[MachineScheduler] Fix physreg dependencies of ExitSU (#123541)
[llvm-project.git] / llvm / lib / CodeGen / MachineCSE.cpp
blobbea0eaf206f5eee4efda9036bec297c3429c6d7e
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineCSE.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <iterator>
47 #include <utility>
49 using namespace llvm;
51 #define DEBUG_TYPE "machine-cse"
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
55 STATISTIC(NumPREs, "Number of partial redundant expression"
56 " transformed to fully redundant");
57 STATISTIC(NumPhysCSEs,
58 "Number of physreg referencing common subexpr eliminated");
59 STATISTIC(NumCrossBBCSEs,
60 "Number of cross-MBB physreg referencing CS eliminated");
61 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
63 // Threshold to avoid excessive cost to compute isProfitableToCSE.
64 static cl::opt<int>
65 CSUsesThreshold("csuses-threshold", cl::Hidden, cl::init(1024),
66 cl::desc("Threshold for the size of CSUses"));
68 static cl::opt<bool> AggressiveMachineCSE(
69 "aggressive-machine-cse", cl::Hidden, cl::init(false),
70 cl::desc("Override the profitability heuristics for Machine CSE"));
72 namespace {
74 class MachineCSEImpl {
75 const TargetInstrInfo *TII = nullptr;
76 const TargetRegisterInfo *TRI = nullptr;
77 MachineDominatorTree *DT = nullptr;
78 MachineRegisterInfo *MRI = nullptr;
79 MachineBlockFrequencyInfo *MBFI = nullptr;
81 public:
82 MachineCSEImpl(MachineDominatorTree *DT, MachineBlockFrequencyInfo *MBFI)
83 : DT(DT), MBFI(MBFI) {}
84 bool run(MachineFunction &MF);
86 private:
87 using AllocatorTy =
88 RecyclingAllocator<BumpPtrAllocator,
89 ScopedHashTableVal<MachineInstr *, unsigned>>;
90 using ScopedHTType =
91 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
92 AllocatorTy>;
93 using ScopeType = ScopedHTType::ScopeTy;
94 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
96 unsigned LookAheadLimit = 0;
97 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
98 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
99 PREMap;
100 ScopedHTType VNT;
101 SmallVector<MachineInstr *, 64> Exps;
102 unsigned CurrVN = 0;
104 bool PerformTrivialCopyPropagation(MachineInstr *MI, MachineBasicBlock *MBB);
105 bool isPhysDefTriviallyDead(MCRegister Reg,
106 MachineBasicBlock::const_iterator I,
107 MachineBasicBlock::const_iterator E) const;
108 bool hasLivePhysRegDefUses(const MachineInstr *MI,
109 const MachineBasicBlock *MBB,
110 SmallSet<MCRegister, 8> &PhysRefs,
111 PhysDefVector &PhysDefs, bool &PhysUseDef) const;
112 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
113 SmallSet<MCRegister, 8> &PhysRefs,
114 PhysDefVector &PhysDefs, bool &NonLocal) const;
115 bool isCSECandidate(MachineInstr *MI);
116 bool isProfitableToCSE(Register CSReg, Register Reg, MachineBasicBlock *CSBB,
117 MachineInstr *MI);
118 void EnterScope(MachineBasicBlock *MBB);
119 void ExitScope(MachineBasicBlock *MBB);
120 bool ProcessBlockCSE(MachineBasicBlock *MBB);
121 void ExitScopeIfDone(MachineDomTreeNode *Node,
122 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren);
123 bool PerformCSE(MachineDomTreeNode *Node);
125 bool isPRECandidate(MachineInstr *MI, SmallSet<MCRegister, 8> &PhysRefs);
126 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
127 bool PerformSimplePRE(MachineDominatorTree *DT);
128 /// Heuristics to see if it's profitable to move common computations of MBB
129 /// and MBB1 to CandidateBB.
130 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
131 MachineBasicBlock *MBB, MachineBasicBlock *MBB1);
132 void releaseMemory();
135 class MachineCSELegacy : public MachineFunctionPass {
136 public:
137 static char ID; // Pass identification
139 MachineCSELegacy() : MachineFunctionPass(ID) {
140 initializeMachineCSELegacyPass(*PassRegistry::getPassRegistry());
143 bool runOnMachineFunction(MachineFunction &MF) override;
145 void getAnalysisUsage(AnalysisUsage &AU) const override {
146 AU.setPreservesCFG();
147 MachineFunctionPass::getAnalysisUsage(AU);
148 AU.addPreservedID(MachineLoopInfoID);
149 AU.addRequired<MachineDominatorTreeWrapperPass>();
150 AU.addPreserved<MachineDominatorTreeWrapperPass>();
151 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
152 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
155 MachineFunctionProperties getRequiredProperties() const override {
156 return MachineFunctionProperties().set(
157 MachineFunctionProperties::Property::IsSSA);
160 } // end anonymous namespace
162 char MachineCSELegacy::ID = 0;
164 char &llvm::MachineCSELegacyID = MachineCSELegacy::ID;
166 INITIALIZE_PASS_BEGIN(MachineCSELegacy, DEBUG_TYPE,
167 "Machine Common Subexpression Elimination", false, false)
168 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
169 INITIALIZE_PASS_END(MachineCSELegacy, DEBUG_TYPE,
170 "Machine Common Subexpression Elimination", false, false)
172 /// The source register of a COPY machine instruction can be propagated to all
173 /// its users, and this propagation could increase the probability of finding
174 /// common subexpressions. If the COPY has only one user, the COPY itself can
175 /// be removed.
176 bool MachineCSEImpl::PerformTrivialCopyPropagation(MachineInstr *MI,
177 MachineBasicBlock *MBB) {
178 bool Changed = false;
179 for (MachineOperand &MO : MI->all_uses()) {
180 Register Reg = MO.getReg();
181 if (!Reg.isVirtual())
182 continue;
183 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
184 MachineInstr *DefMI = MRI->getVRegDef(Reg);
185 if (!DefMI || !DefMI->isCopy())
186 continue;
187 Register SrcReg = DefMI->getOperand(1).getReg();
188 if (!SrcReg.isVirtual())
189 continue;
190 // FIXME: We should trivially coalesce subregister copies to expose CSE
191 // opportunities on instructions with truncated operands (see
192 // cse-add-with-overflow.ll). This can be done here as follows:
193 // if (SrcSubReg)
194 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
195 // SrcSubReg);
196 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
198 // The 2-addr pass has been updated to handle coalesced subregs. However,
199 // some machine-specific code still can't handle it.
200 // To handle it properly we also need a way find a constrained subregister
201 // class given a super-reg class and subreg index.
202 if (DefMI->getOperand(1).getSubReg())
203 continue;
204 if (!MRI->constrainRegAttrs(SrcReg, Reg))
205 continue;
206 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
207 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
209 // Propagate SrcReg of copies to MI.
210 MO.setReg(SrcReg);
211 MRI->clearKillFlags(SrcReg);
212 // Coalesce single use copies.
213 if (OnlyOneUse) {
214 // If (and only if) we've eliminated all uses of the copy, also
215 // copy-propagate to any debug-users of MI, or they'll be left using
216 // an undefined value.
217 DefMI->changeDebugValuesDefReg(SrcReg);
219 DefMI->eraseFromParent();
220 ++NumCoalesces;
222 Changed = true;
225 return Changed;
228 bool MachineCSEImpl::isPhysDefTriviallyDead(
229 MCRegister Reg, MachineBasicBlock::const_iterator I,
230 MachineBasicBlock::const_iterator E) const {
231 unsigned LookAheadLeft = LookAheadLimit;
232 while (LookAheadLeft) {
233 // Skip over dbg_value's.
234 I = skipDebugInstructionsForward(I, E);
236 if (I == E)
237 // Reached end of block, we don't know if register is dead or not.
238 return false;
240 bool SeenDef = false;
241 for (const MachineOperand &MO : I->operands()) {
242 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
243 SeenDef = true;
244 if (!MO.isReg() || !MO.getReg())
245 continue;
246 if (!TRI->regsOverlap(MO.getReg(), Reg))
247 continue;
248 if (MO.isUse())
249 // Found a use!
250 return false;
251 SeenDef = true;
253 if (SeenDef)
254 // See a def of Reg (or an alias) before encountering any use, it's
255 // trivially dead.
256 return true;
258 --LookAheadLeft;
259 ++I;
261 return false;
264 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
265 const MachineOperand &MO,
266 const MachineFunction &MF,
267 const TargetRegisterInfo &TRI,
268 const TargetInstrInfo &TII) {
269 // MachineRegisterInfo::isConstantPhysReg directly called by
270 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
271 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
272 // most (if not all) targets freeze reserved registers right after ISel.
274 // It does cause issues mid-GlobalISel, however, hence the additional
275 // reservedRegsFrozen check.
276 const MachineRegisterInfo &MRI = MF.getRegInfo();
277 return TRI.isCallerPreservedPhysReg(Reg, MF) || TII.isIgnorableUse(MO) ||
278 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
281 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
282 /// physical registers (except for dead defs of physical registers). It also
283 /// returns the physical register def by reference if it's the only one and the
284 /// instruction does not uses a physical register.
285 bool MachineCSEImpl::hasLivePhysRegDefUses(const MachineInstr *MI,
286 const MachineBasicBlock *MBB,
287 SmallSet<MCRegister, 8> &PhysRefs,
288 PhysDefVector &PhysDefs,
289 bool &PhysUseDef) const {
290 // First, add all uses to PhysRefs.
291 for (const MachineOperand &MO : MI->all_uses()) {
292 Register Reg = MO.getReg();
293 if (!Reg)
294 continue;
295 if (Reg.isVirtual())
296 continue;
297 // Reading either caller preserved or constant physregs is ok.
298 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), MO, *MI->getMF(), *TRI,
299 *TII))
300 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
301 PhysRefs.insert(*AI);
304 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
305 // (which currently contains only uses), set the PhysUseDef flag.
306 PhysUseDef = false;
307 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
308 for (const auto &MOP : llvm::enumerate(MI->operands())) {
309 const MachineOperand &MO = MOP.value();
310 if (!MO.isReg() || !MO.isDef())
311 continue;
312 Register Reg = MO.getReg();
313 if (!Reg)
314 continue;
315 if (Reg.isVirtual())
316 continue;
317 // Check against PhysRefs even if the def is "dead".
318 if (PhysRefs.count(Reg.asMCReg()))
319 PhysUseDef = true;
320 // If the def is dead, it's ok. But the def may not marked "dead". That's
321 // common since this pass is run before livevariables. We can scan
322 // forward a few instructions and check if it is obviously dead.
323 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
324 PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
327 // Finally, add all defs to PhysRefs as well.
328 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
329 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
330 ++AI)
331 PhysRefs.insert(*AI);
333 return !PhysRefs.empty();
336 bool MachineCSEImpl::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
337 SmallSet<MCRegister, 8> &PhysRefs,
338 PhysDefVector &PhysDefs,
339 bool &NonLocal) const {
340 // For now conservatively returns false if the common subexpression is
341 // not in the same basic block as the given instruction. The only exception
342 // is if the common subexpression is in the sole predecessor block.
343 const MachineBasicBlock *MBB = MI->getParent();
344 const MachineBasicBlock *CSMBB = CSMI->getParent();
346 bool CrossMBB = false;
347 if (CSMBB != MBB) {
348 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
349 return false;
351 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
352 if (MRI->isAllocatable(PhysDefs[i].second) ||
353 MRI->isReserved(PhysDefs[i].second))
354 // Avoid extending live range of physical registers if they are
355 //allocatable or reserved.
356 return false;
358 CrossMBB = true;
360 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
361 MachineBasicBlock::const_iterator E = MI;
362 MachineBasicBlock::const_iterator EE = CSMBB->end();
363 unsigned LookAheadLeft = LookAheadLimit;
364 while (LookAheadLeft) {
365 // Skip over dbg_value's.
366 while (I != E && I != EE && I->isDebugInstr())
367 ++I;
369 if (I == EE) {
370 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
371 (void)CrossMBB;
372 CrossMBB = false;
373 NonLocal = true;
374 I = MBB->begin();
375 EE = MBB->end();
376 continue;
379 if (I == E)
380 return true;
382 for (const MachineOperand &MO : I->operands()) {
383 // RegMasks go on instructions like calls that clobber lots of physregs.
384 // Don't attempt to CSE across such an instruction.
385 if (MO.isRegMask())
386 return false;
387 if (!MO.isReg() || !MO.isDef())
388 continue;
389 Register MOReg = MO.getReg();
390 if (MOReg.isVirtual())
391 continue;
392 if (PhysRefs.count(MOReg.asMCReg()))
393 return false;
396 --LookAheadLeft;
397 ++I;
400 return false;
403 bool MachineCSEImpl::isCSECandidate(MachineInstr *MI) {
404 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
405 MI->isInlineAsm() || MI->isDebugInstr() || MI->isJumpTableDebugInfo() ||
406 MI->isFakeUse())
407 return false;
409 // Ignore copies.
410 if (MI->isCopyLike())
411 return false;
413 // Ignore stuff that we obviously can't move.
414 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
415 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
416 return false;
418 if (MI->mayLoad()) {
419 // Okay, this instruction does a load. As a refinement, we allow the target
420 // to decide whether the loaded value is actually a constant. If so, we can
421 // actually use it as a load.
422 if (!MI->isDereferenceableInvariantLoad())
423 // FIXME: we should be able to hoist loads with no other side effects if
424 // there are no other instructions which can change memory in this loop.
425 // This is a trivial form of alias analysis.
426 return false;
429 // Ignore stack guard loads, otherwise the register that holds CSEed value may
430 // be spilled and get loaded back with corrupted data.
431 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
432 return false;
434 return true;
437 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
438 /// common expression that defines Reg. CSBB is basic block where CSReg is
439 /// defined.
440 bool MachineCSEImpl::isProfitableToCSE(Register CSReg, Register Reg,
441 MachineBasicBlock *CSBB,
442 MachineInstr *MI) {
443 if (AggressiveMachineCSE)
444 return true;
446 // FIXME: Heuristics that works around the lack the live range splitting.
448 // If CSReg is used at all uses of Reg, CSE should not increase register
449 // pressure of CSReg.
450 bool MayIncreasePressure = true;
451 if (CSReg.isVirtual() && Reg.isVirtual()) {
452 MayIncreasePressure = false;
453 SmallPtrSet<MachineInstr*, 8> CSUses;
454 int NumOfUses = 0;
455 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
456 CSUses.insert(&MI);
457 // Too costly to compute if NumOfUses is very large. Conservatively assume
458 // MayIncreasePressure to avoid spending too much time here.
459 if (++NumOfUses > CSUsesThreshold) {
460 MayIncreasePressure = true;
461 break;
464 if (!MayIncreasePressure)
465 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
466 if (!CSUses.count(&MI)) {
467 MayIncreasePressure = true;
468 break;
472 if (!MayIncreasePressure) return true;
474 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
475 // an immediate predecessor. We don't want to increase register pressure and
476 // end up causing other computation to be spilled.
477 if (TII->isAsCheapAsAMove(*MI)) {
478 MachineBasicBlock *BB = MI->getParent();
479 if (CSBB != BB && !CSBB->isSuccessor(BB))
480 return false;
483 // Heuristics #2: If the expression doesn't not use a vr and the only use
484 // of the redundant computation are copies, do not cse.
485 bool HasVRegUse = false;
486 for (const MachineOperand &MO : MI->all_uses()) {
487 if (MO.getReg().isVirtual()) {
488 HasVRegUse = true;
489 break;
492 if (!HasVRegUse) {
493 bool HasNonCopyUse = false;
494 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
495 // Ignore copies.
496 if (!MI.isCopyLike()) {
497 HasNonCopyUse = true;
498 break;
501 if (!HasNonCopyUse)
502 return false;
505 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
506 // it unless the defined value is already used in the BB of the new use.
507 bool HasPHI = false;
508 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
509 HasPHI |= UseMI.isPHI();
510 if (UseMI.getParent() == MI->getParent())
511 return true;
514 return !HasPHI;
517 void MachineCSEImpl::EnterScope(MachineBasicBlock *MBB) {
518 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
519 ScopeType *Scope = new ScopeType(VNT);
520 ScopeMap[MBB] = Scope;
523 void MachineCSEImpl::ExitScope(MachineBasicBlock *MBB) {
524 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
525 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
526 assert(SI != ScopeMap.end());
527 delete SI->second;
528 ScopeMap.erase(SI);
531 bool MachineCSEImpl::ProcessBlockCSE(MachineBasicBlock *MBB) {
532 bool Changed = false;
534 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
535 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
536 SmallVector<unsigned, 2> ImplicitDefs;
537 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
538 if (!isCSECandidate(&MI))
539 continue;
541 bool FoundCSE = VNT.count(&MI);
542 if (!FoundCSE) {
543 // Using trivial copy propagation to find more CSE opportunities.
544 if (PerformTrivialCopyPropagation(&MI, MBB)) {
545 Changed = true;
547 // After coalescing MI itself may become a copy.
548 if (MI.isCopyLike())
549 continue;
551 // Try again to see if CSE is possible.
552 FoundCSE = VNT.count(&MI);
556 // Commute commutable instructions.
557 bool Commuted = false;
558 if (!FoundCSE && MI.isCommutable()) {
559 if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
560 Commuted = true;
561 FoundCSE = VNT.count(NewMI);
562 if (NewMI != &MI) {
563 // New instruction. It doesn't need to be kept.
564 NewMI->eraseFromParent();
565 Changed = true;
566 } else if (!FoundCSE)
567 // MI was changed but it didn't help, commute it back!
568 (void)TII->commuteInstruction(MI);
572 // If the instruction defines physical registers and the values *may* be
573 // used, then it's not safe to replace it with a common subexpression.
574 // It's also not safe if the instruction uses physical registers.
575 bool CrossMBBPhysDef = false;
576 SmallSet<MCRegister, 8> PhysRefs;
577 PhysDefVector PhysDefs;
578 bool PhysUseDef = false;
579 if (FoundCSE &&
580 hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
581 FoundCSE = false;
583 // ... Unless the CS is local or is in the sole predecessor block
584 // and it also defines the physical register which is not clobbered
585 // in between and the physical register uses were not clobbered.
586 // This can never be the case if the instruction both uses and
587 // defines the same physical register, which was detected above.
588 if (!PhysUseDef) {
589 unsigned CSVN = VNT.lookup(&MI);
590 MachineInstr *CSMI = Exps[CSVN];
591 if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
592 FoundCSE = true;
596 if (!FoundCSE) {
597 VNT.insert(&MI, CurrVN++);
598 Exps.push_back(&MI);
599 continue;
602 // Found a common subexpression, eliminate it.
603 unsigned CSVN = VNT.lookup(&MI);
604 MachineInstr *CSMI = Exps[CSVN];
605 LLVM_DEBUG(dbgs() << "Examining: " << MI);
606 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
608 // Prevent CSE-ing non-local convergent instructions.
609 // LLVM's current definition of `isConvergent` does not necessarily prove
610 // that non-local CSE is illegal. The following check extends the definition
611 // of `isConvergent` to assume a convergent instruction is dependent not
612 // only on additional conditions, but also on fewer conditions. LLVM does
613 // not have a MachineInstr attribute which expresses this extended
614 // definition, so it's necessary to use `isConvergent` to prevent illegally
615 // CSE-ing the subset of `isConvergent` instructions which do fall into this
616 // extended definition.
617 if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
618 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
619 "different BBs, avoid CSE!\n");
620 VNT.insert(&MI, CurrVN++);
621 Exps.push_back(&MI);
622 continue;
625 // Check if it's profitable to perform this CSE.
626 bool DoCSE = true;
627 unsigned NumDefs = MI.getNumDefs();
629 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
630 MachineOperand &MO = MI.getOperand(i);
631 if (!MO.isReg() || !MO.isDef())
632 continue;
633 Register OldReg = MO.getReg();
634 Register NewReg = CSMI->getOperand(i).getReg();
636 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
637 // we should make sure it is not dead at CSMI.
638 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
639 ImplicitDefsToUpdate.push_back(i);
641 // Keep track of implicit defs of CSMI and MI, to clear possibly
642 // made-redundant kill flags.
643 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
644 ImplicitDefs.push_back(OldReg);
646 if (OldReg == NewReg) {
647 --NumDefs;
648 continue;
651 assert(OldReg.isVirtual() && NewReg.isVirtual() &&
652 "Do not CSE physical register defs!");
654 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
655 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
656 DoCSE = false;
657 break;
660 // Don't perform CSE if the result of the new instruction cannot exist
661 // within the constraints (register class, bank, or low-level type) of
662 // the old instruction.
663 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
664 LLVM_DEBUG(
665 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
666 DoCSE = false;
667 break;
670 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
671 --NumDefs;
674 // Actually perform the elimination.
675 if (DoCSE) {
676 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
677 unsigned OldReg = CSEPair.first;
678 unsigned NewReg = CSEPair.second;
679 // OldReg may have been unused but is used now, clear the Dead flag
680 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
681 assert(Def != nullptr && "CSEd register has no unique definition?");
682 Def->clearRegisterDeads(NewReg);
683 // Replace with NewReg and clear kill flags which may be wrong now.
684 MRI->replaceRegWith(OldReg, NewReg);
685 MRI->clearKillFlags(NewReg);
688 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
689 // we should make sure it is not dead at CSMI.
690 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
691 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
692 for (const auto &PhysDef : PhysDefs)
693 if (!MI.getOperand(PhysDef.first).isDead())
694 CSMI->getOperand(PhysDef.first).setIsDead(false);
696 // Go through implicit defs of CSMI and MI, and clear the kill flags on
697 // their uses in all the instructions between CSMI and MI.
698 // We might have made some of the kill flags redundant, consider:
699 // subs ... implicit-def %nzcv <- CSMI
700 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
701 // subs ... implicit-def %nzcv <- MI, to be eliminated
702 // csinc ... implicit killed %nzcv
703 // Since we eliminated MI, and reused a register imp-def'd by CSMI
704 // (here %nzcv), that register, if it was killed before MI, should have
705 // that kill flag removed, because it's lifetime was extended.
706 if (CSMI->getParent() == MI.getParent()) {
707 for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
708 for (auto ImplicitDef : ImplicitDefs)
709 if (MachineOperand *MO = II->findRegisterUseOperand(
710 ImplicitDef, TRI, /*isKill=*/true))
711 MO->setIsKill(false);
712 } else {
713 // If the instructions aren't in the same BB, bail out and clear the
714 // kill flag on all uses of the imp-def'd register.
715 for (auto ImplicitDef : ImplicitDefs)
716 MRI->clearKillFlags(ImplicitDef);
719 if (CrossMBBPhysDef) {
720 // Add physical register defs now coming in from a predecessor to MBB
721 // livein list.
722 while (!PhysDefs.empty()) {
723 auto LiveIn = PhysDefs.pop_back_val();
724 if (!MBB->isLiveIn(LiveIn.second))
725 MBB->addLiveIn(LiveIn.second);
727 ++NumCrossBBCSEs;
730 MI.eraseFromParent();
731 ++NumCSEs;
732 if (!PhysRefs.empty())
733 ++NumPhysCSEs;
734 if (Commuted)
735 ++NumCommutes;
736 Changed = true;
737 } else {
738 VNT.insert(&MI, CurrVN++);
739 Exps.push_back(&MI);
741 CSEPairs.clear();
742 ImplicitDefsToUpdate.clear();
743 ImplicitDefs.clear();
746 return Changed;
749 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
750 /// dominator tree node if its a leaf or all of its children are done. Walk
751 /// up the dominator tree to destroy ancestors which are now done.
752 void MachineCSEImpl::ExitScopeIfDone(
753 MachineDomTreeNode *Node,
754 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren) {
755 if (OpenChildren[Node])
756 return;
758 // Pop scope.
759 ExitScope(Node->getBlock());
761 // Now traverse upwards to pop ancestors whose offsprings are all done.
762 while (MachineDomTreeNode *Parent = Node->getIDom()) {
763 unsigned Left = --OpenChildren[Parent];
764 if (Left != 0)
765 break;
766 ExitScope(Parent->getBlock());
767 Node = Parent;
771 bool MachineCSEImpl::PerformCSE(MachineDomTreeNode *Node) {
772 SmallVector<MachineDomTreeNode*, 32> Scopes;
773 SmallVector<MachineDomTreeNode*, 8> WorkList;
774 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
776 CurrVN = 0;
778 // Perform a DFS walk to determine the order of visit.
779 WorkList.push_back(Node);
780 do {
781 Node = WorkList.pop_back_val();
782 Scopes.push_back(Node);
783 OpenChildren[Node] = Node->getNumChildren();
784 append_range(WorkList, Node->children());
785 } while (!WorkList.empty());
787 // Now perform CSE.
788 bool Changed = false;
789 for (MachineDomTreeNode *Node : Scopes) {
790 MachineBasicBlock *MBB = Node->getBlock();
791 EnterScope(MBB);
792 Changed |= ProcessBlockCSE(MBB);
793 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
794 ExitScopeIfDone(Node, OpenChildren);
797 return Changed;
800 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
801 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
802 // to exclude instrs created by PRE that won't be CSEed later.
803 bool MachineCSEImpl::isPRECandidate(MachineInstr *MI,
804 SmallSet<MCRegister, 8> &PhysRefs) {
805 if (!isCSECandidate(MI) ||
806 MI->isNotDuplicable() ||
807 MI->mayLoad() ||
808 TII->isAsCheapAsAMove(*MI) ||
809 MI->getNumDefs() != 1 ||
810 MI->getNumExplicitDefs() != 1)
811 return false;
813 for (const MachineOperand &MO : MI->operands()) {
814 if (MO.isReg() && !MO.getReg().isVirtual()) {
815 if (MO.isDef())
816 return false;
817 else
818 PhysRefs.insert(MO.getReg());
822 return true;
825 bool MachineCSEImpl::ProcessBlockPRE(MachineDominatorTree *DT,
826 MachineBasicBlock *MBB) {
827 bool Changed = false;
828 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
829 SmallSet<MCRegister, 8> PhysRefs;
830 if (!isPRECandidate(&MI, PhysRefs))
831 continue;
833 auto [It, Inserted] = PREMap.try_emplace(&MI, MBB);
834 if (Inserted)
835 continue;
837 auto *MBB1 = It->second;
838 assert(
839 !DT->properlyDominates(MBB, MBB1) &&
840 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
841 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
842 if (!CMBB->isLegalToHoistInto())
843 continue;
845 if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
846 continue;
848 // Two instrs are partial redundant if their basic blocks are reachable
849 // from one to another but one doesn't dominate another.
850 if (CMBB != MBB1) {
851 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
852 if (BB != nullptr && BB1 != nullptr &&
853 (isPotentiallyReachable(BB1, BB) ||
854 isPotentiallyReachable(BB, BB1))) {
855 // The following check extends the definition of `isConvergent` to
856 // assume a convergent instruction is dependent not only on additional
857 // conditions, but also on fewer conditions. LLVM does not have a
858 // MachineInstr attribute which expresses this extended definition, so
859 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
860 // subset of `isConvergent` instructions which do fall into this
861 // extended definition.
862 if (MI.isConvergent() && CMBB != MBB)
863 continue;
865 // If this instruction uses physical registers then we can only do PRE
866 // if it's using the value that is live at the place we're hoisting to.
867 bool NonLocal;
868 PhysDefVector PhysDefs;
869 if (!PhysRefs.empty() &&
870 !PhysRegDefsReach(&*(CMBB->getFirstTerminator()), &MI, PhysRefs,
871 PhysDefs, NonLocal))
872 continue;
874 assert(MI.getOperand(0).isDef() &&
875 "First operand of instr with one explicit def must be this def");
876 Register VReg = MI.getOperand(0).getReg();
877 Register NewReg = MRI->cloneVirtualRegister(VReg);
878 if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
879 continue;
880 MachineInstr &NewMI =
881 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
883 // When hoisting, make sure we don't carry the debug location of
884 // the original instruction, as that's not correct and can cause
885 // unexpected jumps when debugging optimized code.
886 auto EmptyDL = DebugLoc();
887 NewMI.setDebugLoc(EmptyDL);
889 NewMI.getOperand(0).setReg(NewReg);
891 PREMap[&MI] = CMBB;
892 ++NumPREs;
893 Changed = true;
897 return Changed;
900 // This simple PRE (partial redundancy elimination) pass doesn't actually
901 // eliminate partial redundancy but transforms it to full redundancy,
902 // anticipating that the next CSE step will eliminate this created redundancy.
903 // If CSE doesn't eliminate this, than created instruction will remain dead
904 // and eliminated later by Remove Dead Machine Instructions pass.
905 bool MachineCSEImpl::PerformSimplePRE(MachineDominatorTree *DT) {
906 SmallVector<MachineDomTreeNode *, 32> BBs;
908 PREMap.clear();
909 bool Changed = false;
910 BBs.push_back(DT->getRootNode());
911 do {
912 auto Node = BBs.pop_back_val();
913 append_range(BBs, Node->children());
915 MachineBasicBlock *MBB = Node->getBlock();
916 Changed |= ProcessBlockPRE(DT, MBB);
918 } while (!BBs.empty());
920 return Changed;
923 bool MachineCSEImpl::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
924 MachineBasicBlock *MBB,
925 MachineBasicBlock *MBB1) {
926 if (CandidateBB->getParent()->getFunction().hasMinSize())
927 return true;
928 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
929 assert(DT->dominates(CandidateBB, MBB1) &&
930 "CandidateBB should dominate MBB1");
931 return MBFI->getBlockFreq(CandidateBB) <=
932 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
935 void MachineCSEImpl::releaseMemory() {
936 ScopeMap.clear();
937 PREMap.clear();
938 Exps.clear();
941 bool MachineCSEImpl::run(MachineFunction &MF) {
942 TII = MF.getSubtarget().getInstrInfo();
943 TRI = MF.getSubtarget().getRegisterInfo();
944 MRI = &MF.getRegInfo();
945 LookAheadLimit = TII->getMachineCSELookAheadLimit();
946 bool ChangedPRE, ChangedCSE;
947 ChangedPRE = PerformSimplePRE(DT);
948 ChangedCSE = PerformCSE(DT->getRootNode());
949 releaseMemory();
950 return ChangedPRE || ChangedCSE;
953 PreservedAnalyses MachineCSEPass::run(MachineFunction &MF,
954 MachineFunctionAnalysisManager &MFAM) {
955 MFPropsModifier _(*this, MF);
957 MachineDominatorTree &MDT = MFAM.getResult<MachineDominatorTreeAnalysis>(MF);
958 MachineBlockFrequencyInfo &MBFI =
959 MFAM.getResult<MachineBlockFrequencyAnalysis>(MF);
960 MachineCSEImpl Impl(&MDT, &MBFI);
961 bool Changed = Impl.run(MF);
962 if (!Changed)
963 return PreservedAnalyses::all();
965 auto PA = getMachineFunctionPassPreservedAnalyses();
966 PA.preserve<MachineLoopAnalysis>();
967 PA.preserve<MachineDominatorTreeAnalysis>();
968 PA.preserve<MachineBlockFrequencyAnalysis>();
969 PA.preserveSet<CFGAnalyses>();
970 return PA;
973 bool MachineCSELegacy::runOnMachineFunction(MachineFunction &MF) {
974 if (skipFunction(MF.getFunction()))
975 return false;
977 MachineDominatorTree &MDT =
978 getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
979 MachineBlockFrequencyInfo &MBFI =
980 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
981 MachineCSEImpl Impl(&MDT, &MBFI);
982 return Impl.run(MF);