1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/InterleavedAccess.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetPassConfig.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstIterator.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Transforms/Utils/Local.h"
77 #define DEBUG_TYPE "interleaved-access"
79 static cl::opt
<bool> LowerInterleavedAccesses(
80 "lower-interleaved-accesses",
81 cl::desc("Enable lowering interleaved accesses to intrinsics"),
82 cl::init(true), cl::Hidden
);
86 class InterleavedAccessImpl
{
87 friend class InterleavedAccess
;
90 InterleavedAccessImpl() = default;
91 InterleavedAccessImpl(DominatorTree
*DT
, const TargetLowering
*TLI
)
92 : DT(DT
), TLI(TLI
), MaxFactor(TLI
->getMaxSupportedInterleaveFactor()) {}
93 bool runOnFunction(Function
&F
);
96 DominatorTree
*DT
= nullptr;
97 const TargetLowering
*TLI
= nullptr;
99 /// The maximum supported interleave factor.
100 unsigned MaxFactor
= 0u;
102 /// Transform an interleaved load into target specific intrinsics.
103 bool lowerInterleavedLoad(LoadInst
*LI
,
104 SmallSetVector
<Instruction
*, 32> &DeadInsts
);
106 /// Transform an interleaved store into target specific intrinsics.
107 bool lowerInterleavedStore(StoreInst
*SI
,
108 SmallSetVector
<Instruction
*, 32> &DeadInsts
);
110 /// Transform a load and a deinterleave intrinsic into target specific
112 bool lowerDeinterleaveIntrinsic(IntrinsicInst
*II
,
113 SmallSetVector
<Instruction
*, 32> &DeadInsts
);
115 /// Transform an interleave intrinsic and a store into target specific
117 bool lowerInterleaveIntrinsic(IntrinsicInst
*II
,
118 SmallSetVector
<Instruction
*, 32> &DeadInsts
);
120 /// Returns true if the uses of an interleaved load by the
121 /// extractelement instructions in \p Extracts can be replaced by uses of the
122 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
123 /// replacements are also performed.
124 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
125 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
127 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
128 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
129 /// interleaving load. Any newly created shuffles that operate on \p LI will
130 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
132 bool replaceBinOpShuffles(ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
133 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
,
137 class InterleavedAccess
: public FunctionPass
{
138 InterleavedAccessImpl Impl
;
143 InterleavedAccess() : FunctionPass(ID
) {
144 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
147 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
149 bool runOnFunction(Function
&F
) override
;
151 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
152 AU
.addRequired
<DominatorTreeWrapperPass
>();
153 AU
.setPreservesCFG();
157 } // end anonymous namespace.
159 PreservedAnalyses
InterleavedAccessPass::run(Function
&F
,
160 FunctionAnalysisManager
&FAM
) {
161 auto *DT
= &FAM
.getResult
<DominatorTreeAnalysis
>(F
);
162 auto *TLI
= TM
->getSubtargetImpl(F
)->getTargetLowering();
163 InterleavedAccessImpl
Impl(DT
, TLI
);
164 bool Changed
= Impl
.runOnFunction(F
);
167 return PreservedAnalyses::all();
169 PreservedAnalyses PA
;
170 PA
.preserveSet
<CFGAnalyses
>();
174 char InterleavedAccess::ID
= 0;
176 bool InterleavedAccess::runOnFunction(Function
&F
) {
177 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
178 if (!TPC
|| !LowerInterleavedAccesses
)
181 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
183 Impl
.DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
184 auto &TM
= TPC
->getTM
<TargetMachine
>();
185 Impl
.TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
186 Impl
.MaxFactor
= Impl
.TLI
->getMaxSupportedInterleaveFactor();
188 return Impl
.runOnFunction(F
);
191 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
192 "Lower interleaved memory accesses to target specific intrinsics", false,
194 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
195 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
196 "Lower interleaved memory accesses to target specific intrinsics", false,
199 FunctionPass
*llvm::createInterleavedAccessPass() {
200 return new InterleavedAccess();
203 /// Check if the mask is a DE-interleave mask for an interleaved load.
205 /// E.g. DE-interleave masks (Factor = 2) could be:
206 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
207 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
208 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
209 unsigned &Index
, unsigned MaxFactor
,
210 unsigned NumLoadElements
) {
214 // Check potential Factors.
215 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
216 // Make sure we don't produce a load wider than the input load.
217 if (Mask
.size() * Factor
> NumLoadElements
)
219 if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
226 /// Check if the mask can be used in an interleaved store.
228 /// It checks for a more general pattern than the RE-interleave mask.
229 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
230 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
231 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
232 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
234 /// The particular case of an RE-interleave mask is:
235 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
236 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
237 static bool isReInterleaveMask(ShuffleVectorInst
*SVI
, unsigned &Factor
,
238 unsigned MaxFactor
) {
239 unsigned NumElts
= SVI
->getShuffleMask().size();
243 // Check potential Factors.
244 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
245 if (SVI
->isInterleave(Factor
))
252 bool InterleavedAccessImpl::lowerInterleavedLoad(
253 LoadInst
*LI
, SmallSetVector
<Instruction
*, 32> &DeadInsts
) {
254 if (!LI
->isSimple() || isa
<ScalableVectorType
>(LI
->getType()))
257 // Check if all users of this load are shufflevectors. If we encounter any
258 // users that are extractelement instructions or binary operators, we save
259 // them to later check if they can be modified to extract from one of the
260 // shufflevectors instead of the load.
262 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
263 SmallVector
<ExtractElementInst
*, 4> Extracts
;
264 // BinOpShuffles need to be handled a single time in case both operands of the
265 // binop are the same load.
266 SmallSetVector
<ShuffleVectorInst
*, 4> BinOpShuffles
;
268 for (auto *User
: LI
->users()) {
269 auto *Extract
= dyn_cast
<ExtractElementInst
>(User
);
270 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
271 Extracts
.push_back(Extract
);
274 if (auto *BI
= dyn_cast
<BinaryOperator
>(User
)) {
275 if (!BI
->user_empty() && all_of(BI
->users(), [](auto *U
) {
276 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(U
);
277 return SVI
&& isa
<UndefValue
>(SVI
->getOperand(1));
279 for (auto *SVI
: BI
->users())
280 BinOpShuffles
.insert(cast
<ShuffleVectorInst
>(SVI
));
284 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(User
);
285 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
288 Shuffles
.push_back(SVI
);
291 if (Shuffles
.empty() && BinOpShuffles
.empty())
294 unsigned Factor
, Index
;
296 unsigned NumLoadElements
=
297 cast
<FixedVectorType
>(LI
->getType())->getNumElements();
298 auto *FirstSVI
= Shuffles
.size() > 0 ? Shuffles
[0] : BinOpShuffles
[0];
299 // Check if the first shufflevector is DE-interleave shuffle.
300 if (!isDeInterleaveMask(FirstSVI
->getShuffleMask(), Factor
, Index
, MaxFactor
,
304 // Holds the corresponding index for each DE-interleave shuffle.
305 SmallVector
<unsigned, 4> Indices
;
307 Type
*VecTy
= FirstSVI
->getType();
309 // Check if other shufflevectors are also DE-interleaved of the same type
310 // and factor as the first shufflevector.
311 for (auto *Shuffle
: Shuffles
) {
312 if (Shuffle
->getType() != VecTy
)
314 if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
315 Shuffle
->getShuffleMask(), Factor
, Index
))
318 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
319 Indices
.push_back(Index
);
321 for (auto *Shuffle
: BinOpShuffles
) {
322 if (Shuffle
->getType() != VecTy
)
324 if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
325 Shuffle
->getShuffleMask(), Factor
, Index
))
328 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
330 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(0) == LI
)
331 Indices
.push_back(Index
);
332 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(1) == LI
)
333 Indices
.push_back(Index
);
336 // Try and modify users of the load that are extractelement instructions to
337 // use the shufflevector instructions instead of the load.
338 if (!tryReplaceExtracts(Extracts
, Shuffles
))
341 bool BinOpShuffleChanged
=
342 replaceBinOpShuffles(BinOpShuffles
.getArrayRef(), Shuffles
, LI
);
344 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
346 // Try to create target specific intrinsics to replace the load and shuffles.
347 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
)) {
348 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
349 return !Extracts
.empty() || BinOpShuffleChanged
;
352 DeadInsts
.insert(Shuffles
.begin(), Shuffles
.end());
354 DeadInsts
.insert(LI
);
358 bool InterleavedAccessImpl::replaceBinOpShuffles(
359 ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
360 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
, LoadInst
*LI
) {
361 for (auto *SVI
: BinOpShuffles
) {
362 BinaryOperator
*BI
= cast
<BinaryOperator
>(SVI
->getOperand(0));
363 Type
*BIOp0Ty
= BI
->getOperand(0)->getType();
364 ArrayRef
<int> Mask
= SVI
->getShuffleMask();
365 assert(all_of(Mask
, [&](int Idx
) {
366 return Idx
< (int)cast
<FixedVectorType
>(BIOp0Ty
)->getNumElements();
369 BasicBlock::iterator insertPos
= SVI
->getIterator();
371 new ShuffleVectorInst(BI
->getOperand(0), PoisonValue::get(BIOp0Ty
),
372 Mask
, SVI
->getName(), insertPos
);
373 auto *NewSVI2
= new ShuffleVectorInst(
374 BI
->getOperand(1), PoisonValue::get(BI
->getOperand(1)->getType()), Mask
,
375 SVI
->getName(), insertPos
);
376 BinaryOperator
*NewBI
= BinaryOperator::CreateWithCopiedFlags(
377 BI
->getOpcode(), NewSVI1
, NewSVI2
, BI
, BI
->getName(), insertPos
);
378 SVI
->replaceAllUsesWith(NewBI
);
379 LLVM_DEBUG(dbgs() << " Replaced: " << *BI
<< "\n And : " << *SVI
380 << "\n With : " << *NewSVI1
<< "\n And : "
381 << *NewSVI2
<< "\n And : " << *NewBI
<< "\n");
382 RecursivelyDeleteTriviallyDeadInstructions(SVI
);
383 if (NewSVI1
->getOperand(0) == LI
)
384 Shuffles
.push_back(NewSVI1
);
385 if (NewSVI2
->getOperand(0) == LI
)
386 Shuffles
.push_back(NewSVI2
);
389 return !BinOpShuffles
.empty();
392 bool InterleavedAccessImpl::tryReplaceExtracts(
393 ArrayRef
<ExtractElementInst
*> Extracts
,
394 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
395 // If there aren't any extractelement instructions to modify, there's nothing
397 if (Extracts
.empty())
400 // Maps extractelement instructions to vector-index pairs. The extractlement
401 // instructions will be modified to use the new vector and index operands.
402 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
404 for (auto *Extract
: Extracts
) {
405 // The vector index that is extracted.
406 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
407 auto Index
= IndexOperand
->getSExtValue();
409 // Look for a suitable shufflevector instruction. The goal is to modify the
410 // extractelement instruction (which uses an interleaved load) to use one
411 // of the shufflevector instructions instead of the load.
412 for (auto *Shuffle
: Shuffles
) {
413 // If the shufflevector instruction doesn't dominate the extract, we
414 // can't create a use of it.
415 if (!DT
->dominates(Shuffle
, Extract
))
418 // Inspect the indices of the shufflevector instruction. If the shuffle
419 // selects the same index that is extracted, we can modify the
420 // extractelement instruction.
421 SmallVector
<int, 4> Indices
;
422 Shuffle
->getShuffleMask(Indices
);
423 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
424 if (Indices
[I
] == Index
) {
425 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
426 "Vector operations do not match");
427 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
431 // If we found a suitable shufflevector instruction, stop looking.
432 if (ReplacementMap
.count(Extract
))
436 // If we did not find a suitable shufflevector instruction, the
437 // extractelement instruction cannot be modified, so we must give up.
438 if (!ReplacementMap
.count(Extract
))
442 // Finally, perform the replacements.
443 IRBuilder
<> Builder(Extracts
[0]->getContext());
444 for (auto &Replacement
: ReplacementMap
) {
445 auto *Extract
= Replacement
.first
;
446 auto *Vector
= Replacement
.second
.first
;
447 auto Index
= Replacement
.second
.second
;
448 Builder
.SetInsertPoint(Extract
);
449 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
450 Extract
->eraseFromParent();
456 bool InterleavedAccessImpl::lowerInterleavedStore(
457 StoreInst
*SI
, SmallSetVector
<Instruction
*, 32> &DeadInsts
) {
461 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
462 if (!SVI
|| !SVI
->hasOneUse() || isa
<ScalableVectorType
>(SVI
->getType()))
465 // Check if the shufflevector is RE-interleave shuffle.
467 if (!isReInterleaveMask(SVI
, Factor
, MaxFactor
))
470 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
472 // Try to create target specific intrinsics to replace the store and shuffle.
473 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
476 // Already have a new target specific interleaved store. Erase the old store.
477 DeadInsts
.insert(SI
);
478 DeadInsts
.insert(SVI
);
482 // For an (de)interleave tree like this:
490 // We will get ABCD at the end while the leaf operands/results
491 // are ACBD, which are also what we initially collected in
492 // getVectorInterleaveFactor / getVectorDeinterleaveFactor. But TLI
493 // hooks (e.g. lowerDeinterleaveIntrinsicToLoad) expect ABCD, so we need
494 // to reorder them by interleaving these values.
495 static void interleaveLeafValues(MutableArrayRef
<Value
*> SubLeaves
) {
496 unsigned NumLeaves
= SubLeaves
.size();
500 assert(isPowerOf2_32(NumLeaves
) && NumLeaves
> 1);
502 const unsigned HalfLeaves
= NumLeaves
/ 2;
503 // Visit the sub-trees.
504 interleaveLeafValues(SubLeaves
.take_front(HalfLeaves
));
505 interleaveLeafValues(SubLeaves
.drop_front(HalfLeaves
));
507 SmallVector
<Value
*, 8> Buffer
;
508 // a0 a1 a2 a3 b0 b1 b2 b3
509 // -> a0 b0 a1 b1 a2 b2 a3 b3
510 for (unsigned i
= 0U; i
< NumLeaves
; ++i
)
511 Buffer
.push_back(SubLeaves
[i
/ 2 + (i
% 2 ? HalfLeaves
: 0)]);
513 llvm::copy(Buffer
, SubLeaves
.begin());
517 getVectorInterleaveFactor(IntrinsicInst
*II
, SmallVectorImpl
<Value
*> &Operands
,
518 SmallVectorImpl
<Instruction
*> &DeadInsts
) {
519 assert(II
->getIntrinsicID() == Intrinsic::vector_interleave2
);
522 SmallVector
<IntrinsicInst
*, 8> Queue
;
524 while (!Queue
.empty()) {
525 IntrinsicInst
*Current
= Queue
.front();
526 Queue
.erase(Queue
.begin());
528 // All the intermediate intrinsics will be deleted.
529 DeadInsts
.push_back(Current
);
531 for (unsigned I
= 0; I
< 2; ++I
) {
532 Value
*Op
= Current
->getOperand(I
);
533 if (auto *OpII
= dyn_cast
<IntrinsicInst
>(Op
))
534 if (OpII
->getIntrinsicID() == Intrinsic::vector_interleave2
) {
535 Queue
.push_back(OpII
);
539 // If this is not a perfectly balanced tree, the leaf
540 // result types would be different.
541 if (!Operands
.empty() && Op
->getType() != Operands
.back()->getType())
544 Operands
.push_back(Op
);
548 const unsigned Factor
= Operands
.size();
549 // Currently we only recognize power-of-two factors.
550 // FIXME: should we assert here instead?
551 if (Factor
<= 1 || !isPowerOf2_32(Factor
))
554 interleaveLeafValues(Operands
);
559 getVectorDeinterleaveFactor(IntrinsicInst
*II
,
560 SmallVectorImpl
<Value
*> &Results
,
561 SmallVectorImpl
<Instruction
*> &DeadInsts
) {
562 assert(II
->getIntrinsicID() == Intrinsic::vector_deinterleave2
);
563 using namespace PatternMatch
;
564 if (!II
->hasNUses(2))
568 SmallVector
<IntrinsicInst
*, 8> Queue
;
570 while (!Queue
.empty()) {
571 IntrinsicInst
*Current
= Queue
.front();
572 Queue
.erase(Queue
.begin());
573 assert(Current
->hasNUses(2));
575 // All the intermediate intrinsics will be deleted from the bottom-up.
576 DeadInsts
.insert(DeadInsts
.begin(), Current
);
578 ExtractValueInst
*LHS
= nullptr, *RHS
= nullptr;
579 for (User
*Usr
: Current
->users()) {
580 if (!isa
<ExtractValueInst
>(Usr
))
583 auto *EV
= cast
<ExtractValueInst
>(Usr
);
584 // Intermediate ExtractValue instructions will also be deleted.
585 DeadInsts
.insert(DeadInsts
.begin(), EV
);
586 ArrayRef
<unsigned> Indices
= EV
->getIndices();
587 if (Indices
.size() != 1)
590 if (Indices
[0] == 0 && !LHS
)
592 else if (Indices
[0] == 1 && !RHS
)
598 // We have legal indices. At this point we're either going
599 // to continue the traversal or push the leaf values into Results.
600 for (ExtractValueInst
*EV
: {LHS
, RHS
}) {
601 // Continue the traversal. We're playing safe here and matching only the
602 // expression consisting of a perfectly balanced binary tree in which all
603 // intermediate values are only used once.
604 if (EV
->hasOneUse() &&
605 match(EV
->user_back(),
606 m_Intrinsic
<Intrinsic::vector_deinterleave2
>()) &&
607 EV
->user_back()->hasNUses(2)) {
608 auto *EVUsr
= cast
<IntrinsicInst
>(EV
->user_back());
609 Queue
.push_back(EVUsr
);
613 // If this is not a perfectly balanced tree, the leaf
614 // result types would be different.
615 if (!Results
.empty() && EV
->getType() != Results
.back()->getType())
618 // Save the leaf value.
619 Results
.push_back(EV
);
623 const unsigned Factor
= Results
.size();
624 // Currently we only recognize power-of-two factors.
625 // FIXME: should we assert here instead?
626 if (Factor
<= 1 || !isPowerOf2_32(Factor
))
629 interleaveLeafValues(Results
);
633 bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
634 IntrinsicInst
*DI
, SmallSetVector
<Instruction
*, 32> &DeadInsts
) {
635 LoadInst
*LI
= dyn_cast
<LoadInst
>(DI
->getOperand(0));
637 if (!LI
|| !LI
->hasOneUse() || !LI
->isSimple())
640 SmallVector
<Value
*, 8> DeinterleaveValues
;
641 SmallVector
<Instruction
*, 8> DeinterleaveDeadInsts
;
642 if (!getVectorDeinterleaveFactor(DI
, DeinterleaveValues
,
643 DeinterleaveDeadInsts
))
646 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI
647 << " with factor = " << DeinterleaveValues
.size() << "\n");
649 // Try and match this with target specific intrinsics.
650 if (!TLI
->lowerDeinterleaveIntrinsicToLoad(LI
, DeinterleaveValues
))
653 DeadInsts
.insert(DeinterleaveDeadInsts
.begin(), DeinterleaveDeadInsts
.end());
654 // We now have a target-specific load, so delete the old one.
655 DeadInsts
.insert(LI
);
659 bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
660 IntrinsicInst
*II
, SmallSetVector
<Instruction
*, 32> &DeadInsts
) {
661 if (!II
->hasOneUse())
664 StoreInst
*SI
= dyn_cast
<StoreInst
>(*(II
->users().begin()));
666 if (!SI
|| !SI
->isSimple())
669 SmallVector
<Value
*, 8> InterleaveValues
;
670 SmallVector
<Instruction
*, 8> InterleaveDeadInsts
;
671 if (!getVectorInterleaveFactor(II
, InterleaveValues
, InterleaveDeadInsts
))
674 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II
675 << " with factor = " << InterleaveValues
.size() << "\n");
677 // Try and match this with target specific intrinsics.
678 if (!TLI
->lowerInterleaveIntrinsicToStore(SI
, InterleaveValues
))
681 // We now have a target-specific store, so delete the old one.
682 DeadInsts
.insert(SI
);
683 DeadInsts
.insert(InterleaveDeadInsts
.begin(), InterleaveDeadInsts
.end());
687 bool InterleavedAccessImpl::runOnFunction(Function
&F
) {
688 // Holds dead instructions that will be erased later.
689 SmallSetVector
<Instruction
*, 32> DeadInsts
;
690 bool Changed
= false;
692 for (auto &I
: instructions(F
)) {
693 if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
694 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
696 if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
697 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
699 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
700 // At present, we only have intrinsics to represent (de)interleaving
701 // with a factor of 2.
702 if (II
->getIntrinsicID() == Intrinsic::vector_deinterleave2
)
703 Changed
|= lowerDeinterleaveIntrinsic(II
, DeadInsts
);
704 else if (II
->getIntrinsicID() == Intrinsic::vector_interleave2
)
705 Changed
|= lowerInterleaveIntrinsic(II
, DeadInsts
);
709 for (auto *I
: DeadInsts
)
710 I
->eraseFromParent();