 if (SkipProfitabilityChecks
)
920 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 8> ExitEdges
;
921 L
->getExitEdges(ExitEdges
);
922 // If there is only one exiting edge in the loop, it is always profitable to
923 // predicate the loop.
924 if (ExitEdges
.size() == 1)
927 // Calculate the exiting probabilities of all exiting edges from the loop,
928 // starting with the LatchExitProbability.
929 // Heuristic for profitability: If any of the exiting blocks' probability of
930 // exiting the loop is larger than exiting through the latch block, it's not
931 // profitable to predicate the loop.
932 auto *LatchBlock
= L
->getLoopLatch();
933 assert(LatchBlock
&& "Should have a single latch at this point!");
934 auto *LatchTerm
= LatchBlock
->getTerminator();
935 assert(LatchTerm
->getNumSuccessors() == 2 &&
936 "expected to be an exiting block with 2 succs!");
937 unsigned LatchBrExitIdx
=
938 LatchTerm
->getSuccessor(0) == L
->getHeader() ? 1 : 0;
939 // We compute branch probabilities without BPI. We do not rely on BPI since
940 // Loop predication is usually run in an LPM and BPI is only preserved
941 // lossily within loop pass managers, while BPI has an inherent notion of
942 // being complete for an entire function.
944 // If the latch exits into a deoptimize or an unreachable block, do not
945 // predicate on that latch check.
946 auto *LatchExitBlock
= LatchTerm
->getSuccessor(LatchBrExitIdx
);
947 if (isa
<UnreachableInst
>(LatchTerm
) ||
948 LatchExitBlock
->getTerminatingDeoptimizeCall())
951 // Latch terminator has no valid profile data, so nothing to check
953 if (!hasValidBranchWeightMD(*LatchTerm
))
956 auto ComputeBranchProbability
=
957 [&](const BasicBlock
*ExitingBlock
,
958 const BasicBlock
*ExitBlock
) -> BranchProbability
{
959 auto *Term
= ExitingBlock
->getTerminator();
960 unsigned NumSucc
= Term
->getNumSuccessors();
961 if (MDNode
*ProfileData
= getValidBranchWeightMDNode(*Term
)) {
962 SmallVector
<uint32_t> Weights
;
963 extractBranchWeights(ProfileData
, Weights
);
964 uint64_t Numerator
= 0, Denominator
= 0;
965 for (auto [i
, Weight
] : llvm::enumerate(Weights
)) {
966 if (Term
->getSuccessor(i
) == ExitBlock
)
968 Denominator
+= Weight
;
970 // If all weights are zero act as if there was no profile data
971 if (Denominator
== 0)
972 return BranchProbability::getBranchProbability(1, NumSucc
);
973 return BranchProbability::getBranchProbability(Numerator
, Denominator
);
975 assert(LatchBlock
!= ExitingBlock
&&
976 "Latch term should always have profile data!");
977 // No profile data, so we choose the weight as 1/num_of_succ(Src)
978 return BranchProbability::getBranchProbability(1, NumSucc
);
982 BranchProbability LatchExitProbability
=
983 ComputeBranchProbability(LatchBlock
, LatchExitBlock
);
985 // Protect against degenerate inputs provided by the user. Providing a value
986 // less than one, can invert the definition of profitable loop predication.
987 float ScaleFactor
= LatchExitProbabilityScale
;
988 if (ScaleFactor
< 1) {
991 << "Ignored user setting for loop-predication-latch-probability-scale: "
992 << LatchExitProbabilityScale
<< "\n");
993 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
996 const auto LatchProbabilityThreshold
= LatchExitProbability
* ScaleFactor
;
998 for (const auto &ExitEdge
: ExitEdges
) {
999 BranchProbability ExitingBlockProbability
=
1000 ComputeBranchProbability(ExitEdge
.first
, ExitEdge
.second
);
1001 // Some exiting edge has higher probability than the latch exiting edge.
1002 // No longer profitable to predicate.
1003 if (ExitingBlockProbability
> LatchProbabilityThreshold
)
1007 // We have concluded that the most probable way to exit from the
1008 // loop is through the latch (or there's no profile information and all
1009 // exits are equally likely).
1013 /// If we can (cheaply) find a widenable branch which controls entry into the
1014 /// loop, return it.
1015 static BranchInst
*FindWidenableTerminatorAboveLoop(Loop
*L
, LoopInfo
&LI
) {
1016 // Walk back through any unconditional executed blocks and see if we can find
1017 // a widenable condition which seems to control execution of this loop. Note
1018 // that we predict that maythrow calls are likely untaken and thus that it's
1019 // profitable to widen a branch before a maythrow call with a condition
1020 // afterwards even though that may cause the slow path to run in a case where
1021 // it wouldn't have otherwise.
1022 BasicBlock
*BB
= L
->getLoopPreheader();
1026 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
1027 if (BB
== Pred
->getSingleSuccessor()) {
1034 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
1035 if (auto *BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
1036 if (BI
->getSuccessor(0) == BB
&& isWidenableBranch(BI
))
1042 /// Return the minimum of all analyzeable exit counts. This is an upper bound
1043 /// on the actual exit count. If there are not at least two analyzeable exits,
1044 /// returns SCEVCouldNotCompute.
1045 static const SCEV
*getMinAnalyzeableBackedgeTakenCount(ScalarEvolution
&SE
,
1048 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
1049 L
->getExitingBlocks(ExitingBlocks
);
1051 SmallVector
<const SCEV
*, 4> ExitCounts
;
1052 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
1053 const SCEV
*ExitCount
= SE
.getExitCount(L
, ExitingBB
);
1054 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
1056 assert(DT
.dominates(ExitingBB
, L
->getLoopLatch()) &&
1057 "We should only have known counts for exiting blocks that "
1059 ExitCounts
.push_back(ExitCount
);
1061 if (ExitCounts
.size() < 2)
1062 return SE
.getCouldNotCompute();
1063 return SE
.getUMinFromMismatchedTypes(ExitCounts
);
1066 /// This implements an analogous, but entirely distinct transform from the main
1067 /// loop predication transform. This one is phrased in terms of using a
1068 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1069 /// following loop. This is close in spirit to the IndVarSimplify transform
1070 /// of the same name, but is materially different widening loosens legality
1072 bool LoopPredication::predicateLoopExits(Loop
*L
, SCEVExpander
&Rewriter
) {
1073 // The transformation performed here aims to widen a widenable condition
1074 // above the loop such that all analyzeable exit leading to deopt are dead.
1075 // It assumes that the latch is the dominant exit for profitability and that
1076 // exits branching to deoptimizing blocks are rarely taken. It relies on the
1077 // semantics of widenable expressions for legality. (i.e. being able to fall
1078 // down the widenable path spuriously allows us to ignore exit order,
1079 // unanalyzeable exits, side effects, exceptional exits, and other challenges
1080 // which restrict the applicability of the non-WC based version of this
1081 // transform in IndVarSimplify.)
1083 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1084 // imply flags on the expression being hoisted and inserting new uses (flags
1085 // are only correct for current uses). The result is that we may be
1086 // inserting a branch on the value which can be either poison or undef. In
1087 // this case, the branch can legally go either way; we just need to avoid
1088 // introducing UB. This is achieved through the use of the freeze
1091 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
1092 L
->getExitingBlocks(ExitingBlocks
);
1094 if (ExitingBlocks
.empty())
1095 return false; // Nothing to do.
1097 auto *Latch
= L
->getLoopLatch();
1101 auto *WidenableBR
= FindWidenableTerminatorAboveLoop(L
, *LI
);
1105 const SCEV
*LatchEC
= SE
->getExitCount(L
, Latch
);
1106 if (isa
<SCEVCouldNotCompute
>(LatchEC
))
1107 return false; // profitability - want hot exit in analyzeable set
1109 // At this point, we have found an analyzeable latch, and a widenable
1110 // condition above the loop. If we have a widenable exit within the loop
1111 // (for which we can't compute exit counts), drop the ability to further
1112 // widen so that we gain ability to analyze it's exit count and perform this
1113 // transform. TODO: It'd be nice to know for sure the exit became
1114 // analyzeable after dropping widenability.
1115 bool ChangedLoop
= false;
1117 for (auto *ExitingBB
: ExitingBlocks
) {
1118 if (LI
->getLoopFor(ExitingBB
) != L
)
1121 auto *BI
= dyn_cast
<BranchInst
>(ExitingBB
->getTerminator());
1125 if (auto WC
= extractWidenableCondition(BI
))
1126 if (L
->contains(BI
->getSuccessor(0))) {
1127 assert(WC
->hasOneUse() && "Not appropriate widenable branch!");
1128 WC
->user_back()->replaceUsesOfWith(
1129 WC
, ConstantInt::getTrue(BI
->getContext()));
1136 // The insertion point for the widening should be at the widenably call, not
1137 // at the WidenableBR. If we do this at the widenableBR, we can incorrectly
1138 // change a loop-invariant condition to a loop-varying one.
1139 auto *IP
= cast
<Instruction
>(WidenableBR
->getCondition());
1141 // The use of umin(all analyzeable exits) instead of latch is subtle, but
1142 // important for profitability. We may have a loop which hasn't been fully
1143 // canonicalized just yet. If the exit we chose to widen is provably never
1144 // taken, we want the widened form to *also* be provably never taken. We
1145 // can't guarantee this as a current unanalyzeable exit may later become
1146 // analyzeable, but we can at least avoid the obvious cases.
1147 const SCEV
*MinEC
= getMinAnalyzeableBackedgeTakenCount(*SE
, *DT
, L
);
1148 if (isa
<SCEVCouldNotCompute
>(MinEC
) || MinEC
->getType()->isPointerTy() ||
1149 !SE
->isLoopInvariant(MinEC
, L
) ||
1150 !Rewriter
.isSafeToExpandAt(MinEC
, IP
))
1153 Rewriter
.setInsertPoint(IP
);
1156 bool InvalidateLoop
= false;
1157 Value
*MinECV
= nullptr; // lazily generated if needed
1158 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
1159 // If our exiting block exits multiple loops, we can only rewrite the
1160 // innermost one. Otherwise, we're changing how many times the innermost
1161 // loop runs before it exits.
1162 if (LI
->getLoopFor(ExitingBB
) != L
)
1165 // Can't rewrite non-branch yet.
1166 auto *BI
= dyn_cast
<BranchInst
>(ExitingBB
->getTerminator());
1170 // If already constant, nothing to do.
1171 if (isa
<Constant
>(BI
->getCondition()))
1174 const SCEV
*ExitCount
= SE
->getExitCount(L
, ExitingBB
);
1175 if (isa
<SCEVCouldNotCompute
>(ExitCount
) ||
1176 ExitCount
->getType()->isPointerTy() ||
1177 !Rewriter
.isSafeToExpandAt(ExitCount
, WidenableBR
))
1180 const bool ExitIfTrue
= !L
->contains(*succ_begin(ExitingBB
));
1181 BasicBlock
*ExitBB
= BI
->getSuccessor(ExitIfTrue
? 0 : 1);
1182 if (!ExitBB
->getPostdominatingDeoptimizeCall())
1185 /// Here we can be fairly sure that executing this exit will most likely
1186 /// lead to executing llvm.experimental.deoptimize.
1187 /// This is a profitability heuristic, not a legality constraint.
1189 // If we found a widenable exit condition, do two things:
1190 // 1) fold the widened exit test into the widenable condition
1191 // 2) fold the branch to untaken - avoids infinite looping
1193 Value
*ECV
= Rewriter
.expandCodeFor(ExitCount
);
1195 MinECV
= Rewriter
.expandCodeFor(MinEC
);
1196 Value
*RHS
= MinECV
;
1197 if (ECV
->getType() != RHS
->getType()) {
1198 Type
*WiderTy
= SE
->getWiderType(ECV
->getType(), RHS
->getType());
1199 ECV
= B
.CreateZExt(ECV
, WiderTy
);
1200 RHS
= B
.CreateZExt(RHS
, WiderTy
);
1202 assert(!Latch
|| DT
->dominates(ExitingBB
, Latch
));
1203 Value
*NewCond
= B
.CreateICmp(ICmpInst::ICMP_UGT
, ECV
, RHS
);
1204 // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1205 // branch without introducing UB. See NOTE ON POISON/UNDEF above for
1207 NewCond
= B
.CreateFreeze(NewCond
);
1209 widenWidenableBranch(WidenableBR
, NewCond
);
1211 Value
*OldCond
= BI
->getCondition();
1212 BI
->setCondition(ConstantInt::get(OldCond
->getType(), !ExitIfTrue
));
1213 InvalidateLoop
= true;
1217 // We just mutated a bunch of loop exits changing there exit counts
1218 // widely. We need to force recomputation of the exit counts given these
1219 // changes. Note that all of the inserted exits are never taken, and
1220 // should be removed next time the CFG is modified.
1223 // Always return `true` since we have moved the WidenableBR's condition.
1227 bool LoopPredication::runOnLoop(Loop
*Loop
) {
1230 LLVM_DEBUG(dbgs() << "Analyzing ");
1231 LLVM_DEBUG(L
->dump());
1233 Module
*M
= L
->getHeader()->getModule();
1235 // There is nothing to do if the module doesn't use guards
1237 M
->getFunction(Intrinsic::getName(Intrinsic::experimental_guard
));
1238 bool HasIntrinsicGuards
= GuardDecl
&& !GuardDecl
->use_empty();
1239 auto *WCDecl
= M
->getFunction(
1240 Intrinsic::getName(Intrinsic::experimental_widenable_condition
));
1241 bool HasWidenableConditions
=
1242 PredicateWidenableBranchGuards
&& WCDecl
&& !WCDecl
->use_empty();
1243 if (!HasIntrinsicGuards
&& !HasWidenableConditions
)
1246 DL
= &M
->getDataLayout();
1248 Preheader
= L
->getLoopPreheader();
1252 auto LatchCheckOpt
= parseLoopLatchICmp();
1255 LatchCheck
= *LatchCheckOpt
;
1257 LLVM_DEBUG(dbgs() << "Latch check:\n");
1258 LLVM_DEBUG(LatchCheck
.dump());
1260 if (!isLoopProfitableToPredicate()) {
1261 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1264 // Collect all the guards into a vector and process later, so as not
1265 // to invalidate the instruction iterator.
1266 SmallVector
<IntrinsicInst
*, 4> Guards
;
1267 SmallVector
<BranchInst
*, 4> GuardsAsWidenableBranches
;
1268 for (const auto BB
: L
->blocks()) {
1271 Guards
.push_back(cast
<IntrinsicInst
>(&I
));
1272 if (PredicateWidenableBranchGuards
&&
1273 isGuardAsWidenableBranch(BB
->getTerminator()))
1274 GuardsAsWidenableBranches
.push_back(
1275 cast
<BranchInst
>(BB
->getTerminator()));
1278 SCEVExpander
Expander(*SE
, *DL
, "loop-predication");
1279 bool Changed
= false;
1280 for (auto *Guard
: Guards
)
1281 Changed
|= widenGuardConditions(Guard
, Expander
);
1282 for (auto *Guard
: GuardsAsWidenableBranches
)
1283 Changed
|= widenWidenableBranchGuardConditions(Guard
, Expander
);
1284 Changed
|= predicateLoopExits(L
, Expander
);
1286 if (MSSAU
&& VerifyMemorySSA
)
1287 MSSAU
->getMemorySSA()->verifyMemorySSA();