[MachineScheduler] Fix physreg dependencies of ExitSU (#123541)
[llvm-project.git] / llvm / lib / CodeGen / EarlyIfConversion.cpp
blobcaec0524e7ab627f18125699dd94d3314e77906f
1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Early if-conversion is for out-of-order CPUs that don't have a lot of
10 // predicable instructions. The goal is to eliminate conditional branches that
11 // may mispredict.
13 // Instructions from both sides of the branch are executed specutatively, and a
14 // cmov instruction selects the result.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/EarlyIfConversion.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/MachineTraceMetrics.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
44 #define DEBUG_TYPE "early-ifcvt"
46 // Absolute maximum number of instructions allowed per speculated block.
47 // This bypasses all other heuristics, so it should be set fairly high.
48 static cl::opt<unsigned>
49 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
50 cl::desc("Maximum number of instructions per speculated block."));
52 // Stress testing mode - disable heuristics.
53 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
54 cl::desc("Turn all knobs to 11"));
56 STATISTIC(NumDiamondsSeen, "Number of diamonds");
57 STATISTIC(NumDiamondsConv, "Number of diamonds converted");
58 STATISTIC(NumTrianglesSeen, "Number of triangles");
59 STATISTIC(NumTrianglesConv, "Number of triangles converted");
61 //===----------------------------------------------------------------------===//
62 // SSAIfConv
63 //===----------------------------------------------------------------------===//
65 // The SSAIfConv class performs if-conversion on SSA form machine code after
66 // determining if it is possible. The class contains no heuristics; external
67 // code should be used to determine when if-conversion is a good idea.
69 // SSAIfConv can convert both triangles and diamonds:
71 // Triangle: Head Diamond: Head
72 // | \ / \_
73 // | \ / |
74 // | [TF]BB FBB TBB
75 // | / \ /
76 // | / \ /
77 // Tail Tail
79 // Instructions in the conditional blocks TBB and/or FBB are spliced into the
80 // Head block, and phis in the Tail block are converted to select instructions.
82 namespace {
83 class SSAIfConv {
84 const TargetInstrInfo *TII;
85 const TargetRegisterInfo *TRI;
86 MachineRegisterInfo *MRI;
88 public:
89 /// The block containing the conditional branch.
90 MachineBasicBlock *Head;
92 /// The block containing phis after the if-then-else.
93 MachineBasicBlock *Tail;
95 /// The 'true' conditional block as determined by analyzeBranch.
96 MachineBasicBlock *TBB;
98 /// The 'false' conditional block as determined by analyzeBranch.
99 MachineBasicBlock *FBB;
101 /// isTriangle - When there is no 'else' block, either TBB or FBB will be
102 /// equal to Tail.
103 bool isTriangle() const { return TBB == Tail || FBB == Tail; }
105 /// Returns the Tail predecessor for the True side.
106 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }
108 /// Returns the Tail predecessor for the False side.
109 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }
111 /// Information about each phi in the Tail block.
112 struct PHIInfo {
113 MachineInstr *PHI;
114 unsigned TReg = 0, FReg = 0;
115 // Latencies from Cond+Branch, TReg, and FReg to DstReg.
116 int CondCycles = 0, TCycles = 0, FCycles = 0;
118 PHIInfo(MachineInstr *phi) : PHI(phi) {}
121 SmallVector<PHIInfo, 8> PHIs;
123 /// The branch condition determined by analyzeBranch.
124 SmallVector<MachineOperand, 4> Cond;
126 private:
127 /// Instructions in Head that define values used by the conditional blocks.
128 /// The hoisted instructions must be inserted after these instructions.
129 SmallPtrSet<MachineInstr*, 8> InsertAfter;
131 /// Register units clobbered by the conditional blocks.
132 BitVector ClobberedRegUnits;
134 // Scratch pad for findInsertionPoint.
135 SparseSet<unsigned> LiveRegUnits;
137 /// Insertion point in Head for speculatively executed instructions form TBB
138 /// and FBB.
139 MachineBasicBlock::iterator InsertionPoint;
141 /// Return true if all non-terminator instructions in MBB can be safely
142 /// speculated.
143 bool canSpeculateInstrs(MachineBasicBlock *MBB);
145 /// Return true if all non-terminator instructions in MBB can be safely
146 /// predicated.
147 bool canPredicateInstrs(MachineBasicBlock *MBB);
149 /// Scan through instruction dependencies and update InsertAfter array.
150 /// Return false if any dependency is incompatible with if conversion.
151 bool InstrDependenciesAllowIfConv(MachineInstr *I);
153 /// Predicate all instructions of the basic block with current condition
154 /// except for terminators. Reverse the condition if ReversePredicate is set.
155 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);
157 /// Find a valid insertion point in Head.
158 bool findInsertionPoint();
160 /// Replace PHI instructions in Tail with selects.
161 void replacePHIInstrs();
163 /// Insert selects and rewrite PHI operands to use them.
164 void rewritePHIOperands();
166 public:
167 /// init - Initialize per-function data structures.
168 void init(MachineFunction &MF) {
169 TII = MF.getSubtarget().getInstrInfo();
170 TRI = MF.getSubtarget().getRegisterInfo();
171 MRI = &MF.getRegInfo();
172 LiveRegUnits.clear();
173 LiveRegUnits.setUniverse(TRI->getNumRegUnits());
174 ClobberedRegUnits.clear();
175 ClobberedRegUnits.resize(TRI->getNumRegUnits());
178 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
179 /// initialize the internal state, and return true.
180 /// If predicate is set try to predicate the block otherwise try to
181 /// speculatively execute it.
182 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);
184 /// convertIf - If-convert the last block passed to canConvertIf(), assuming
185 /// it is possible. Add any blocks that are to be erased to RemoveBlocks.
186 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemoveBlocks,
187 bool Predicate = false);
189 } // end anonymous namespace
191 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
192 /// be speculated. The terminators are not considered.
194 /// If instructions use any values that are defined in the head basic block,
195 /// the defining instructions are added to InsertAfter.
197 /// Any clobbered regunits are added to ClobberedRegUnits.
199 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
200 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
201 // get right.
202 if (!MBB->livein_empty()) {
203 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
204 return false;
207 unsigned InstrCount = 0;
209 // Check all instructions, except the terminators. It is assumed that
210 // terminators never have side effects or define any used register values.
211 for (MachineInstr &MI :
212 llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) {
213 if (MI.isDebugInstr())
214 continue;
216 if (++InstrCount > BlockInstrLimit && !Stress) {
217 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
218 << BlockInstrLimit << " instructions.\n");
219 return false;
222 // There shouldn't normally be any phis in a single-predecessor block.
223 if (MI.isPHI()) {
224 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI);
225 return false;
228 // Don't speculate loads. Note that it may be possible and desirable to
229 // speculate GOT or constant pool loads that are guaranteed not to trap,
230 // but we don't support that for now.
231 if (MI.mayLoad()) {
232 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI);
233 return false;
236 // We never speculate stores, so an AA pointer isn't necessary.
237 bool DontMoveAcrossStore = true;
238 if (!MI.isSafeToMove(DontMoveAcrossStore)) {
239 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI);
240 return false;
243 // Check for any dependencies on Head instructions.
244 if (!InstrDependenciesAllowIfConv(&MI))
245 return false;
247 return true;
250 /// Check that there is no dependencies preventing if conversion.
252 /// If instruction uses any values that are defined in the head basic block,
253 /// the defining instructions are added to InsertAfter.
254 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
255 for (const MachineOperand &MO : I->operands()) {
256 if (MO.isRegMask()) {
257 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
258 return false;
260 if (!MO.isReg())
261 continue;
262 Register Reg = MO.getReg();
264 // Remember clobbered regunits.
265 if (MO.isDef() && Reg.isPhysical())
266 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
267 ClobberedRegUnits.set(Unit);
269 if (!MO.readsReg() || !Reg.isVirtual())
270 continue;
271 MachineInstr *DefMI = MRI->getVRegDef(Reg);
272 if (!DefMI || DefMI->getParent() != Head)
273 continue;
274 if (InsertAfter.insert(DefMI).second)
275 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
276 << *DefMI);
277 if (DefMI->isTerminator()) {
278 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
279 return false;
282 return true;
285 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely
286 /// be predicates. The terminators are not considered.
288 /// If instructions use any values that are defined in the head basic block,
289 /// the defining instructions are added to InsertAfter.
291 /// Any clobbered regunits are added to ClobberedRegUnits.
293 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
294 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
295 // get right.
296 if (!MBB->livein_empty()) {
297 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
298 return false;
301 unsigned InstrCount = 0;
303 // Check all instructions, except the terminators. It is assumed that
304 // terminators never have side effects or define any used register values.
305 for (MachineBasicBlock::iterator I = MBB->begin(),
306 E = MBB->getFirstTerminator();
307 I != E; ++I) {
308 if (I->isDebugInstr())
309 continue;
311 if (++InstrCount > BlockInstrLimit && !Stress) {
312 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
313 << BlockInstrLimit << " instructions.\n");
314 return false;
317 // There shouldn't normally be any phis in a single-predecessor block.
318 if (I->isPHI()) {
319 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
320 return false;
323 // Check that instruction is predicable
324 if (!TII->isPredicable(*I)) {
325 LLVM_DEBUG(dbgs() << "Isn't predicable: " << *I);
326 return false;
329 // Check that instruction is not already predicated.
330 if (TII->isPredicated(*I) && !TII->canPredicatePredicatedInstr(*I)) {
331 LLVM_DEBUG(dbgs() << "Is already predicated: " << *I);
332 return false;
335 // Check for any dependencies on Head instructions.
336 if (!InstrDependenciesAllowIfConv(&(*I)))
337 return false;
339 return true;
342 // Apply predicate to all instructions in the machine block.
343 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
344 auto Condition = Cond;
345 if (ReversePredicate) {
346 bool CanRevCond = !TII->reverseBranchCondition(Condition);
347 assert(CanRevCond && "Reversed predicate is not supported");
348 (void)CanRevCond;
350 // Terminators don't need to be predicated as they will be removed.
351 for (MachineBasicBlock::iterator I = MBB->begin(),
352 E = MBB->getFirstTerminator();
353 I != E; ++I) {
354 if (I->isDebugInstr())
355 continue;
356 TII->PredicateInstruction(*I, Condition);
360 /// Find an insertion point in Head for the speculated instructions. The
361 /// insertion point must be:
363 /// 1. Before any terminators.
364 /// 2. After any instructions in InsertAfter.
365 /// 3. Not have any clobbered regunits live.
367 /// This function sets InsertionPoint and returns true when successful, it
368 /// returns false if no valid insertion point could be found.
370 bool SSAIfConv::findInsertionPoint() {
371 // Keep track of live regunits before the current position.
372 // Only track RegUnits that are also in ClobberedRegUnits.
373 LiveRegUnits.clear();
374 SmallVector<MCRegister, 8> Reads;
375 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
376 MachineBasicBlock::iterator I = Head->end();
377 MachineBasicBlock::iterator B = Head->begin();
378 while (I != B) {
379 --I;
380 // Some of the conditional code depends in I.
381 if (InsertAfter.count(&*I)) {
382 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
383 return false;
386 // Update live regunits.
387 for (const MachineOperand &MO : I->operands()) {
388 // We're ignoring regmask operands. That is conservatively correct.
389 if (!MO.isReg())
390 continue;
391 Register Reg = MO.getReg();
392 if (!Reg.isPhysical())
393 continue;
394 // I clobbers Reg, so it isn't live before I.
395 if (MO.isDef())
396 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
397 LiveRegUnits.erase(Unit);
398 // Unless I reads Reg.
399 if (MO.readsReg())
400 Reads.push_back(Reg.asMCReg());
402 // Anything read by I is live before I.
403 while (!Reads.empty())
404 for (MCRegUnit Unit : TRI->regunits(Reads.pop_back_val()))
405 if (ClobberedRegUnits.test(Unit))
406 LiveRegUnits.insert(Unit);
408 // We can't insert before a terminator.
409 if (I != FirstTerm && I->isTerminator())
410 continue;
412 // Some of the clobbered registers are live before I, not a valid insertion
413 // point.
414 if (!LiveRegUnits.empty()) {
415 LLVM_DEBUG({
416 dbgs() << "Would clobber";
417 for (unsigned LRU : LiveRegUnits)
418 dbgs() << ' ' << printRegUnit(LRU, TRI);
419 dbgs() << " live before " << *I;
421 continue;
424 // This is a valid insertion point.
425 InsertionPoint = I;
426 LLVM_DEBUG(dbgs() << "Can insert before " << *I);
427 return true;
429 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
430 return false;
435 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
436 /// a potential candidate for if-conversion. Fill out the internal state.
438 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
439 Head = MBB;
440 TBB = FBB = Tail = nullptr;
442 if (Head->succ_size() != 2)
443 return false;
444 MachineBasicBlock *Succ0 = Head->succ_begin()[0];
445 MachineBasicBlock *Succ1 = Head->succ_begin()[1];
447 // Canonicalize so Succ0 has MBB as its single predecessor.
448 if (Succ0->pred_size() != 1)
449 std::swap(Succ0, Succ1);
451 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
452 return false;
454 Tail = Succ0->succ_begin()[0];
456 // This is not a triangle.
457 if (Tail != Succ1) {
458 // Check for a diamond. We won't deal with any critical edges.
459 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
460 Succ1->succ_begin()[0] != Tail)
461 return false;
462 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
463 << printMBBReference(*Succ0) << "/"
464 << printMBBReference(*Succ1) << " -> "
465 << printMBBReference(*Tail) << '\n');
467 // Live-in physregs are tricky to get right when speculating code.
468 if (!Tail->livein_empty()) {
469 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
470 return false;
472 } else {
473 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
474 << printMBBReference(*Succ0) << " -> "
475 << printMBBReference(*Tail) << '\n');
478 // This is a triangle or a diamond.
479 // Skip if we cannot predicate and there are no phis skip as there must be
480 // side effects that can only be handled with predication.
481 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
482 LLVM_DEBUG(dbgs() << "No phis in tail.\n");
483 return false;
486 // The branch we're looking to eliminate must be analyzable.
487 Cond.clear();
488 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
489 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
490 return false;
493 // This is weird, probably some sort of degenerate CFG.
494 if (!TBB) {
495 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
496 return false;
499 // Make sure the analyzed branch is conditional; one of the successors
500 // could be a landing pad. (Empty landing pads can be generated on Windows.)
501 if (Cond.empty()) {
502 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
503 return false;
506 // analyzeBranch doesn't set FBB on a fall-through branch.
507 // Make sure it is always set.
508 FBB = TBB == Succ0 ? Succ1 : Succ0;
510 // Any phis in the tail block must be convertible to selects.
511 PHIs.clear();
512 MachineBasicBlock *TPred = getTPred();
513 MachineBasicBlock *FPred = getFPred();
514 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
515 I != E && I->isPHI(); ++I) {
516 PHIs.push_back(&*I);
517 PHIInfo &PI = PHIs.back();
518 // Find PHI operands corresponding to TPred and FPred.
519 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
520 if (PI.PHI->getOperand(i+1).getMBB() == TPred)
521 PI.TReg = PI.PHI->getOperand(i).getReg();
522 if (PI.PHI->getOperand(i+1).getMBB() == FPred)
523 PI.FReg = PI.PHI->getOperand(i).getReg();
525 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
526 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");
528 // Get target information.
529 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
530 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
531 PI.FCycles)) {
532 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
533 return false;
537 // Check that the conditional instructions can be speculated.
538 InsertAfter.clear();
539 ClobberedRegUnits.reset();
540 if (Predicate) {
541 if (TBB != Tail && !canPredicateInstrs(TBB))
542 return false;
543 if (FBB != Tail && !canPredicateInstrs(FBB))
544 return false;
545 } else {
546 if (TBB != Tail && !canSpeculateInstrs(TBB))
547 return false;
548 if (FBB != Tail && !canSpeculateInstrs(FBB))
549 return false;
552 // Try to find a valid insertion point for the speculated instructions in the
553 // head basic block.
554 if (!findInsertionPoint())
555 return false;
557 if (isTriangle())
558 ++NumTrianglesSeen;
559 else
560 ++NumDiamondsSeen;
561 return true;
564 /// \return true iff the two registers are known to have the same value.
565 static bool hasSameValue(const MachineRegisterInfo &MRI,
566 const TargetInstrInfo *TII, Register TReg,
567 Register FReg) {
568 if (TReg == FReg)
569 return true;
571 if (!TReg.isVirtual() || !FReg.isVirtual())
572 return false;
574 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg);
575 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg);
576 if (!TDef || !FDef)
577 return false;
579 // If there are side-effects, all bets are off.
580 if (TDef->hasUnmodeledSideEffects())
581 return false;
583 // If the instruction could modify memory, or there may be some intervening
584 // store between the two, we can't consider them to be equal.
585 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad())
586 return false;
588 // We also can't guarantee that they are the same if, for example, the
589 // instructions are both a copy from a physical reg, because some other
590 // instruction may have modified the value in that reg between the two
591 // defining insts.
592 if (any_of(TDef->uses(), [](const MachineOperand &MO) {
593 return MO.isReg() && MO.getReg().isPhysical();
595 return false;
597 // Check whether the two defining instructions produce the same value(s).
598 if (!TII->produceSameValue(*TDef, *FDef, &MRI))
599 return false;
601 // Further, check that the two defs come from corresponding operands.
602 int TIdx = TDef->findRegisterDefOperandIdx(TReg, /*TRI=*/nullptr);
603 int FIdx = FDef->findRegisterDefOperandIdx(FReg, /*TRI=*/nullptr);
604 if (TIdx == -1 || FIdx == -1)
605 return false;
607 return TIdx == FIdx;
610 /// replacePHIInstrs - Completely replace PHI instructions with selects.
611 /// This is possible when the only Tail predecessors are the if-converted
612 /// blocks.
613 void SSAIfConv::replacePHIInstrs() {
614 assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
615 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
616 assert(FirstTerm != Head->end() && "No terminators");
617 DebugLoc HeadDL = FirstTerm->getDebugLoc();
619 // Convert all PHIs to select instructions inserted before FirstTerm.
620 for (PHIInfo &PI : PHIs) {
621 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
622 Register DstReg = PI.PHI->getOperand(0).getReg();
623 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
624 // We do not need the select instruction if both incoming values are
625 // equal, but we do need a COPY.
626 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg)
627 .addReg(PI.TReg);
628 } else {
629 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg,
630 PI.FReg);
632 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
633 PI.PHI->eraseFromParent();
634 PI.PHI = nullptr;
638 /// rewritePHIOperands - When there are additional Tail predecessors, insert
639 /// select instructions in Head and rewrite PHI operands to use the selects.
640 /// Keep the PHI instructions in Tail to handle the other predecessors.
641 void SSAIfConv::rewritePHIOperands() {
642 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
643 assert(FirstTerm != Head->end() && "No terminators");
644 DebugLoc HeadDL = FirstTerm->getDebugLoc();
646 // Convert all PHIs to select instructions inserted before FirstTerm.
647 for (PHIInfo &PI : PHIs) {
648 unsigned DstReg = 0;
650 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
651 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
652 // We do not need the select instruction if both incoming values are
653 // equal.
654 DstReg = PI.TReg;
655 } else {
656 Register PHIDst = PI.PHI->getOperand(0).getReg();
657 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
658 TII->insertSelect(*Head, FirstTerm, HeadDL,
659 DstReg, Cond, PI.TReg, PI.FReg);
660 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
663 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
664 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
665 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
666 if (MBB == getTPred()) {
667 PI.PHI->getOperand(i-1).setMBB(Head);
668 PI.PHI->getOperand(i-2).setReg(DstReg);
669 } else if (MBB == getFPred()) {
670 PI.PHI->removeOperand(i-1);
671 PI.PHI->removeOperand(i-2);
674 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI);
678 /// convertIf - Execute the if conversion after canConvertIf has determined the
679 /// feasibility.
681 /// Any basic blocks that need to be erased will be added to RemoveBlocks.
683 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemoveBlocks,
684 bool Predicate) {
685 assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");
687 // Update statistics.
688 if (isTriangle())
689 ++NumTrianglesConv;
690 else
691 ++NumDiamondsConv;
693 // Move all instructions into Head, except for the terminators.
694 if (TBB != Tail) {
695 if (Predicate)
696 PredicateBlock(TBB, /*ReversePredicate=*/false);
697 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
699 if (FBB != Tail) {
700 if (Predicate)
701 PredicateBlock(FBB, /*ReversePredicate=*/true);
702 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
704 // Are there extra Tail predecessors?
705 bool ExtraPreds = Tail->pred_size() != 2;
706 if (ExtraPreds)
707 rewritePHIOperands();
708 else
709 replacePHIInstrs();
711 // Fix up the CFG, temporarily leave Head without any successors.
712 Head->removeSuccessor(TBB);
713 Head->removeSuccessor(FBB, true);
714 if (TBB != Tail)
715 TBB->removeSuccessor(Tail, true);
716 if (FBB != Tail)
717 FBB->removeSuccessor(Tail, true);
719 // Fix up Head's terminators.
720 // It should become a single branch or a fallthrough.
721 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
722 TII->removeBranch(*Head);
724 // Mark the now empty conditional blocks for removal and move them to the end.
725 // It is likely that Head can fall
726 // through to Tail, and we can join the two blocks.
727 if (TBB != Tail) {
728 RemoveBlocks.push_back(TBB);
729 if (TBB != &TBB->getParent()->back())
730 TBB->moveAfter(&TBB->getParent()->back());
732 if (FBB != Tail) {
733 RemoveBlocks.push_back(FBB);
734 if (FBB != &FBB->getParent()->back())
735 FBB->moveAfter(&FBB->getParent()->back());
738 assert(Head->succ_empty() && "Additional head successors?");
739 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
740 // Splice Tail onto the end of Head.
741 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
742 << " into head " << printMBBReference(*Head) << '\n');
743 Head->splice(Head->end(), Tail,
744 Tail->begin(), Tail->end());
745 Head->transferSuccessorsAndUpdatePHIs(Tail);
746 RemoveBlocks.push_back(Tail);
747 if (Tail != &Tail->getParent()->back())
748 Tail->moveAfter(&Tail->getParent()->back());
749 } else {
750 // We need a branch to Tail, let code placement work it out later.
751 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
752 SmallVector<MachineOperand, 0> EmptyCond;
753 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
754 Head->addSuccessor(Tail);
756 LLVM_DEBUG(dbgs() << *Head);
759 //===----------------------------------------------------------------------===//
760 // EarlyIfConverter Pass
761 //===----------------------------------------------------------------------===//
763 namespace {
764 class EarlyIfConverter {
765 const TargetInstrInfo *TII = nullptr;
766 const TargetRegisterInfo *TRI = nullptr;
767 MCSchedModel SchedModel;
768 MachineRegisterInfo *MRI = nullptr;
769 MachineDominatorTree *DomTree = nullptr;
770 MachineLoopInfo *Loops = nullptr;
771 MachineTraceMetrics *Traces = nullptr;
772 MachineTraceMetrics::Ensemble *MinInstr = nullptr;
773 SSAIfConv IfConv;
775 public:
776 EarlyIfConverter(MachineDominatorTree &DT, MachineLoopInfo &LI,
777 MachineTraceMetrics &MTM)
778 : DomTree(&DT), Loops(&LI), Traces(&MTM) {}
779 EarlyIfConverter() = delete;
781 bool run(MachineFunction &MF);
783 private:
784 bool tryConvertIf(MachineBasicBlock *);
785 void invalidateTraces();
786 bool shouldConvertIf();
789 class EarlyIfConverterLegacy : public MachineFunctionPass {
790 public:
791 static char ID;
792 EarlyIfConverterLegacy() : MachineFunctionPass(ID) {}
793 void getAnalysisUsage(AnalysisUsage &AU) const override;
794 bool runOnMachineFunction(MachineFunction &MF) override;
795 StringRef getPassName() const override { return "Early If-Conversion"; }
797 } // end anonymous namespace
799 char EarlyIfConverterLegacy::ID = 0;
800 char &llvm::EarlyIfConverterLegacyID = EarlyIfConverterLegacy::ID;
802 INITIALIZE_PASS_BEGIN(EarlyIfConverterLegacy, DEBUG_TYPE, "Early If Converter",
803 false, false)
804 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
805 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
806 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetricsWrapperPass)
807 INITIALIZE_PASS_END(EarlyIfConverterLegacy, DEBUG_TYPE, "Early If Converter",
808 false, false)
810 void EarlyIfConverterLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
811 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
812 AU.addRequired<MachineDominatorTreeWrapperPass>();
813 AU.addPreserved<MachineDominatorTreeWrapperPass>();
814 AU.addRequired<MachineLoopInfoWrapperPass>();
815 AU.addPreserved<MachineLoopInfoWrapperPass>();
816 AU.addRequired<MachineTraceMetricsWrapperPass>();
817 AU.addPreserved<MachineTraceMetricsWrapperPass>();
818 MachineFunctionPass::getAnalysisUsage(AU);
821 namespace {
822 /// Update the dominator tree after if-conversion erased some blocks.
823 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
824 ArrayRef<MachineBasicBlock *> Removed) {
825 // convertIf can remove TBB, FBB, and Tail can be merged into Head.
826 // TBB and FBB should not dominate any blocks.
827 // Tail children should be transferred to Head.
828 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
829 for (auto *B : Removed) {
830 MachineDomTreeNode *Node = DomTree->getNode(B);
831 assert(Node != HeadNode && "Cannot erase the head node");
832 while (Node->getNumChildren()) {
833 assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
834 DomTree->changeImmediateDominator(Node->back(), HeadNode);
836 DomTree->eraseNode(B);
840 /// Update LoopInfo after if-conversion.
841 void updateLoops(MachineLoopInfo *Loops,
842 ArrayRef<MachineBasicBlock *> Removed) {
843 // If-conversion doesn't change loop structure, and it doesn't mess with back
844 // edges, so updating LoopInfo is simply removing the dead blocks.
845 for (auto *B : Removed)
846 Loops->removeBlock(B);
848 } // namespace
850 /// Invalidate MachineTraceMetrics before if-conversion.
851 void EarlyIfConverter::invalidateTraces() {
852 Traces->verifyAnalysis();
853 Traces->invalidate(IfConv.Head);
854 Traces->invalidate(IfConv.Tail);
855 Traces->invalidate(IfConv.TBB);
856 Traces->invalidate(IfConv.FBB);
857 Traces->verifyAnalysis();
860 // Adjust cycles with downward saturation.
861 static unsigned adjCycles(unsigned Cyc, int Delta) {
862 if (Delta < 0 && Cyc + Delta > Cyc)
863 return 0;
864 return Cyc + Delta;
867 namespace {
868 /// Helper class to simplify emission of cycle counts into optimization remarks.
869 struct Cycles {
870 const char *Key;
871 unsigned Value;
873 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) {
874 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles");
876 } // anonymous namespace
878 /// Apply cost model and heuristics to the if-conversion in IfConv.
879 /// Return true if the conversion is a good idea.
881 bool EarlyIfConverter::shouldConvertIf() {
882 // Stress testing mode disables all cost considerations.
883 if (Stress)
884 return true;
886 // Do not try to if-convert if the condition has a high chance of being
887 // predictable.
888 MachineLoop *CurrentLoop = Loops->getLoopFor(IfConv.Head);
889 // If the condition is in a loop, consider it predictable if the condition
890 // itself or all its operands are loop-invariant. E.g. this considers a load
891 // from a loop-invariant address predictable; we were unable to prove that it
892 // doesn't alias any of the memory-writes in the loop, but it is likely to
893 // read to same value multiple times.
894 if (CurrentLoop && any_of(IfConv.Cond, [&](MachineOperand &MO) {
895 if (!MO.isReg() || !MO.isUse())
896 return false;
897 Register Reg = MO.getReg();
898 if (Reg.isPhysical())
899 return false;
901 MachineInstr *Def = MRI->getVRegDef(Reg);
902 return CurrentLoop->isLoopInvariant(*Def) ||
903 all_of(Def->operands(), [&](MachineOperand &Op) {
904 if (Op.isImm())
905 return true;
906 if (!MO.isReg() || !MO.isUse())
907 return false;
908 Register Reg = MO.getReg();
909 if (Reg.isPhysical())
910 return false;
912 MachineInstr *Def = MRI->getVRegDef(Reg);
913 return CurrentLoop->isLoopInvariant(*Def);
916 return false;
918 if (!MinInstr)
919 MinInstr = Traces->getEnsemble(MachineTraceStrategy::TS_MinInstrCount);
921 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
922 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
923 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
924 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
925 FBBTrace.getCriticalPath());
927 // Set a somewhat arbitrary limit on the critical path extension we accept.
928 unsigned CritLimit = SchedModel.MispredictPenalty/2;
930 MachineBasicBlock &MBB = *IfConv.Head;
931 MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr);
933 // If-conversion only makes sense when there is unexploited ILP. Compute the
934 // maximum-ILP resource length of the trace after if-conversion. Compare it
935 // to the shortest critical path.
936 SmallVector<const MachineBasicBlock*, 1> ExtraBlocks;
937 if (IfConv.TBB != IfConv.Tail)
938 ExtraBlocks.push_back(IfConv.TBB);
939 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
940 LLVM_DEBUG(dbgs() << "Resource length " << ResLength
941 << ", minimal critical path " << MinCrit << '\n');
942 if (ResLength > MinCrit + CritLimit) {
943 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
944 MORE.emit([&]() {
945 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
946 MBB.findDebugLoc(MBB.back()), &MBB);
947 R << "did not if-convert branch: the resulting critical path ("
948 << Cycles{"ResLength", ResLength}
949 << ") would extend the shorter leg's critical path ("
950 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of "
951 << Cycles{"CritLimit", CritLimit}
952 << ", which cannot be hidden by available ILP.";
953 return R;
955 return false;
958 // Assume that the depth of the first head terminator will also be the depth
959 // of the select instruction inserted, as determined by the flag dependency.
960 // TBB / FBB data dependencies may delay the select even more.
961 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
962 unsigned BranchDepth =
963 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
964 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');
966 // Look at all the tail phis, and compute the critical path extension caused
967 // by inserting select instructions.
968 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
969 struct CriticalPathInfo {
970 unsigned Extra; // Count of extra cycles that the component adds.
971 unsigned Depth; // Absolute depth of the component in cycles.
973 CriticalPathInfo Cond{};
974 CriticalPathInfo TBlock{};
975 CriticalPathInfo FBlock{};
976 bool ShouldConvert = true;
977 for (SSAIfConv::PHIInfo &PI : IfConv.PHIs) {
978 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
979 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
980 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);
982 // The condition is pulled into the critical path.
983 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
984 if (CondDepth > MaxDepth) {
985 unsigned Extra = CondDepth - MaxDepth;
986 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
987 if (Extra > Cond.Extra)
988 Cond = {Extra, CondDepth};
989 if (Extra > CritLimit) {
990 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
991 ShouldConvert = false;
995 // The TBB value is pulled into the critical path.
996 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
997 if (TDepth > MaxDepth) {
998 unsigned Extra = TDepth - MaxDepth;
999 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
1000 if (Extra > TBlock.Extra)
1001 TBlock = {Extra, TDepth};
1002 if (Extra > CritLimit) {
1003 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
1004 ShouldConvert = false;
1008 // The FBB value is pulled into the critical path.
1009 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
1010 if (FDepth > MaxDepth) {
1011 unsigned Extra = FDepth - MaxDepth;
1012 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
1013 if (Extra > FBlock.Extra)
1014 FBlock = {Extra, FDepth};
1015 if (Extra > CritLimit) {
1016 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
1017 ShouldConvert = false;
1022 // Organize by "short" and "long" legs, since the diagnostics get confusing
1023 // when referring to the "true" and "false" sides of the branch, given that
1024 // those don't always correlate with what the user wrote in source-terms.
1025 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock;
1026 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock;
1028 if (ShouldConvert) {
1029 MORE.emit([&]() {
1030 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion",
1031 MBB.back().getDebugLoc(), &MBB);
1032 R << "performing if-conversion on branch: the condition adds "
1033 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1034 if (Short.Extra > 0)
1035 R << ", and the short leg adds another "
1036 << Cycles{"ShortCycles", Short.Extra};
1037 if (Long.Extra > 0)
1038 R << ", and the long leg adds another "
1039 << Cycles{"LongCycles", Long.Extra};
1040 R << ", each staying under the threshold of "
1041 << Cycles{"CritLimit", CritLimit} << ".";
1042 return R;
1044 } else {
1045 MORE.emit([&]() {
1046 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
1047 MBB.back().getDebugLoc(), &MBB);
1048 R << "did not if-convert branch: the condition would add "
1049 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1050 if (Cond.Extra > CritLimit)
1051 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1052 if (Short.Extra > 0) {
1053 R << ", and the short leg would add another "
1054 << Cycles{"ShortCycles", Short.Extra};
1055 if (Short.Extra > CritLimit)
1056 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1058 if (Long.Extra > 0) {
1059 R << ", and the long leg would add another "
1060 << Cycles{"LongCycles", Long.Extra};
1061 if (Long.Extra > CritLimit)
1062 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1064 R << ".";
1065 return R;
1069 return ShouldConvert;
1072 /// Attempt repeated if-conversion on MBB, return true if successful.
1074 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
1075 bool Changed = false;
1076 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
1077 // If-convert MBB and update analyses.
1078 invalidateTraces();
1079 SmallVector<MachineBasicBlock *, 4> RemoveBlocks;
1080 IfConv.convertIf(RemoveBlocks);
1081 Changed = true;
1082 updateDomTree(DomTree, IfConv, RemoveBlocks);
1083 for (MachineBasicBlock *MBB : RemoveBlocks)
1084 MBB->eraseFromParent();
1085 updateLoops(Loops, RemoveBlocks);
1087 return Changed;
1090 bool EarlyIfConverter::run(MachineFunction &MF) {
1091 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
1092 << "********** Function: " << MF.getName() << '\n');
1094 // Only run if conversion if the target wants it.
1095 const TargetSubtargetInfo &STI = MF.getSubtarget();
1096 if (!STI.enableEarlyIfConversion())
1097 return false;
1099 TII = STI.getInstrInfo();
1100 TRI = STI.getRegisterInfo();
1101 SchedModel = STI.getSchedModel();
1102 MRI = &MF.getRegInfo();
1103 MinInstr = nullptr;
1105 bool Changed = false;
1106 IfConv.init(MF);
1108 // Visit blocks in dominator tree post-order. The post-order enables nested
1109 // if-conversion in a single pass. The tryConvertIf() function may erase
1110 // blocks, but only blocks dominated by the head block. This makes it safe to
1111 // update the dominator tree while the post-order iterator is still active.
1112 for (auto *DomNode : post_order(DomTree))
1113 if (tryConvertIf(DomNode->getBlock()))
1114 Changed = true;
1116 return Changed;
1119 PreservedAnalyses
1120 EarlyIfConverterPass::run(MachineFunction &MF,
1121 MachineFunctionAnalysisManager &MFAM) {
1122 MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(MF);
1123 MachineLoopInfo &LI = MFAM.getResult<MachineLoopAnalysis>(MF);
1124 MachineTraceMetrics &MTM = MFAM.getResult<MachineTraceMetricsAnalysis>(MF);
1126 EarlyIfConverter Impl(MDT, LI, MTM);
1127 bool Changed = Impl.run(MF);
1128 if (!Changed)
1129 return PreservedAnalyses::all();
1131 auto PA = getMachineFunctionPassPreservedAnalyses();
1132 PA.preserve<MachineDominatorTreeAnalysis>();
1133 PA.preserve<MachineLoopAnalysis>();
1134 PA.preserve<MachineTraceMetricsAnalysis>();
1135 return PA;
1138 bool EarlyIfConverterLegacy::runOnMachineFunction(MachineFunction &MF) {
1139 if (skipFunction(MF.getFunction()))
1140 return false;
1142 MachineDominatorTree &MDT =
1143 getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1144 MachineLoopInfo &LI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1145 MachineTraceMetrics &MTM =
1146 getAnalysis<MachineTraceMetricsWrapperPass>().getMTM();
1148 return EarlyIfConverter(MDT, LI, MTM).run(MF);
1151 //===----------------------------------------------------------------------===//
1152 // EarlyIfPredicator Pass
1153 //===----------------------------------------------------------------------===//
1155 namespace {
1156 class EarlyIfPredicator : public MachineFunctionPass {
1157 const TargetInstrInfo *TII = nullptr;
1158 const TargetRegisterInfo *TRI = nullptr;
1159 TargetSchedModel SchedModel;
1160 MachineRegisterInfo *MRI = nullptr;
1161 MachineDominatorTree *DomTree = nullptr;
1162 MachineBranchProbabilityInfo *MBPI = nullptr;
1163 MachineLoopInfo *Loops = nullptr;
1164 SSAIfConv IfConv;
1166 public:
1167 static char ID;
1168 EarlyIfPredicator() : MachineFunctionPass(ID) {}
1169 void getAnalysisUsage(AnalysisUsage &AU) const override;
1170 bool runOnMachineFunction(MachineFunction &MF) override;
1171 StringRef getPassName() const override { return "Early If-predicator"; }
1173 protected:
1174 bool tryConvertIf(MachineBasicBlock *);
1175 bool shouldConvertIf();
1177 } // end anonymous namespace
1179 #undef DEBUG_TYPE
1180 #define DEBUG_TYPE "early-if-predicator"
1182 char EarlyIfPredicator::ID = 0;
1183 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;
1185 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
1186 false, false)
1187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
1188 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
1189 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
1190 false)
1192 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
1193 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
1194 AU.addRequired<MachineDominatorTreeWrapperPass>();
1195 AU.addPreserved<MachineDominatorTreeWrapperPass>();
1196 AU.addRequired<MachineLoopInfoWrapperPass>();
1197 AU.addPreserved<MachineLoopInfoWrapperPass>();
1198 MachineFunctionPass::getAnalysisUsage(AU);
1201 /// Apply the target heuristic to decide if the transformation is profitable.
1202 bool EarlyIfPredicator::shouldConvertIf() {
1203 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
1204 if (IfConv.isTriangle()) {
1205 MachineBasicBlock &IfBlock =
1206 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;
1208 unsigned ExtraPredCost = 0;
1209 unsigned Cycles = 0;
1210 for (MachineInstr &I : IfBlock) {
1211 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1212 if (NumCycles > 1)
1213 Cycles += NumCycles - 1;
1214 ExtraPredCost += TII->getPredicationCost(I);
1217 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
1218 TrueProbability);
1220 unsigned TExtra = 0;
1221 unsigned FExtra = 0;
1222 unsigned TCycle = 0;
1223 unsigned FCycle = 0;
1224 for (MachineInstr &I : *IfConv.TBB) {
1225 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1226 if (NumCycles > 1)
1227 TCycle += NumCycles - 1;
1228 TExtra += TII->getPredicationCost(I);
1230 for (MachineInstr &I : *IfConv.FBB) {
1231 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1232 if (NumCycles > 1)
1233 FCycle += NumCycles - 1;
1234 FExtra += TII->getPredicationCost(I);
1236 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
1237 FCycle, FExtra, TrueProbability);
1240 /// Attempt repeated if-conversion on MBB, return true if successful.
1242 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
1243 bool Changed = false;
1244 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
1245 // If-convert MBB and update analyses.
1246 SmallVector<MachineBasicBlock *, 4> RemoveBlocks;
1247 IfConv.convertIf(RemoveBlocks, /*Predicate*/ true);
1248 Changed = true;
1249 updateDomTree(DomTree, IfConv, RemoveBlocks);
1250 for (MachineBasicBlock *MBB : RemoveBlocks)
1251 MBB->eraseFromParent();
1252 updateLoops(Loops, RemoveBlocks);
1254 return Changed;
1257 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
1258 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
1259 << "********** Function: " << MF.getName() << '\n');
1260 if (skipFunction(MF.getFunction()))
1261 return false;
1263 const TargetSubtargetInfo &STI = MF.getSubtarget();
1264 TII = STI.getInstrInfo();
1265 TRI = STI.getRegisterInfo();
1266 MRI = &MF.getRegInfo();
1267 SchedModel.init(&STI);
1268 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1269 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1270 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
1272 bool Changed = false;
1273 IfConv.init(MF);
1275 // Visit blocks in dominator tree post-order. The post-order enables nested
1276 // if-conversion in a single pass. The tryConvertIf() function may erase
1277 // blocks, but only blocks dominated by the head block. This makes it safe to
1278 // update the dominator tree while the post-order iterator is still active.
1279 for (auto *DomNode : post_order(DomTree))
1280 if (tryConvertIf(DomNode->getBlock()))
1281 Changed = true;
1283 return Changed;