[MachineScheduler] Fix physreg dependencies of ExitSU (#123541)
[llvm-project.git] / llvm / lib / CodeGen / BranchFolding.cpp
blob29a3076b57e207f9da36a35c042752c741dda058
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
11 // it then removes.
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <iterator>
61 #include <numeric>
63 using namespace llvm;
65 #define DEBUG_TYPE "branch-folder"
67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts, "Number of branches optimized");
69 STATISTIC(NumTailMerge , "Number of block tails merged");
70 STATISTIC(NumHoist , "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls, "Number of tail calls optimized");
73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
74 cl::init(cl::BOU_UNSET), cl::Hidden);
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79 cl::desc("Max number of predecessors to consider tail merging"),
80 cl::init(150), cl::Hidden);
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 static cl::opt<unsigned>
84 TailMergeSize("tail-merge-size",
85 cl::desc("Min number of instructions to consider tail merging"),
86 cl::init(3), cl::Hidden);
88 namespace {
90 /// BranchFolderPass - Wrap branch folder in a machine function pass.
91 class BranchFolderPass : public MachineFunctionPass {
92 public:
93 static char ID;
95 explicit BranchFolderPass(): MachineFunctionPass(ID) {}
97 bool runOnMachineFunction(MachineFunction &MF) override;
99 void getAnalysisUsage(AnalysisUsage &AU) const override {
100 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
101 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
102 AU.addRequired<ProfileSummaryInfoWrapperPass>();
103 AU.addRequired<TargetPassConfig>();
104 MachineFunctionPass::getAnalysisUsage(AU);
107 MachineFunctionProperties getRequiredProperties() const override {
108 return MachineFunctionProperties().set(
109 MachineFunctionProperties::Property::NoPHIs);
113 } // end anonymous namespace
115 char BranchFolderPass::ID = 0;
117 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
119 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
120 "Control Flow Optimizer", false, false)
122 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
123 if (skipFunction(MF.getFunction()))
124 return false;
126 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
127 // TailMerge can create jump into if branches that make CFG irreducible for
128 // HW that requires structurized CFG.
129 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
130 PassConfig->getEnableTailMerge();
131 MBFIWrapper MBBFreqInfo(
132 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI());
133 BranchFolder Folder(
134 EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135 getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(),
136 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
138 MF.getSubtarget().getRegisterInfo());
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
142 MBFIWrapper &FreqInfo,
143 const MachineBranchProbabilityInfo &ProbInfo,
144 ProfileSummaryInfo *PSI, unsigned MinTailLength)
145 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
146 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
147 switch (FlagEnableTailMerge) {
148 case cl::BOU_UNSET:
149 EnableTailMerge = DefaultEnableTailMerge;
150 break;
151 case cl::BOU_TRUE: EnableTailMerge = true; break;
152 case cl::BOU_FALSE: EnableTailMerge = false; break;
156 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
157 assert(MBB->pred_empty() && "MBB must be dead!");
158 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
160 MachineFunction *MF = MBB->getParent();
161 // drop all successors.
162 while (!MBB->succ_empty())
163 MBB->removeSuccessor(MBB->succ_end()-1);
165 // Avoid matching if this pointer gets reused.
166 TriedMerging.erase(MBB);
168 // Update call info.
169 for (const MachineInstr &MI : *MBB)
170 if (MI.shouldUpdateAdditionalCallInfo())
171 MF->eraseAdditionalCallInfo(&MI);
173 // Remove the block.
174 MF->erase(MBB);
175 EHScopeMembership.erase(MBB);
176 if (MLI)
177 MLI->removeBlock(MBB);
180 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
181 const TargetInstrInfo *tii,
182 const TargetRegisterInfo *tri,
183 MachineLoopInfo *mli, bool AfterPlacement) {
184 if (!tii) return false;
186 TriedMerging.clear();
188 MachineRegisterInfo &MRI = MF.getRegInfo();
189 AfterBlockPlacement = AfterPlacement;
190 TII = tii;
191 TRI = tri;
192 MLI = mli;
193 this->MRI = &MRI;
195 if (MinCommonTailLength == 0) {
196 MinCommonTailLength = TailMergeSize.getNumOccurrences() > 0
197 ? TailMergeSize
198 : TII->getTailMergeSize(MF);
201 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
202 if (!UpdateLiveIns)
203 MRI.invalidateLiveness();
205 bool MadeChange = false;
207 // Recalculate EH scope membership.
208 EHScopeMembership = getEHScopeMembership(MF);
210 bool MadeChangeThisIteration = true;
211 while (MadeChangeThisIteration) {
212 MadeChangeThisIteration = TailMergeBlocks(MF);
213 // No need to clean up if tail merging does not change anything after the
214 // block placement.
215 if (!AfterBlockPlacement || MadeChangeThisIteration)
216 MadeChangeThisIteration |= OptimizeBranches(MF);
217 if (EnableHoistCommonCode)
218 MadeChangeThisIteration |= HoistCommonCode(MF);
219 MadeChange |= MadeChangeThisIteration;
222 // See if any jump tables have become dead as the code generator
223 // did its thing.
224 MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
225 if (!JTI)
226 return MadeChange;
228 // Walk the function to find jump tables that are live.
229 BitVector JTIsLive(JTI->getJumpTables().size());
230 for (const MachineBasicBlock &BB : MF) {
231 for (const MachineInstr &I : BB)
232 for (const MachineOperand &Op : I.operands()) {
233 if (!Op.isJTI()) continue;
235 // Remember that this JT is live.
236 JTIsLive.set(Op.getIndex());
240 // Finally, remove dead jump tables. This happens when the
241 // indirect jump was unreachable (and thus deleted).
242 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
243 if (!JTIsLive.test(i)) {
244 JTI->RemoveJumpTable(i);
245 MadeChange = true;
248 return MadeChange;
251 //===----------------------------------------------------------------------===//
252 // Tail Merging of Blocks
253 //===----------------------------------------------------------------------===//
255 /// HashMachineInstr - Compute a hash value for MI and its operands.
256 static unsigned HashMachineInstr(const MachineInstr &MI) {
257 unsigned Hash = MI.getOpcode();
258 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
259 const MachineOperand &Op = MI.getOperand(i);
261 // Merge in bits from the operand if easy. We can't use MachineOperand's
262 // hash_code here because it's not deterministic and we sort by hash value
263 // later.
264 unsigned OperandHash = 0;
265 switch (Op.getType()) {
266 case MachineOperand::MO_Register:
267 OperandHash = Op.getReg();
268 break;
269 case MachineOperand::MO_Immediate:
270 OperandHash = Op.getImm();
271 break;
272 case MachineOperand::MO_MachineBasicBlock:
273 OperandHash = Op.getMBB()->getNumber();
274 break;
275 case MachineOperand::MO_FrameIndex:
276 case MachineOperand::MO_ConstantPoolIndex:
277 case MachineOperand::MO_JumpTableIndex:
278 OperandHash = Op.getIndex();
279 break;
280 case MachineOperand::MO_GlobalAddress:
281 case MachineOperand::MO_ExternalSymbol:
282 // Global address / external symbol are too hard, don't bother, but do
283 // pull in the offset.
284 OperandHash = Op.getOffset();
285 break;
286 default:
287 break;
290 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
292 return Hash;
295 /// HashEndOfMBB - Hash the last instruction in the MBB.
296 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
297 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
298 if (I == MBB.end())
299 return 0;
301 return HashMachineInstr(*I);
304 /// Whether MI should be counted as an instruction when calculating common tail.
305 static bool countsAsInstruction(const MachineInstr &MI) {
306 return !(MI.isDebugInstr() || MI.isCFIInstruction());
309 /// Iterate backwards from the given iterator \p I, towards the beginning of the
310 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
311 /// pointing to that MI. If no such MI is found, return the end iterator.
312 static MachineBasicBlock::iterator
313 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
314 MachineBasicBlock *MBB) {
315 while (I != MBB->begin()) {
316 --I;
317 if (countsAsInstruction(*I))
318 return I;
320 return MBB->end();
323 /// Given two machine basic blocks, return the number of instructions they
324 /// actually have in common together at their end. If a common tail is found (at
325 /// least by one instruction), then iterators for the first shared instruction
326 /// in each block are returned as well.
328 /// Non-instructions according to countsAsInstruction are ignored.
329 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
330 MachineBasicBlock *MBB2,
331 MachineBasicBlock::iterator &I1,
332 MachineBasicBlock::iterator &I2) {
333 MachineBasicBlock::iterator MBBI1 = MBB1->end();
334 MachineBasicBlock::iterator MBBI2 = MBB2->end();
336 unsigned TailLen = 0;
337 while (true) {
338 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
339 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
340 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
341 break;
342 if (!MBBI1->isIdenticalTo(*MBBI2) ||
343 // FIXME: This check is dubious. It's used to get around a problem where
344 // people incorrectly expect inline asm directives to remain in the same
345 // relative order. This is untenable because normal compiler
346 // optimizations (like this one) may reorder and/or merge these
347 // directives.
348 MBBI1->isInlineAsm()) {
349 break;
351 if (MBBI1->getFlag(MachineInstr::NoMerge) ||
352 MBBI2->getFlag(MachineInstr::NoMerge))
353 break;
354 ++TailLen;
355 I1 = MBBI1;
356 I2 = MBBI2;
359 return TailLen;
362 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
363 MachineBasicBlock &NewDest) {
364 if (UpdateLiveIns) {
365 // OldInst should always point to an instruction.
366 MachineBasicBlock &OldMBB = *OldInst->getParent();
367 LiveRegs.clear();
368 LiveRegs.addLiveOuts(OldMBB);
369 // Move backward to the place where will insert the jump.
370 MachineBasicBlock::iterator I = OldMBB.end();
371 do {
372 --I;
373 LiveRegs.stepBackward(*I);
374 } while (I != OldInst);
376 // Merging the tails may have switched some undef operand to non-undef ones.
377 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
378 // register.
379 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
380 // We computed the liveins with computeLiveIn earlier and should only see
381 // full registers:
382 assert(P.LaneMask == LaneBitmask::getAll() &&
383 "Can only handle full register.");
384 MCRegister Reg = P.PhysReg;
385 if (!LiveRegs.available(*MRI, Reg))
386 continue;
387 DebugLoc DL;
388 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
392 TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
393 ++NumTailMerge;
396 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
397 MachineBasicBlock::iterator BBI1,
398 const BasicBlock *BB) {
399 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
400 return nullptr;
402 MachineFunction &MF = *CurMBB.getParent();
404 // Create the fall-through block.
405 MachineFunction::iterator MBBI = CurMBB.getIterator();
406 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
407 CurMBB.getParent()->insert(++MBBI, NewMBB);
409 // Move all the successors of this block to the specified block.
410 NewMBB->transferSuccessors(&CurMBB);
412 // Add an edge from CurMBB to NewMBB for the fall-through.
413 CurMBB.addSuccessor(NewMBB);
415 // Splice the code over.
416 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
418 // NewMBB belongs to the same loop as CurMBB.
419 if (MLI)
420 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
421 ML->addBasicBlockToLoop(NewMBB, *MLI);
423 // NewMBB inherits CurMBB's block frequency.
424 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
426 if (UpdateLiveIns)
427 computeAndAddLiveIns(LiveRegs, *NewMBB);
429 // Add the new block to the EH scope.
430 const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
431 if (EHScopeI != EHScopeMembership.end()) {
432 auto n = EHScopeI->second;
433 EHScopeMembership[NewMBB] = n;
436 return NewMBB;
439 /// EstimateRuntime - Make a rough estimate for how long it will take to run
440 /// the specified code.
441 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
442 MachineBasicBlock::iterator E) {
443 unsigned Time = 0;
444 for (; I != E; ++I) {
445 if (!countsAsInstruction(*I))
446 continue;
447 if (I->isCall())
448 Time += 10;
449 else if (I->mayLoadOrStore())
450 Time += 2;
451 else
452 ++Time;
454 return Time;
457 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
458 // branches temporarily for tail merging). In the case where CurMBB ends
459 // with a conditional branch to the next block, optimize by reversing the
460 // test and conditionally branching to SuccMBB instead.
461 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
462 const TargetInstrInfo *TII, const DebugLoc &BranchDL) {
463 MachineFunction *MF = CurMBB->getParent();
464 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
465 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
466 SmallVector<MachineOperand, 4> Cond;
467 DebugLoc dl = CurMBB->findBranchDebugLoc();
468 if (!dl)
469 dl = BranchDL;
470 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
471 MachineBasicBlock *NextBB = &*I;
472 if (TBB == NextBB && !Cond.empty() && !FBB) {
473 if (!TII->reverseBranchCondition(Cond)) {
474 TII->removeBranch(*CurMBB);
475 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
476 return;
480 TII->insertBranch(*CurMBB, SuccBB, nullptr,
481 SmallVector<MachineOperand, 0>(), dl);
484 bool
485 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
486 if (getHash() < o.getHash())
487 return true;
488 if (getHash() > o.getHash())
489 return false;
490 if (getBlock()->getNumber() < o.getBlock()->getNumber())
491 return true;
492 if (getBlock()->getNumber() > o.getBlock()->getNumber())
493 return false;
494 return false;
497 /// CountTerminators - Count the number of terminators in the given
498 /// block and set I to the position of the first non-terminator, if there
499 /// is one, or MBB->end() otherwise.
500 static unsigned CountTerminators(MachineBasicBlock *MBB,
501 MachineBasicBlock::iterator &I) {
502 I = MBB->end();
503 unsigned NumTerms = 0;
504 while (true) {
505 if (I == MBB->begin()) {
506 I = MBB->end();
507 break;
509 --I;
510 if (!I->isTerminator()) break;
511 ++NumTerms;
513 return NumTerms;
516 /// A no successor, non-return block probably ends in unreachable and is cold.
517 /// Also consider a block that ends in an indirect branch to be a return block,
518 /// since many targets use plain indirect branches to return.
519 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
520 if (!MBB->succ_empty())
521 return false;
522 if (MBB->empty())
523 return true;
524 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
528 /// and decide if it would be profitable to merge those tails. Return the
529 /// length of the common tail and iterators to the first common instruction
530 /// in each block.
531 /// MBB1, MBB2 The blocks to check
532 /// MinCommonTailLength Minimum size of tail block to be merged.
533 /// CommonTailLen Out parameter to record the size of the shared tail between
534 /// MBB1 and MBB2
535 /// I1, I2 Iterator references that will be changed to point to the first
536 /// instruction in the common tail shared by MBB1,MBB2
537 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
538 /// relative to SuccBB
539 /// PredBB The layout predecessor of SuccBB, if any.
540 /// EHScopeMembership map from block to EH scope #.
541 /// AfterPlacement True if we are merging blocks after layout. Stricter
542 /// thresholds apply to prevent undoing tail-duplication.
543 static bool
544 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
545 unsigned MinCommonTailLength, unsigned &CommonTailLen,
546 MachineBasicBlock::iterator &I1,
547 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
548 MachineBasicBlock *PredBB,
549 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
550 bool AfterPlacement,
551 MBFIWrapper &MBBFreqInfo,
552 ProfileSummaryInfo *PSI) {
553 // It is never profitable to tail-merge blocks from two different EH scopes.
554 if (!EHScopeMembership.empty()) {
555 auto EHScope1 = EHScopeMembership.find(MBB1);
556 assert(EHScope1 != EHScopeMembership.end());
557 auto EHScope2 = EHScopeMembership.find(MBB2);
558 assert(EHScope2 != EHScopeMembership.end());
559 if (EHScope1->second != EHScope2->second)
560 return false;
563 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
564 if (CommonTailLen == 0)
565 return false;
566 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
567 << " and " << printMBBReference(*MBB2) << " is "
568 << CommonTailLen << '\n');
570 // Move the iterators to the beginning of the MBB if we only got debug
571 // instructions before the tail. This is to avoid splitting a block when we
572 // only got debug instructions before the tail (to be invariant on -g).
573 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
574 I1 = MBB1->begin();
575 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
576 I2 = MBB2->begin();
578 bool FullBlockTail1 = I1 == MBB1->begin();
579 bool FullBlockTail2 = I2 == MBB2->begin();
581 // It's almost always profitable to merge any number of non-terminator
582 // instructions with the block that falls through into the common successor.
583 // This is true only for a single successor. For multiple successors, we are
584 // trading a conditional branch for an unconditional one.
585 // TODO: Re-visit successor size for non-layout tail merging.
586 if ((MBB1 == PredBB || MBB2 == PredBB) &&
587 (!AfterPlacement || MBB1->succ_size() == 1)) {
588 MachineBasicBlock::iterator I;
589 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
590 if (CommonTailLen > NumTerms)
591 return true;
594 // If these are identical non-return blocks with no successors, merge them.
595 // Such blocks are typically cold calls to noreturn functions like abort, and
596 // are unlikely to become a fallthrough target after machine block placement.
597 // Tail merging these blocks is unlikely to create additional unconditional
598 // branches, and will reduce the size of this cold code.
599 if (FullBlockTail1 && FullBlockTail2 &&
600 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
601 return true;
603 // If one of the blocks can be completely merged and happens to be in
604 // a position where the other could fall through into it, merge any number
605 // of instructions, because it can be done without a branch.
606 // TODO: If the blocks are not adjacent, move one of them so that they are?
607 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
608 return true;
609 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
610 return true;
612 // If both blocks are identical and end in a branch, merge them unless they
613 // both have a fallthrough predecessor and successor.
614 // We can only do this after block placement because it depends on whether
615 // there are fallthroughs, and we don't know until after layout.
616 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
617 auto BothFallThrough = [](MachineBasicBlock *MBB) {
618 if (!MBB->succ_empty() && !MBB->canFallThrough())
619 return false;
620 MachineFunction::iterator I(MBB);
621 MachineFunction *MF = MBB->getParent();
622 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
624 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
625 return true;
628 // If both blocks have an unconditional branch temporarily stripped out,
629 // count that as an additional common instruction for the following
630 // heuristics. This heuristic is only accurate for single-succ blocks, so to
631 // make sure that during layout merging and duplicating don't crash, we check
632 // for that when merging during layout.
633 unsigned EffectiveTailLen = CommonTailLen;
634 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
635 (MBB1->succ_size() == 1 || !AfterPlacement) &&
636 !MBB1->back().isBarrier() &&
637 !MBB2->back().isBarrier())
638 ++EffectiveTailLen;
640 // Check if the common tail is long enough to be worthwhile.
641 if (EffectiveTailLen >= MinCommonTailLength)
642 return true;
644 // If we are optimizing for code size, 2 instructions in common is enough if
645 // we don't have to split a block. At worst we will be introducing 1 new
646 // branch instruction, which is likely to be smaller than the 2
647 // instructions that would be deleted in the merge.
648 bool OptForSize = llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
649 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo);
650 return EffectiveTailLen >= 2 && OptForSize &&
651 (FullBlockTail1 || FullBlockTail2);
654 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
655 unsigned MinCommonTailLength,
656 MachineBasicBlock *SuccBB,
657 MachineBasicBlock *PredBB) {
658 unsigned maxCommonTailLength = 0U;
659 SameTails.clear();
660 MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
661 MPIterator HighestMPIter = std::prev(MergePotentials.end());
662 for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
663 B = MergePotentials.begin();
664 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
665 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
666 unsigned CommonTailLen;
667 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
668 MinCommonTailLength,
669 CommonTailLen, TrialBBI1, TrialBBI2,
670 SuccBB, PredBB,
671 EHScopeMembership,
672 AfterBlockPlacement, MBBFreqInfo, PSI)) {
673 if (CommonTailLen > maxCommonTailLength) {
674 SameTails.clear();
675 maxCommonTailLength = CommonTailLen;
676 HighestMPIter = CurMPIter;
677 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
679 if (HighestMPIter == CurMPIter &&
680 CommonTailLen == maxCommonTailLength)
681 SameTails.push_back(SameTailElt(I, TrialBBI2));
683 if (I == B)
684 break;
687 return maxCommonTailLength;
690 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
691 MachineBasicBlock *SuccBB,
692 MachineBasicBlock *PredBB,
693 const DebugLoc &BranchDL) {
694 MPIterator CurMPIter, B;
695 for (CurMPIter = std::prev(MergePotentials.end()),
696 B = MergePotentials.begin();
697 CurMPIter->getHash() == CurHash; --CurMPIter) {
698 // Put the unconditional branch back, if we need one.
699 MachineBasicBlock *CurMBB = CurMPIter->getBlock();
700 if (SuccBB && CurMBB != PredBB)
701 FixTail(CurMBB, SuccBB, TII, BranchDL);
702 if (CurMPIter == B)
703 break;
705 if (CurMPIter->getHash() != CurHash)
706 CurMPIter++;
707 MergePotentials.erase(CurMPIter, MergePotentials.end());
710 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
711 MachineBasicBlock *SuccBB,
712 unsigned maxCommonTailLength,
713 unsigned &commonTailIndex) {
714 commonTailIndex = 0;
715 unsigned TimeEstimate = ~0U;
716 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
717 // Use PredBB if possible; that doesn't require a new branch.
718 if (SameTails[i].getBlock() == PredBB) {
719 commonTailIndex = i;
720 break;
722 // Otherwise, make a (fairly bogus) choice based on estimate of
723 // how long it will take the various blocks to execute.
724 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
725 SameTails[i].getTailStartPos());
726 if (t <= TimeEstimate) {
727 TimeEstimate = t;
728 commonTailIndex = i;
732 MachineBasicBlock::iterator BBI =
733 SameTails[commonTailIndex].getTailStartPos();
734 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
736 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
737 << maxCommonTailLength);
739 // If the split block unconditionally falls-thru to SuccBB, it will be
740 // merged. In control flow terms it should then take SuccBB's name. e.g. If
741 // SuccBB is an inner loop, the common tail is still part of the inner loop.
742 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
743 SuccBB->getBasicBlock() : MBB->getBasicBlock();
744 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
745 if (!newMBB) {
746 LLVM_DEBUG(dbgs() << "... failed!");
747 return false;
750 SameTails[commonTailIndex].setBlock(newMBB);
751 SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
753 // If we split PredBB, newMBB is the new predecessor.
754 if (PredBB == MBB)
755 PredBB = newMBB;
757 return true;
760 static void
761 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
762 MachineBasicBlock &MBBCommon) {
763 MachineBasicBlock *MBB = MBBIStartPos->getParent();
764 // Note CommonTailLen does not necessarily matches the size of
765 // the common BB nor all its instructions because of debug
766 // instructions differences.
767 unsigned CommonTailLen = 0;
768 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
769 ++CommonTailLen;
771 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
772 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
773 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
774 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
776 while (CommonTailLen--) {
777 assert(MBBI != MBBIE && "Reached BB end within common tail length!");
778 (void)MBBIE;
780 if (!countsAsInstruction(*MBBI)) {
781 ++MBBI;
782 continue;
785 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
786 ++MBBICommon;
788 assert(MBBICommon != MBBIECommon &&
789 "Reached BB end within common tail length!");
790 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
792 // Merge MMOs from memory operations in the common block.
793 if (MBBICommon->mayLoadOrStore())
794 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
795 // Drop undef flags if they aren't present in all merged instructions.
796 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
797 MachineOperand &MO = MBBICommon->getOperand(I);
798 if (MO.isReg() && MO.isUndef()) {
799 const MachineOperand &OtherMO = MBBI->getOperand(I);
800 if (!OtherMO.isUndef())
801 MO.setIsUndef(false);
805 ++MBBI;
806 ++MBBICommon;
810 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
811 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
813 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
814 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
815 if (i != commonTailIndex) {
816 NextCommonInsts[i] = SameTails[i].getTailStartPos();
817 mergeOperations(SameTails[i].getTailStartPos(), *MBB);
818 } else {
819 assert(SameTails[i].getTailStartPos() == MBB->begin() &&
820 "MBB is not a common tail only block");
824 for (auto &MI : *MBB) {
825 if (!countsAsInstruction(MI))
826 continue;
827 DebugLoc DL = MI.getDebugLoc();
828 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
829 if (i == commonTailIndex)
830 continue;
832 auto &Pos = NextCommonInsts[i];
833 assert(Pos != SameTails[i].getBlock()->end() &&
834 "Reached BB end within common tail");
835 while (!countsAsInstruction(*Pos)) {
836 ++Pos;
837 assert(Pos != SameTails[i].getBlock()->end() &&
838 "Reached BB end within common tail");
840 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
841 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
842 NextCommonInsts[i] = ++Pos;
844 MI.setDebugLoc(DL);
847 if (UpdateLiveIns) {
848 LivePhysRegs NewLiveIns(*TRI);
849 computeLiveIns(NewLiveIns, *MBB);
850 LiveRegs.init(*TRI);
852 // The flag merging may lead to some register uses no longer using the
853 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
854 for (MachineBasicBlock *Pred : MBB->predecessors()) {
855 LiveRegs.clear();
856 LiveRegs.addLiveOuts(*Pred);
857 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
858 for (Register Reg : NewLiveIns) {
859 if (!LiveRegs.available(*MRI, Reg))
860 continue;
862 // Skip the register if we are about to add one of its super registers.
863 // TODO: Common this up with the same logic in addLineIns().
864 if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) {
865 return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg);
867 continue;
869 DebugLoc DL;
870 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
871 Reg);
875 MBB->clearLiveIns();
876 addLiveIns(*MBB, NewLiveIns);
880 // See if any of the blocks in MergePotentials (which all have SuccBB as a
881 // successor, or all have no successor if it is null) can be tail-merged.
882 // If there is a successor, any blocks in MergePotentials that are not
883 // tail-merged and are not immediately before Succ must have an unconditional
884 // branch to Succ added (but the predecessor/successor lists need no
885 // adjustment). The lone predecessor of Succ that falls through into Succ,
886 // if any, is given in PredBB.
887 // MinCommonTailLength - Except for the special cases below, tail-merge if
888 // there are at least this many instructions in common.
889 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
890 MachineBasicBlock *PredBB,
891 unsigned MinCommonTailLength) {
892 bool MadeChange = false;
894 LLVM_DEBUG({
895 dbgs() << "\nTryTailMergeBlocks: ";
896 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
897 dbgs() << printMBBReference(*MergePotentials[i].getBlock())
898 << (i == e - 1 ? "" : ", ");
899 dbgs() << "\n";
900 if (SuccBB) {
901 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
902 if (PredBB)
903 dbgs() << " which has fall-through from " << printMBBReference(*PredBB)
904 << "\n";
906 dbgs() << "Looking for common tails of at least " << MinCommonTailLength
907 << " instruction" << (MinCommonTailLength == 1 ? "" : "s") << '\n';
910 // Sort by hash value so that blocks with identical end sequences sort
911 // together.
912 array_pod_sort(MergePotentials.begin(), MergePotentials.end());
914 // Walk through equivalence sets looking for actual exact matches.
915 while (MergePotentials.size() > 1) {
916 unsigned CurHash = MergePotentials.back().getHash();
917 const DebugLoc &BranchDL = MergePotentials.back().getBranchDebugLoc();
919 // Build SameTails, identifying the set of blocks with this hash code
920 // and with the maximum number of instructions in common.
921 unsigned maxCommonTailLength = ComputeSameTails(CurHash,
922 MinCommonTailLength,
923 SuccBB, PredBB);
925 // If we didn't find any pair that has at least MinCommonTailLength
926 // instructions in common, remove all blocks with this hash code and retry.
927 if (SameTails.empty()) {
928 RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL);
929 continue;
932 // If one of the blocks is the entire common tail (and is not the entry
933 // block/an EH pad, which we can't jump to), we can treat all blocks with
934 // this same tail at once. Use PredBB if that is one of the possibilities,
935 // as that will not introduce any extra branches.
936 MachineBasicBlock *EntryBB =
937 &MergePotentials.front().getBlock()->getParent()->front();
938 unsigned commonTailIndex = SameTails.size();
939 // If there are two blocks, check to see if one can be made to fall through
940 // into the other.
941 if (SameTails.size() == 2 &&
942 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
943 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
944 commonTailIndex = 1;
945 else if (SameTails.size() == 2 &&
946 SameTails[1].getBlock()->isLayoutSuccessor(
947 SameTails[0].getBlock()) &&
948 SameTails[0].tailIsWholeBlock() &&
949 !SameTails[0].getBlock()->isEHPad())
950 commonTailIndex = 0;
951 else {
952 // Otherwise just pick one, favoring the fall-through predecessor if
953 // there is one.
954 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
955 MachineBasicBlock *MBB = SameTails[i].getBlock();
956 if ((MBB == EntryBB || MBB->isEHPad()) &&
957 SameTails[i].tailIsWholeBlock())
958 continue;
959 if (MBB == PredBB) {
960 commonTailIndex = i;
961 break;
963 if (SameTails[i].tailIsWholeBlock())
964 commonTailIndex = i;
968 if (commonTailIndex == SameTails.size() ||
969 (SameTails[commonTailIndex].getBlock() == PredBB &&
970 !SameTails[commonTailIndex].tailIsWholeBlock())) {
971 // None of the blocks consist entirely of the common tail.
972 // Split a block so that one does.
973 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
974 maxCommonTailLength, commonTailIndex)) {
975 RemoveBlocksWithHash(CurHash, SuccBB, PredBB, BranchDL);
976 continue;
980 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
982 // Recompute common tail MBB's edge weights and block frequency.
983 setCommonTailEdgeWeights(*MBB);
985 // Merge debug locations, MMOs and undef flags across identical instructions
986 // for common tail.
987 mergeCommonTails(commonTailIndex);
989 // MBB is common tail. Adjust all other BB's to jump to this one.
990 // Traversal must be forwards so erases work.
991 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
992 << " for ");
993 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
994 if (commonTailIndex == i)
995 continue;
996 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
997 << (i == e - 1 ? "" : ", "));
998 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
999 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1000 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1001 MergePotentials.erase(SameTails[i].getMPIter());
1003 LLVM_DEBUG(dbgs() << "\n");
1004 // We leave commonTailIndex in the worklist in case there are other blocks
1005 // that match it with a smaller number of instructions.
1006 MadeChange = true;
1008 return MadeChange;
1011 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1012 bool MadeChange = false;
1013 if (!EnableTailMerge)
1014 return MadeChange;
1016 // First find blocks with no successors.
1017 // Block placement may create new tail merging opportunities for these blocks.
1018 MergePotentials.clear();
1019 for (MachineBasicBlock &MBB : MF) {
1020 if (MergePotentials.size() == TailMergeThreshold)
1021 break;
1022 if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1023 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB,
1024 MBB.findBranchDebugLoc()));
1027 // If this is a large problem, avoid visiting the same basic blocks
1028 // multiple times.
1029 if (MergePotentials.size() == TailMergeThreshold)
1030 for (const MergePotentialsElt &Elt : MergePotentials)
1031 TriedMerging.insert(Elt.getBlock());
1033 // See if we can do any tail merging on those.
1034 if (MergePotentials.size() >= 2)
1035 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1037 // Look at blocks (IBB) with multiple predecessors (PBB).
1038 // We change each predecessor to a canonical form, by
1039 // (1) temporarily removing any unconditional branch from the predecessor
1040 // to IBB, and
1041 // (2) alter conditional branches so they branch to the other block
1042 // not IBB; this may require adding back an unconditional branch to IBB
1043 // later, where there wasn't one coming in. E.g.
1044 // Bcc IBB
1045 // fallthrough to QBB
1046 // here becomes
1047 // Bncc QBB
1048 // with a conceptual B to IBB after that, which never actually exists.
1049 // With those changes, we see whether the predecessors' tails match,
1050 // and merge them if so. We change things out of canonical form and
1051 // back to the way they were later in the process. (OptimizeBranches
1052 // would undo some of this, but we can't use it, because we'd get into
1053 // a compile-time infinite loop repeatedly doing and undoing the same
1054 // transformations.)
1056 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1057 I != E; ++I) {
1058 if (I->pred_size() < 2) continue;
1059 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1060 MachineBasicBlock *IBB = &*I;
1061 MachineBasicBlock *PredBB = &*std::prev(I);
1062 MergePotentials.clear();
1063 MachineLoop *ML;
1065 // Bail if merging after placement and IBB is the loop header because
1066 // -- If merging predecessors that belong to the same loop as IBB, the
1067 // common tail of merged predecessors may become the loop top if block
1068 // placement is called again and the predecessors may branch to this common
1069 // tail and require more branches. This can be relaxed if
1070 // MachineBlockPlacement::findBestLoopTop is more flexible.
1071 // --If merging predecessors that do not belong to the same loop as IBB, the
1072 // loop info of IBB's loop and the other loops may be affected. Calling the
1073 // block placement again may make big change to the layout and eliminate the
1074 // reason to do tail merging here.
1075 if (AfterBlockPlacement && MLI) {
1076 ML = MLI->getLoopFor(IBB);
1077 if (ML && IBB == ML->getHeader())
1078 continue;
1081 for (MachineBasicBlock *PBB : I->predecessors()) {
1082 if (MergePotentials.size() == TailMergeThreshold)
1083 break;
1085 if (TriedMerging.count(PBB))
1086 continue;
1088 // Skip blocks that loop to themselves, can't tail merge these.
1089 if (PBB == IBB)
1090 continue;
1092 // Visit each predecessor only once.
1093 if (!UniquePreds.insert(PBB).second)
1094 continue;
1096 // Skip blocks which may jump to a landing pad or jump from an asm blob.
1097 // Can't tail merge these.
1098 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1099 continue;
1101 // After block placement, only consider predecessors that belong to the
1102 // same loop as IBB. The reason is the same as above when skipping loop
1103 // header.
1104 if (AfterBlockPlacement && MLI)
1105 if (ML != MLI->getLoopFor(PBB))
1106 continue;
1108 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1109 SmallVector<MachineOperand, 4> Cond;
1110 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1111 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1112 // branch.
1113 SmallVector<MachineOperand, 4> NewCond(Cond);
1114 if (!Cond.empty() && TBB == IBB) {
1115 if (TII->reverseBranchCondition(NewCond))
1116 continue;
1117 // This is the QBB case described above
1118 if (!FBB) {
1119 auto Next = ++PBB->getIterator();
1120 if (Next != MF.end())
1121 FBB = &*Next;
1125 // Remove the unconditional branch at the end, if any.
1126 DebugLoc dl = PBB->findBranchDebugLoc();
1127 if (TBB && (Cond.empty() || FBB)) {
1128 TII->removeBranch(*PBB);
1129 if (!Cond.empty())
1130 // reinsert conditional branch only, for now
1131 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1132 NewCond, dl);
1135 MergePotentials.push_back(
1136 MergePotentialsElt(HashEndOfMBB(*PBB), PBB, dl));
1140 // If this is a large problem, avoid visiting the same basic blocks multiple
1141 // times.
1142 if (MergePotentials.size() == TailMergeThreshold)
1143 for (MergePotentialsElt &Elt : MergePotentials)
1144 TriedMerging.insert(Elt.getBlock());
1146 if (MergePotentials.size() >= 2)
1147 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1149 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1150 // result of removing blocks in TryTailMergeBlocks.
1151 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1152 if (MergePotentials.size() == 1 &&
1153 MergePotentials.begin()->getBlock() != PredBB)
1154 FixTail(MergePotentials.begin()->getBlock(), IBB, TII,
1155 MergePotentials.begin()->getBranchDebugLoc());
1158 return MadeChange;
1161 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1162 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1163 BlockFrequency AccumulatedMBBFreq;
1165 // Aggregate edge frequency of successor edge j:
1166 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1167 // where bb is a basic block that is in SameTails.
1168 for (const auto &Src : SameTails) {
1169 const MachineBasicBlock *SrcMBB = Src.getBlock();
1170 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1171 AccumulatedMBBFreq += BlockFreq;
1173 // It is not necessary to recompute edge weights if TailBB has less than two
1174 // successors.
1175 if (TailMBB.succ_size() <= 1)
1176 continue;
1178 auto EdgeFreq = EdgeFreqLs.begin();
1180 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1181 SuccI != SuccE; ++SuccI, ++EdgeFreq)
1182 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1185 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1187 if (TailMBB.succ_size() <= 1)
1188 return;
1190 auto SumEdgeFreq =
1191 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1192 .getFrequency();
1193 auto EdgeFreq = EdgeFreqLs.begin();
1195 if (SumEdgeFreq > 0) {
1196 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1197 SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1198 auto Prob = BranchProbability::getBranchProbability(
1199 EdgeFreq->getFrequency(), SumEdgeFreq);
1200 TailMBB.setSuccProbability(SuccI, Prob);
1205 //===----------------------------------------------------------------------===//
1206 // Branch Optimization
1207 //===----------------------------------------------------------------------===//
1209 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1210 bool MadeChange = false;
1212 // Make sure blocks are numbered in order
1213 MF.RenumberBlocks();
1214 // Renumbering blocks alters EH scope membership, recalculate it.
1215 EHScopeMembership = getEHScopeMembership(MF);
1217 for (MachineBasicBlock &MBB :
1218 llvm::make_early_inc_range(llvm::drop_begin(MF))) {
1219 MadeChange |= OptimizeBlock(&MBB);
1221 // If it is dead, remove it.
1222 if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) {
1223 RemoveDeadBlock(&MBB);
1224 MadeChange = true;
1225 ++NumDeadBlocks;
1229 return MadeChange;
1232 // Blocks should be considered empty if they contain only debug info;
1233 // else the debug info would affect codegen.
1234 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1235 return MBB->getFirstNonDebugInstr(true) == MBB->end();
1238 // Blocks with only debug info and branches should be considered the same
1239 // as blocks with only branches.
1240 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1241 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1242 assert(I != MBB->end() && "empty block!");
1243 return I->isBranch();
1246 /// IsBetterFallthrough - Return true if it would be clearly better to
1247 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1248 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1249 /// result in infinite loops.
1250 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1251 MachineBasicBlock *MBB2) {
1252 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1254 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1255 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1256 // optimize branches that branch to either a return block or an assert block
1257 // into a fallthrough to the return.
1258 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1259 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1260 if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1261 return false;
1263 // If there is a clear successor ordering we make sure that one block
1264 // will fall through to the next
1265 if (MBB1->isSuccessor(MBB2)) return true;
1266 if (MBB2->isSuccessor(MBB1)) return false;
1268 return MBB2I->isCall() && !MBB1I->isCall();
1271 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1272 MachineBasicBlock &MBB,
1273 MachineBasicBlock &PredMBB) {
1274 auto InsertBefore = PredMBB.getFirstTerminator();
1275 for (MachineInstr &MI : MBB.instrs())
1276 if (MI.isDebugInstr()) {
1277 TII->duplicate(PredMBB, InsertBefore, MI);
1278 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1279 << MI);
1283 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1284 MachineBasicBlock &MBB,
1285 MachineBasicBlock &SuccMBB) {
1286 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1287 for (MachineInstr &MI : MBB.instrs())
1288 if (MI.isDebugInstr()) {
1289 TII->duplicate(SuccMBB, InsertBefore, MI);
1290 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1291 << MI);
1295 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1296 // a basic block is removed we would lose the debug information unless we have
1297 // copied the information to a predecessor/successor.
1299 // TODO: This function only handles some simple cases. An alternative would be
1300 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1301 // branch folding.
1302 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1303 MachineBasicBlock &MBB) {
1304 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1305 // If this MBB is the only predecessor of a successor it is legal to copy
1306 // DBG_VALUE instructions to the beginning of the successor.
1307 for (MachineBasicBlock *SuccBB : MBB.successors())
1308 if (SuccBB->pred_size() == 1)
1309 copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1310 // If this MBB is the only successor of a predecessor it is legal to copy the
1311 // DBG_VALUE instructions to the end of the predecessor (just before the
1312 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1313 for (MachineBasicBlock *PredBB : MBB.predecessors())
1314 if (PredBB->succ_size() == 1)
1315 copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1318 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1319 bool MadeChange = false;
1320 MachineFunction &MF = *MBB->getParent();
1321 ReoptimizeBlock:
1323 MachineFunction::iterator FallThrough = MBB->getIterator();
1324 ++FallThrough;
1326 // Make sure MBB and FallThrough belong to the same EH scope.
1327 bool SameEHScope = true;
1328 if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1329 auto MBBEHScope = EHScopeMembership.find(MBB);
1330 assert(MBBEHScope != EHScopeMembership.end());
1331 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1332 assert(FallThroughEHScope != EHScopeMembership.end());
1333 SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1336 // Analyze the branch in the current block. As a side-effect, this may cause
1337 // the block to become empty.
1338 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1339 SmallVector<MachineOperand, 4> CurCond;
1340 bool CurUnAnalyzable =
1341 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1343 // If this block is empty, make everyone use its fall-through, not the block
1344 // explicitly. Landing pads should not do this since the landing-pad table
1345 // points to this block. Blocks with their addresses taken shouldn't be
1346 // optimized away.
1347 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1348 SameEHScope) {
1349 salvageDebugInfoFromEmptyBlock(TII, *MBB);
1350 // Dead block? Leave for cleanup later.
1351 if (MBB->pred_empty()) return MadeChange;
1353 if (FallThrough == MF.end()) {
1354 // TODO: Simplify preds to not branch here if possible!
1355 } else if (FallThrough->isEHPad()) {
1356 // Don't rewrite to a landing pad fallthough. That could lead to the case
1357 // where a BB jumps to more than one landing pad.
1358 // TODO: Is it ever worth rewriting predecessors which don't already
1359 // jump to a landing pad, and so can safely jump to the fallthrough?
1360 } else if (MBB->isSuccessor(&*FallThrough)) {
1361 // Rewrite all predecessors of the old block to go to the fallthrough
1362 // instead.
1363 while (!MBB->pred_empty()) {
1364 MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1365 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1367 // Add rest successors of MBB to successors of FallThrough. Those
1368 // successors are not directly reachable via MBB, so it should be
1369 // landing-pad.
1370 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
1371 if (*SI != &*FallThrough && !FallThrough->isSuccessor(*SI)) {
1372 assert((*SI)->isEHPad() && "Bad CFG");
1373 FallThrough->copySuccessor(MBB, SI);
1375 // If MBB was the target of a jump table, update jump tables to go to the
1376 // fallthrough instead.
1377 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1378 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1379 MadeChange = true;
1381 return MadeChange;
1384 // Check to see if we can simplify the terminator of the block before this
1385 // one.
1386 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1388 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1389 SmallVector<MachineOperand, 4> PriorCond;
1390 bool PriorUnAnalyzable =
1391 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1392 if (!PriorUnAnalyzable) {
1393 // If the previous branch is conditional and both conditions go to the same
1394 // destination, remove the branch, replacing it with an unconditional one or
1395 // a fall-through.
1396 if (PriorTBB && PriorTBB == PriorFBB) {
1397 DebugLoc Dl = PrevBB.findBranchDebugLoc();
1398 TII->removeBranch(PrevBB);
1399 PriorCond.clear();
1400 if (PriorTBB != MBB)
1401 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl);
1402 MadeChange = true;
1403 ++NumBranchOpts;
1404 goto ReoptimizeBlock;
1407 // If the previous block unconditionally falls through to this block and
1408 // this block has no other predecessors, move the contents of this block
1409 // into the prior block. This doesn't usually happen when SimplifyCFG
1410 // has been used, but it can happen if tail merging splits a fall-through
1411 // predecessor of a block.
1412 // This has to check PrevBB->succ_size() because EH edges are ignored by
1413 // analyzeBranch.
1414 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1415 PrevBB.succ_size() == 1 && PrevBB.isSuccessor(MBB) &&
1416 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1417 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1418 << "From MBB: " << *MBB);
1419 // Remove redundant DBG_VALUEs first.
1420 if (!PrevBB.empty()) {
1421 MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1422 --PrevBBIter;
1423 MachineBasicBlock::iterator MBBIter = MBB->begin();
1424 // Check if DBG_VALUE at the end of PrevBB is identical to the
1425 // DBG_VALUE at the beginning of MBB.
1426 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1427 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1428 if (!MBBIter->isIdenticalTo(*PrevBBIter))
1429 break;
1430 MachineInstr &DuplicateDbg = *MBBIter;
1431 ++MBBIter; -- PrevBBIter;
1432 DuplicateDbg.eraseFromParent();
1435 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1436 PrevBB.removeSuccessor(PrevBB.succ_begin());
1437 assert(PrevBB.succ_empty());
1438 PrevBB.transferSuccessors(MBB);
1439 MadeChange = true;
1440 return MadeChange;
1443 // If the previous branch *only* branches to *this* block (conditional or
1444 // not) remove the branch.
1445 if (PriorTBB == MBB && !PriorFBB) {
1446 TII->removeBranch(PrevBB);
1447 MadeChange = true;
1448 ++NumBranchOpts;
1449 goto ReoptimizeBlock;
1452 // If the prior block branches somewhere else on the condition and here if
1453 // the condition is false, remove the uncond second branch.
1454 if (PriorFBB == MBB) {
1455 DebugLoc Dl = PrevBB.findBranchDebugLoc();
1456 TII->removeBranch(PrevBB);
1457 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, Dl);
1458 MadeChange = true;
1459 ++NumBranchOpts;
1460 goto ReoptimizeBlock;
1463 // If the prior block branches here on true and somewhere else on false, and
1464 // if the branch condition is reversible, reverse the branch to create a
1465 // fall-through.
1466 if (PriorTBB == MBB) {
1467 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1468 if (!TII->reverseBranchCondition(NewPriorCond)) {
1469 DebugLoc Dl = PrevBB.findBranchDebugLoc();
1470 TII->removeBranch(PrevBB);
1471 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, Dl);
1472 MadeChange = true;
1473 ++NumBranchOpts;
1474 goto ReoptimizeBlock;
1478 // If this block has no successors (e.g. it is a return block or ends with
1479 // a call to a no-return function like abort or __cxa_throw) and if the pred
1480 // falls through into this block, and if it would otherwise fall through
1481 // into the block after this, move this block to the end of the function.
1483 // We consider it more likely that execution will stay in the function (e.g.
1484 // due to loops) than it is to exit it. This asserts in loops etc, moving
1485 // the assert condition out of the loop body.
1486 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1487 MachineFunction::iterator(PriorTBB) == FallThrough &&
1488 !MBB->canFallThrough()) {
1489 bool DoTransform = true;
1491 // We have to be careful that the succs of PredBB aren't both no-successor
1492 // blocks. If neither have successors and if PredBB is the second from
1493 // last block in the function, we'd just keep swapping the two blocks for
1494 // last. Only do the swap if one is clearly better to fall through than
1495 // the other.
1496 if (FallThrough == --MF.end() &&
1497 !IsBetterFallthrough(PriorTBB, MBB))
1498 DoTransform = false;
1500 if (DoTransform) {
1501 // Reverse the branch so we will fall through on the previous true cond.
1502 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1503 if (!TII->reverseBranchCondition(NewPriorCond)) {
1504 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1505 << "To make fallthrough to: " << *PriorTBB << "\n");
1507 DebugLoc Dl = PrevBB.findBranchDebugLoc();
1508 TII->removeBranch(PrevBB);
1509 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, Dl);
1511 // Move this block to the end of the function.
1512 MBB->moveAfter(&MF.back());
1513 MadeChange = true;
1514 ++NumBranchOpts;
1515 return MadeChange;
1521 if (!IsEmptyBlock(MBB)) {
1522 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1523 if (TII->isUnconditionalTailCall(TailCall)) {
1524 SmallVector<MachineBasicBlock *> PredsChanged;
1525 for (auto &Pred : MBB->predecessors()) {
1526 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1527 SmallVector<MachineOperand, 4> PredCond;
1528 bool PredAnalyzable =
1529 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1531 // Only eliminate if MBB == TBB (Taken Basic Block)
1532 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1533 PredTBB != PredFBB) {
1534 // The predecessor has a conditional branch to this block which
1535 // consists of only a tail call. Try to fold the tail call into the
1536 // conditional branch.
1537 if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1538 // TODO: It would be nice if analyzeBranch() could provide a pointer
1539 // to the branch instruction so replaceBranchWithTailCall() doesn't
1540 // have to search for it.
1541 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1542 PredsChanged.push_back(Pred);
1545 // If the predecessor is falling through to this block, we could reverse
1546 // the branch condition and fold the tail call into that. However, after
1547 // that we might have to re-arrange the CFG to fall through to the other
1548 // block and there is a high risk of regressing code size rather than
1549 // improving it.
1551 if (!PredsChanged.empty()) {
1552 NumTailCalls += PredsChanged.size();
1553 for (auto &Pred : PredsChanged)
1554 Pred->removeSuccessor(MBB);
1556 return true;
1561 if (!CurUnAnalyzable) {
1562 // If this is a two-way branch, and the FBB branches to this block, reverse
1563 // the condition so the single-basic-block loop is faster. Instead of:
1564 // Loop: xxx; jcc Out; jmp Loop
1565 // we want:
1566 // Loop: xxx; jncc Loop; jmp Out
1567 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1568 SmallVector<MachineOperand, 4> NewCond(CurCond);
1569 if (!TII->reverseBranchCondition(NewCond)) {
1570 DebugLoc Dl = MBB->findBranchDebugLoc();
1571 TII->removeBranch(*MBB);
1572 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, Dl);
1573 MadeChange = true;
1574 ++NumBranchOpts;
1575 goto ReoptimizeBlock;
1579 // If this branch is the only thing in its block, see if we can forward
1580 // other blocks across it.
1581 if (CurTBB && CurCond.empty() && !CurFBB &&
1582 IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1583 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1584 DebugLoc Dl = MBB->findBranchDebugLoc();
1585 // This block may contain just an unconditional branch. Because there can
1586 // be 'non-branch terminators' in the block, try removing the branch and
1587 // then seeing if the block is empty.
1588 TII->removeBranch(*MBB);
1589 // If the only things remaining in the block are debug info, remove these
1590 // as well, so this will behave the same as an empty block in non-debug
1591 // mode.
1592 if (IsEmptyBlock(MBB)) {
1593 // Make the block empty, losing the debug info (we could probably
1594 // improve this in some cases.)
1595 MBB->erase(MBB->begin(), MBB->end());
1597 // If this block is just an unconditional branch to CurTBB, we can
1598 // usually completely eliminate the block. The only case we cannot
1599 // completely eliminate the block is when the block before this one
1600 // falls through into MBB and we can't understand the prior block's branch
1601 // condition.
1602 if (MBB->empty()) {
1603 bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1604 if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1605 !PrevBB.isSuccessor(MBB)) {
1606 // If the prior block falls through into us, turn it into an
1607 // explicit branch to us to make updates simpler.
1608 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1609 PriorTBB != MBB && PriorFBB != MBB) {
1610 if (!PriorTBB) {
1611 assert(PriorCond.empty() && !PriorFBB &&
1612 "Bad branch analysis");
1613 PriorTBB = MBB;
1614 } else {
1615 assert(!PriorFBB && "Machine CFG out of date!");
1616 PriorFBB = MBB;
1618 DebugLoc PrevDl = PrevBB.findBranchDebugLoc();
1619 TII->removeBranch(PrevBB);
1620 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, PrevDl);
1623 // Iterate through all the predecessors, revectoring each in-turn.
1624 size_t PI = 0;
1625 bool DidChange = false;
1626 bool HasBranchToSelf = false;
1627 while(PI != MBB->pred_size()) {
1628 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1629 if (PMBB == MBB) {
1630 // If this block has an uncond branch to itself, leave it.
1631 ++PI;
1632 HasBranchToSelf = true;
1633 } else {
1634 DidChange = true;
1635 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1636 // Add rest successors of MBB to successors of CurTBB. Those
1637 // successors are not directly reachable via MBB, so it should be
1638 // landing-pad.
1639 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE;
1640 ++SI)
1641 if (*SI != CurTBB && !CurTBB->isSuccessor(*SI)) {
1642 assert((*SI)->isEHPad() && "Bad CFG");
1643 CurTBB->copySuccessor(MBB, SI);
1645 // If this change resulted in PMBB ending in a conditional
1646 // branch where both conditions go to the same destination,
1647 // change this to an unconditional branch.
1648 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1649 SmallVector<MachineOperand, 4> NewCurCond;
1650 bool NewCurUnAnalyzable = TII->analyzeBranch(
1651 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1652 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1653 DebugLoc PrevDl = PMBB->findBranchDebugLoc();
1654 TII->removeBranch(*PMBB);
1655 NewCurCond.clear();
1656 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond,
1657 PrevDl);
1658 MadeChange = true;
1659 ++NumBranchOpts;
1664 // Change any jumptables to go to the new MBB.
1665 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1666 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1667 if (DidChange) {
1668 ++NumBranchOpts;
1669 MadeChange = true;
1670 if (!HasBranchToSelf) return MadeChange;
1675 // Add the branch back if the block is more than just an uncond branch.
1676 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, Dl);
1680 // If the prior block doesn't fall through into this block, and if this
1681 // block doesn't fall through into some other block, see if we can find a
1682 // place to move this block where a fall-through will happen.
1683 if (!PrevBB.canFallThrough()) {
1684 // Now we know that there was no fall-through into this block, check to
1685 // see if it has a fall-through into its successor.
1686 bool CurFallsThru = MBB->canFallThrough();
1688 if (!MBB->isEHPad()) {
1689 // Check all the predecessors of this block. If one of them has no fall
1690 // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1691 // block, move this block right after it.
1692 for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1693 // Analyze the branch at the end of the pred.
1694 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1695 SmallVector<MachineOperand, 4> PredCond;
1696 if (PredBB != MBB && !PredBB->canFallThrough() &&
1697 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1698 (PredTBB == MBB || PredFBB == MBB) &&
1699 (!CurFallsThru || !CurTBB || !CurFBB) &&
1700 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1701 // If the current block doesn't fall through, just move it.
1702 // If the current block can fall through and does not end with a
1703 // conditional branch, we need to append an unconditional jump to
1704 // the (current) next block. To avoid a possible compile-time
1705 // infinite loop, move blocks only backward in this case.
1706 // Also, if there are already 2 branches here, we cannot add a third;
1707 // this means we have the case
1708 // Bcc next
1709 // B elsewhere
1710 // next:
1711 if (CurFallsThru) {
1712 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1713 CurCond.clear();
1714 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1716 MBB->moveAfter(PredBB);
1717 MadeChange = true;
1718 goto ReoptimizeBlock;
1723 if (!CurFallsThru) {
1724 // Check analyzable branch-successors to see if we can move this block
1725 // before one.
1726 if (!CurUnAnalyzable) {
1727 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1728 if (!SuccBB)
1729 continue;
1730 // Analyze the branch at the end of the block before the succ.
1731 MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1733 // If this block doesn't already fall-through to that successor, and
1734 // if the succ doesn't already have a block that can fall through into
1735 // it, we can arrange for the fallthrough to happen.
1736 if (SuccBB != MBB && &*SuccPrev != MBB &&
1737 !SuccPrev->canFallThrough()) {
1738 MBB->moveBefore(SuccBB);
1739 MadeChange = true;
1740 goto ReoptimizeBlock;
1745 // Okay, there is no really great place to put this block. If, however,
1746 // the block before this one would be a fall-through if this block were
1747 // removed, move this block to the end of the function. There is no real
1748 // advantage in "falling through" to an EH block, so we don't want to
1749 // perform this transformation for that case.
1751 // Also, Windows EH introduced the possibility of an arbitrary number of
1752 // successors to a given block. The analyzeBranch call does not consider
1753 // exception handling and so we can get in a state where a block
1754 // containing a call is followed by multiple EH blocks that would be
1755 // rotated infinitely at the end of the function if the transformation
1756 // below were performed for EH "FallThrough" blocks. Therefore, even if
1757 // that appears not to be happening anymore, we should assume that it is
1758 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1759 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1760 SmallVector<MachineOperand, 4> PrevCond;
1761 if (FallThrough != MF.end() &&
1762 !FallThrough->isEHPad() &&
1763 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1764 PrevBB.isSuccessor(&*FallThrough)) {
1765 MBB->moveAfter(&MF.back());
1766 MadeChange = true;
1767 return MadeChange;
1772 return MadeChange;
1775 //===----------------------------------------------------------------------===//
1776 // Hoist Common Code
1777 //===----------------------------------------------------------------------===//
1779 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1780 bool MadeChange = false;
1781 for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF))
1782 MadeChange |= HoistCommonCodeInSuccs(&MBB);
1784 return MadeChange;
1787 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1788 /// its 'true' successor.
1789 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1790 MachineBasicBlock *TrueBB) {
1791 for (MachineBasicBlock *SuccBB : BB->successors())
1792 if (SuccBB != TrueBB)
1793 return SuccBB;
1794 return nullptr;
1797 template <class Container>
1798 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1799 Container &Set) {
1800 if (Reg.isPhysical()) {
1801 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1802 Set.insert(*AI);
1803 } else {
1804 Set.insert(Reg);
1808 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1809 /// in successors to. The location is usually just before the terminator,
1810 /// however if the terminator is a conditional branch and its previous
1811 /// instruction is the flag setting instruction, the previous instruction is
1812 /// the preferred location. This function also gathers uses and defs of the
1813 /// instructions from the insertion point to the end of the block. The data is
1814 /// used by HoistCommonCodeInSuccs to ensure safety.
1815 static
1816 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1817 const TargetInstrInfo *TII,
1818 const TargetRegisterInfo *TRI,
1819 SmallSet<Register, 4> &Uses,
1820 SmallSet<Register, 4> &Defs) {
1821 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1822 if (!TII->isUnpredicatedTerminator(*Loc))
1823 return MBB->end();
1825 for (const MachineOperand &MO : Loc->operands()) {
1826 if (!MO.isReg())
1827 continue;
1828 Register Reg = MO.getReg();
1829 if (!Reg)
1830 continue;
1831 if (MO.isUse()) {
1832 addRegAndItsAliases(Reg, TRI, Uses);
1833 } else {
1834 if (!MO.isDead())
1835 // Don't try to hoist code in the rare case the terminator defines a
1836 // register that is later used.
1837 return MBB->end();
1839 // If the terminator defines a register, make sure we don't hoist
1840 // the instruction whose def might be clobbered by the terminator.
1841 addRegAndItsAliases(Reg, TRI, Defs);
1845 if (Uses.empty())
1846 return Loc;
1847 // If the terminator is the only instruction in the block and Uses is not
1848 // empty (or we would have returned above), we can still safely hoist
1849 // instructions just before the terminator as long as the Defs/Uses are not
1850 // violated (which is checked in HoistCommonCodeInSuccs).
1851 if (Loc == MBB->begin())
1852 return Loc;
1854 // The terminator is probably a conditional branch, try not to separate the
1855 // branch from condition setting instruction.
1856 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1858 bool IsDef = false;
1859 for (const MachineOperand &MO : PI->operands()) {
1860 // If PI has a regmask operand, it is probably a call. Separate away.
1861 if (MO.isRegMask())
1862 return Loc;
1863 if (!MO.isReg() || MO.isUse())
1864 continue;
1865 Register Reg = MO.getReg();
1866 if (!Reg)
1867 continue;
1868 if (Uses.count(Reg)) {
1869 IsDef = true;
1870 break;
1873 if (!IsDef)
1874 // The condition setting instruction is not just before the conditional
1875 // branch.
1876 return Loc;
1878 // Be conservative, don't insert instruction above something that may have
1879 // side-effects. And since it's potentially bad to separate flag setting
1880 // instruction from the conditional branch, just abort the optimization
1881 // completely.
1882 // Also avoid moving code above predicated instruction since it's hard to
1883 // reason about register liveness with predicated instruction.
1884 bool DontMoveAcrossStore = true;
1885 if (!PI->isSafeToMove(DontMoveAcrossStore) || TII->isPredicated(*PI))
1886 return MBB->end();
1888 // Find out what registers are live. Note this routine is ignoring other live
1889 // registers which are only used by instructions in successor blocks.
1890 for (const MachineOperand &MO : PI->operands()) {
1891 if (!MO.isReg())
1892 continue;
1893 Register Reg = MO.getReg();
1894 if (!Reg)
1895 continue;
1896 if (MO.isUse()) {
1897 addRegAndItsAliases(Reg, TRI, Uses);
1898 } else {
1899 if (Uses.erase(Reg)) {
1900 if (Reg.isPhysical()) {
1901 for (MCPhysReg SubReg : TRI->subregs(Reg))
1902 Uses.erase(SubReg); // Use sub-registers to be conservative
1905 addRegAndItsAliases(Reg, TRI, Defs);
1909 return PI;
1912 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1913 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1914 SmallVector<MachineOperand, 4> Cond;
1915 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1916 return false;
1918 if (!FBB) FBB = findFalseBlock(MBB, TBB);
1919 if (!FBB)
1920 // Malformed bcc? True and false blocks are the same?
1921 return false;
1923 // Restrict the optimization to cases where MBB is the only predecessor,
1924 // it is an obvious win.
1925 if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1926 return false;
1928 // Find a suitable position to hoist the common instructions to. Also figure
1929 // out which registers are used or defined by instructions from the insertion
1930 // point to the end of the block.
1931 SmallSet<Register, 4> Uses, Defs;
1932 MachineBasicBlock::iterator Loc =
1933 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1934 if (Loc == MBB->end())
1935 return false;
1937 bool HasDups = false;
1938 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1939 MachineBasicBlock::iterator TIB = TBB->begin();
1940 MachineBasicBlock::iterator FIB = FBB->begin();
1941 MachineBasicBlock::iterator TIE = TBB->end();
1942 MachineBasicBlock::iterator FIE = FBB->end();
1943 while (TIB != TIE && FIB != FIE) {
1944 // Skip dbg_value instructions. These do not count.
1945 TIB = skipDebugInstructionsForward(TIB, TIE, false);
1946 FIB = skipDebugInstructionsForward(FIB, FIE, false);
1947 if (TIB == TIE || FIB == FIE)
1948 break;
1950 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1951 break;
1953 if (TII->isPredicated(*TIB))
1954 // Hard to reason about register liveness with predicated instruction.
1955 break;
1957 bool IsSafe = true;
1958 for (MachineOperand &MO : TIB->operands()) {
1959 // Don't attempt to hoist instructions with register masks.
1960 if (MO.isRegMask()) {
1961 IsSafe = false;
1962 break;
1964 if (!MO.isReg())
1965 continue;
1966 Register Reg = MO.getReg();
1967 if (!Reg)
1968 continue;
1969 if (MO.isDef()) {
1970 if (Uses.count(Reg)) {
1971 // Avoid clobbering a register that's used by the instruction at
1972 // the point of insertion.
1973 IsSafe = false;
1974 break;
1977 if (Defs.count(Reg) && !MO.isDead()) {
1978 // Don't hoist the instruction if the def would be clobber by the
1979 // instruction at the point insertion. FIXME: This is overly
1980 // conservative. It should be possible to hoist the instructions
1981 // in BB2 in the following example:
1982 // BB1:
1983 // r1, eflag = op1 r2, r3
1984 // brcc eflag
1986 // BB2:
1987 // r1 = op2, ...
1988 // = op3, killed r1
1989 IsSafe = false;
1990 break;
1992 } else if (!ActiveDefsSet.count(Reg)) {
1993 if (Defs.count(Reg)) {
1994 // Use is defined by the instruction at the point of insertion.
1995 IsSafe = false;
1996 break;
1999 if (MO.isKill() && Uses.count(Reg))
2000 // Kills a register that's read by the instruction at the point of
2001 // insertion. Remove the kill marker.
2002 MO.setIsKill(false);
2005 if (!IsSafe)
2006 break;
2008 bool DontMoveAcrossStore = true;
2009 if (!TIB->isSafeToMove(DontMoveAcrossStore))
2010 break;
2012 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2013 for (const MachineOperand &MO : TIB->all_uses()) {
2014 if (!MO.isKill())
2015 continue;
2016 Register Reg = MO.getReg();
2017 if (!Reg)
2018 continue;
2019 if (!AllDefsSet.count(Reg)) {
2020 continue;
2022 if (Reg.isPhysical()) {
2023 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2024 ActiveDefsSet.erase(*AI);
2025 } else {
2026 ActiveDefsSet.erase(Reg);
2030 // Track local defs so we can update liveins.
2031 for (const MachineOperand &MO : TIB->all_defs()) {
2032 if (MO.isDead())
2033 continue;
2034 Register Reg = MO.getReg();
2035 if (!Reg || Reg.isVirtual())
2036 continue;
2037 addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2038 addRegAndItsAliases(Reg, TRI, AllDefsSet);
2041 HasDups = true;
2042 ++TIB;
2043 ++FIB;
2046 if (!HasDups)
2047 return false;
2049 MBB->splice(Loc, TBB, TBB->begin(), TIB);
2050 FBB->erase(FBB->begin(), FIB);
2052 if (UpdateLiveIns)
2053 fullyRecomputeLiveIns({TBB, FBB});
2055 ++NumHoist;
2056 return true;