1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the ML eviction advisor and reward injection pass
11 //===----------------------------------------------------------------------===//
13 #include "AllocationOrder.h"
14 #include "RegAllocEvictionAdvisor.h"
15 #include "RegAllocGreedy.h"
16 #include "llvm/Analysis/InteractiveModelRunner.h"
17 #include "llvm/Analysis/MLModelRunner.h"
18 #include "llvm/Analysis/TensorSpec.h"
19 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE)
20 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
21 #include "llvm/Analysis/NoInferenceModelRunner.h"
22 #include "llvm/Analysis/Utils/TrainingLogger.h"
24 #include "MLRegAllocEvictAdvisor.h"
25 #include "llvm/Analysis/ReleaseModeModelRunner.h"
26 #include "llvm/CodeGen/CalcSpillWeights.h"
27 #include "llvm/CodeGen/LiveRegMatrix.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/PassRegistry.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
45 #include <unordered_map>
49 #define DEBUG_TYPE "ml-regalloc"
51 // Generated header in release (AOT) mode
52 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
53 #include "RegAllocEvictModel.h"
54 using CompiledModelType
= RegAllocEvictModel
;
56 using CompiledModelType
= NoopSavedModelImpl
;
59 static cl::opt
<std::string
> InteractiveChannelBaseName(
60 "regalloc-evict-interactive-channel-base", cl::Hidden
,
62 "Base file path for the interactive mode. The incoming filename should "
63 "have the name <regalloc-evict-interactive-channel-base>.in, while the "
64 "outgoing name should be "
65 "<regalloc-evict-interactive-channel-base>.out"));
67 static cl::opt
<unsigned> MaxEvictionCount(
68 "mlregalloc-max-eviction-count", cl::Hidden
,
69 cl::desc("The maximum number of times a live range can be "
70 "evicted before preventing it from being evicted"),
73 // Options that only make sense in development mode
74 #ifdef LLVM_HAVE_TFLITE
75 #include "RegAllocScore.h"
76 #include "llvm/Analysis/Utils/TFUtils.h"
78 static cl::opt
<std::string
> TrainingLog(
79 "regalloc-training-log", cl::Hidden
,
80 cl::desc("Training log for the register allocator eviction model"));
82 static cl::opt
<std::string
> ModelUnderTraining(
83 "regalloc-model", cl::Hidden
,
84 cl::desc("The model being trained for register allocation eviction"));
86 static cl::opt
<bool> EnableDevelopmentFeatures(
87 "regalloc-enable-development-features", cl::Hidden
,
88 cl::desc("Whether or not to enable features under development for the ML "
92 static const bool EnableDevelopmentFeatures
= false;
93 #endif // #ifdef LLVM_HAVE_TFLITE
95 /// The score injection pass.
96 /// This pass calculates the score for a function and inserts it in the log, but
97 /// this happens only in development mode. It's a no-op otherwise.
99 extern cl::opt
<unsigned> EvictInterferenceCutoff
;
101 class RegAllocScoring
: public MachineFunctionPass
{
105 RegAllocScoring() : MachineFunctionPass(ID
) {
106 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
109 ~RegAllocScoring() override
= default;
111 StringRef
getPassName() const override
{
112 return "Register Allocation Pass Scoring";
115 /// RegAllocReward analysis usage.
116 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
117 AU
.setPreservesAll();
118 AU
.addRequired
<RegAllocEvictionAdvisorAnalysis
>();
119 AU
.addRequired
<RegAllocPriorityAdvisorAnalysis
>();
120 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
121 MachineFunctionPass::getAnalysisUsage(AU
);
124 /// Performs this pass
125 bool runOnMachineFunction(MachineFunction
&) override
;
128 char RegAllocScoring::ID
= 0;
129 FunctionPass
*createRegAllocScoringPass() { return new RegAllocScoring(); }
133 INITIALIZE_PASS(RegAllocScoring
, "regallocscoringpass",
134 "Register Allocation Scoring Pass", false, false)
136 // ===================================
137 // Common ML Advisor declarations
138 // ===================================
140 // The model can only accept a specified number of opcodes and will error it if
141 // fed an opcode it hasn't seen before. This constant sets the current cutoff.
142 static const int OpcodeValueCutoff
= 17716;
144 // Most features are as described above, so we'll reuse this vector in defining
146 static const std::vector
<int64_t> PerLiveRangeShape
{1, NumberOfInterferences
};
151 // For each interfering live range (incl. the candidate) we collect a number of
152 // features. However, because the features are of different types (and because
153 // of ML best practices), we organize the tensors per feature, not per
154 // candidate. Each such tensor has a scalar value corresponding to the
155 // interferring live range at that position, in the order in AllocationOrder.
156 // The last position corresponds to the virt reg seeking allocation.
157 // Exception to all that is the progression feature, which is just a scalar (see
158 // its documentation for details).
159 // Note on naming: the "_by_max" are normalized using the largest value of that
160 // tensor, as observed in the current decision making stage (i.e. for the
161 // current call to the advisor's tryFindEvictionCandidate)
163 // The feature list format: type, name, shape, documentation.
164 // Note: we can really just use int64 and float, hence the modeling of some
165 // bools as int64 values.
166 #define RA_EVICT_FEATURES_LIST(M) \
167 M(int64_t, mask, PerLiveRangeShape, \
168 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
170 "can't be evicted)") \
171 M(int64_t, is_free, PerLiveRangeShape, \
172 "boolean values, 1 if this phys reg is actually free (no interferences)") \
173 M(float, nr_urgent, PerLiveRangeShape, \
174 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
175 "to break cascades") \
176 M(float, nr_broken_hints, PerLiveRangeShape, \
177 "if this position were evicted, how many broken hints would there be") \
178 M(int64_t, is_hint, PerLiveRangeShape, \
179 "is this a preferred phys reg for the candidate") \
180 M(int64_t, is_local, PerLiveRangeShape, \
181 "is this live range local to a basic block") \
182 M(float, nr_rematerializable, PerLiveRangeShape, \
183 "nr rematerializable ranges") \
184 M(float, nr_defs_and_uses, PerLiveRangeShape, \
185 "bb freq - weighed nr defs and uses") \
186 M(float, weighed_reads_by_max, PerLiveRangeShape, \
187 "bb freq - weighed nr of reads, normalized") \
188 M(float, weighed_writes_by_max, PerLiveRangeShape, \
189 "bb feq - weighed nr of writes, normalized") \
190 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
191 "bb freq - weighed nr of uses that are both read and writes, normalized") \
192 M(float, weighed_indvars_by_max, PerLiveRangeShape, \
193 "bb freq - weighed nr of uses that are indvars, normalized") \
194 M(float, hint_weights_by_max, PerLiveRangeShape, \
195 "bb freq - weighed nr of uses that are hints, normalized") \
196 M(float, start_bb_freq_by_max, PerLiveRangeShape, \
197 "the freq in the start block, normalized") \
198 M(float, end_bb_freq_by_max, PerLiveRangeShape, \
199 "freq of end block, normalized") \
200 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
201 "hottest BB freq, normalized") \
202 M(float, liverange_size, PerLiveRangeShape, \
203 "size (instr index diff) of the LR") \
204 M(float, use_def_density, PerLiveRangeShape, \
205 "the max weight, as computed by the manual heuristic") \
206 M(int64_t, max_stage, PerLiveRangeShape, \
207 "largest stage of an interval in this LR") \
208 M(int64_t, min_stage, PerLiveRangeShape, \
209 "lowest stage of an interval in this LR") \
210 M(float, progress, {1}, "ratio of current queue size to initial size")
212 #ifdef LLVM_HAVE_TFLITE
213 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \
214 M(int64_t, instructions, InstructionsShape, \
215 "Opcodes of the instructions covered by the eviction problem")
217 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \
218 M(int64_t, instructions_mapping, InstructionsMappingShape, \
219 "A binary matrix mapping LRs to instruction opcodes") \
220 M(float, mbb_frequencies, MBBFrequencyShape, \
221 "A vector of machine basic block frequencies") \
222 M(int64_t, mbb_mapping, InstructionsShape, \
223 "A vector of indices mapping instructions to MBBs")
225 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)
226 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)
229 // The model learns to pick one of the mask == 1 interferences. This is the
230 // name of the output tensor. The contract with the model is that the output
231 // will be guaranteed to be to a mask == 1 position. Using a macro here to
232 // avoid 'not used' warnings (and keep cond compilation to a minimum)
233 #define DecisionName "index_to_evict"
234 static const TensorSpec DecisionSpec
=
235 TensorSpec::createSpec
<int64_t>(DecisionName
, {1});
237 // Named features index.
239 #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name
240 #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D),
241 RA_EVICT_FEATURES_LIST(_FEATURE_IDX
) FeatureCount
,
242 #ifdef LLVM_HAVE_TFLITE
243 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE
) = FeatureCount
,
245 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX
)
246 #endif // #ifdef LLVM_HAVE_TFLITE
247 RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX
) FeaturesWithDevelopmentCount
249 #undef _FEATURE_IDX_SIMPLE
252 // The ML advisor will typically have a sparse input to the evaluator, because
253 // various phys regs won't be available. It's easier (maintenance-wise) to
254 // bulk-reset the state of the evaluator each time we are about to use it
256 template <typename T
> size_t getTotalSize(const std::vector
<int64_t> &Shape
) {
257 size_t Ret
= sizeof(T
);
258 for (const auto V
: Shape
)
263 void resetInputs(MLModelRunner
&Runner
) {
264 #define _RESET(TYPE, NAME, SHAPE, __) \
265 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
266 getTotalSize<TYPE>(SHAPE));
267 RA_EVICT_FEATURES_LIST(_RESET
)
268 if (EnableDevelopmentFeatures
) {
269 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET
)
270 RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET
)
275 // Per-live interval components that get aggregated into the feature values
276 // that will be passed to the evaluator.
277 struct LIFeatureComponents
{
281 double IndVarUpdates
= 0;
282 double HintWeights
= 0.0;
283 int64_t NumDefsAndUses
= 0;
284 float HottestBlockFreq
= 0.0;
285 bool IsRemat
= false;
288 using CandidateRegList
=
289 std::array
<std::pair
<MCRegister
, bool>, NumberOfInterferences
>;
290 using FeaturesListNormalizer
=
291 llvm::SmallVector
<float, FeatureIDs::FeatureCount
>;
293 /// The ML evictor (commonalities between release and development mode)
294 class MLEvictAdvisor
: public RegAllocEvictionAdvisor
{
296 MLEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
297 MLModelRunner
*Runner
, const MachineBlockFrequencyInfo
&MBFI
,
298 const MachineLoopInfo
&Loops
);
301 const RegAllocEvictionAdvisor
&getDefaultAdvisor() const {
302 return static_cast<const RegAllocEvictionAdvisor
&>(DefaultAdvisor
);
305 // The assumption is that if the Runner could not be constructed, we emit-ed
306 // error, and we shouldn't be asking for it here.
307 const MLModelRunner
&getRunner() const { return *Runner
; }
309 /// This just calls Evaluate on the Runner, but in the development mode
310 /// case, if we're just capturing the log of the default advisor, it needs
311 /// to call the latter instead, so we need to pass all the necessary
312 /// parameters for it. In the development case, it will also log.
314 tryFindEvictionCandidatePosition(const LiveInterval
&VirtReg
,
315 const AllocationOrder
&Order
,
316 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
317 const SmallVirtRegSet
&FixedRegisters
) const;
319 /// Load the features of the given VirtReg (allocated or not) at column Pos,
320 /// but if that can't be evicted, return false instead.
322 loadInterferenceFeatures(const LiveInterval
&VirtReg
, MCRegister PhysReg
,
323 bool IsHint
, const SmallVirtRegSet
&FixedRegisters
,
324 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
,
325 SmallVectorImpl
<LRStartEndInfo
> &LRPosInfo
) const;
328 static float getInitialQueueSize(const MachineFunction
&MF
);
330 MCRegister
tryFindEvictionCandidate(
331 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
332 uint8_t CostPerUseLimit
,
333 const SmallVirtRegSet
&FixedRegisters
) const override
;
335 void extractFeatures(const SmallVectorImpl
<const LiveInterval
*> &Intervals
,
336 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
,
337 int64_t IsHint
, int64_t LocalIntfsCount
, float NumUrgent
,
338 SmallVectorImpl
<LRStartEndInfo
> &LRPosInfo
) const;
340 // Point-in-time: we didn't learn this, so we always delegate to the
342 bool canEvictHintInterference(
343 const LiveInterval
&VirtReg
, MCRegister PhysReg
,
344 const SmallVirtRegSet
&FixedRegisters
) const override
{
345 return getDefaultAdvisor().canEvictHintInterference(VirtReg
, PhysReg
,
349 const LIFeatureComponents
&
350 getLIFeatureComponents(const LiveInterval
&LI
) const;
352 // Hold on to a default advisor for:
353 // 1) the implementation of canEvictHintInterference, because we didn't
354 // learn that nuance yet; 2) for bootstrapping (logging) in the development
356 const DefaultEvictionAdvisor DefaultAdvisor
;
357 MLModelRunner
*const Runner
;
358 const MachineBlockFrequencyInfo
&MBFI
;
359 const MachineLoopInfo
&Loops
;
361 // Indices of those features we don't want to normalize.
362 // This could be static and shared, but its initialization is non-trivial.
363 std::bitset
<FeatureIDs::FeatureCount
> DoNotNormalize
;
364 const float InitialQSize
;
366 using RegID
= unsigned;
367 mutable DenseMap
<RegID
, LIFeatureComponents
> CachedFeatures
;
369 mutable std::unordered_map
<unsigned, unsigned> VirtRegEvictionCounts
;
371 void onEviction(Register RegBeingEvicted
) const {
372 // If we cannot find the virtual register in the map, we just assume it has
373 // not been evicted before and thus has a value of zero (which is what the
374 // subscript operator returns by default).
375 ++VirtRegEvictionCounts
[RegBeingEvicted
.id()];
378 unsigned getEvictionCount(Register Reg
) const {
379 auto EvictionCountIt
= VirtRegEvictionCounts
.find(Reg
.id());
380 if (EvictionCountIt
!= VirtRegEvictionCounts
.end())
381 return EvictionCountIt
->second
;
386 #define _DECL_FEATURES(type, name, shape, _) \
387 TensorSpec::createSpec<type>(#name, shape),
389 // ===================================
390 // Release (AOT) - specifics
391 // ===================================
392 class ReleaseModeEvictionAdvisorAnalysis final
393 : public RegAllocEvictionAdvisorAnalysis
{
395 ReleaseModeEvictionAdvisorAnalysis()
396 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release
) {
397 if (EnableDevelopmentFeatures
) {
398 InputFeatures
= {RA_EVICT_FEATURES_LIST(
399 _DECL_FEATURES
) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES
)
400 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES
)};
402 InputFeatures
= {RA_EVICT_FEATURES_LIST(_DECL_FEATURES
)};
405 // support for isa<> and dyn_cast.
406 static bool classof(const RegAllocEvictionAdvisorAnalysis
*R
) {
407 return R
->getAdvisorMode() == AdvisorMode::Release
;
411 std::vector
<TensorSpec
> InputFeatures
;
413 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
414 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
415 AU
.addRequired
<MachineLoopInfoWrapperPass
>();
416 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU
);
419 std::unique_ptr
<RegAllocEvictionAdvisor
>
420 getAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
) override
{
422 if (InteractiveChannelBaseName
.empty())
423 Runner
= std::make_unique
<ReleaseModeModelRunner
<CompiledModelType
>>(
424 MF
.getFunction().getContext(), InputFeatures
, DecisionName
);
426 Runner
= std::make_unique
<InteractiveModelRunner
>(
427 MF
.getFunction().getContext(), InputFeatures
, DecisionSpec
,
428 InteractiveChannelBaseName
+ ".out",
429 InteractiveChannelBaseName
+ ".in");
431 return std::make_unique
<MLEvictAdvisor
>(
432 MF
, RA
, Runner
.get(),
433 getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI(),
434 getAnalysis
<MachineLoopInfoWrapperPass
>().getLI());
436 std::unique_ptr
<MLModelRunner
> Runner
;
439 // ===================================
440 // Development mode-specifics
441 // ===================================
444 #ifdef LLVM_HAVE_TFLITE
445 static const TensorSpec Reward
= TensorSpec::createSpec
<float>("reward", {1});
447 // Features we bind on the model. The tensor names have a prefix, and we also
448 // need to include some tensors that are expected to be present by the
450 // TODO: can we just get rid of these?
451 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
452 TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
454 class DevelopmentModeEvictAdvisor
: public MLEvictAdvisor
{
456 DevelopmentModeEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
457 MLModelRunner
*Runner
,
458 const MachineBlockFrequencyInfo
&MBFI
,
459 const MachineLoopInfo
&Loops
, Logger
*Log
)
460 : MLEvictAdvisor(MF
, RA
, Runner
, MBFI
, Loops
), Log(Log
) {}
463 int64_t tryFindEvictionCandidatePosition(
464 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
465 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
466 const SmallVirtRegSet
&FixedRegisters
) const override
;
471 class DevelopmentModeEvictionAdvisorAnalysis final
472 : public RegAllocEvictionAdvisorAnalysis
{
474 DevelopmentModeEvictionAdvisorAnalysis()
475 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development
) {
476 if (EnableDevelopmentFeatures
) {
477 InputFeatures
= {RA_EVICT_FEATURES_LIST(
478 _DECL_FEATURES
) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES
)
479 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES
)};
480 TrainingInputFeatures
= {
481 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES
)
482 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES
)
483 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES
)
484 TensorSpec::createSpec
<float>("action_discount", {1}),
485 TensorSpec::createSpec
<int32_t>("action_step_type", {1}),
486 TensorSpec::createSpec
<float>("action_reward", {1})};
488 InputFeatures
= {RA_EVICT_FEATURES_LIST(_DECL_FEATURES
)};
489 TrainingInputFeatures
= {
490 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES
)
491 TensorSpec::createSpec
<float>("action_discount", {1}),
492 TensorSpec::createSpec
<int32_t>("action_step_type", {1}),
493 TensorSpec::createSpec
<float>("action_reward", {1})};
496 // support for isa<> and dyn_cast.
497 static bool classof(const RegAllocEvictionAdvisorAnalysis
*R
) {
498 return R
->getAdvisorMode() == AdvisorMode::Development
;
501 void logRewardIfNeeded(const MachineFunction
&MF
,
502 llvm::function_ref
<float()> GetReward
) override
{
503 if (!Log
|| !Log
->hasAnyObservationForContext(MF
.getName()))
505 // The function pass manager would run all the function passes for a
506 // function, so we assume the last context belongs to this function. If
507 // this invariant ever changes, we can implement at that time switching
508 // contexts. At this point, it'd be an error
509 if (Log
->currentContext() != MF
.getName()) {
510 MF
.getFunction().getContext().emitError(
511 "The training log context shouldn't have had changed.");
513 if (Log
->hasObservationInProgress())
514 Log
->logReward
<float>(GetReward());
518 std::vector
<TensorSpec
> InputFeatures
;
519 std::vector
<TensorSpec
> TrainingInputFeatures
;
521 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
522 AU
.addRequired
<MachineBlockFrequencyInfoWrapperPass
>();
523 AU
.addRequired
<MachineLoopInfoWrapperPass
>();
524 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU
);
527 bool doInitialization(Module
&M
) override
{
528 LLVMContext
&Ctx
= M
.getContext();
529 if (ModelUnderTraining
.empty() && TrainingLog
.empty()) {
530 Ctx
.emitError("Regalloc development mode should be requested with at "
531 "least logging enabled and/or a training model");
534 if (ModelUnderTraining
.empty())
535 Runner
= std::make_unique
<NoInferenceModelRunner
>(Ctx
, InputFeatures
);
537 Runner
= ModelUnderTrainingRunner::createAndEnsureValid(
538 Ctx
, ModelUnderTraining
, DecisionName
, TrainingInputFeatures
);
540 Ctx
.emitError("Regalloc: could not set up the model runner");
543 if (TrainingLog
.empty())
546 auto OS
= std::make_unique
<raw_fd_ostream
>(TrainingLog
, EC
);
548 M
.getContext().emitError(EC
.message() + ":" + TrainingLog
);
551 std::vector
<TensorSpec
> LFS
= InputFeatures
;
552 if (auto *MUTR
= dyn_cast
<ModelUnderTrainingRunner
>(Runner
.get()))
553 append_range(LFS
, MUTR
->extraOutputsForLoggingSpecs());
554 // We always log the output; in particular, if we're not evaluating, we
555 // don't have an output spec json file. That's why we handle the
556 // 'normal' output separately.
557 LFS
.push_back(DecisionSpec
);
559 Log
= std::make_unique
<Logger
>(std::move(OS
), LFS
, Reward
,
560 /*IncludeReward*/ true);
564 std::unique_ptr
<RegAllocEvictionAdvisor
>
565 getAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
) override
{
569 Log
->switchContext(MF
.getName());
570 return std::make_unique
<DevelopmentModeEvictAdvisor
>(
571 MF
, RA
, Runner
.get(),
572 getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI(),
573 getAnalysis
<MachineLoopInfoWrapperPass
>().getLI(), Log
.get());
576 std::unique_ptr
<MLModelRunner
> Runner
;
577 std::unique_ptr
<Logger
> Log
;
580 #endif // #ifdef LLVM_HAVE_TFLITE
583 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction
&MF
) {
584 auto &MRI
= MF
.getRegInfo();
585 unsigned NumUsedRegs
= 0;
586 for (unsigned I
= 0, E
= MRI
.getNumVirtRegs(); I
!= E
; ++I
) {
587 Register Reg
= Register::index2VirtReg(I
);
588 if (!MRI
.reg_nodbg_empty(Reg
))
591 return static_cast<float>(NumUsedRegs
);
594 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
595 MLModelRunner
*Runner
,
596 const MachineBlockFrequencyInfo
&MBFI
,
597 const MachineLoopInfo
&Loops
)
598 : RegAllocEvictionAdvisor(MF
, RA
), DefaultAdvisor(MF
, RA
),
599 Runner(std::move(Runner
)), MBFI(MBFI
), Loops(Loops
),
600 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF
)) {
601 assert(this->Runner
);
602 Runner
->switchContext(MF
.getName());
603 DoNotNormalize
.set(FeatureIDs::mask
);
604 DoNotNormalize
.set(FeatureIDs::is_free
);
605 DoNotNormalize
.set(FeatureIDs::is_hint
);
606 DoNotNormalize
.set(FeatureIDs::is_local
);
607 DoNotNormalize
.set(FeatureIDs::min_stage
);
608 DoNotNormalize
.set(FeatureIDs::max_stage
);
609 DoNotNormalize
.set(FeatureIDs::progress
);
612 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
613 const LiveInterval
&, const AllocationOrder
&, unsigned, uint8_t,
614 const SmallVirtRegSet
&) const {
615 int64_t Ret
= Runner
->evaluate
<int64_t>();
617 assert(Ret
<= CandidateVirtRegPos
);
621 bool MLEvictAdvisor::loadInterferenceFeatures(
622 const LiveInterval
&VirtReg
, MCRegister PhysReg
, bool IsHint
,
623 const SmallVirtRegSet
&FixedRegisters
,
624 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
,
625 llvm::SmallVectorImpl
<LRStartEndInfo
> &LRPosInfo
) const {
626 // It is only possible to evict virtual register interference.
627 if (Matrix
->checkInterference(VirtReg
, PhysReg
) > LiveRegMatrix::IK_VirtReg
) {
632 const bool IsLocal
= LIS
->intervalIsInOneMBB(VirtReg
);
633 int64_t LocalIntfs
= 0;
634 float NumUrgent
= 0.0f
;
636 // The cascade tracking is the same as in the default advisor
637 unsigned Cascade
= RA
.getExtraInfo().getCascadeOrCurrentNext(VirtReg
.reg());
639 SmallVector
<const LiveInterval
*, MaxInterferences
> InterferingIntervals
;
640 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
641 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, Unit
);
642 // Different from the default heuristic, we don't make any assumptions
643 // about what having more than 10 results in the query may mean.
644 const auto &IFIntervals
= Q
.interferingVRegs(EvictInterferenceCutoff
);
645 if (IFIntervals
.empty() && InterferingIntervals
.empty())
647 if (IFIntervals
.size() >= EvictInterferenceCutoff
)
649 InterferingIntervals
.append(IFIntervals
.begin(), IFIntervals
.end());
650 for (const LiveInterval
*Intf
: reverse(IFIntervals
)) {
651 assert(Intf
->reg().isVirtual() &&
652 "Only expecting virtual register interference from query");
653 // This is the same set of legality checks as in the default case: don't
654 // try to evict fixed regs or 'done' ones. Also don't break cascades,
655 // except in the urgent case, with the same nuances used in the default
657 // We could try sharing this between the advisors, but it may end up
658 // more complex than it is right now.
659 if (FixedRegisters
.count(Intf
->reg()))
661 if (RA
.getExtraInfo().getStage(*Intf
) == RS_Done
)
664 !VirtReg
.isSpillable() &&
665 (Intf
->isSpillable() ||
666 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(VirtReg
.reg())) <
667 RegClassInfo
.getNumAllocatableRegs(
668 MRI
->getRegClass(Intf
->reg())));
670 unsigned IntfCascade
= RA
.getExtraInfo().getCascade(Intf
->reg());
671 // There is a potential that the model could be adversarial and
672 // continually evict live ranges over and over again, leading to a
673 // large amount of compile time being spent in regalloc. If we hit the
674 // threshold, prevent the range from being evicted. We still let the
675 // range through if it is urgent as we are required to produce an
676 // eviction if the candidate is not spillable.
677 if (getEvictionCount(Intf
->reg()) > MaxEvictionCount
&& !Urgent
)
680 // Only evict older cascades or live ranges without a cascade.
681 if (Cascade
<= IntfCascade
) {
687 LocalIntfs
+= (IsLocal
&& LIS
->intervalIsInOneMBB(*Intf
) &&
688 (!EnableLocalReassign
|| !canReassign(*Intf
, PhysReg
)));
691 // OK, so if we made it this far, this LR is an eviction candidate, load its
693 extractFeatures(InterferingIntervals
, Largest
, Pos
, IsHint
, LocalIntfs
,
694 NumUrgent
, LRPosInfo
);
698 MCRegister
MLEvictAdvisor::tryFindEvictionCandidate(
699 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
700 uint8_t CostPerUseLimit
, const SmallVirtRegSet
&FixedRegisters
) const {
701 auto MaybeOrderLimit
= getOrderLimit(VirtReg
, Order
, CostPerUseLimit
);
702 if (!MaybeOrderLimit
)
703 return MCRegister::NoRegister
;
704 unsigned OrderLimit
= *MaybeOrderLimit
;
706 // The heuristic sets initial costs such as, if CostPerUseLimit is
707 // max<uint8_t>, then any of the costs of the legally-evictable intervals
708 // would be lower. When that happens, one of those will be selected.
709 // Therefore, we allow the candidate be selected, unless the candidate is
710 // unspillable, in which case it would be incorrect to not find a register
712 const bool MustFindEviction
=
713 (!VirtReg
.isSpillable() && CostPerUseLimit
== static_cast<uint8_t>(~0u));
714 // Number of available candidates - if 0, no need to continue.
715 size_t Available
= 0;
716 // Make sure we don't have leftover partial state from an attempt where we
717 // had no available candidates and bailed out early.
718 resetInputs(*Runner
);
720 // Track the index->register mapping because AllocationOrder doesn't do that
721 // and we'd have to scan it.
722 // Also track their mask, to write asserts/debug.
723 CandidateRegList Regs
;
724 Regs
.fill({0, false});
726 // Track the largest value of features seen during this eviction session. We
727 // only normalize (some of) the float features, but it's just simpler to
728 // dimension 'Largest' to all the features, especially since we have the
729 // 'DoNotNormalize' list.
730 FeaturesListNormalizer
Largest(FeatureIDs::FeatureCount
, 0.0);
732 // Same overal idea as in the default eviction policy - we visit the values
733 // of AllocationOrder one at a time. If it's not legally available, we mask
734 // off the corresponding feature column (==do nothing because we already
735 // reset all the features to 0) Use Pos to capture the column we load
736 // features at - in AllocationOrder order.
738 SmallVector
<LRStartEndInfo
, NumberOfInterferences
> LRPosInfo
;
739 for (auto I
= Order
.begin(), E
= Order
.getOrderLimitEnd(OrderLimit
); I
!= E
;
741 MCRegister PhysReg
= *I
;
742 assert(!Regs
[Pos
].second
);
744 if (!canAllocatePhysReg(CostPerUseLimit
, PhysReg
)) {
747 if (loadInterferenceFeatures(VirtReg
, PhysReg
, I
.isHint(), FixedRegisters
,
748 Largest
, Pos
, LRPosInfo
)) {
750 Regs
[Pos
] = std::make_pair(PhysReg
, true);
753 if (Available
== 0) {
754 // Nothing to decide, nothing to learn.
755 assert(!MustFindEviction
);
756 return MCRegister::NoRegister
;
758 const size_t ValidPosLimit
= Pos
;
759 // If we must find eviction, the candidate should be masked out of the
760 // decision making process.
761 Regs
[CandidateVirtRegPos
].second
= !MustFindEviction
;
762 if (!MustFindEviction
)
763 extractFeatures(SmallVector
<const LiveInterval
*, 1>(1, &VirtReg
), Largest
,
764 CandidateVirtRegPos
, /*IsHint*/ 0,
765 /*LocalIntfsCount*/ 0,
766 /*NumUrgent*/ 0.0, LRPosInfo
);
767 assert(InitialQSize
> 0.0 && "We couldn't have gotten here if we had "
768 "nothing to allocate initially.");
769 #ifdef LLVM_HAVE_TFLITE
770 if (EnableDevelopmentFeatures
) {
771 extractInstructionFeatures(
773 [this](SlotIndex InputIndex
) -> int {
774 auto *CurrentMachineInstruction
=
775 LIS
->getInstructionFromIndex(InputIndex
);
776 if (!CurrentMachineInstruction
) {
779 return CurrentMachineInstruction
->getOpcode();
781 [this](SlotIndex InputIndex
) -> float {
782 auto *CurrentMachineInstruction
=
783 LIS
->getInstructionFromIndex(InputIndex
);
784 return MBFI
.getBlockFreqRelativeToEntryBlock(
785 CurrentMachineInstruction
->getParent());
787 [this](SlotIndex InputIndex
) -> MachineBasicBlock
* {
788 auto *CurrentMachineInstruction
=
789 LIS
->getInstructionFromIndex(InputIndex
);
790 return CurrentMachineInstruction
->getParent();
792 FeatureIDs::instructions
, FeatureIDs::instructions_mapping
,
793 FeatureIDs::mbb_frequencies
, FeatureIDs::mbb_mapping
,
794 LIS
->getSlotIndexes()->getLastIndex());
796 #endif // #ifdef LLVM_HAVE_TFLITE
797 // Normalize the features.
798 for (auto &V
: Largest
)
800 for (size_t FeatureIndex
= 0; FeatureIndex
< FeatureIDs::FeatureCount
;
802 if (DoNotNormalize
.test(FeatureIndex
))
804 for (size_t Pos
= 0; Pos
< NumberOfInterferences
; ++Pos
) {
805 Runner
->getTensor
<float>(FeatureIndex
)[Pos
] /= Largest
[FeatureIndex
];
808 *Runner
->getTensor
<float>(FeatureIDs::progress
) =
809 static_cast<float>(RA
.getQueueSize()) / InitialQSize
;
812 size_t CandidatePos
= tryFindEvictionCandidatePosition(
813 VirtReg
, Order
, OrderLimit
, CostPerUseLimit
, FixedRegisters
);
814 // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
815 // Regs[CandidatePos].second)
816 assert(Regs
[CandidatePos
].second
);
817 if (CandidatePos
== CandidateVirtRegPos
) {
818 assert(!MustFindEviction
);
819 return MCRegister::NoRegister
;
821 assert(CandidatePos
< ValidPosLimit
);
824 // Update information about how many times the virtual registers being
825 // evicted have been evicted so that we can prevent the model from evicting
826 // the same ranges continually and eating compile time.
827 if (CandidatePos
== CandidateVirtRegPos
) {
828 onEviction(VirtReg
.reg());
830 for (MCRegUnit Unit
: TRI
->regunits(Regs
[CandidatePos
].first
)) {
831 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, Unit
);
832 const auto &IFIntervals
= Q
.interferingVRegs(EvictInterferenceCutoff
);
833 for (const LiveInterval
*Intf
: reverse(IFIntervals
)) {
834 onEviction(Intf
->reg());
839 return Regs
[CandidatePos
].first
;
842 const LIFeatureComponents
&
843 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval
&LI
) const {
844 RegID ID
= LI
.reg().id();
845 LIFeatureComponents Empty
;
846 auto I
= CachedFeatures
.insert(std::make_pair(ID
, Empty
));
847 LIFeatureComponents
&Ret
= I
.first
->getSecond();
851 SmallPtrSet
<MachineInstr
*, 8> Visited
;
852 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
854 for (MachineRegisterInfo::reg_instr_nodbg_iterator
855 I
= MRI
->reg_instr_nodbg_begin(LI
.reg()),
856 E
= MRI
->reg_instr_nodbg_end();
858 MachineInstr
*MI
= &*(I
++);
860 ++Ret
.NumDefsAndUses
;
861 if (!Visited
.insert(MI
).second
)
864 if (MI
->isIdentityCopy() || MI
->isImplicitDef())
868 std::tie(Reads
, Writes
) = MI
->readsWritesVirtualRegister(LI
.reg());
870 float Freq
= MBFI
.getBlockFreqRelativeToEntryBlock(MI
->getParent());
871 Ret
.HottestBlockFreq
= std::max(Freq
, Ret
.HottestBlockFreq
);
873 Ret
.R
+= (Reads
&& !Writes
) * Freq
;
874 Ret
.W
+= (!Reads
&& Writes
) * Freq
;
875 Ret
.RW
+= (Reads
&& Writes
) * Freq
;
877 auto *MBB
= MI
->getParent();
878 auto *Loop
= Loops
.getLoopFor(MBB
);
879 bool IsExiting
= Loop
? Loop
->isLoopExiting(MBB
) : false;
881 if (Writes
&& IsExiting
&& LIS
->isLiveOutOfMBB(LI
, MBB
))
882 Ret
.IndVarUpdates
+= Freq
;
884 if (MI
->isCopy() && VirtRegAuxInfo::copyHint(MI
, LI
.reg(), TRI
, *MRI
))
885 Ret
.HintWeights
+= Freq
;
887 Ret
.IsRemat
= VirtRegAuxInfo::isRematerializable(
888 LI
, *LIS
, *VRM
, *MF
.getSubtarget().getInstrInfo());
892 // Overall, this currently mimics what we do for weight calculation, but instead
893 // of accummulating the various features, we keep them separate.
894 void MLEvictAdvisor::extractFeatures(
895 const SmallVectorImpl
<const LiveInterval
*> &Intervals
,
896 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
, int64_t IsHint
,
897 int64_t LocalIntfsCount
, float NumUrgent
,
898 SmallVectorImpl
<LRStartEndInfo
> &LRPosInfo
) const {
899 int64_t NumDefsAndUses
= 0;
900 int64_t NumBrokenHints
= 0;
904 double IndVarUpdates
= 0.0;
905 double HintWeights
= 0.0;
906 float StartBBFreq
= 0.0;
907 float EndBBFreq
= 0.0;
908 float HottestBlockFreq
= 0.0;
909 int32_t NumRematerializable
= 0;
910 float TotalWeight
= 0.0;
912 SlotIndex EndSI
= LIS
->getSlotIndexes()->getZeroIndex();
913 SlotIndex StartSI
= LIS
->getSlotIndexes()->getLastIndex();
914 int64_t MaxStage
= 0;
916 Intervals
.empty() ? 0 : std::numeric_limits
<int64_t>::max();
918 for (const auto *L
: Intervals
) {
919 const LiveInterval
&LI
= *L
;
920 MaxStage
= std::max
<int64_t>(
921 MaxStage
, static_cast<int64_t>(RA
.getExtraInfo().getStage(LI
)));
922 MinStage
= std::min
<int64_t>(
923 MinStage
, static_cast<int64_t>(RA
.getExtraInfo().getStage(LI
)));
925 TotalWeight
= std::max(TotalWeight
, LI
.weight());
927 if (LI
.beginIndex() < StartSI
)
928 StartSI
= LI
.beginIndex();
930 if (LI
.endIndex() > EndSI
)
931 EndSI
= LI
.endIndex();
932 const LIFeatureComponents
&LIFC
= getLIFeatureComponents(LI
);
933 NumBrokenHints
+= VRM
->hasPreferredPhys(LI
.reg());
935 NumDefsAndUses
+= LIFC
.NumDefsAndUses
;
936 HottestBlockFreq
= std::max(HottestBlockFreq
, LIFC
.HottestBlockFreq
);
941 IndVarUpdates
+= LIFC
.IndVarUpdates
;
943 HintWeights
+= LIFC
.HintWeights
;
944 NumRematerializable
+= LIFC
.IsRemat
;
946 if (EnableDevelopmentFeatures
) {
947 for (auto CurrentSegment
: LI
) {
949 LRStartEndInfo
{CurrentSegment
.start
, CurrentSegment
.end
, Pos
});
954 if (!Intervals
.empty()) {
956 MBFI
.getBlockFreqRelativeToEntryBlock(LIS
->getMBBFromIndex(StartSI
));
957 if (EndSI
>= LIS
->getSlotIndexes()->getLastIndex())
958 EndSI
= LIS
->getSlotIndexes()->getLastIndex().getPrevIndex();
960 MBFI
.getBlockFreqRelativeToEntryBlock(LIS
->getMBBFromIndex(EndSI
));
961 Size
= StartSI
.distance(EndSI
);
963 // Set the features at the column 'Pos'.
964 #define SET(ID, TYPE, VAL) \
966 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
967 if (!DoNotNormalize.test(FeatureIDs::ID)) \
968 Largest[FeatureIDs::ID] = \
969 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
971 SET(mask
, int64_t, 1);
972 SET(is_free
, int64_t, Intervals
.empty());
973 SET(nr_urgent
, float, NumUrgent
);
974 SET(nr_broken_hints
, float, NumBrokenHints
);
975 SET(is_hint
, int64_t, IsHint
);
976 SET(is_local
, int64_t, LocalIntfsCount
);
977 SET(nr_rematerializable
, float, NumRematerializable
);
978 SET(nr_defs_and_uses
, float, NumDefsAndUses
);
979 SET(weighed_reads_by_max
, float, R
);
980 SET(weighed_writes_by_max
, float, W
);
981 SET(weighed_read_writes_by_max
, float, RW
);
982 SET(weighed_indvars_by_max
, float, IndVarUpdates
);
983 SET(hint_weights_by_max
, float, HintWeights
);
984 SET(start_bb_freq_by_max
, float, StartBBFreq
);
985 SET(end_bb_freq_by_max
, float, EndBBFreq
);
986 SET(hottest_bb_freq_by_max
, float, HottestBlockFreq
);
987 SET(liverange_size
, float, Size
);
988 SET(use_def_density
, float, TotalWeight
);
989 SET(max_stage
, int64_t, MaxStage
);
990 SET(min_stage
, int64_t, MinStage
);
994 void llvm::extractInstructionFeatures(
995 SmallVectorImpl
<LRStartEndInfo
> &LRPosInfo
, MLModelRunner
*RegallocRunner
,
996 function_ref
<int(SlotIndex
)> GetOpcode
,
997 function_ref
<float(SlotIndex
)> GetMBBFreq
,
998 function_ref
<MachineBasicBlock
*(SlotIndex
)> GetMBBReference
,
999 const int InstructionsIndex
, const int InstructionsMappingIndex
,
1000 const int MBBFreqIndex
, const int MBBMappingIndex
,
1001 const SlotIndex LastIndex
) {
1002 // This function extracts instruction based features relevant to the eviction
1003 // problem currently being solved. This function ends up extracting two
1005 // 1 - A vector of size max instruction count. It contains the opcodes of the
1006 // instructions spanned by all the intervals in the current instance of the
1007 // eviction problem.
1008 // 2 - A binary mapping matrix of size (LR count * max
1009 // instruction count) which maps where the LRs are live to the actual opcodes
1010 // for which they are live.
1011 // 3 - A vector of size max supported MBB count storing MBB frequencies,
1012 // encompassing all of the MBBs covered by the eviction problem.
1013 // 4 - A vector of size max instruction count of indices to members of the MBB
1014 // frequency vector, mapping each instruction to its associated MBB.
1016 // Start off by sorting the segments based on the beginning slot index.
1018 LRPosInfo
.begin(), LRPosInfo
.end(),
1019 [](LRStartEndInfo A
, LRStartEndInfo B
) { return A
.Begin
< B
.Begin
; });
1020 size_t InstructionIndex
= 0;
1021 size_t CurrentSegmentIndex
= 0;
1022 SlotIndex CurrentIndex
= LRPosInfo
[0].Begin
;
1023 std::map
<MachineBasicBlock
*, size_t> VisitedMBBs
;
1024 size_t CurrentMBBIndex
= 0;
1025 // This loop processes all the segments sequentially by starting at the
1026 // beginning slot index of the first segment, iterating through all the slot
1027 // indices before the end slot index of that segment (while checking for
1028 // overlaps with segments that start at greater slot indices). After hitting
1029 // that end index, the current segment being processed gets bumped until they
1030 // are all processed or the max instruction count is hit, where everything is
1033 // If the index that we are currently at is within the current segment and
1034 // we haven't hit the max instruction count, continue processing the current
1036 while (CurrentIndex
<= LRPosInfo
[CurrentSegmentIndex
].End
&&
1037 InstructionIndex
< ModelMaxSupportedInstructionCount
) {
1038 int CurrentOpcode
= GetOpcode(CurrentIndex
);
1039 // If the current machine instruction is null, skip it
1040 if (CurrentOpcode
== -1) {
1041 // If we're currently at the last index in the SlotIndex analysis,
1042 // we can't go any further, so return from the function
1043 if (CurrentIndex
>= LastIndex
) {
1046 CurrentIndex
= CurrentIndex
.getNextIndex();
1049 MachineBasicBlock
*CurrentMBBReference
= GetMBBReference(CurrentIndex
);
1050 if (VisitedMBBs
.count(CurrentMBBReference
) == 0) {
1051 VisitedMBBs
[CurrentMBBReference
] = CurrentMBBIndex
;
1054 extractMBBFrequency(CurrentIndex
, InstructionIndex
, VisitedMBBs
,
1055 GetMBBFreq
, CurrentMBBReference
, RegallocRunner
,
1056 MBBFreqIndex
, MBBMappingIndex
);
1057 // Current code assumes we're not going to get any disjointed segments
1058 assert(LRPosInfo
[CurrentSegmentIndex
].Begin
<= CurrentIndex
);
1059 RegallocRunner
->getTensor
<int64_t>(InstructionsIndex
)[InstructionIndex
] =
1060 CurrentOpcode
< OpcodeValueCutoff
? CurrentOpcode
: 0;
1061 // set value in the binary mapping matrix for the current instruction
1062 auto CurrentSegmentPosition
= LRPosInfo
[CurrentSegmentIndex
].Pos
;
1063 RegallocRunner
->getTensor
<int64_t>(
1064 InstructionsMappingIndex
)[CurrentSegmentPosition
*
1065 ModelMaxSupportedInstructionCount
+
1066 InstructionIndex
] = 1;
1067 // All of the segments are sorted based on the beginning slot index, but
1068 // this doesn't mean that the beginning slot index of the next segment is
1069 // after the end segment of the one being currently processed. This while
1070 // loop checks for overlapping segments and modifies the portion of the
1071 // column in the mapping matrix for the currently processed instruction
1072 // for the LR it is checking. Also make sure that the beginning of the
1073 // current segment we're checking for overlap in is less than the current
1074 // index, otherwise we're done checking overlaps.
1075 size_t OverlapCheckCurrentSegment
= CurrentSegmentIndex
+ 1;
1076 while (OverlapCheckCurrentSegment
< LRPosInfo
.size() &&
1077 LRPosInfo
[OverlapCheckCurrentSegment
].Begin
<= CurrentIndex
) {
1078 auto OverlapCurrentSegmentPosition
=
1079 LRPosInfo
[OverlapCheckCurrentSegment
].Pos
;
1080 if (LRPosInfo
[OverlapCheckCurrentSegment
].End
>= CurrentIndex
) {
1081 RegallocRunner
->getTensor
<int64_t>(
1082 InstructionsMappingIndex
)[OverlapCurrentSegmentPosition
*
1083 ModelMaxSupportedInstructionCount
+
1084 InstructionIndex
] = 1;
1086 ++OverlapCheckCurrentSegment
;
1089 if (CurrentIndex
>= LastIndex
) {
1092 CurrentIndex
= CurrentIndex
.getNextIndex();
1094 // if we've just finished processing through the last segment or if we've
1095 // hit the maximum number of instructions, break out of the loop.
1096 if (CurrentSegmentIndex
== LRPosInfo
.size() - 1 ||
1097 InstructionIndex
>= ModelMaxSupportedInstructionCount
) {
1100 // If the segments are not overlapping, we need to move to the beginning
1101 // index of the next segment to avoid having instructions not attached to
1103 if (LRPosInfo
[CurrentSegmentIndex
+ 1].Begin
>
1104 LRPosInfo
[CurrentSegmentIndex
].End
) {
1105 CurrentIndex
= LRPosInfo
[CurrentSegmentIndex
+ 1].Begin
;
1107 ++CurrentSegmentIndex
;
1111 void llvm::extractMBBFrequency(
1112 const SlotIndex CurrentIndex
, const size_t CurrentInstructionIndex
,
1113 std::map
<MachineBasicBlock
*, size_t> &VisitedMBBs
,
1114 function_ref
<float(SlotIndex
)> GetMBBFreq
,
1115 MachineBasicBlock
*CurrentMBBReference
, MLModelRunner
*RegallocRunner
,
1116 const int MBBFreqIndex
, const int MBBMappingIndex
) {
1117 size_t CurrentMBBIndex
= VisitedMBBs
[CurrentMBBReference
];
1118 float CurrentMBBFreq
= GetMBBFreq(CurrentIndex
);
1119 if (CurrentMBBIndex
< ModelMaxSupportedMBBCount
) {
1120 RegallocRunner
->getTensor
<float>(MBBFreqIndex
)[CurrentMBBIndex
] =
1122 RegallocRunner
->getTensor
<int64_t>(
1123 MBBMappingIndex
)[CurrentInstructionIndex
] = CurrentMBBIndex
;
1127 // Development mode-specific implementations
1128 #ifdef LLVM_HAVE_TFLITE
1130 RegAllocEvictionAdvisorAnalysis
*llvm::createDevelopmentModeAdvisor() {
1131 return new DevelopmentModeEvictionAdvisorAnalysis();
1134 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
1135 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
1136 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
1137 const SmallVirtRegSet
&FixedRegisters
) const {
1139 if (isa
<ModelUnderTrainingRunner
>(getRunner())) {
1140 Ret
= MLEvictAdvisor::tryFindEvictionCandidatePosition(
1141 VirtReg
, Order
, OrderLimit
, CostPerUseLimit
, FixedRegisters
);
1143 MCRegister PhysReg
= getDefaultAdvisor().tryFindEvictionCandidate(
1144 VirtReg
, Order
, CostPerUseLimit
, FixedRegisters
);
1145 // Find the index of the selected PhysReg. We need it for logging,
1146 // otherwise this is wasted cycles (but so would starting development mode
1147 // without a model nor logging)
1149 Ret
= CandidateVirtRegPos
;
1151 for (auto I
= Order
.begin(), E
= Order
.getOrderLimitEnd(OrderLimit
);
1156 if (TrainingLog
.empty())
1158 // TODO(mtrofin): when we support optional rewards, this can go away. In the
1159 // meantime, we log the "pretend" reward (0) for the previous observation
1160 // before starting a new one.
1161 if (Log
->hasObservationInProgress())
1162 Log
->logReward
<float>(0.0);
1164 Log
->startObservation();
1165 size_t CurrentFeature
= 0;
1166 size_t FeatureCount
= EnableDevelopmentFeatures
1167 ? FeatureIDs::FeaturesWithDevelopmentCount
1168 : FeatureIDs::FeatureCount
;
1169 for (; CurrentFeature
< FeatureCount
; ++CurrentFeature
) {
1170 Log
->logTensorValue(CurrentFeature
,
1171 reinterpret_cast<const char *>(
1172 getRunner().getTensorUntyped(CurrentFeature
)));
1174 if (auto *MUTR
= dyn_cast
<ModelUnderTrainingRunner
>(&getRunner()))
1175 for (size_t I
= 0; I
< MUTR
->extraOutputsForLoggingSpecs().size();
1176 ++I
, ++CurrentFeature
)
1177 Log
->logTensorValue(
1179 reinterpret_cast<const char *>(MUTR
->getUntypedExtraOutputValue(I
)));
1180 // The output is right after the features and the extra outputs
1181 Log
->logTensorValue(CurrentFeature
, reinterpret_cast<const char *>(&Ret
));
1182 Log
->endObservation();
1186 bool RegAllocScoring::runOnMachineFunction(MachineFunction
&MF
) {
1187 std::optional
<float> CachedReward
;
1188 auto GetReward
= [&]() {
1190 CachedReward
= static_cast<float>(
1191 calculateRegAllocScore(
1192 MF
, getAnalysis
<MachineBlockFrequencyInfoWrapperPass
>().getMBFI())
1194 return *CachedReward
;
1197 getAnalysis
<RegAllocEvictionAdvisorAnalysis
>().logRewardIfNeeded(MF
,
1199 getAnalysis
<RegAllocPriorityAdvisorAnalysis
>().logRewardIfNeeded(MF
,
1203 #endif // #ifdef LLVM_HAVE_TFLITE
1205 RegAllocEvictionAdvisorAnalysis
*llvm::createReleaseModeAdvisor() {
1206 return llvm::isEmbeddedModelEvaluatorValid
<CompiledModelType
>() ||
1207 !InteractiveChannelBaseName
.empty()
1208 ? new ReleaseModeEvictionAdvisorAnalysis()
1212 // In all cases except development mode, we don't need scoring.
1213 #if !defined(LLVM_HAVE_TFLITE)
1214 bool RegAllocScoring::runOnMachineFunction(MachineFunction
&) { return false; }