[MachineScheduler] Fix physreg dependencies of ExitSU (#123541)
[llvm-project.git] / llvm / lib / CodeGen / RegAllocPBQP.cpp
blobe230a1be95c9fa57abebdff72fe0e014ac031e7a
1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10 // register allocator for LLVM. This allocator works by constructing a PBQP
11 // problem representing the register allocation problem under consideration,
12 // solving this using a PBQP solver, and mapping the solution back to a
13 // register assignment. If any variables are selected for spilling then spill
14 // code is inserted and the process repeated.
16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17 // for register allocation. For more information on PBQP for register
18 // allocation, see the following papers:
20 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25 // architectures. In Proceedings of the Joint Conference on Languages,
26 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
27 // NY, USA, 139-148.
29 //===----------------------------------------------------------------------===//
31 #include "llvm/CodeGen/RegAllocPBQP.h"
32 #include "RegisterCoalescer.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/CodeGen/CalcSpillWeights.h"
43 #include "llvm/CodeGen/LiveInterval.h"
44 #include "llvm/CodeGen/LiveIntervals.h"
45 #include "llvm/CodeGen/LiveRangeEdit.h"
46 #include "llvm/CodeGen/LiveStacks.h"
47 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
48 #include "llvm/CodeGen/MachineDominators.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstr.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/PBQP/Graph.h"
55 #include "llvm/CodeGen/PBQP/Math.h"
56 #include "llvm/CodeGen/PBQP/Solution.h"
57 #include "llvm/CodeGen/PBQPRAConstraint.h"
58 #include "llvm/CodeGen/RegAllocRegistry.h"
59 #include "llvm/CodeGen/SlotIndexes.h"
60 #include "llvm/CodeGen/Spiller.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/VirtRegMap.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Printable.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <limits>
78 #include <map>
79 #include <memory>
80 #include <queue>
81 #include <set>
82 #include <sstream>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
89 using namespace llvm;
91 #define DEBUG_TYPE "regalloc"
93 static RegisterRegAlloc
94 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
95 createDefaultPBQPRegisterAllocator);
97 static cl::opt<bool>
98 PBQPCoalescing("pbqp-coalescing",
99 cl::desc("Attempt coalescing during PBQP register allocation."),
100 cl::init(false), cl::Hidden);
102 #ifndef NDEBUG
103 static cl::opt<bool>
104 PBQPDumpGraphs("pbqp-dump-graphs",
105 cl::desc("Dump graphs for each function/round in the compilation unit."),
106 cl::init(false), cl::Hidden);
107 #endif
109 namespace {
112 /// PBQP based allocators solve the register allocation problem by mapping
113 /// register allocation problems to Partitioned Boolean Quadratic
114 /// Programming problems.
115 class RegAllocPBQP : public MachineFunctionPass {
116 public:
117 static char ID;
119 /// Construct a PBQP register allocator.
120 RegAllocPBQP(char *cPassID = nullptr)
121 : MachineFunctionPass(ID), customPassID(cPassID) {
122 initializeSlotIndexesWrapperPassPass(*PassRegistry::getPassRegistry());
123 initializeLiveIntervalsWrapperPassPass(*PassRegistry::getPassRegistry());
124 initializeLiveStacksWrapperLegacyPass(*PassRegistry::getPassRegistry());
125 initializeVirtRegMapWrapperLegacyPass(*PassRegistry::getPassRegistry());
128 /// Return the pass name.
129 StringRef getPassName() const override { return "PBQP Register Allocator"; }
131 /// PBQP analysis usage.
132 void getAnalysisUsage(AnalysisUsage &au) const override;
134 /// Perform register allocation
135 bool runOnMachineFunction(MachineFunction &MF) override;
137 MachineFunctionProperties getRequiredProperties() const override {
138 return MachineFunctionProperties().set(
139 MachineFunctionProperties::Property::NoPHIs);
142 MachineFunctionProperties getClearedProperties() const override {
143 return MachineFunctionProperties().set(
144 MachineFunctionProperties::Property::IsSSA);
147 private:
148 using RegSet = std::set<Register>;
150 char *customPassID;
152 RegSet VRegsToAlloc, EmptyIntervalVRegs;
154 /// Inst which is a def of an original reg and whose defs are already all
155 /// dead after remat is saved in DeadRemats. The deletion of such inst is
156 /// postponed till all the allocations are done, so its remat expr is
157 /// always available for the remat of all the siblings of the original reg.
158 SmallPtrSet<MachineInstr *, 32> DeadRemats;
160 /// Finds the initial set of vreg intervals to allocate.
161 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
163 /// Constructs an initial graph.
164 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
166 /// Spill the given VReg.
167 void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals,
168 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
169 Spiller &VRegSpiller);
171 /// Given a solved PBQP problem maps this solution back to a register
172 /// assignment.
173 bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
174 const PBQP::Solution &Solution,
175 VirtRegMap &VRM,
176 Spiller &VRegSpiller);
178 /// Postprocessing before final spilling. Sets basic block "live in"
179 /// variables.
180 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
181 VirtRegMap &VRM) const;
183 void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
186 char RegAllocPBQP::ID = 0;
188 /// Set spill costs for each node in the PBQP reg-alloc graph.
189 class SpillCosts : public PBQPRAConstraint {
190 public:
191 void apply(PBQPRAGraph &G) override {
192 LiveIntervals &LIS = G.getMetadata().LIS;
194 // A minimum spill costs, so that register constraints can be set
195 // without normalization in the [0.0:MinSpillCost( interval.
196 const PBQP::PBQPNum MinSpillCost = 10.0;
198 for (auto NId : G.nodeIds()) {
199 PBQP::PBQPNum SpillCost =
200 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight();
201 if (SpillCost == 0.0)
202 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
203 else
204 SpillCost += MinSpillCost;
205 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
206 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
207 G.setNodeCosts(NId, std::move(NodeCosts));
212 /// Add interference edges between overlapping vregs.
213 class Interference : public PBQPRAConstraint {
214 private:
215 using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
216 using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
217 using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
218 using DisjointAllowedRegsCache = DenseSet<IKey>;
219 using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
220 using IEdgeCache = DenseSet<IEdgeKey>;
222 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
223 PBQPRAGraph::NodeId MId,
224 const DisjointAllowedRegsCache &D) const {
225 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
226 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
228 if (NRegs == MRegs)
229 return false;
231 if (NRegs < MRegs)
232 return D.contains(IKey(NRegs, MRegs));
234 return D.contains(IKey(MRegs, NRegs));
237 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
238 PBQPRAGraph::NodeId MId,
239 DisjointAllowedRegsCache &D) {
240 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
241 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
243 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
245 if (NRegs < MRegs)
246 D.insert(IKey(NRegs, MRegs));
247 else
248 D.insert(IKey(MRegs, NRegs));
251 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
252 // for the fast interference graph construction algorithm. The last is there
253 // to save us from looking up node ids via the VRegToNode map in the graph
254 // metadata.
255 using IntervalInfo =
256 std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
258 static SlotIndex getStartPoint(const IntervalInfo &I) {
259 return std::get<0>(I)->segments[std::get<1>(I)].start;
262 static SlotIndex getEndPoint(const IntervalInfo &I) {
263 return std::get<0>(I)->segments[std::get<1>(I)].end;
266 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
267 return std::get<2>(I);
270 static bool lowestStartPoint(const IntervalInfo &I1,
271 const IntervalInfo &I2) {
272 // Condition reversed because priority queue has the *highest* element at
273 // the front, rather than the lowest.
274 return getStartPoint(I1) > getStartPoint(I2);
277 static bool lowestEndPoint(const IntervalInfo &I1,
278 const IntervalInfo &I2) {
279 SlotIndex E1 = getEndPoint(I1);
280 SlotIndex E2 = getEndPoint(I2);
282 if (E1 < E2)
283 return true;
285 if (E1 > E2)
286 return false;
288 // If two intervals end at the same point, we need a way to break the tie or
289 // the set will assume they're actually equal and refuse to insert a
290 // "duplicate". Just compare the vregs - fast and guaranteed unique.
291 return std::get<0>(I1)->reg() < std::get<0>(I2)->reg();
294 static bool isAtLastSegment(const IntervalInfo &I) {
295 return std::get<1>(I) == std::get<0>(I)->size() - 1;
298 static IntervalInfo nextSegment(const IntervalInfo &I) {
299 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
302 public:
303 void apply(PBQPRAGraph &G) override {
304 // The following is loosely based on the linear scan algorithm introduced in
305 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
306 // isn't linear, because the size of the active set isn't bound by the
307 // number of registers, but rather the size of the largest clique in the
308 // graph. Still, we expect this to be better than N^2.
309 LiveIntervals &LIS = G.getMetadata().LIS;
311 // Interferenc matrices are incredibly regular - they're only a function of
312 // the allowed sets, so we cache them to avoid the overhead of constructing
313 // and uniquing them.
314 IMatrixCache C;
316 // Finding an edge is expensive in the worst case (O(max_clique(G))). So
317 // cache locally edges we have already seen.
318 IEdgeCache EC;
320 // Cache known disjoint allowed registers pairs
321 DisjointAllowedRegsCache D;
323 using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
324 using IntervalQueue =
325 std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
326 decltype(&lowestStartPoint)>;
327 IntervalSet Active(lowestEndPoint);
328 IntervalQueue Inactive(lowestStartPoint);
330 // Start by building the inactive set.
331 for (auto NId : G.nodeIds()) {
332 Register VReg = G.getNodeMetadata(NId).getVReg();
333 LiveInterval &LI = LIS.getInterval(VReg);
334 assert(!LI.empty() && "PBQP graph contains node for empty interval");
335 Inactive.push(std::make_tuple(&LI, 0, NId));
338 while (!Inactive.empty()) {
339 // Tentatively grab the "next" interval - this choice may be overriden
340 // below.
341 IntervalInfo Cur = Inactive.top();
343 // Retire any active intervals that end before Cur starts.
344 IntervalSet::iterator RetireItr = Active.begin();
345 while (RetireItr != Active.end() &&
346 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
347 // If this interval has subsequent segments, add the next one to the
348 // inactive list.
349 if (!isAtLastSegment(*RetireItr))
350 Inactive.push(nextSegment(*RetireItr));
352 ++RetireItr;
354 Active.erase(Active.begin(), RetireItr);
356 // One of the newly retired segments may actually start before the
357 // Cur segment, so re-grab the front of the inactive list.
358 Cur = Inactive.top();
359 Inactive.pop();
361 // At this point we know that Cur overlaps all active intervals. Add the
362 // interference edges.
363 PBQP::GraphBase::NodeId NId = getNodeId(Cur);
364 for (const auto &A : Active) {
365 PBQP::GraphBase::NodeId MId = getNodeId(A);
367 // Do not add an edge when the nodes' allowed registers do not
368 // intersect: there is obviously no interference.
369 if (haveDisjointAllowedRegs(G, NId, MId, D))
370 continue;
372 // Check that we haven't already added this edge
373 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
374 if (EC.count(EK))
375 continue;
377 // This is a new edge - add it to the graph.
378 if (!createInterferenceEdge(G, NId, MId, C))
379 setDisjointAllowedRegs(G, NId, MId, D);
380 else
381 EC.insert(EK);
384 // Finally, add Cur to the Active set.
385 Active.insert(Cur);
389 private:
390 // Create an Interference edge and add it to the graph, unless it is
391 // a null matrix, meaning the nodes' allowed registers do not have any
392 // interference. This case occurs frequently between integer and floating
393 // point registers for example.
394 // return true iff both nodes interferes.
395 bool createInterferenceEdge(PBQPRAGraph &G,
396 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
397 IMatrixCache &C) {
398 const TargetRegisterInfo &TRI =
399 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
400 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
401 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
403 // Try looking the edge costs up in the IMatrixCache first.
404 IKey K(&NRegs, &MRegs);
405 IMatrixCache::iterator I = C.find(K);
406 if (I != C.end()) {
407 G.addEdgeBypassingCostAllocator(NId, MId, I->second);
408 return true;
411 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
412 bool NodesInterfere = false;
413 for (unsigned I = 0; I != NRegs.size(); ++I) {
414 MCRegister PRegN = NRegs[I];
415 for (unsigned J = 0; J != MRegs.size(); ++J) {
416 MCRegister PRegM = MRegs[J];
417 if (TRI.regsOverlap(PRegN, PRegM)) {
418 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
419 NodesInterfere = true;
424 if (!NodesInterfere)
425 return false;
427 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
428 C[K] = G.getEdgeCostsPtr(EId);
430 return true;
434 class Coalescing : public PBQPRAConstraint {
435 public:
436 void apply(PBQPRAGraph &G) override {
437 MachineFunction &MF = G.getMetadata().MF;
438 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
439 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
441 // Scan the machine function and add a coalescing cost whenever CoalescerPair
442 // gives the Ok.
443 for (const auto &MBB : MF) {
444 for (const auto &MI : MBB) {
445 // Skip not-coalescable or already coalesced copies.
446 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
447 continue;
449 Register DstReg = CP.getDstReg();
450 Register SrcReg = CP.getSrcReg();
452 PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB);
454 if (CP.isPhys()) {
455 if (!MF.getRegInfo().isAllocatable(DstReg))
456 continue;
458 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
460 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
461 G.getNodeMetadata(NId).getAllowedRegs();
463 unsigned PRegOpt = 0;
464 while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg)
465 ++PRegOpt;
467 if (PRegOpt < Allowed.size()) {
468 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
469 NewCosts[PRegOpt + 1] -= CBenefit;
470 G.setNodeCosts(NId, std::move(NewCosts));
472 } else {
473 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
474 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
475 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
476 &G.getNodeMetadata(N1Id).getAllowedRegs();
477 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
478 &G.getNodeMetadata(N2Id).getAllowedRegs();
480 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
481 if (EId == G.invalidEdgeId()) {
482 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
483 Allowed2->size() + 1, 0);
484 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
485 G.addEdge(N1Id, N2Id, std::move(Costs));
486 } else {
487 if (G.getEdgeNode1Id(EId) == N2Id) {
488 std::swap(N1Id, N2Id);
489 std::swap(Allowed1, Allowed2);
491 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
492 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
493 G.updateEdgeCosts(EId, std::move(Costs));
500 private:
501 void addVirtRegCoalesce(
502 PBQPRAGraph::RawMatrix &CostMat,
503 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
504 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
505 PBQP::PBQPNum Benefit) {
506 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
507 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
508 for (unsigned I = 0; I != Allowed1.size(); ++I) {
509 MCRegister PReg1 = Allowed1[I];
510 for (unsigned J = 0; J != Allowed2.size(); ++J) {
511 MCRegister PReg2 = Allowed2[J];
512 if (PReg1 == PReg2)
513 CostMat[I + 1][J + 1] -= Benefit;
519 /// PBQP-specific implementation of weight normalization.
520 class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo {
521 float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override {
522 // All intervals have a spill weight that is mostly proportional to the
523 // number of uses, with uses in loops having a bigger weight.
524 return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, 1);
527 public:
528 PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
529 const MachineLoopInfo &Loops,
530 const MachineBlockFrequencyInfo &MBFI)
531 : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {}
533 } // end anonymous namespace
535 // Out-of-line destructor/anchor for PBQPRAConstraint.
536 PBQPRAConstraint::~PBQPRAConstraint() = default;
538 void PBQPRAConstraint::anchor() {}
540 void PBQPRAConstraintList::anchor() {}
542 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
543 au.setPreservesCFG();
544 au.addRequired<AAResultsWrapperPass>();
545 au.addPreserved<AAResultsWrapperPass>();
546 au.addRequired<SlotIndexesWrapperPass>();
547 au.addPreserved<SlotIndexesWrapperPass>();
548 au.addRequired<LiveIntervalsWrapperPass>();
549 au.addPreserved<LiveIntervalsWrapperPass>();
550 //au.addRequiredID(SplitCriticalEdgesID);
551 if (customPassID)
552 au.addRequiredID(*customPassID);
553 au.addRequired<LiveStacksWrapperLegacy>();
554 au.addPreserved<LiveStacksWrapperLegacy>();
555 au.addRequired<MachineBlockFrequencyInfoWrapperPass>();
556 au.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
557 au.addRequired<MachineLoopInfoWrapperPass>();
558 au.addPreserved<MachineLoopInfoWrapperPass>();
559 au.addRequired<MachineDominatorTreeWrapperPass>();
560 au.addPreserved<MachineDominatorTreeWrapperPass>();
561 au.addRequired<VirtRegMapWrapperLegacy>();
562 au.addPreserved<VirtRegMapWrapperLegacy>();
563 MachineFunctionPass::getAnalysisUsage(au);
566 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
567 LiveIntervals &LIS) {
568 const MachineRegisterInfo &MRI = MF.getRegInfo();
570 // Iterate over all live ranges.
571 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
572 Register Reg = Register::index2VirtReg(I);
573 if (MRI.reg_nodbg_empty(Reg))
574 continue;
575 VRegsToAlloc.insert(Reg);
579 static bool isACalleeSavedRegister(MCRegister Reg,
580 const TargetRegisterInfo &TRI,
581 const MachineFunction &MF) {
582 const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
583 for (unsigned i = 0; CSR[i] != 0; ++i)
584 if (TRI.regsOverlap(Reg, CSR[i]))
585 return true;
586 return false;
589 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
590 Spiller &VRegSpiller) {
591 MachineFunction &MF = G.getMetadata().MF;
593 LiveIntervals &LIS = G.getMetadata().LIS;
594 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
595 const TargetRegisterInfo &TRI =
596 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
598 std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
600 std::map<Register, std::vector<MCRegister>> VRegAllowedMap;
602 while (!Worklist.empty()) {
603 Register VReg = Worklist.back();
604 Worklist.pop_back();
606 LiveInterval &VRegLI = LIS.getInterval(VReg);
608 // If this is an empty interval move it to the EmptyIntervalVRegs set then
609 // continue.
610 if (VRegLI.empty()) {
611 EmptyIntervalVRegs.insert(VRegLI.reg());
612 VRegsToAlloc.erase(VRegLI.reg());
613 continue;
616 const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
618 // Record any overlaps with regmask operands.
619 BitVector RegMaskOverlaps;
620 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
622 // Compute an initial allowed set for the current vreg.
623 std::vector<MCRegister> VRegAllowed;
624 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
625 for (MCPhysReg R : RawPRegOrder) {
626 MCRegister PReg(R);
627 if (MRI.isReserved(PReg))
628 continue;
630 // vregLI crosses a regmask operand that clobbers preg.
631 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
632 continue;
634 // vregLI overlaps fixed regunit interference.
635 bool Interference = false;
636 for (MCRegUnit Unit : TRI.regunits(PReg)) {
637 if (VRegLI.overlaps(LIS.getRegUnit(Unit))) {
638 Interference = true;
639 break;
642 if (Interference)
643 continue;
645 // preg is usable for this virtual register.
646 VRegAllowed.push_back(PReg);
649 // Check for vregs that have no allowed registers. These should be
650 // pre-spilled and the new vregs added to the worklist.
651 if (VRegAllowed.empty()) {
652 SmallVector<Register, 8> NewVRegs;
653 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
654 llvm::append_range(Worklist, NewVRegs);
655 continue;
658 VRegAllowedMap[VReg.id()] = std::move(VRegAllowed);
661 for (auto &KV : VRegAllowedMap) {
662 auto VReg = KV.first;
664 // Move empty intervals to the EmptyIntervalVReg set.
665 if (LIS.getInterval(VReg).empty()) {
666 EmptyIntervalVRegs.insert(VReg);
667 VRegsToAlloc.erase(VReg);
668 continue;
671 auto &VRegAllowed = KV.second;
673 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
675 // Tweak cost of callee saved registers, as using then force spilling and
676 // restoring them. This would only happen in the prologue / epilogue though.
677 for (unsigned i = 0; i != VRegAllowed.size(); ++i)
678 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
679 NodeCosts[1 + i] += 1.0;
681 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
682 G.getNodeMetadata(NId).setVReg(VReg);
683 G.getNodeMetadata(NId).setAllowedRegs(
684 G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
685 G.getMetadata().setNodeIdForVReg(VReg, NId);
689 void RegAllocPBQP::spillVReg(Register VReg,
690 SmallVectorImpl<Register> &NewIntervals,
691 MachineFunction &MF, LiveIntervals &LIS,
692 VirtRegMap &VRM, Spiller &VRegSpiller) {
693 VRegsToAlloc.erase(VReg);
694 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
695 nullptr, &DeadRemats);
696 VRegSpiller.spill(LRE);
698 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
699 (void)TRI;
700 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
701 << LRE.getParent().weight() << ", New vregs: ");
703 // Copy any newly inserted live intervals into the list of regs to
704 // allocate.
705 for (const Register &R : LRE) {
706 const LiveInterval &LI = LIS.getInterval(R);
707 assert(!LI.empty() && "Empty spill range.");
708 LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " ");
709 VRegsToAlloc.insert(LI.reg());
712 LLVM_DEBUG(dbgs() << ")\n");
715 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
716 const PBQP::Solution &Solution,
717 VirtRegMap &VRM,
718 Spiller &VRegSpiller) {
719 MachineFunction &MF = G.getMetadata().MF;
720 LiveIntervals &LIS = G.getMetadata().LIS;
721 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
722 (void)TRI;
724 // Set to true if we have any spills
725 bool AnotherRoundNeeded = false;
727 // Clear the existing allocation.
728 VRM.clearAllVirt();
730 // Iterate over the nodes mapping the PBQP solution to a register
731 // assignment.
732 for (auto NId : G.nodeIds()) {
733 Register VReg = G.getNodeMetadata(NId).getVReg();
734 unsigned AllocOpt = Solution.getSelection(NId);
736 if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) {
737 MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1];
738 LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
739 << TRI.getName(PReg) << "\n");
740 assert(PReg != 0 && "Invalid preg selected.");
741 VRM.assignVirt2Phys(VReg, PReg);
742 } else {
743 // Spill VReg. If this introduces new intervals we'll need another round
744 // of allocation.
745 SmallVector<Register, 8> NewVRegs;
746 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
747 AnotherRoundNeeded |= !NewVRegs.empty();
751 return !AnotherRoundNeeded;
754 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
755 LiveIntervals &LIS,
756 VirtRegMap &VRM) const {
757 MachineRegisterInfo &MRI = MF.getRegInfo();
759 // First allocate registers for the empty intervals.
760 for (const Register &R : EmptyIntervalVRegs) {
761 LiveInterval &LI = LIS.getInterval(R);
763 Register PReg = MRI.getSimpleHint(LI.reg());
765 if (PReg == 0) {
766 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg());
767 const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
768 for (MCRegister CandidateReg : RawPRegOrder) {
769 if (!VRM.getRegInfo().isReserved(CandidateReg)) {
770 PReg = CandidateReg;
771 break;
774 assert(PReg &&
775 "No un-reserved physical registers in this register class");
778 VRM.assignVirt2Phys(LI.reg(), PReg);
782 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
783 VRegSpiller.postOptimization();
784 /// Remove dead defs because of rematerialization.
785 for (auto *DeadInst : DeadRemats) {
786 LIS.RemoveMachineInstrFromMaps(*DeadInst);
787 DeadInst->eraseFromParent();
789 DeadRemats.clear();
792 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
793 LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
794 MachineBlockFrequencyInfo &MBFI =
795 getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
797 auto &LiveStks = getAnalysis<LiveStacksWrapperLegacy>().getLS();
798 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
800 VirtRegMap &VRM = getAnalysis<VirtRegMapWrapperLegacy>().getVRM();
802 PBQPVirtRegAuxInfo VRAI(
803 MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI);
804 VRAI.calculateSpillWeightsAndHints();
806 // FIXME: we create DefaultVRAI here to match existing behavior pre-passing
807 // the VRAI through the spiller to the live range editor. However, it probably
808 // makes more sense to pass the PBQP VRAI. The existing behavior had
809 // LiveRangeEdit make its own VirtRegAuxInfo object.
810 VirtRegAuxInfo DefaultVRAI(
811 MF, LIS, VRM, getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI);
812 std::unique_ptr<Spiller> VRegSpiller(
813 createInlineSpiller({LIS, LiveStks, MDT, MBFI}, MF, VRM, DefaultVRAI));
815 MF.getRegInfo().freezeReservedRegs();
817 LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
819 // Allocator main loop:
821 // * Map current regalloc problem to a PBQP problem
822 // * Solve the PBQP problem
823 // * Map the solution back to a register allocation
824 // * Spill if necessary
826 // This process is continued till no more spills are generated.
828 // Find the vreg intervals in need of allocation.
829 findVRegIntervalsToAlloc(MF, LIS);
831 #ifndef NDEBUG
832 const Function &F = MF.getFunction();
833 std::string FullyQualifiedName =
834 F.getParent()->getModuleIdentifier() + "." + F.getName().str();
835 #endif
837 // If there are non-empty intervals allocate them using pbqp.
838 if (!VRegsToAlloc.empty()) {
839 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
840 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
841 std::make_unique<PBQPRAConstraintList>();
842 ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
843 ConstraintsRoot->addConstraint(std::make_unique<Interference>());
844 if (PBQPCoalescing)
845 ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
846 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
848 bool PBQPAllocComplete = false;
849 unsigned Round = 0;
851 while (!PBQPAllocComplete) {
852 LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
853 (void) Round;
855 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
856 initializeGraph(G, VRM, *VRegSpiller);
857 ConstraintsRoot->apply(G);
859 #ifndef NDEBUG
860 if (PBQPDumpGraphs) {
861 std::ostringstream RS;
862 RS << Round;
863 std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
864 ".pbqpgraph";
865 std::error_code EC;
866 raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_TextWithCRLF);
867 LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
868 << GraphFileName << "\"\n");
869 G.dump(OS);
871 #endif
873 PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
874 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
875 ++Round;
879 // Finalise allocation, allocate empty ranges.
880 finalizeAlloc(MF, LIS, VRM);
881 postOptimization(*VRegSpiller, LIS);
882 VRegsToAlloc.clear();
883 EmptyIntervalVRegs.clear();
885 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
887 return true;
890 /// Create Printable object for node and register info.
891 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
892 const PBQP::RegAlloc::PBQPRAGraph &G) {
893 return Printable([NId, &G](raw_ostream &OS) {
894 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
895 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
896 Register VReg = G.getNodeMetadata(NId).getVReg();
897 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
898 OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
902 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
903 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
904 for (auto NId : nodeIds()) {
905 const Vector &Costs = getNodeCosts(NId);
906 assert(Costs.getLength() != 0 && "Empty vector in graph.");
907 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
909 OS << '\n';
911 for (auto EId : edgeIds()) {
912 NodeId N1Id = getEdgeNode1Id(EId);
913 NodeId N2Id = getEdgeNode2Id(EId);
914 assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
915 const Matrix &M = getEdgeCosts(EId);
916 assert(M.getRows() != 0 && "No rows in matrix.");
917 assert(M.getCols() != 0 && "No cols in matrix.");
918 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
919 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
920 OS << M << '\n';
924 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
925 dump(dbgs());
927 #endif
929 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
930 OS << "graph {\n";
931 for (auto NId : nodeIds()) {
932 OS << " node" << NId << " [ label=\""
933 << PrintNodeInfo(NId, *this) << "\\n"
934 << getNodeCosts(NId) << "\" ]\n";
937 OS << " edge [ len=" << nodeIds().size() << " ]\n";
938 for (auto EId : edgeIds()) {
939 OS << " node" << getEdgeNode1Id(EId)
940 << " -- node" << getEdgeNode2Id(EId)
941 << " [ label=\"";
942 const Matrix &EdgeCosts = getEdgeCosts(EId);
943 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
944 OS << EdgeCosts.getRowAsVector(i) << "\\n";
946 OS << "\" ]\n";
948 OS << "}\n";
951 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
952 return new RegAllocPBQP(customPassID);
955 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
956 return createPBQPRegisterAllocator();