1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/WinEHPrepare.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/WinEHFuncInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/EHPersonalities.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 #define DEBUG_TYPE "win-eh-prepare"
45 static cl::opt
<bool> DisableDemotion(
46 "disable-demotion", cl::Hidden
,
48 "Clone multicolor basic blocks but do not demote cross scopes"),
51 static cl::opt
<bool> DisableCleanups(
52 "disable-cleanups", cl::Hidden
,
53 cl::desc("Do not remove implausible terminators or other similar cleanups"),
56 // TODO: Remove this option when we fully migrate to new pass manager
57 static cl::opt
<bool> DemoteCatchSwitchPHIOnlyOpt(
58 "demote-catchswitch-only", cl::Hidden
,
59 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
63 class WinEHPrepareImpl
{
65 WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly
)
66 : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
68 bool runOnFunction(Function
&Fn
);
71 void insertPHIStores(PHINode
*OriginalPHI
, AllocaInst
*SpillSlot
);
73 insertPHIStore(BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
74 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
);
75 AllocaInst
*insertPHILoads(PHINode
*PN
, Function
&F
);
76 void replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
77 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
);
78 bool prepareExplicitEH(Function
&F
);
79 void colorFunclets(Function
&F
);
81 void demotePHIsOnFunclets(Function
&F
, bool DemoteCatchSwitchPHIOnly
);
82 void cloneCommonBlocks(Function
&F
);
83 void removeImplausibleInstructions(Function
&F
);
84 void cleanupPreparedFunclets(Function
&F
);
85 void verifyPreparedFunclets(Function
&F
);
87 bool DemoteCatchSwitchPHIOnly
;
89 // All fields are reset by runOnFunction.
90 EHPersonality Personality
= EHPersonality::Unknown
;
92 const DataLayout
*DL
= nullptr;
93 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
;
94 MapVector
<BasicBlock
*, std::vector
<BasicBlock
*>> FuncletBlocks
;
97 class WinEHPrepare
: public FunctionPass
{
98 bool DemoteCatchSwitchPHIOnly
;
101 static char ID
; // Pass identification, replacement for typeid.
103 WinEHPrepare(bool DemoteCatchSwitchPHIOnly
= false)
104 : FunctionPass(ID
), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
106 StringRef
getPassName() const override
{
107 return "Windows exception handling preparation";
110 bool runOnFunction(Function
&Fn
) override
{
111 return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly
).runOnFunction(Fn
);
115 } // end anonymous namespace
117 PreservedAnalyses
WinEHPreparePass::run(Function
&F
,
118 FunctionAnalysisManager
&) {
119 bool Changed
= WinEHPrepareImpl(DemoteCatchSwitchPHIOnly
).runOnFunction(F
);
120 return Changed
? PreservedAnalyses::none() : PreservedAnalyses::all();
123 char WinEHPrepare::ID
= 0;
124 INITIALIZE_PASS(WinEHPrepare
, DEBUG_TYPE
, "Prepare Windows exceptions", false,
127 FunctionPass
*llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly
) {
128 return new WinEHPrepare(DemoteCatchSwitchPHIOnly
);
131 bool WinEHPrepareImpl::runOnFunction(Function
&Fn
) {
132 if (!Fn
.hasPersonalityFn())
135 // Classify the personality to see what kind of preparation we need.
136 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
138 // Do nothing if this is not a scope-based personality.
139 if (!isScopedEHPersonality(Personality
))
142 DL
= &Fn
.getDataLayout();
143 return prepareExplicitEH(Fn
);
146 static int addUnwindMapEntry(WinEHFuncInfo
&FuncInfo
, int ToState
,
147 const BasicBlock
*BB
) {
148 CxxUnwindMapEntry UME
;
149 UME
.ToState
= ToState
;
151 FuncInfo
.CxxUnwindMap
.push_back(UME
);
152 return FuncInfo
.getLastStateNumber();
155 static void addTryBlockMapEntry(WinEHFuncInfo
&FuncInfo
, int TryLow
,
156 int TryHigh
, int CatchHigh
,
157 ArrayRef
<const CatchPadInst
*> Handlers
) {
158 WinEHTryBlockMapEntry TBME
;
159 TBME
.TryLow
= TryLow
;
160 TBME
.TryHigh
= TryHigh
;
161 TBME
.CatchHigh
= CatchHigh
;
162 assert(TBME
.TryLow
<= TBME
.TryHigh
);
163 for (const CatchPadInst
*CPI
: Handlers
) {
165 Constant
*TypeInfo
= cast
<Constant
>(CPI
->getArgOperand(0));
166 if (TypeInfo
->isNullValue())
167 HT
.TypeDescriptor
= nullptr;
169 HT
.TypeDescriptor
= cast
<GlobalVariable
>(TypeInfo
->stripPointerCasts());
170 HT
.Adjectives
= cast
<ConstantInt
>(CPI
->getArgOperand(1))->getZExtValue();
171 HT
.Handler
= CPI
->getParent();
173 dyn_cast
<AllocaInst
>(CPI
->getArgOperand(2)->stripPointerCasts()))
174 HT
.CatchObj
.Alloca
= AI
;
176 HT
.CatchObj
.Alloca
= nullptr;
177 TBME
.HandlerArray
.push_back(HT
);
179 FuncInfo
.TryBlockMap
.push_back(TBME
);
182 static BasicBlock
*getCleanupRetUnwindDest(const CleanupPadInst
*CleanupPad
) {
183 for (const User
*U
: CleanupPad
->users())
184 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
))
185 return CRI
->getUnwindDest();
189 static void calculateStateNumbersForInvokes(const Function
*Fn
,
190 WinEHFuncInfo
&FuncInfo
) {
191 auto *F
= const_cast<Function
*>(Fn
);
192 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
= colorEHFunclets(*F
);
193 for (BasicBlock
&BB
: *F
) {
194 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
198 auto &BBColors
= BlockColors
[&BB
];
199 assert(BBColors
.size() == 1 && "multi-color BB not removed by preparation");
200 BasicBlock
*FuncletEntryBB
= BBColors
.front();
202 BasicBlock
*FuncletUnwindDest
;
204 dyn_cast
<FuncletPadInst
>(FuncletEntryBB
->getFirstNonPHIIt());
205 assert(FuncletPad
|| FuncletEntryBB
== &Fn
->getEntryBlock());
207 FuncletUnwindDest
= nullptr;
208 else if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
209 FuncletUnwindDest
= CatchPad
->getCatchSwitch()->getUnwindDest();
210 else if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(FuncletPad
))
211 FuncletUnwindDest
= getCleanupRetUnwindDest(CleanupPad
);
213 llvm_unreachable("unexpected funclet pad!");
215 BasicBlock
*InvokeUnwindDest
= II
->getUnwindDest();
217 if (FuncletUnwindDest
== InvokeUnwindDest
) {
218 auto BaseStateI
= FuncInfo
.FuncletBaseStateMap
.find(FuncletPad
);
219 if (BaseStateI
!= FuncInfo
.FuncletBaseStateMap
.end())
220 BaseState
= BaseStateI
->second
;
223 if (BaseState
!= -1) {
224 FuncInfo
.InvokeStateMap
[II
] = BaseState
;
226 Instruction
*PadInst
= &*InvokeUnwindDest
->getFirstNonPHIIt();
227 assert(FuncInfo
.EHPadStateMap
.count(PadInst
) && "EH Pad has no state!");
228 FuncInfo
.InvokeStateMap
[II
] = FuncInfo
.EHPadStateMap
[PadInst
];
233 // See comments below for calculateSEHStateForAsynchEH().
234 // State - incoming State of normal paths
236 const BasicBlock
*Block
;
238 WorkItem(const BasicBlock
*BB
, int St
) {
243 void llvm::calculateCXXStateForAsynchEH(const BasicBlock
*BB
, int State
,
244 WinEHFuncInfo
&EHInfo
) {
245 SmallVector
<struct WorkItem
*, 8> WorkList
;
246 struct WorkItem
*WI
= new WorkItem(BB
, State
);
247 WorkList
.push_back(WI
);
249 while (!WorkList
.empty()) {
250 WI
= WorkList
.pop_back_val();
251 const BasicBlock
*BB
= WI
->Block
;
252 int State
= WI
->State
;
254 if (auto It
= EHInfo
.BlockToStateMap
.find(BB
);
255 It
!= EHInfo
.BlockToStateMap
.end() && It
->second
<= State
)
256 continue; // skip blocks already visited by lower State
258 BasicBlock::const_iterator It
= BB
->getFirstNonPHIIt();
259 const llvm::Instruction
*TI
= BB
->getTerminator();
261 State
= EHInfo
.EHPadStateMap
[&*It
];
262 EHInfo
.BlockToStateMap
[BB
] = State
; // Record state, also flag visiting
264 if ((isa
<CleanupReturnInst
>(TI
) || isa
<CatchReturnInst
>(TI
)) && State
> 0) {
265 // Retrive the new State
266 State
= EHInfo
.CxxUnwindMap
[State
].ToState
; // Retrive next State
267 } else if (isa
<InvokeInst
>(TI
)) {
268 auto *Call
= cast
<CallBase
>(TI
);
269 const Function
*Fn
= Call
->getCalledFunction();
270 if (Fn
&& Fn
->isIntrinsic() &&
271 (Fn
->getIntrinsicID() == Intrinsic::seh_scope_begin
||
272 Fn
->getIntrinsicID() == Intrinsic::seh_try_begin
))
273 // Retrive the new State from seh_scope_begin
274 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
275 else if (Fn
&& Fn
->isIntrinsic() &&
276 (Fn
->getIntrinsicID() == Intrinsic::seh_scope_end
||
277 Fn
->getIntrinsicID() == Intrinsic::seh_try_end
)) {
278 // In case of conditional ctor, let's retrieve State from Invoke
279 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
280 // end of current state, retrive new state from UnwindMap
281 State
= EHInfo
.CxxUnwindMap
[State
].ToState
;
284 // Continue push successors into worklist
285 for (auto *SuccBB
: successors(BB
)) {
286 WI
= new WorkItem(SuccBB
, State
);
287 WorkList
.push_back(WI
);
292 // The central theory of this routine is based on the following:
293 // A _try scope is always a SEME (Single Entry Multiple Exits) region
294 // as jumping into a _try is not allowed
295 // The single entry must start with a seh_try_begin() invoke with a
296 // correct State number that is the initial state of the SEME.
297 // Through control-flow, state number is propagated into all blocks.
298 // Side exits marked by seh_try_end() will unwind to parent state via
299 // existing SEHUnwindMap[].
300 // Side exits can ONLY jump into parent scopes (lower state number).
301 // Thus, when a block succeeds various states from its predecessors,
302 // the lowest State trumphs others.
303 // If some exits flow to unreachable, propagation on those paths terminate,
304 // not affecting remaining blocks.
305 void llvm::calculateSEHStateForAsynchEH(const BasicBlock
*BB
, int State
,
306 WinEHFuncInfo
&EHInfo
) {
307 SmallVector
<struct WorkItem
*, 8> WorkList
;
308 struct WorkItem
*WI
= new WorkItem(BB
, State
);
309 WorkList
.push_back(WI
);
311 while (!WorkList
.empty()) {
312 WI
= WorkList
.pop_back_val();
313 const BasicBlock
*BB
= WI
->Block
;
314 int State
= WI
->State
;
316 if (auto It
= EHInfo
.BlockToStateMap
.find(BB
);
317 It
!= EHInfo
.BlockToStateMap
.end() && It
->second
<= State
)
318 continue; // skip blocks already visited by lower State
320 BasicBlock::const_iterator It
= BB
->getFirstNonPHIIt();
321 const llvm::Instruction
*TI
= BB
->getTerminator();
323 State
= EHInfo
.EHPadStateMap
[&*It
];
324 EHInfo
.BlockToStateMap
[BB
] = State
; // Record state
326 if (isa
<CatchPadInst
>(It
) && isa
<CatchReturnInst
>(TI
)) {
327 const Constant
*FilterOrNull
= cast
<Constant
>(
328 cast
<CatchPadInst
>(It
)->getArgOperand(0)->stripPointerCasts());
329 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
330 if (!Filter
|| !Filter
->getName().starts_with("__IsLocalUnwind"))
331 State
= EHInfo
.SEHUnwindMap
[State
].ToState
; // Retrive next State
332 } else if ((isa
<CleanupReturnInst
>(TI
) || isa
<CatchReturnInst
>(TI
)) &&
334 // Retrive the new State.
335 State
= EHInfo
.SEHUnwindMap
[State
].ToState
; // Retrive next State
336 } else if (isa
<InvokeInst
>(TI
)) {
337 auto *Call
= cast
<CallBase
>(TI
);
338 const Function
*Fn
= Call
->getCalledFunction();
339 if (Fn
&& Fn
->isIntrinsic() &&
340 Fn
->getIntrinsicID() == Intrinsic::seh_try_begin
)
341 // Retrive the new State from seh_try_begin
342 State
= EHInfo
.InvokeStateMap
[cast
<InvokeInst
>(TI
)];
343 else if (Fn
&& Fn
->isIntrinsic() &&
344 Fn
->getIntrinsicID() == Intrinsic::seh_try_end
)
345 // end of current state, retrive new state from UnwindMap
346 State
= EHInfo
.SEHUnwindMap
[State
].ToState
;
348 // Continue push successors into worklist
349 for (auto *SuccBB
: successors(BB
)) {
350 WI
= new WorkItem(SuccBB
, State
);
351 WorkList
.push_back(WI
);
356 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
357 // to. If the unwind edge came from an invoke, return null.
358 static const BasicBlock
*getEHPadFromPredecessor(const BasicBlock
*BB
,
360 const Instruction
*TI
= BB
->getTerminator();
361 if (isa
<InvokeInst
>(TI
))
363 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
364 if (CatchSwitch
->getParentPad() != ParentPad
)
368 assert(!TI
->isEHPad() && "unexpected EHPad!");
369 auto *CleanupPad
= cast
<CleanupReturnInst
>(TI
)->getCleanupPad();
370 if (CleanupPad
->getParentPad() != ParentPad
)
372 return CleanupPad
->getParent();
375 // Starting from a EHPad, Backward walk through control-flow graph
376 // to produce two primary outputs:
377 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
378 static void calculateCXXStateNumbers(WinEHFuncInfo
&FuncInfo
,
379 const Instruction
*FirstNonPHI
,
381 const BasicBlock
*BB
= FirstNonPHI
->getParent();
382 assert(BB
->isEHPad() && "not a funclet!");
384 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
385 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
386 "shouldn't revist catch funclets!");
388 SmallVector
<const CatchPadInst
*, 2> Handlers
;
389 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
390 auto *CatchPad
= cast
<CatchPadInst
>(CatchPadBB
->getFirstNonPHIIt());
391 Handlers
.push_back(CatchPad
);
393 int TryLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
394 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryLow
;
395 for (const BasicBlock
*PredBlock
: predecessors(BB
))
396 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
397 CatchSwitch
->getParentPad())))
398 calculateCXXStateNumbers(FuncInfo
, &*PredBlock
->getFirstNonPHIIt(),
400 int CatchLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
402 // catchpads are separate funclets in C++ EH due to the way rethrow works.
403 int TryHigh
= CatchLow
- 1;
405 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
406 // stored in pre-order (outer first, inner next), not post-order
407 // Add to map here. Fix the CatchHigh after children are processed
408 const Module
*Mod
= BB
->getParent()->getParent();
409 bool IsPreOrder
= Triple(Mod
->getTargetTriple()).isArch64Bit();
411 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchLow
, Handlers
);
412 unsigned TBMEIdx
= FuncInfo
.TryBlockMap
.size() - 1;
414 for (const auto *CatchPad
: Handlers
) {
415 FuncInfo
.FuncletBaseStateMap
[CatchPad
] = CatchLow
;
416 FuncInfo
.EHPadStateMap
[CatchPad
] = CatchLow
;
417 for (const User
*U
: CatchPad
->users()) {
418 const auto *UserI
= cast
<Instruction
>(U
);
419 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
420 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
421 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
422 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
424 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
425 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
426 // If a nested cleanup pad reports a null unwind destination and the
427 // enclosing catch pad doesn't it must be post-dominated by an
428 // unreachable instruction.
429 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
430 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
434 int CatchHigh
= FuncInfo
.getLastStateNumber();
435 // Now child Catches are processed, update CatchHigh
437 FuncInfo
.TryBlockMap
[TBMEIdx
].CatchHigh
= CatchHigh
;
439 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchHigh
, Handlers
);
441 LLVM_DEBUG(dbgs() << "TryLow[" << BB
->getName() << "]: " << TryLow
<< '\n');
442 LLVM_DEBUG(dbgs() << "TryHigh[" << BB
->getName() << "]: " << TryHigh
444 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB
->getName() << "]: " << CatchHigh
447 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
449 // It's possible for a cleanup to be visited twice: it might have multiple
450 // cleanupret instructions.
451 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
454 int CleanupState
= addUnwindMapEntry(FuncInfo
, ParentState
, BB
);
455 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
456 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
457 << BB
->getName() << '\n');
458 for (const BasicBlock
*PredBlock
: predecessors(BB
)) {
459 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
460 CleanupPad
->getParentPad()))) {
461 calculateCXXStateNumbers(FuncInfo
, &*PredBlock
->getFirstNonPHIIt(),
465 for (const User
*U
: CleanupPad
->users()) {
466 const auto *UserI
= cast
<Instruction
>(U
);
467 if (UserI
->isEHPad())
468 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
469 "contain exceptional actions");
474 static int addSEHExcept(WinEHFuncInfo
&FuncInfo
, int ParentState
,
475 const Function
*Filter
, const BasicBlock
*Handler
) {
476 SEHUnwindMapEntry Entry
;
477 Entry
.ToState
= ParentState
;
478 Entry
.IsFinally
= false;
479 Entry
.Filter
= Filter
;
480 Entry
.Handler
= Handler
;
481 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
482 return FuncInfo
.SEHUnwindMap
.size() - 1;
485 static int addSEHFinally(WinEHFuncInfo
&FuncInfo
, int ParentState
,
486 const BasicBlock
*Handler
) {
487 SEHUnwindMapEntry Entry
;
488 Entry
.ToState
= ParentState
;
489 Entry
.IsFinally
= true;
490 Entry
.Filter
= nullptr;
491 Entry
.Handler
= Handler
;
492 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
493 return FuncInfo
.SEHUnwindMap
.size() - 1;
496 // Starting from a EHPad, Backward walk through control-flow graph
497 // to produce two primary outputs:
498 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
499 static void calculateSEHStateNumbers(WinEHFuncInfo
&FuncInfo
,
500 const Instruction
*FirstNonPHI
,
502 const BasicBlock
*BB
= FirstNonPHI
->getParent();
503 assert(BB
->isEHPad() && "no a funclet!");
505 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
506 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
507 "shouldn't revist catch funclets!");
509 // Extract the filter function and the __except basic block and create a
511 assert(CatchSwitch
->getNumHandlers() == 1 &&
512 "SEH doesn't have multiple handlers per __try");
513 const auto *CatchPad
=
514 cast
<CatchPadInst
>((*CatchSwitch
->handler_begin())->getFirstNonPHIIt());
515 const BasicBlock
*CatchPadBB
= CatchPad
->getParent();
516 const Constant
*FilterOrNull
=
517 cast
<Constant
>(CatchPad
->getArgOperand(0)->stripPointerCasts());
518 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
519 assert((Filter
|| FilterOrNull
->isNullValue()) &&
520 "unexpected filter value");
521 int TryState
= addSEHExcept(FuncInfo
, ParentState
, Filter
, CatchPadBB
);
523 // Everything in the __try block uses TryState as its parent state.
524 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryState
;
525 FuncInfo
.EHPadStateMap
[CatchPad
] = TryState
;
526 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState
<< " to BB "
527 << CatchPadBB
->getName() << '\n');
528 for (const BasicBlock
*PredBlock
: predecessors(BB
))
529 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
530 CatchSwitch
->getParentPad())))
531 calculateSEHStateNumbers(FuncInfo
, &*PredBlock
->getFirstNonPHIIt(),
534 // Everything in the __except block unwinds to ParentState, just like code
535 // outside the __try.
536 for (const User
*U
: CatchPad
->users()) {
537 const auto *UserI
= cast
<Instruction
>(U
);
538 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
539 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
540 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
541 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
543 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
544 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
545 // If a nested cleanup pad reports a null unwind destination and the
546 // enclosing catch pad doesn't it must be post-dominated by an
547 // unreachable instruction.
548 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
549 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
553 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
555 // It's possible for a cleanup to be visited twice: it might have multiple
556 // cleanupret instructions.
557 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
560 int CleanupState
= addSEHFinally(FuncInfo
, ParentState
, BB
);
561 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
562 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
563 << BB
->getName() << '\n');
564 for (const BasicBlock
*PredBlock
: predecessors(BB
))
566 getEHPadFromPredecessor(PredBlock
, CleanupPad
->getParentPad())))
567 calculateSEHStateNumbers(FuncInfo
, &*PredBlock
->getFirstNonPHIIt(),
569 for (const User
*U
: CleanupPad
->users()) {
570 const auto *UserI
= cast
<Instruction
>(U
);
571 if (UserI
->isEHPad())
572 report_fatal_error("Cleanup funclets for the SEH personality cannot "
573 "contain exceptional actions");
578 static bool isTopLevelPadForMSVC(const Instruction
*EHPad
) {
579 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(EHPad
))
580 return isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()) &&
581 CatchSwitch
->unwindsToCaller();
582 if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(EHPad
))
583 return isa
<ConstantTokenNone
>(CleanupPad
->getParentPad()) &&
584 getCleanupRetUnwindDest(CleanupPad
) == nullptr;
585 if (isa
<CatchPadInst
>(EHPad
))
587 llvm_unreachable("unexpected EHPad!");
590 void llvm::calculateSEHStateNumbers(const Function
*Fn
,
591 WinEHFuncInfo
&FuncInfo
) {
592 // Don't compute state numbers twice.
593 if (!FuncInfo
.SEHUnwindMap
.empty())
596 for (const BasicBlock
&BB
: *Fn
) {
599 const Instruction
*FirstNonPHI
= &*BB
.getFirstNonPHIIt();
600 if (!isTopLevelPadForMSVC(FirstNonPHI
))
602 ::calculateSEHStateNumbers(FuncInfo
, FirstNonPHI
, -1);
605 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
607 bool IsEHa
= Fn
->getParent()->getModuleFlag("eh-asynch");
609 const BasicBlock
*EntryBB
= &(Fn
->getEntryBlock());
610 calculateSEHStateForAsynchEH(EntryBB
, -1, FuncInfo
);
614 void llvm::calculateWinCXXEHStateNumbers(const Function
*Fn
,
615 WinEHFuncInfo
&FuncInfo
) {
616 // Return if it's already been done.
617 if (!FuncInfo
.EHPadStateMap
.empty())
620 for (const BasicBlock
&BB
: *Fn
) {
623 const Instruction
*FirstNonPHI
= &*BB
.getFirstNonPHIIt();
624 if (!isTopLevelPadForMSVC(FirstNonPHI
))
626 calculateCXXStateNumbers(FuncInfo
, FirstNonPHI
, -1);
629 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
631 bool IsEHa
= Fn
->getParent()->getModuleFlag("eh-asynch");
633 const BasicBlock
*EntryBB
= &(Fn
->getEntryBlock());
634 calculateCXXStateForAsynchEH(EntryBB
, -1, FuncInfo
);
638 static int addClrEHHandler(WinEHFuncInfo
&FuncInfo
, int HandlerParentState
,
639 int TryParentState
, ClrHandlerType HandlerType
,
640 uint32_t TypeToken
, const BasicBlock
*Handler
) {
641 ClrEHUnwindMapEntry Entry
;
642 Entry
.HandlerParentState
= HandlerParentState
;
643 Entry
.TryParentState
= TryParentState
;
644 Entry
.Handler
= Handler
;
645 Entry
.HandlerType
= HandlerType
;
646 Entry
.TypeToken
= TypeToken
;
647 FuncInfo
.ClrEHUnwindMap
.push_back(Entry
);
648 return FuncInfo
.ClrEHUnwindMap
.size() - 1;
651 void llvm::calculateClrEHStateNumbers(const Function
*Fn
,
652 WinEHFuncInfo
&FuncInfo
) {
653 // Return if it's already been done.
654 if (!FuncInfo
.EHPadStateMap
.empty())
657 // This numbering assigns one state number to each catchpad and cleanuppad.
658 // It also computes two tree-like relations over states:
659 // 1) Each state has a "HandlerParentState", which is the state of the next
660 // outer handler enclosing this state's handler (same as nearest ancestor
661 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
662 // 2) Each state has a "TryParentState", which:
663 // a) for a catchpad that's not the last handler on its catchswitch, is
664 // the state of the next catchpad on that catchswitch
665 // b) for all other pads, is the state of the pad whose try region is the
666 // next outer try region enclosing this state's try region. The "try
667 // regions are not present as such in the IR, but will be inferred
668 // based on the placement of invokes and pads which reach each other
669 // by exceptional exits
670 // Catchswitches do not get their own states, but each gets mapped to the
671 // state of its first catchpad.
673 // Step one: walk down from outermost to innermost funclets, assigning each
674 // catchpad and cleanuppad a state number. Add an entry to the
675 // ClrEHUnwindMap for each state, recording its HandlerParentState and
676 // handler attributes. Record the TryParentState as well for each catchpad
677 // that's not the last on its catchswitch, but initialize all other entries'
678 // TryParentStates to a sentinel -1 value that the next pass will update.
680 // Seed a worklist with pads that have no parent.
681 SmallVector
<std::pair
<const Instruction
*, int>, 8> Worklist
;
682 for (const BasicBlock
&BB
: *Fn
) {
683 const Instruction
*FirstNonPHI
= &*BB
.getFirstNonPHIIt();
684 const Value
*ParentPad
;
685 if (const auto *CPI
= dyn_cast
<CleanupPadInst
>(FirstNonPHI
))
686 ParentPad
= CPI
->getParentPad();
687 else if (const auto *CSI
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
))
688 ParentPad
= CSI
->getParentPad();
691 if (isa
<ConstantTokenNone
>(ParentPad
))
692 Worklist
.emplace_back(FirstNonPHI
, -1);
695 // Use the worklist to visit all pads, from outer to inner. Record
696 // HandlerParentState for all pads. Record TryParentState only for catchpads
697 // that aren't the last on their catchswitch (setting all other entries'
698 // TryParentStates to an initial value of -1). This loop is also responsible
699 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
701 while (!Worklist
.empty()) {
702 const Instruction
*Pad
;
703 int HandlerParentState
;
704 std::tie(Pad
, HandlerParentState
) = Worklist
.pop_back_val();
706 if (const auto *Cleanup
= dyn_cast
<CleanupPadInst
>(Pad
)) {
707 // Create the entry for this cleanup with the appropriate handler
708 // properties. Finally and fault handlers are distinguished by arity.
709 ClrHandlerType HandlerType
=
710 (Cleanup
->arg_size() ? ClrHandlerType::Fault
711 : ClrHandlerType::Finally
);
712 int CleanupState
= addClrEHHandler(FuncInfo
, HandlerParentState
, -1,
713 HandlerType
, 0, Pad
->getParent());
714 // Queue any child EH pads on the worklist.
715 for (const User
*U
: Cleanup
->users())
716 if (const auto *I
= dyn_cast
<Instruction
>(U
))
718 Worklist
.emplace_back(I
, CleanupState
);
719 // Remember this pad's state.
720 FuncInfo
.EHPadStateMap
[Cleanup
] = CleanupState
;
722 // Walk the handlers of this catchswitch in reverse order since all but
723 // the last need to set the following one as its TryParentState.
724 const auto *CatchSwitch
= cast
<CatchSwitchInst
>(Pad
);
725 int CatchState
= -1, FollowerState
= -1;
726 SmallVector
<const BasicBlock
*, 4> CatchBlocks(CatchSwitch
->handlers());
727 for (const BasicBlock
*CatchBlock
: llvm::reverse(CatchBlocks
)) {
728 // Create the entry for this catch with the appropriate handler
730 const auto *Catch
= cast
<CatchPadInst
>(CatchBlock
->getFirstNonPHIIt());
731 uint32_t TypeToken
= static_cast<uint32_t>(
732 cast
<ConstantInt
>(Catch
->getArgOperand(0))->getZExtValue());
734 addClrEHHandler(FuncInfo
, HandlerParentState
, FollowerState
,
735 ClrHandlerType::Catch
, TypeToken
, CatchBlock
);
736 // Queue any child EH pads on the worklist.
737 for (const User
*U
: Catch
->users())
738 if (const auto *I
= dyn_cast
<Instruction
>(U
))
740 Worklist
.emplace_back(I
, CatchState
);
741 // Remember this catch's state.
742 FuncInfo
.EHPadStateMap
[Catch
] = CatchState
;
743 FollowerState
= CatchState
;
745 // Associate the catchswitch with the state of its first catch.
746 assert(CatchSwitch
->getNumHandlers());
747 FuncInfo
.EHPadStateMap
[CatchSwitch
] = CatchState
;
751 // Step two: record the TryParentState of each state. For cleanuppads that
752 // don't have cleanuprets, we may need to infer this from their child pads,
753 // so visit pads in descendant-most to ancestor-most order.
754 for (ClrEHUnwindMapEntry
&Entry
: llvm::reverse(FuncInfo
.ClrEHUnwindMap
)) {
755 const Instruction
*Pad
=
756 &*cast
<const BasicBlock
*>(Entry
.Handler
)->getFirstNonPHIIt();
757 // For most pads, the TryParentState is the state associated with the
758 // unwind dest of exceptional exits from it.
759 const BasicBlock
*UnwindDest
;
760 if (const auto *Catch
= dyn_cast
<CatchPadInst
>(Pad
)) {
761 // If a catch is not the last in its catchswitch, its TryParentState is
762 // the state associated with the next catch in the switch, even though
763 // that's not the unwind dest of exceptions escaping the catch. Those
764 // cases were already assigned a TryParentState in the first pass, so
766 if (Entry
.TryParentState
!= -1)
768 // Otherwise, get the unwind dest from the catchswitch.
769 UnwindDest
= Catch
->getCatchSwitch()->getUnwindDest();
771 const auto *Cleanup
= cast
<CleanupPadInst
>(Pad
);
772 UnwindDest
= nullptr;
773 for (const User
*U
: Cleanup
->users()) {
774 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
775 // Common and unambiguous case -- cleanupret indicates cleanup's
777 UnwindDest
= CleanupRet
->getUnwindDest();
781 // Get an unwind dest for the user
782 const BasicBlock
*UserUnwindDest
= nullptr;
783 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
784 UserUnwindDest
= Invoke
->getUnwindDest();
785 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(U
)) {
786 UserUnwindDest
= CatchSwitch
->getUnwindDest();
787 } else if (auto *ChildCleanup
= dyn_cast
<CleanupPadInst
>(U
)) {
788 int UserState
= FuncInfo
.EHPadStateMap
[ChildCleanup
];
789 int UserUnwindState
=
790 FuncInfo
.ClrEHUnwindMap
[UserState
].TryParentState
;
791 if (UserUnwindState
!= -1)
792 UserUnwindDest
= cast
<const BasicBlock
*>(
793 FuncInfo
.ClrEHUnwindMap
[UserUnwindState
].Handler
);
796 // Not having an unwind dest for this user might indicate that it
797 // doesn't unwind, so can't be taken as proof that the cleanup itself
798 // may unwind to caller (see e.g. SimplifyUnreachable and
799 // RemoveUnwindEdge).
803 // Now we have an unwind dest for the user, but we need to see if it
804 // unwinds all the way out of the cleanup or if it stays within it.
805 const Instruction
*UserUnwindPad
= &*UserUnwindDest
->getFirstNonPHIIt();
806 const Value
*UserUnwindParent
;
807 if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(UserUnwindPad
))
808 UserUnwindParent
= CSI
->getParentPad();
811 cast
<CleanupPadInst
>(UserUnwindPad
)->getParentPad();
813 // The unwind stays within the cleanup iff it targets a child of the
815 if (UserUnwindParent
== Cleanup
)
818 // This unwind exits the cleanup, so its dest is the cleanup's dest.
819 UnwindDest
= UserUnwindDest
;
824 // Record the state of the unwind dest as the TryParentState.
827 // If UnwindDest is null at this point, either the pad in question can
828 // be exited by unwind to caller, or it cannot be exited by unwind. In
829 // either case, reporting such cases as unwinding to caller is correct.
830 // This can lead to EH tables that "look strange" -- if this pad's is in
831 // a parent funclet which has other children that do unwind to an enclosing
832 // pad, the try region for this pad will be missing the "duplicate" EH
833 // clause entries that you'd expect to see covering the whole parent. That
834 // should be benign, since the unwind never actually happens. If it were
835 // an issue, we could add a subsequent pass that pushes unwind dests down
836 // from parents that have them to children that appear to unwind to caller.
838 UnwindDestState
= -1;
841 FuncInfo
.EHPadStateMap
[&*UnwindDest
->getFirstNonPHIIt()];
844 Entry
.TryParentState
= UnwindDestState
;
847 // Step three: transfer information from pads to invokes.
848 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
851 void WinEHPrepareImpl::colorFunclets(Function
&F
) {
852 BlockColors
= colorEHFunclets(F
);
854 // Invert the map from BB to colors to color to BBs.
855 for (BasicBlock
&BB
: F
) {
856 ColorVector
&Colors
= BlockColors
[&BB
];
857 for (BasicBlock
*Color
: Colors
)
858 FuncletBlocks
[Color
].push_back(&BB
);
862 void WinEHPrepareImpl::demotePHIsOnFunclets(Function
&F
,
863 bool DemoteCatchSwitchPHIOnly
) {
864 // Strip PHI nodes off of EH pads.
865 SmallVector
<PHINode
*, 16> PHINodes
;
866 for (BasicBlock
&BB
: make_early_inc_range(F
)) {
869 if (DemoteCatchSwitchPHIOnly
&&
870 !isa
<CatchSwitchInst
>(BB
.getFirstNonPHIIt()))
873 for (Instruction
&I
: make_early_inc_range(BB
)) {
874 auto *PN
= dyn_cast
<PHINode
>(&I
);
875 // Stop at the first non-PHI.
879 AllocaInst
*SpillSlot
= insertPHILoads(PN
, F
);
881 insertPHIStores(PN
, SpillSlot
);
883 PHINodes
.push_back(PN
);
887 for (auto *PN
: PHINodes
) {
888 // There may be lingering uses on other EH PHIs being removed
889 PN
->replaceAllUsesWith(PoisonValue::get(PN
->getType()));
890 PN
->eraseFromParent();
894 void WinEHPrepareImpl::cloneCommonBlocks(Function
&F
) {
895 // We need to clone all blocks which belong to multiple funclets. Values are
896 // remapped throughout the funclet to propagate both the new instructions
897 // *and* the new basic blocks themselves.
898 for (auto &Funclets
: FuncletBlocks
) {
899 BasicBlock
*FuncletPadBB
= Funclets
.first
;
900 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclets
.second
;
902 if (FuncletPadBB
== &F
.getEntryBlock())
903 FuncletToken
= ConstantTokenNone::get(F
.getContext());
905 FuncletToken
= &*FuncletPadBB
->getFirstNonPHIIt();
907 std::vector
<std::pair
<BasicBlock
*, BasicBlock
*>> Orig2Clone
;
908 ValueToValueMapTy VMap
;
909 for (BasicBlock
*BB
: BlocksInFunclet
) {
910 ColorVector
&ColorsForBB
= BlockColors
[BB
];
911 // We don't need to do anything if the block is monochromatic.
912 size_t NumColorsForBB
= ColorsForBB
.size();
913 if (NumColorsForBB
== 1)
916 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
917 dbgs() << " Cloning block \'" << BB
->getName()
918 << "\' for funclet \'" << FuncletPadBB
->getName()
921 // Create a new basic block and copy instructions into it!
923 CloneBasicBlock(BB
, VMap
, Twine(".for.", FuncletPadBB
->getName()));
924 // Insert the clone immediately after the original to ensure determinism
925 // and to keep the same relative ordering of any funclet's blocks.
926 CBB
->insertInto(&F
, BB
->getNextNode());
928 // Add basic block mapping.
931 // Record delta operations that we need to perform to our color mappings.
932 Orig2Clone
.emplace_back(BB
, CBB
);
935 // If nothing was cloned, we're done cloning in this funclet.
936 if (Orig2Clone
.empty())
939 // Update our color mappings to reflect that one block has lost a color and
940 // another has gained a color.
941 for (auto &BBMapping
: Orig2Clone
) {
942 BasicBlock
*OldBlock
= BBMapping
.first
;
943 BasicBlock
*NewBlock
= BBMapping
.second
;
945 BlocksInFunclet
.push_back(NewBlock
);
946 ColorVector
&NewColors
= BlockColors
[NewBlock
];
947 assert(NewColors
.empty() && "A new block should only have one color!");
948 NewColors
.push_back(FuncletPadBB
);
950 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
951 dbgs() << " Assigned color \'" << FuncletPadBB
->getName()
952 << "\' to block \'" << NewBlock
->getName()
955 llvm::erase(BlocksInFunclet
, OldBlock
);
956 ColorVector
&OldColors
= BlockColors
[OldBlock
];
957 llvm::erase(OldColors
, FuncletPadBB
);
959 DEBUG_WITH_TYPE("win-eh-prepare-coloring",
960 dbgs() << " Removed color \'" << FuncletPadBB
->getName()
961 << "\' from block \'" << OldBlock
->getName()
965 // Loop over all of the instructions in this funclet, fixing up operand
966 // references as we go. This uses VMap to do all the hard work.
967 for (BasicBlock
*BB
: BlocksInFunclet
)
968 // Loop over all instructions, fixing each one as we find it...
969 for (Instruction
&I
: *BB
)
970 RemapInstruction(&I
, VMap
,
971 RF_IgnoreMissingLocals
| RF_NoModuleLevelChanges
);
973 // Catchrets targeting cloned blocks need to be updated separately from
974 // the loop above because they are not in the current funclet.
975 SmallVector
<CatchReturnInst
*, 2> FixupCatchrets
;
976 for (auto &BBMapping
: Orig2Clone
) {
977 BasicBlock
*OldBlock
= BBMapping
.first
;
978 BasicBlock
*NewBlock
= BBMapping
.second
;
980 FixupCatchrets
.clear();
981 for (BasicBlock
*Pred
: predecessors(OldBlock
))
982 if (auto *CatchRet
= dyn_cast
<CatchReturnInst
>(Pred
->getTerminator()))
983 if (CatchRet
->getCatchSwitchParentPad() == FuncletToken
)
984 FixupCatchrets
.push_back(CatchRet
);
986 for (CatchReturnInst
*CatchRet
: FixupCatchrets
)
987 CatchRet
->setSuccessor(NewBlock
);
990 auto UpdatePHIOnClonedBlock
= [&](PHINode
*PN
, bool IsForOldBlock
) {
991 unsigned NumPreds
= PN
->getNumIncomingValues();
992 for (unsigned PredIdx
= 0, PredEnd
= NumPreds
; PredIdx
!= PredEnd
;
994 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(PredIdx
);
995 bool EdgeTargetsFunclet
;
997 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
998 EdgeTargetsFunclet
= (CRI
->getCatchSwitchParentPad() == FuncletToken
);
1000 ColorVector
&IncomingColors
= BlockColors
[IncomingBlock
];
1001 assert(!IncomingColors
.empty() && "Block not colored!");
1002 assert((IncomingColors
.size() == 1 ||
1003 !llvm::is_contained(IncomingColors
, FuncletPadBB
)) &&
1004 "Cloning should leave this funclet's blocks monochromatic");
1005 EdgeTargetsFunclet
= (IncomingColors
.front() == FuncletPadBB
);
1007 if (IsForOldBlock
!= EdgeTargetsFunclet
)
1009 PN
->removeIncomingValue(IncomingBlock
, /*DeletePHIIfEmpty=*/false);
1010 // Revisit the next entry.
1016 for (auto &BBMapping
: Orig2Clone
) {
1017 BasicBlock
*OldBlock
= BBMapping
.first
;
1018 BasicBlock
*NewBlock
= BBMapping
.second
;
1019 for (PHINode
&OldPN
: OldBlock
->phis()) {
1020 UpdatePHIOnClonedBlock(&OldPN
, /*IsForOldBlock=*/true);
1022 for (PHINode
&NewPN
: NewBlock
->phis()) {
1023 UpdatePHIOnClonedBlock(&NewPN
, /*IsForOldBlock=*/false);
1027 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1028 // the PHI nodes for NewBB now.
1029 for (auto &BBMapping
: Orig2Clone
) {
1030 BasicBlock
*OldBlock
= BBMapping
.first
;
1031 BasicBlock
*NewBlock
= BBMapping
.second
;
1032 for (BasicBlock
*SuccBB
: successors(NewBlock
)) {
1033 for (PHINode
&SuccPN
: SuccBB
->phis()) {
1034 // Ok, we have a PHI node. Figure out what the incoming value was for
1036 int OldBlockIdx
= SuccPN
.getBasicBlockIndex(OldBlock
);
1037 if (OldBlockIdx
== -1)
1039 Value
*IV
= SuccPN
.getIncomingValue(OldBlockIdx
);
1041 // Remap the value if necessary.
1042 if (auto *Inst
= dyn_cast
<Instruction
>(IV
)) {
1043 ValueToValueMapTy::iterator I
= VMap
.find(Inst
);
1044 if (I
!= VMap
.end())
1048 SuccPN
.addIncoming(IV
, NewBlock
);
1053 for (ValueToValueMapTy::value_type VT
: VMap
) {
1054 // If there were values defined in BB that are used outside the funclet,
1055 // then we now have to update all uses of the value to use either the
1056 // original value, the cloned value, or some PHI derived value. This can
1057 // require arbitrary PHI insertion, of which we are prepared to do, clean
1059 SmallVector
<Use
*, 16> UsesToRename
;
1061 auto *OldI
= dyn_cast
<Instruction
>(const_cast<Value
*>(VT
.first
));
1064 auto *NewI
= cast
<Instruction
>(VT
.second
);
1065 // Scan all uses of this instruction to see if it is used outside of its
1066 // funclet, and if so, record them in UsesToRename.
1067 for (Use
&U
: OldI
->uses()) {
1068 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
1069 BasicBlock
*UserBB
= UserI
->getParent();
1070 ColorVector
&ColorsForUserBB
= BlockColors
[UserBB
];
1071 assert(!ColorsForUserBB
.empty());
1072 if (ColorsForUserBB
.size() > 1 ||
1073 *ColorsForUserBB
.begin() != FuncletPadBB
)
1074 UsesToRename
.push_back(&U
);
1077 // If there are no uses outside the block, we're done with this
1079 if (UsesToRename
.empty())
1082 // We found a use of OldI outside of the funclet. Rename all uses of OldI
1083 // that are outside its funclet to be uses of the appropriate PHI node
1085 SSAUpdater SSAUpdate
;
1086 SSAUpdate
.Initialize(OldI
->getType(), OldI
->getName());
1087 SSAUpdate
.AddAvailableValue(OldI
->getParent(), OldI
);
1088 SSAUpdate
.AddAvailableValue(NewI
->getParent(), NewI
);
1090 while (!UsesToRename
.empty())
1091 SSAUpdate
.RewriteUseAfterInsertions(*UsesToRename
.pop_back_val());
1096 void WinEHPrepareImpl::removeImplausibleInstructions(Function
&F
) {
1097 // Remove implausible terminators and replace them with UnreachableInst.
1098 for (auto &Funclet
: FuncletBlocks
) {
1099 BasicBlock
*FuncletPadBB
= Funclet
.first
;
1100 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclet
.second
;
1101 Instruction
*FirstNonPHI
= &*FuncletPadBB
->getFirstNonPHIIt();
1102 auto *FuncletPad
= dyn_cast
<FuncletPadInst
>(FirstNonPHI
);
1103 auto *CatchPad
= dyn_cast_or_null
<CatchPadInst
>(FuncletPad
);
1104 auto *CleanupPad
= dyn_cast_or_null
<CleanupPadInst
>(FuncletPad
);
1106 for (BasicBlock
*BB
: BlocksInFunclet
) {
1107 for (Instruction
&I
: *BB
) {
1108 auto *CB
= dyn_cast
<CallBase
>(&I
);
1112 Value
*FuncletBundleOperand
= nullptr;
1113 if (auto BU
= CB
->getOperandBundle(LLVMContext::OB_funclet
))
1114 FuncletBundleOperand
= BU
->Inputs
.front();
1116 if (FuncletBundleOperand
== FuncletPad
)
1119 // Skip call sites which are nounwind intrinsics or inline asm.
1121 dyn_cast
<Function
>(CB
->getCalledOperand()->stripPointerCasts());
1122 if (CalledFn
&& ((CalledFn
->isIntrinsic() && CB
->doesNotThrow()) ||
1126 // This call site was not part of this funclet, remove it.
1127 if (isa
<InvokeInst
>(CB
)) {
1128 // Remove the unwind edge if it was an invoke.
1129 removeUnwindEdge(BB
);
1130 // Get a pointer to the new call.
1131 BasicBlock::iterator CallI
=
1132 std::prev(BB
->getTerminator()->getIterator());
1133 auto *CI
= cast
<CallInst
>(&*CallI
);
1134 changeToUnreachable(CI
);
1136 changeToUnreachable(&I
);
1139 // There are no more instructions in the block (except for unreachable),
1144 Instruction
*TI
= BB
->getTerminator();
1145 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1146 bool IsUnreachableRet
= isa
<ReturnInst
>(TI
) && FuncletPad
;
1147 // The token consumed by a CatchReturnInst must match the funclet token.
1148 bool IsUnreachableCatchret
= false;
1149 if (auto *CRI
= dyn_cast
<CatchReturnInst
>(TI
))
1150 IsUnreachableCatchret
= CRI
->getCatchPad() != CatchPad
;
1151 // The token consumed by a CleanupReturnInst must match the funclet token.
1152 bool IsUnreachableCleanupret
= false;
1153 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
))
1154 IsUnreachableCleanupret
= CRI
->getCleanupPad() != CleanupPad
;
1155 if (IsUnreachableRet
|| IsUnreachableCatchret
||
1156 IsUnreachableCleanupret
) {
1157 changeToUnreachable(TI
);
1158 } else if (isa
<InvokeInst
>(TI
)) {
1159 if (Personality
== EHPersonality::MSVC_CXX
&& CleanupPad
) {
1160 // Invokes within a cleanuppad for the MSVC++ personality never
1161 // transfer control to their unwind edge: the personality will
1162 // terminate the program.
1163 removeUnwindEdge(BB
);
1170 void WinEHPrepareImpl::cleanupPreparedFunclets(Function
&F
) {
1171 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1173 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
1174 SimplifyInstructionsInBlock(&BB
);
1175 ConstantFoldTerminator(&BB
, /*DeleteDeadConditions=*/true);
1176 MergeBlockIntoPredecessor(&BB
);
1179 // We might have some unreachable blocks after cleaning up some impossible
1181 removeUnreachableBlocks(F
);
1185 void WinEHPrepareImpl::verifyPreparedFunclets(Function
&F
) {
1186 for (BasicBlock
&BB
: F
) {
1187 size_t NumColors
= BlockColors
[&BB
].size();
1188 assert(NumColors
== 1 && "Expected monochromatic BB!");
1190 report_fatal_error("Uncolored BB!");
1192 report_fatal_error("Multicolor BB!");
1193 assert((DisableDemotion
|| !(BB
.isEHPad() && isa
<PHINode
>(BB
.begin()))) &&
1194 "EH Pad still has a PHI!");
1199 bool WinEHPrepareImpl::prepareExplicitEH(Function
&F
) {
1200 // Remove unreachable blocks. It is not valuable to assign them a color and
1201 // their existence can trick us into thinking values are alive when they are
1203 removeUnreachableBlocks(F
);
1205 // Determine which blocks are reachable from which funclet entries.
1208 cloneCommonBlocks(F
);
1210 if (!DisableDemotion
)
1211 demotePHIsOnFunclets(F
, DemoteCatchSwitchPHIOnly
||
1212 DemoteCatchSwitchPHIOnlyOpt
);
1214 if (!DisableCleanups
) {
1215 assert(!verifyFunction(F
, &dbgs()));
1216 removeImplausibleInstructions(F
);
1218 assert(!verifyFunction(F
, &dbgs()));
1219 cleanupPreparedFunclets(F
);
1222 LLVM_DEBUG(verifyPreparedFunclets(F
));
1223 // Recolor the CFG to verify that all is well.
1224 LLVM_DEBUG(colorFunclets(F
));
1225 LLVM_DEBUG(verifyPreparedFunclets(F
));
1230 // TODO: Share loads when one use dominates another, or when a catchpad exit
1231 // dominates uses (needs dominators).
1232 AllocaInst
*WinEHPrepareImpl::insertPHILoads(PHINode
*PN
, Function
&F
) {
1233 BasicBlock
*PHIBlock
= PN
->getParent();
1234 AllocaInst
*SpillSlot
= nullptr;
1235 Instruction
*EHPad
= &*PHIBlock
->getFirstNonPHIIt();
1237 if (!EHPad
->isTerminator()) {
1238 // If the EHPad isn't a terminator, then we can insert a load in this block
1239 // that will dominate all uses.
1240 SpillSlot
= new AllocaInst(PN
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1241 Twine(PN
->getName(), ".wineh.spillslot"),
1242 F
.getEntryBlock().begin());
1243 Value
*V
= new LoadInst(PN
->getType(), SpillSlot
,
1244 Twine(PN
->getName(), ".wineh.reload"),
1245 PHIBlock
->getFirstInsertionPt());
1246 PN
->replaceAllUsesWith(V
);
1250 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1251 // loads of the slot before every use.
1252 DenseMap
<BasicBlock
*, Value
*> Loads
;
1253 for (Use
&U
: llvm::make_early_inc_range(PN
->uses())) {
1254 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1255 if (isa
<PHINode
>(UsingInst
) && UsingInst
->getParent()->isEHPad()) {
1256 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1257 // stores for it separately.
1260 replaceUseWithLoad(PN
, U
, SpillSlot
, Loads
, F
);
1265 // TODO: improve store placement. Inserting at def is probably good, but need
1266 // to be careful not to introduce interfering stores (needs liveness analysis).
1267 // TODO: identify related phi nodes that can share spill slots, and share them
1268 // (also needs liveness).
1269 void WinEHPrepareImpl::insertPHIStores(PHINode
*OriginalPHI
,
1270 AllocaInst
*SpillSlot
) {
1271 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1272 // stored to the spill slot by the end of the given Block.
1273 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 4> Worklist
;
1275 Worklist
.push_back({OriginalPHI
->getParent(), OriginalPHI
});
1277 while (!Worklist
.empty()) {
1278 BasicBlock
*EHBlock
;
1280 std::tie(EHBlock
, InVal
) = Worklist
.pop_back_val();
1282 PHINode
*PN
= dyn_cast
<PHINode
>(InVal
);
1283 if (PN
&& PN
->getParent() == EHBlock
) {
1284 // The value is defined by another PHI we need to remove, with no room to
1285 // insert a store after the PHI, so each predecessor needs to store its
1287 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
< e
; ++i
) {
1288 Value
*PredVal
= PN
->getIncomingValue(i
);
1290 // Undef can safely be skipped.
1291 if (isa
<UndefValue
>(PredVal
))
1294 insertPHIStore(PN
->getIncomingBlock(i
), PredVal
, SpillSlot
, Worklist
);
1297 // We need to store InVal, which dominates EHBlock, but can't put a store
1298 // in EHBlock, so need to put stores in each predecessor.
1299 for (BasicBlock
*PredBlock
: predecessors(EHBlock
)) {
1300 insertPHIStore(PredBlock
, InVal
, SpillSlot
, Worklist
);
1306 void WinEHPrepareImpl::insertPHIStore(
1307 BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
1308 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
) {
1310 if (PredBlock
->isEHPad() && PredBlock
->getFirstNonPHIIt()->isTerminator()) {
1311 // Pred is unsplittable, so we need to queue it on the worklist.
1312 Worklist
.push_back({PredBlock
, PredVal
});
1316 // Otherwise, insert the store at the end of the basic block.
1317 new StoreInst(PredVal
, SpillSlot
, PredBlock
->getTerminator()->getIterator());
1320 void WinEHPrepareImpl::replaceUseWithLoad(
1321 Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
1322 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
) {
1323 // Lazilly create the spill slot.
1325 SpillSlot
= new AllocaInst(V
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1326 Twine(V
->getName(), ".wineh.spillslot"),
1327 F
.getEntryBlock().begin());
1329 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1330 if (auto *UsingPHI
= dyn_cast
<PHINode
>(UsingInst
)) {
1331 // If this is a PHI node, we can't insert a load of the value before
1332 // the use. Instead insert the load in the predecessor block
1333 // corresponding to the incoming value.
1335 // Note that if there are multiple edges from a basic block to this
1336 // PHI node that we cannot have multiple loads. The problem is that
1337 // the resulting PHI node will have multiple values (from each load)
1338 // coming in from the same block, which is illegal SSA form.
1339 // For this reason, we keep track of and reuse loads we insert.
1340 BasicBlock
*IncomingBlock
= UsingPHI
->getIncomingBlock(U
);
1341 if (auto *CatchRet
=
1342 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
1343 // Putting a load above a catchret and use on the phi would still leave
1344 // a cross-funclet def/use. We need to split the edge, change the
1345 // catchret to target the new block, and put the load there.
1346 BasicBlock
*PHIBlock
= UsingInst
->getParent();
1347 BasicBlock
*NewBlock
= SplitEdge(IncomingBlock
, PHIBlock
);
1348 // SplitEdge gives us:
1351 // br label %NewBlock
1353 // catchret label %PHIBlock
1357 // catchret label %NewBlock
1359 // br label %PHIBlock
1360 // So move the terminators to each others' blocks and swap their
1362 BranchInst
*Goto
= cast
<BranchInst
>(IncomingBlock
->getTerminator());
1363 Goto
->removeFromParent();
1364 CatchRet
->removeFromParent();
1365 CatchRet
->insertInto(IncomingBlock
, IncomingBlock
->end());
1366 Goto
->insertInto(NewBlock
, NewBlock
->end());
1367 Goto
->setSuccessor(0, PHIBlock
);
1368 CatchRet
->setSuccessor(NewBlock
);
1369 // Update the color mapping for the newly split edge.
1370 // Grab a reference to the ColorVector to be inserted before getting the
1371 // reference to the vector we are copying because inserting the new
1372 // element in BlockColors might cause the map to be reallocated.
1373 ColorVector
&ColorsForNewBlock
= BlockColors
[NewBlock
];
1374 ColorVector
&ColorsForPHIBlock
= BlockColors
[PHIBlock
];
1375 ColorsForNewBlock
= ColorsForPHIBlock
;
1376 for (BasicBlock
*FuncletPad
: ColorsForPHIBlock
)
1377 FuncletBlocks
[FuncletPad
].push_back(NewBlock
);
1378 // Treat the new block as incoming for load insertion.
1379 IncomingBlock
= NewBlock
;
1381 Value
*&Load
= Loads
[IncomingBlock
];
1382 // Insert the load into the predecessor block
1384 Load
= new LoadInst(
1385 V
->getType(), SpillSlot
, Twine(V
->getName(), ".wineh.reload"),
1386 /*isVolatile=*/false, IncomingBlock
->getTerminator()->getIterator());
1390 // Reload right before the old use.
1391 auto *Load
= new LoadInst(V
->getType(), SpillSlot
,
1392 Twine(V
->getName(), ".wineh.reload"),
1393 /*isVolatile=*/false, UsingInst
->getIterator());
1398 void WinEHFuncInfo::addIPToStateRange(const InvokeInst
*II
,
1399 MCSymbol
*InvokeBegin
,
1400 MCSymbol
*InvokeEnd
) {
1401 assert(InvokeStateMap
.count(II
) &&
1402 "should get invoke with precomputed state");
1403 LabelToStateMap
[InvokeBegin
] = std::make_pair(InvokeStateMap
[II
], InvokeEnd
);
1406 void WinEHFuncInfo::addIPToStateRange(int State
, MCSymbol
* InvokeBegin
,
1407 MCSymbol
* InvokeEnd
) {
1408 LabelToStateMap
[InvokeBegin
] = std::make_pair(State
, InvokeEnd
);
1411 WinEHFuncInfo::WinEHFuncInfo() = default;