1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
6 <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
8 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
9 <meta name=
"author" content=
"Chris Lattner">
10 <meta name=
"author" content=
"Erick Tryzelaar">
11 <link rel=
"stylesheet" href=
"../llvm.css" type=
"text/css">
16 <div class=
"doc_title">Kaleidoscope: Extending the Language: Mutable Variables
</div>
19 <li><a href=
"index.html">Up to Tutorial Index
</a></li>
22 <li><a href=
"#intro">Chapter
7 Introduction
</a></li>
23 <li><a href=
"#why">Why is this a hard problem?
</a></li>
24 <li><a href=
"#memory">Memory in LLVM
</a></li>
25 <li><a href=
"#kalvars">Mutable Variables in Kaleidoscope
</a></li>
26 <li><a href=
"#adjustments">Adjusting Existing Variables for
28 <li><a href=
"#assignment">New Assignment Operator
</a></li>
29 <li><a href=
"#localvars">User-defined Local Variables
</a></li>
30 <li><a href=
"#code">Full Code Listing
</a></li>
33 <li><a href=
"OCamlLangImpl8.html">Chapter
8</a>: Conclusion and other useful LLVM
37 <div class=
"doc_author">
39 Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
40 and
<a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a>
44 <!-- *********************************************************************** -->
45 <div class=
"doc_section"><a name=
"intro">Chapter
7 Introduction
</a></div>
46 <!-- *********************************************************************** -->
48 <div class=
"doc_text">
50 <p>Welcome to Chapter
7 of the
"<a href="index.html
">Implementing a language
51 with LLVM</a>" tutorial. In chapters
1 through
6, we've built a very
52 respectable, albeit simple,
<a
53 href=
"http://en.wikipedia.org/wiki/Functional_programming">functional
54 programming language
</a>. In our journey, we learned some parsing techniques,
55 how to build and represent an AST, how to build LLVM IR, and how to optimize
56 the resultant code as well as JIT compile it.
</p>
58 <p>While Kaleidoscope is interesting as a functional language, the fact that it
59 is functional makes it
"too easy" to generate LLVM IR for it. In particular, a
60 functional language makes it very easy to build LLVM IR directly in
<a
61 href=
"http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form
</a>.
62 Since LLVM requires that the input code be in SSA form, this is a very nice
63 property and it is often unclear to newcomers how to generate code for an
64 imperative language with mutable variables.
</p>
66 <p>The short (and happy) summary of this chapter is that there is no need for
67 your front-end to build SSA form: LLVM provides highly tuned and well tested
68 support for this, though the way it works is a bit unexpected for some.
</p>
72 <!-- *********************************************************************** -->
73 <div class=
"doc_section"><a name=
"why">Why is this a hard problem?
</a></div>
74 <!-- *********************************************************************** -->
76 <div class=
"doc_text">
79 To understand why mutable variables cause complexities in SSA construction,
80 consider this extremely simple C example:
83 <div class=
"doc_code">
86 int test(_Bool Condition) {
97 <p>In this case, we have the variable
"X", whose value depends on the path
98 executed in the program. Because there are two different possible values for X
99 before the return instruction, a PHI node is inserted to merge the two values.
100 The LLVM IR that we want for this example looks like this:
</p>
102 <div class=
"doc_code">
104 @G = weak global i32
0 ; type of @G is i32*
105 @H = weak global i32
0 ; type of @H is i32*
107 define i32 @test(i1 %Condition) {
109 br i1 %Condition, label %cond_true, label %cond_false
120 %X
.2 = phi i32 [ %X
.1, %cond_false ], [ %X
.0, %cond_true ]
126 <p>In this example, the loads from the G and H global variables are explicit in
127 the LLVM IR, and they live in the then/else branches of the if statement
128 (cond_true/cond_false). In order to merge the incoming values, the X
.2 phi node
129 in the cond_next block selects the right value to use based on where control
130 flow is coming from: if control flow comes from the cond_false block, X
.2 gets
131 the value of X
.1. Alternatively, if control flow comes from cond_true, it gets
132 the value of X
.0. The intent of this chapter is not to explain the details of
133 SSA form. For more information, see one of the many
<a
134 href=
"http://en.wikipedia.org/wiki/Static_single_assignment_form">online
137 <p>The question for this article is
"who places the phi nodes when lowering
138 assignments to mutable variables?". The issue here is that LLVM
139 <em>requires
</em> that its IR be in SSA form: there is no
"non-ssa" mode for it.
140 However, SSA construction requires non-trivial algorithms and data structures,
141 so it is inconvenient and wasteful for every front-end to have to reproduce this
146 <!-- *********************************************************************** -->
147 <div class=
"doc_section"><a name=
"memory">Memory in LLVM
</a></div>
148 <!-- *********************************************************************** -->
150 <div class=
"doc_text">
152 <p>The 'trick' here is that while LLVM does require all register values to be
153 in SSA form, it does not require (or permit) memory objects to be in SSA form.
154 In the example above, note that the loads from G and H are direct accesses to
155 G and H: they are not renamed or versioned. This differs from some other
156 compiler systems, which do try to version memory objects. In LLVM, instead of
157 encoding dataflow analysis of memory into the LLVM IR, it is handled with
<a
158 href=
"../WritingAnLLVMPass.html">Analysis Passes
</a> which are computed on
162 With this in mind, the high-level idea is that we want to make a stack variable
163 (which lives in memory, because it is on the stack) for each mutable object in
164 a function. To take advantage of this trick, we need to talk about how LLVM
165 represents stack variables.
168 <p>In LLVM, all memory accesses are explicit with load/store instructions, and
169 it is carefully designed not to have (or need) an
"address-of" operator. Notice
170 how the type of the @G/@H global variables is actually
"i32*" even though the
171 variable is defined as
"i32". What this means is that @G defines
<em>space
</em>
172 for an i32 in the global data area, but its
<em>name
</em> actually refers to the
173 address for that space. Stack variables work the same way, except that instead of
174 being declared with global variable definitions, they are declared with the
175 <a href=
"../LangRef.html#i_alloca">LLVM alloca instruction
</a>:
</p>
177 <div class=
"doc_code">
179 define i32 @example() {
181 %X = alloca i32 ; type of %X is i32*.
183 %tmp = load i32* %X ; load the stack value %X from the stack.
184 %tmp2 = add i32 %tmp,
1 ; increment it
185 store i32 %tmp2, i32* %X ; store it back
190 <p>This code shows an example of how you can declare and manipulate a stack
191 variable in the LLVM IR. Stack memory allocated with the alloca instruction is
192 fully general: you can pass the address of the stack slot to functions, you can
193 store it in other variables, etc. In our example above, we could rewrite the
194 example to use the alloca technique to avoid using a PHI node:
</p>
196 <div class=
"doc_code">
198 @G = weak global i32
0 ; type of @G is i32*
199 @H = weak global i32
0 ; type of @H is i32*
201 define i32 @test(i1 %Condition) {
203 %X = alloca i32 ; type of %X is i32*.
204 br i1 %Condition, label %cond_true, label %cond_false
208 store i32 %X
.0, i32* %X ; Update X
213 store i32 %X
.1, i32* %X ; Update X
217 %X
.2 = load i32* %X ; Read X
223 <p>With this, we have discovered a way to handle arbitrary mutable variables
224 without the need to create Phi nodes at all:
</p>
227 <li>Each mutable variable becomes a stack allocation.
</li>
228 <li>Each read of the variable becomes a load from the stack.
</li>
229 <li>Each update of the variable becomes a store to the stack.
</li>
230 <li>Taking the address of a variable just uses the stack address directly.
</li>
233 <p>While this solution has solved our immediate problem, it introduced another
234 one: we have now apparently introduced a lot of stack traffic for very simple
235 and common operations, a major performance problem. Fortunately for us, the
236 LLVM optimizer has a highly-tuned optimization pass named
"mem2reg" that handles
237 this case, promoting allocas like this into SSA registers, inserting Phi nodes
238 as appropriate. If you run this example through the pass, for example, you'll
241 <div class=
"doc_code">
243 $
<b>llvm-as
< example.ll | opt -mem2reg | llvm-dis
</b>
244 @G = weak global i32
0
245 @H = weak global i32
0
247 define i32 @test(i1 %Condition) {
249 br i1 %Condition, label %cond_true, label %cond_false
260 %X
.01 = phi i32 [ %X
.1, %cond_false ], [ %X
.0, %cond_true ]
266 <p>The mem2reg pass implements the standard
"iterated dominance frontier"
267 algorithm for constructing SSA form and has a number of optimizations that speed
268 up (very common) degenerate cases. The mem2reg optimization pass is the answer
269 to dealing with mutable variables, and we highly recommend that you depend on
270 it. Note that mem2reg only works on variables in certain circumstances:
</p>
273 <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
274 promotes them. It does not apply to global variables or heap allocations.
</li>
276 <li>mem2reg only looks for alloca instructions in the entry block of the
277 function. Being in the entry block guarantees that the alloca is only executed
278 once, which makes analysis simpler.
</li>
280 <li>mem2reg only promotes allocas whose uses are direct loads and stores. If
281 the address of the stack object is passed to a function, or if any funny pointer
282 arithmetic is involved, the alloca will not be promoted.
</li>
284 <li>mem2reg only works on allocas of
<a
285 href=
"../LangRef.html#t_classifications">first class
</a>
286 values (such as pointers, scalars and vectors), and only if the array size
287 of the allocation is
1 (or missing in the .ll file). mem2reg is not capable of
288 promoting structs or arrays to registers. Note that the
"scalarrepl" pass is
289 more powerful and can promote structs,
"unions", and arrays in many cases.
</li>
294 All of these properties are easy to satisfy for most imperative languages, and
295 we'll illustrate it below with Kaleidoscope. The final question you may be
296 asking is: should I bother with this nonsense for my front-end? Wouldn't it be
297 better if I just did SSA construction directly, avoiding use of the mem2reg
298 optimization pass? In short, we strongly recommend that you use this technique
299 for building SSA form, unless there is an extremely good reason not to. Using
300 this technique is:
</p>
303 <li>Proven and well tested: llvm-gcc and clang both use this technique for local
304 mutable variables. As such, the most common clients of LLVM are using this to
305 handle a bulk of their variables. You can be sure that bugs are found fast and
308 <li>Extremely Fast: mem2reg has a number of special cases that make it fast in
309 common cases as well as fully general. For example, it has fast-paths for
310 variables that are only used in a single block, variables that only have one
311 assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
314 <li>Needed for debug info generation:
<a href=
"../SourceLevelDebugging.html">
315 Debug information in LLVM
</a> relies on having the address of the variable
316 exposed so that debug info can be attached to it. This technique dovetails
317 very naturally with this style of debug info.
</li>
320 <p>If nothing else, this makes it much easier to get your front-end up and
321 running, and is very simple to implement. Lets extend Kaleidoscope with mutable
327 <!-- *********************************************************************** -->
328 <div class=
"doc_section"><a name=
"kalvars">Mutable Variables in
329 Kaleidoscope
</a></div>
330 <!-- *********************************************************************** -->
332 <div class=
"doc_text">
334 <p>Now that we know the sort of problem we want to tackle, lets see what this
335 looks like in the context of our little Kaleidoscope language. We're going to
336 add two features:
</p>
339 <li>The ability to mutate variables with the '=' operator.
</li>
340 <li>The ability to define new variables.
</li>
343 <p>While the first item is really what this is about, we only have variables
344 for incoming arguments as well as for induction variables, and redefining those only
345 goes so far :). Also, the ability to define new variables is a
346 useful thing regardless of whether you will be mutating them. Here's a
347 motivating example that shows how we could use these:
</p>
349 <div class=
"doc_code">
351 # Define ':' for sequencing: as a low-precedence operator that ignores operands
352 # and just returns the RHS.
353 def binary :
1 (x y) y;
355 # Recursive fib, we could do this before.
364 <b>var a =
1, b =
1, c in
</b>
365 (for i =
3, i
< x in
377 In order to mutate variables, we have to change our existing variables to use
378 the
"alloca trick". Once we have that, we'll add our new operator, then extend
379 Kaleidoscope to support new variable definitions.
384 <!-- *********************************************************************** -->
385 <div class=
"doc_section"><a name=
"adjustments">Adjusting Existing Variables for
387 <!-- *********************************************************************** -->
389 <div class=
"doc_text">
392 The symbol table in Kaleidoscope is managed at code generation time by the
393 '
<tt>named_values
</tt>' map. This map currently keeps track of the LLVM
394 "Value*" that holds the double value for the named variable. In order to
395 support mutation, we need to change this slightly, so that it
396 <tt>named_values
</tt> holds the
<em>memory location
</em> of the variable in
397 question. Note that this change is a refactoring: it changes the structure of
398 the code, but does not (by itself) change the behavior of the compiler. All of
399 these changes are isolated in the Kaleidoscope code generator.
</p>
402 At this point in Kaleidoscope's development, it only supports variables for two
403 things: incoming arguments to functions and the induction variable of 'for'
404 loops. For consistency, we'll allow mutation of these variables in addition to
405 other user-defined variables. This means that these will both need memory
409 <p>To start our transformation of Kaleidoscope, we'll change the
410 <tt>named_values
</tt> map so that it maps to AllocaInst* instead of Value*.
411 Once we do this, the C++ compiler will tell us what parts of the code we need to
414 <p><b>Note:
</b> the ocaml bindings currently model both
<tt>Value*
</tt>s and
415 <tt>AllocInst*
</tt>s as
<tt>Llvm.llvalue
</tt>s, but this may change in the
416 future to be more type safe.
</p>
418 <div class=
"doc_code">
420 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create
10
424 <p>Also, since we will need to create these alloca's, we'll use a helper
425 function that ensures that the allocas are created in the entry block of the
428 <div class=
"doc_code">
430 (* Create an alloca instruction in the entry block of the function. This
431 * is used for mutable variables etc. *)
432 let create_entry_block_alloca the_function var_name =
433 let builder = builder_at (instr_begin (entry_block the_function)) in
434 build_alloca double_type var_name builder
438 <p>This funny looking code creates an
<tt>Llvm.llbuilder
</tt> object that is
439 pointing at the first instruction of the entry block. It then creates an alloca
440 with the expected name and returns it. Because all values in Kaleidoscope are
441 doubles, there is no need to pass in a type to use.
</p>
443 <p>With this in place, the first functionality change we want to make is to
444 variable references. In our new scheme, variables live on the stack, so code
445 generating a reference to them actually needs to produce a load from the stack
448 <div class=
"doc_code">
450 let rec codegen_expr = function
452 | Ast.Variable name -
>
453 let v = try Hashtbl.find named_values name with
454 | Not_found -
> raise (Error
"unknown variable name")
456 <b>(* Load the value. *)
457 build_load v name builder
</b>
461 <p>As you can see, this is pretty straightforward. Now we need to update the
462 things that define the variables to set up the alloca. We'll start with
463 <tt>codegen_expr Ast.For ...
</tt> (see the
<a href=
"#code">full code listing
</a>
464 for the unabridged code):
</p>
466 <div class=
"doc_code">
468 | Ast.For (var_name, start, end_, step, body) -
>
469 let the_function = block_parent (insertion_block builder) in
471 (* Create an alloca for the variable in the entry block. *)
472 <b>let alloca = create_entry_block_alloca the_function var_name in
</b>
474 (* Emit the start code first, without 'variable' in scope. *)
475 let start_val = codegen_expr start in
477 <b>(* Store the value into the alloca. *)
478 ignore(build_store start_val alloca builder);
</b>
482 (* Within the loop, the variable is defined equal to the PHI node. If it
483 * shadows an existing variable, we have to restore it, so save it
486 try Some (Hashtbl.find named_values var_name) with Not_found -
> None
488 <b>Hashtbl.add named_values var_name alloca;
</b>
492 (* Compute the end condition. *)
493 let end_cond = codegen_expr end_ in
495 <b>(* Reload, increment, and restore the alloca. This handles the case where
496 * the body of the loop mutates the variable. *)
497 let cur_var = build_load alloca var_name builder in
498 let next_var = build_add cur_var step_val
"nextvar" builder in
499 ignore(build_store next_var alloca builder);
</b>
504 <p>This code is virtually identical to the code
<a
505 href=
"OCamlLangImpl5.html#forcodegen">before we allowed mutable variables
</a>.
506 The big difference is that we no longer have to construct a PHI node, and we use
507 load/store to access the variable as needed.
</p>
509 <p>To support mutable argument variables, we need to also make allocas for them.
510 The code for this is also pretty simple:
</p>
512 <div class=
"doc_code">
514 (* Create an alloca for each argument and register the argument in the symbol
515 * table so that references to it will succeed. *)
516 let create_argument_allocas the_function proto =
517 let args = match proto with
518 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -
> args
520 Array.iteri (fun i ai -
>
521 let var_name = args.(i) in
522 (* Create an alloca for this variable. *)
523 let alloca = create_entry_block_alloca the_function var_name in
525 (* Store the initial value into the alloca. *)
526 ignore(build_store ai alloca builder);
528 (* Add arguments to variable symbol table. *)
529 Hashtbl.add named_values var_name alloca;
530 ) (params the_function)
534 <p>For each argument, we make an alloca, store the input value to the function
535 into the alloca, and register the alloca as the memory location for the
536 argument. This method gets invoked by
<tt>Codegen.codegen_func
</tt> right after
537 it sets up the entry block for the function.
</p>
539 <p>The final missing piece is adding the mem2reg pass, which allows us to get
540 good codegen once again:
</p>
542 <div class=
"doc_code">
546 let the_fpm = PassManager.create_function Codegen.the_module in
548 (* Set up the optimizer pipeline. Start with registering info about how the
549 * target lays out data structures. *)
550 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
552 <b>(* Promote allocas to registers. *)
553 add_memory_to_register_promotion the_fpm;
</b>
555 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
556 add_instruction_combining the_fpm;
558 (* reassociate expressions. *)
559 add_reassociation the_fpm;
563 <p>It is interesting to see what the code looks like before and after the
564 mem2reg optimization runs. For example, this is the before/after code for our
565 recursive fib function. Before the optimization:
</p>
567 <div class=
"doc_code">
569 define double @fib(double %x) {
571 <b>%x1 = alloca double
572 store double %x, double* %x1
573 %x2 = load double* %x1
</b>
574 %cmptmp = fcmp ult double %x2,
3.000000e+00
575 %booltmp = uitofp i1 %cmptmp to double
576 %ifcond = fcmp one double %booltmp,
0.000000e+00
577 br i1 %ifcond, label %then, label %else
579 then: ; preds = %entry
582 else: ; preds = %entry
583 <b>%x3 = load double* %x1
</b>
584 %subtmp = fsub double %x3,
1.000000e+00
585 %calltmp = call double @fib(double %subtmp)
586 <b>%x4 = load double* %x1
</b>
587 %subtmp5 = fsub double %x4,
2.000000e+00
588 %calltmp6 = call double @fib(double %subtmp5)
589 %addtmp = fadd double %calltmp, %calltmp6
592 ifcont: ; preds = %else, %then
593 %iftmp = phi double [
1.000000e+00, %then ], [ %addtmp, %else ]
599 <p>Here there is only one variable (x, the input argument) but you can still
600 see the extremely simple-minded code generation strategy we are using. In the
601 entry block, an alloca is created, and the initial input value is stored into
602 it. Each reference to the variable does a reload from the stack. Also, note
603 that we didn't modify the if/then/else expression, so it still inserts a PHI
604 node. While we could make an alloca for it, it is actually easier to create a
605 PHI node for it, so we still just make the PHI.
</p>
607 <p>Here is the code after the mem2reg pass runs:
</p>
609 <div class=
"doc_code">
611 define double @fib(double %x) {
613 %cmptmp = fcmp ult double
<b>%x
</b>,
3.000000e+00
614 %booltmp = uitofp i1 %cmptmp to double
615 %ifcond = fcmp one double %booltmp,
0.000000e+00
616 br i1 %ifcond, label %then, label %else
622 %subtmp = fsub double
<b>%x
</b>,
1.000000e+00
623 %calltmp = call double @fib(double %subtmp)
624 %subtmp5 = fsub double
<b>%x
</b>,
2.000000e+00
625 %calltmp6 = call double @fib(double %subtmp5)
626 %addtmp = fadd double %calltmp, %calltmp6
629 ifcont: ; preds = %else, %then
630 %iftmp = phi double [
1.000000e+00, %then ], [ %addtmp, %else ]
636 <p>This is a trivial case for mem2reg, since there are no redefinitions of the
637 variable. The point of showing this is to calm your tension about inserting
638 such blatent inefficiencies :).
</p>
640 <p>After the rest of the optimizers run, we get:
</p>
642 <div class=
"doc_code">
644 define double @fib(double %x) {
646 %cmptmp = fcmp ult double %x,
3.000000e+00
647 %booltmp = uitofp i1 %cmptmp to double
648 %ifcond = fcmp ueq double %booltmp,
0.000000e+00
649 br i1 %ifcond, label %else, label %ifcont
652 %subtmp = fsub double %x,
1.000000e+00
653 %calltmp = call double @fib(double %subtmp)
654 %subtmp5 = fsub double %x,
2.000000e+00
655 %calltmp6 = call double @fib(double %subtmp5)
656 %addtmp = fadd double %calltmp, %calltmp6
660 ret double
1.000000e+00
665 <p>Here we see that the simplifycfg pass decided to clone the return instruction
666 into the end of the 'else' block. This allowed it to eliminate some branches
667 and the PHI node.
</p>
669 <p>Now that all symbol table references are updated to use stack variables,
670 we'll add the assignment operator.
</p>
674 <!-- *********************************************************************** -->
675 <div class=
"doc_section"><a name=
"assignment">New Assignment Operator
</a></div>
676 <!-- *********************************************************************** -->
678 <div class=
"doc_text">
680 <p>With our current framework, adding a new assignment operator is really
681 simple. We will parse it just like any other binary operator, but handle it
682 internally (instead of allowing the user to define it). The first step is to
683 set a precedence:
</p>
685 <div class=
"doc_code">
688 (* Install standard binary operators.
689 *
1 is the lowest precedence. *)
690 <b>Hashtbl.add Parser.binop_precedence '='
2;
</b>
691 Hashtbl.add Parser.binop_precedence '
<'
10;
692 Hashtbl.add Parser.binop_precedence '+'
20;
693 Hashtbl.add Parser.binop_precedence '-'
20;
698 <p>Now that the parser knows the precedence of the binary operator, it takes
699 care of all the parsing and AST generation. We just need to implement codegen
700 for the assignment operator. This looks like:
</p>
702 <div class=
"doc_code">
704 let rec codegen_expr = function
707 (* Special case '=' because we don't want to emit the LHS as an
711 | Ast.Variable name -
> name
712 | _ -
> raise (Error
"destination of '=' must be a variable")
717 <p>Unlike the rest of the binary operators, our assignment operator doesn't
718 follow the
"emit LHS, emit RHS, do computation" model. As such, it is handled
719 as a special case before the other binary operators are handled. The other
720 strange thing is that it requires the LHS to be a variable. It is invalid to
721 have
"(x+1) = expr" - only things like
"x = expr" are allowed.
725 <div class=
"doc_code">
727 (* Codegen the rhs. *)
728 let val_ = codegen_expr rhs in
730 (* Lookup the name. *)
731 let variable = try Hashtbl.find named_values name with
732 | Not_found -
> raise (Error
"unknown variable name")
734 ignore(build_store val_ variable builder);
741 <p>Once we have the variable, codegen'ing the assignment is straightforward:
742 we emit the RHS of the assignment, create a store, and return the computed
743 value. Returning a value allows for chained assignments like
"X = (Y = Z)".
</p>
745 <p>Now that we have an assignment operator, we can mutate loop variables and
746 arguments. For example, we can now run code like this:
</p>
748 <div class=
"doc_code">
750 # Function to print a double.
753 # Define ':' for sequencing: as a low-precedence operator that ignores operands
754 # and just returns the RHS.
755 def binary :
1 (x y) y;
766 <p>When run, this example prints
"123" and then
"4", showing that we did
767 actually mutate the value! Okay, we have now officially implemented our goal:
768 getting this to work requires SSA construction in the general case. However,
769 to be really useful, we want the ability to define our own local variables, lets
775 <!-- *********************************************************************** -->
776 <div class=
"doc_section"><a name=
"localvars">User-defined Local
778 <!-- *********************************************************************** -->
780 <div class=
"doc_text">
782 <p>Adding var/in is just like any other other extensions we made to
783 Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
784 The first step for adding our new 'var/in' construct is to extend the lexer.
785 As before, this is pretty trivial, the code looks like this:
</p>
787 <div class=
"doc_code">
791 <b>(* var definition *)
796 and lex_ident buffer = parser
798 |
"in" -
> [
< 'Token.In; stream
>]
799 |
"binary" -
> [
< 'Token.Binary; stream
>]
800 |
"unary" -
> [
< 'Token.Unary; stream
>]
801 <b>|
"var" -
> [
< 'Token.Var; stream
>]
</b>
806 <p>The next step is to define the AST node that we will construct. For var/in,
807 it looks like this:
</p>
809 <div class=
"doc_code">
813 (* variant for var/in. *)
814 | Var of (string * expr option) array * expr
819 <p>var/in allows a list of names to be defined all at once, and each name can
820 optionally have an initializer value. As such, we capture this information in
821 the VarNames vector. Also, var/in has a body, this body is allowed to access
822 the variables defined by the var/in.
</p>
824 <p>With this in place, we can define the parser pieces. The first thing we do
825 is add it as a primary expression:
</p>
827 <div class=
"doc_code">
835 <b>* ::= varexpr
</b> *)
836 let rec parse_primary = parser
839 * ::= 'var' identifier ('=' expression?
840 * (',' identifier ('=' expression)?)* 'in' expression *)
842 (* At least one variable name is required. *)
843 'Token.Ident id ??
"expected identifier after var";
845 var_names=parse_var_names [(id, init)];
846 (* At this point, we have to have 'in'. *)
847 'Token.In ??
"expected 'in' keyword after 'var'";
848 body=parse_expr
>] -
>
849 Ast.Var (Array.of_list (List.rev var_names), body)
</b>
853 and parse_var_init = parser
854 (* read in the optional initializer. *)
855 | [
< 'Token.Kwd '='; e=parse_expr
>] -
> Some e
856 | [
< >] -
> None
858 and parse_var_names accumulator = parser
859 | [
< 'Token.Kwd ',';
860 'Token.Ident id ??
"expected identifier list after var";
862 e=parse_var_names ((id, init) :: accumulator)
>] -
> e
863 | [
< >] -
> accumulator
867 <p>Now that we can parse and represent the code, we need to support emission of
868 LLVM IR for it. This code starts out with:
</p>
870 <div class=
"doc_code">
872 let rec codegen_expr = function
874 | Ast.Var (var_names, body)
875 let old_bindings = ref [] in
877 let the_function = block_parent (insertion_block builder) in
879 (* Register all variables and emit their initializer. *)
880 Array.iter (fun (var_name, init) -
>
884 <p>Basically it loops over all the variables, installing them one at a time.
885 For each variable we put into the symbol table, we remember the previous value
886 that we replace in OldBindings.
</p>
888 <div class=
"doc_code">
890 (* Emit the initializer before adding the variable to scope, this
891 * prevents the initializer from referencing the variable itself, and
892 * permits stuff like this:
894 * var a = a in ... # refers to outer 'a'. *)
897 | Some init -
> codegen_expr init
898 (* If not specified, use
0.0. *)
899 | None -
> const_float double_type
0.0
902 let alloca = create_entry_block_alloca the_function var_name in
903 ignore(build_store init_val alloca builder);
905 (* Remember the old variable binding so that we can restore the binding
906 * when we unrecurse. *)
910 let old_value = Hashtbl.find named_values var_name in
911 old_bindings := (var_name, old_value) :: !old_bindings;
912 with Not_found
> ()
915 (* Remember this binding. *)
916 Hashtbl.add named_values var_name alloca;
921 <p>There are more comments here than code. The basic idea is that we emit the
922 initializer, create the alloca, then update the symbol table to point to it.
923 Once all the variables are installed in the symbol table, we evaluate the body
924 of the var/in expression:
</p>
926 <div class=
"doc_code">
928 (* Codegen the body, now that all vars are in scope. *)
929 let body_val = codegen_expr body in
933 <p>Finally, before returning, we restore the previous variable bindings:
</p>
935 <div class=
"doc_code">
937 (* Pop all our variables from scope. *)
938 List.iter (fun (var_name, old_value) -
>
939 Hashtbl.add named_values var_name old_value
942 (* Return the body computation. *)
947 <p>The end result of all of this is that we get properly scoped variable
948 definitions, and we even (trivially) allow mutation of them :).
</p>
950 <p>With this, we completed what we set out to do. Our nice iterative fib
951 example from the intro compiles and runs just fine. The mem2reg pass optimizes
952 all of our stack variables into SSA registers, inserting PHI nodes where needed,
953 and our front-end remains simple: no
"iterated dominance frontier" computation
954 anywhere in sight.
</p>
958 <!-- *********************************************************************** -->
959 <div class=
"doc_section"><a name=
"code">Full Code Listing
</a></div>
960 <!-- *********************************************************************** -->
962 <div class=
"doc_text">
965 Here is the complete code listing for our running example, enhanced with mutable
966 variables and var/in support. To build this example, use:
969 <div class=
"doc_code">
978 <p>Here is the code:
</p>
982 <dd class=
"doc_code">
984 <{lexer,parser}.ml
>: use_camlp4, pp(camlp4of)
985 <*.{byte,native}
>: g++, use_llvm, use_llvm_analysis
986 <*.{byte,native}
>: use_llvm_executionengine, use_llvm_target
987 <*.{byte,native}
>: use_llvm_scalar_opts, use_bindings
991 <dt>myocamlbuild.ml:
</dt>
992 <dd class=
"doc_code">
994 open Ocamlbuild_plugin;;
996 ocaml_lib ~extern:true
"llvm";;
997 ocaml_lib ~extern:true
"llvm_analysis";;
998 ocaml_lib ~extern:true
"llvm_executionengine";;
999 ocaml_lib ~extern:true
"llvm_target";;
1000 ocaml_lib ~extern:true
"llvm_scalar_opts";;
1002 flag [
"link";
"ocaml";
"g++"] (S[A
"-cc"; A
"g++"; A
"-cclib"; A
"-rdynamic"]);;
1003 dep [
"link";
"ocaml";
"use_bindings"] [
"bindings.o"];;
1008 <dd class=
"doc_code">
1010 (*===----------------------------------------------------------------------===
1012 *===----------------------------------------------------------------------===*)
1014 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
1015 * these others for known things. *)
1021 | Ident of string | Number of float
1033 (* var definition *)
1039 <dd class=
"doc_code">
1041 (*===----------------------------------------------------------------------===
1043 *===----------------------------------------------------------------------===*)
1045 let rec lex = parser
1046 (* Skip any whitespace. *)
1047 | [
< ' (' ' | '\n' | '\r' | '\t'); stream
>] -
> lex stream
1049 (* identifier: [a-zA-Z][a-zA-Z0-
9] *)
1050 | [
< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream
>] -
>
1051 let buffer = Buffer.create
1 in
1052 Buffer.add_char buffer c;
1053 lex_ident buffer stream
1055 (* number: [
0-
9.]+ *)
1056 | [
< ' ('
0' .. '
9' as c); stream
>] -
>
1057 let buffer = Buffer.create
1 in
1058 Buffer.add_char buffer c;
1059 lex_number buffer stream
1061 (* Comment until end of line. *)
1062 | [
< ' ('#'); stream
>] -
>
1065 (* Otherwise, just return the character as its ascii value. *)
1066 | [
< 'c; stream
>] -
>
1067 [
< 'Token.Kwd c; lex stream
>]
1069 (* end of stream. *)
1070 | [
< >] -
> [
< >]
1072 and lex_number buffer = parser
1073 | [
< ' ('
0' .. '
9' | '.' as c); stream
>] -
>
1074 Buffer.add_char buffer c;
1075 lex_number buffer stream
1076 | [
< stream=lex
>] -
>
1077 [
< 'Token.Number (float_of_string (Buffer.contents buffer)); stream
>]
1079 and lex_ident buffer = parser
1080 | [
< ' ('A' .. 'Z' | 'a' .. 'z' | '
0' .. '
9' as c); stream
>] -
>
1081 Buffer.add_char buffer c;
1082 lex_ident buffer stream
1083 | [
< stream=lex
>] -
>
1084 match Buffer.contents buffer with
1085 |
"def" -
> [
< 'Token.Def; stream
>]
1086 |
"extern" -
> [
< 'Token.Extern; stream
>]
1087 |
"if" -
> [
< 'Token.If; stream
>]
1088 |
"then" -
> [
< 'Token.Then; stream
>]
1089 |
"else" -
> [
< 'Token.Else; stream
>]
1090 |
"for" -
> [
< 'Token.For; stream
>]
1091 |
"in" -
> [
< 'Token.In; stream
>]
1092 |
"binary" -
> [
< 'Token.Binary; stream
>]
1093 |
"unary" -
> [
< 'Token.Unary; stream
>]
1094 |
"var" -
> [
< 'Token.Var; stream
>]
1095 | id -
> [
< 'Token.Ident id; stream
>]
1097 and lex_comment = parser
1098 | [
< ' ('\n'); stream=lex
>] -
> stream
1099 | [
< 'c; e=lex_comment
>] -
> e
1100 | [
< >] -
> [
< >]
1105 <dd class=
"doc_code">
1107 (*===----------------------------------------------------------------------===
1108 * Abstract Syntax Tree (aka Parse Tree)
1109 *===----------------------------------------------------------------------===*)
1111 (* expr - Base type for all expression nodes. *)
1113 (* variant for numeric literals like
"1.0". *)
1116 (* variant for referencing a variable, like
"a". *)
1117 | Variable of string
1119 (* variant for a unary operator. *)
1120 | Unary of char * expr
1122 (* variant for a binary operator. *)
1123 | Binary of char * expr * expr
1125 (* variant for function calls. *)
1126 | Call of string * expr array
1128 (* variant for if/then/else. *)
1129 | If of expr * expr * expr
1131 (* variant for for/in. *)
1132 | For of string * expr * expr * expr option * expr
1134 (* variant for var/in. *)
1135 | Var of (string * expr option) array * expr
1137 (* proto - This type represents the
"prototype" for a function, which captures
1138 * its name, and its argument names (thus implicitly the number of arguments the
1139 * function takes). *)
1141 | Prototype of string * string array
1142 | BinOpPrototype of string * string array * int
1144 (* func - This type represents a function definition itself. *)
1145 type func = Function of proto * expr
1150 <dd class=
"doc_code">
1152 (*===---------------------------------------------------------------------===
1154 *===---------------------------------------------------------------------===*)
1156 (* binop_precedence - This holds the precedence for each binary operator that is
1158 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create
10
1160 (* precedence - Get the precedence of the pending binary operator token. *)
1161 let precedence c = try Hashtbl.find binop_precedence c with Not_found -
> -
1
1170 let rec parse_primary = parser
1171 (* numberexpr ::= number *)
1172 | [
< 'Token.Number n
>] -
> Ast.Number n
1174 (* parenexpr ::= '(' expression ')' *)
1175 | [
< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ??
"expected ')'" >] -
> e
1179 * ::= identifier '(' argumentexpr ')' *)
1180 | [
< 'Token.Ident id; stream
>] -
>
1181 let rec parse_args accumulator = parser
1182 | [
< e=parse_expr; stream
>] -
>
1184 | [
< 'Token.Kwd ','; e=parse_args (e :: accumulator)
>] -
> e
1185 | [
< >] -
> e :: accumulator
1187 | [
< >] -
> accumulator
1189 let rec parse_ident id = parser
1191 | [
< 'Token.Kwd '(';
1193 'Token.Kwd ')' ??
"expected ')'">] -
>
1194 Ast.Call (id, Array.of_list (List.rev args))
1196 (* Simple variable ref. *)
1197 | [
< >] -
> Ast.Variable id
1199 parse_ident id stream
1201 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1202 | [
< 'Token.If; c=parse_expr;
1203 'Token.Then ??
"expected 'then'"; t=parse_expr;
1204 'Token.Else ??
"expected 'else'"; e=parse_expr
>] -
>
1208 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1210 'Token.Ident id ??
"expected identifier after for";
1211 'Token.Kwd '=' ??
"expected '=' after for";
1216 'Token.Kwd ',' ??
"expected ',' after for";
1221 | [
< 'Token.Kwd ','; step=parse_expr
>] -
> Some step
1222 | [
< >] -
> None
1226 | [
< 'Token.In; body=parse_expr
>] -
>
1227 Ast.For (id, start, end_, step, body)
1229 raise (Stream.Error
"expected 'in' after for")
1232 raise (Stream.Error
"expected '=' after for")
1236 * ::= 'var' identifier ('=' expression?
1237 * (',' identifier ('=' expression)?)* 'in' expression *)
1239 (* At least one variable name is required. *)
1240 'Token.Ident id ??
"expected identifier after var";
1241 init=parse_var_init;
1242 var_names=parse_var_names [(id, init)];
1243 (* At this point, we have to have 'in'. *)
1244 'Token.In ??
"expected 'in' keyword after 'var'";
1245 body=parse_expr
>] -
>
1246 Ast.Var (Array.of_list (List.rev var_names), body)
1248 | [
< >] -
> raise (Stream.Error
"unknown token when expecting an expression.")
1253 and parse_unary = parser
1254 (* If this is a unary operator, read it. *)
1255 | [
< 'Token.Kwd op when op != '('
&& op != ')'; operand=parse_expr
>] -
>
1256 Ast.Unary (op, operand)
1258 (* If the current token is not an operator, it must be a primary expr. *)
1259 | [
< stream
>] -
> parse_primary stream
1262 * ::= ('+' primary)* *)
1263 and parse_bin_rhs expr_prec lhs stream =
1264 match Stream.peek stream with
1265 (* If this is a binop, find its precedence. *)
1266 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -
>
1267 let token_prec = precedence c in
1269 (* If this is a binop that binds at least as tightly as the current binop,
1270 * consume it, otherwise we are done. *)
1271 if token_prec
< expr_prec then lhs else begin
1272 (* Eat the binop. *)
1275 (* Parse the primary expression after the binary operator. *)
1276 let rhs = parse_unary stream in
1278 (* Okay, we know this is a binop. *)
1280 match Stream.peek stream with
1281 | Some (Token.Kwd c2) -
>
1282 (* If BinOp binds less tightly with rhs than the operator after
1283 * rhs, let the pending operator take rhs as its lhs. *)
1284 let next_prec = precedence c2 in
1285 if token_prec
< next_prec
1286 then parse_bin_rhs (token_prec +
1) rhs stream
1291 (* Merge lhs/rhs. *)
1292 let lhs = Ast.Binary (c, lhs, rhs) in
1293 parse_bin_rhs expr_prec lhs stream
1297 and parse_var_init = parser
1298 (* read in the optional initializer. *)
1299 | [
< 'Token.Kwd '='; e=parse_expr
>] -
> Some e
1300 | [
< >] -
> None
1302 and parse_var_names accumulator = parser
1303 | [
< 'Token.Kwd ',';
1304 'Token.Ident id ??
"expected identifier list after var";
1305 init=parse_var_init;
1306 e=parse_var_names ((id, init) :: accumulator)
>] -
> e
1307 | [
< >] -
> accumulator
1310 * ::= primary binoprhs *)
1311 and parse_expr = parser
1312 | [
< lhs=parse_unary; stream
>] -
> parse_bin_rhs
0 lhs stream
1315 * ::= id '(' id* ')'
1316 * ::= binary LETTER number? (id, id)
1317 * ::= unary LETTER number? (id) *)
1318 let parse_prototype =
1319 let rec parse_args accumulator = parser
1320 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
1321 | [
< >] -
> accumulator
1323 let parse_operator = parser
1324 | [
< 'Token.Unary
>] -
> "unary",
1
1325 | [
< 'Token.Binary
>] -
> "binary",
2
1327 let parse_binary_precedence = parser
1328 | [
< 'Token.Number n
>] -
> int_of_float n
1329 | [
< >] -
> 30
1332 | [
< 'Token.Ident id;
1333 'Token.Kwd '(' ??
"expected '(' in prototype";
1335 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
1337 Ast.Prototype (id, Array.of_list (List.rev args))
1338 | [
< (prefix, kind)=parse_operator;
1339 'Token.Kwd op ??
"expected an operator";
1340 (* Read the precedence if present. *)
1341 binary_precedence=parse_binary_precedence;
1342 'Token.Kwd '(' ??
"expected '(' in prototype";
1344 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
1345 let name = prefix ^ (String.make
1 op) in
1346 let args = Array.of_list (List.rev args) in
1348 (* Verify right number of arguments for operator. *)
1349 if Array.length args != kind
1350 then raise (Stream.Error
"invalid number of operands for operator")
1353 Ast.Prototype (name, args)
1355 Ast.BinOpPrototype (name, args, binary_precedence)
1357 raise (Stream.Error
"expected function name in prototype")
1359 (* definition ::= 'def' prototype expression *)
1360 let parse_definition = parser
1361 | [
< 'Token.Def; p=parse_prototype; e=parse_expr
>] -
>
1364 (* toplevelexpr ::= expression *)
1365 let parse_toplevel = parser
1366 | [
< e=parse_expr
>] -
>
1367 (* Make an anonymous proto. *)
1368 Ast.Function (Ast.Prototype (
"", [||]), e)
1370 (* external ::= 'extern' prototype *)
1371 let parse_extern = parser
1372 | [
< 'Token.Extern; e=parse_prototype
>] -
> e
1376 <dt>codegen.ml:
</dt>
1377 <dd class=
"doc_code">
1379 (*===----------------------------------------------------------------------===
1381 *===----------------------------------------------------------------------===*)
1385 exception Error of string
1387 let context = global_context ()
1388 let the_module = create_module context
"my cool jit"
1389 let builder = builder context
1390 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create
10
1391 let double_type = double_type context
1393 (* Create an alloca instruction in the entry block of the function. This
1394 * is used for mutable variables etc. *)
1395 let create_entry_block_alloca the_function var_name =
1396 let builder = builder_at context (instr_begin (entry_block the_function)) in
1397 build_alloca double_type var_name builder
1399 let rec codegen_expr = function
1400 | Ast.Number n -
> const_float double_type n
1401 | Ast.Variable name -
>
1402 let v = try Hashtbl.find named_values name with
1403 | Not_found -
> raise (Error
"unknown variable name")
1405 (* Load the value. *)
1406 build_load v name builder
1407 | Ast.Unary (op, operand) -
>
1408 let operand = codegen_expr operand in
1409 let callee =
"unary" ^ (String.make
1 op) in
1411 match lookup_function callee the_module with
1412 | Some callee -
> callee
1413 | None -
> raise (Error
"unknown unary operator")
1415 build_call callee [|operand|]
"unop" builder
1416 | Ast.Binary (op, lhs, rhs) -
>
1419 (* Special case '=' because we don't want to emit the LHS as an
1423 | Ast.Variable name -
> name
1424 | _ -
> raise (Error
"destination of '=' must be a variable")
1427 (* Codegen the rhs. *)
1428 let val_ = codegen_expr rhs in
1430 (* Lookup the name. *)
1431 let variable = try Hashtbl.find named_values name with
1432 | Not_found -
> raise (Error
"unknown variable name")
1434 ignore(build_store val_ variable builder);
1437 let lhs_val = codegen_expr lhs in
1438 let rhs_val = codegen_expr rhs in
1441 | '+' -
> build_add lhs_val rhs_val
"addtmp" builder
1442 | '-' -
> build_sub lhs_val rhs_val
"subtmp" builder
1443 | '*' -
> build_mul lhs_val rhs_val
"multmp" builder
1445 (* Convert bool
0/
1 to double
0.0 or
1.0 *)
1446 let i = build_fcmp Fcmp.Ult lhs_val rhs_val
"cmptmp" builder in
1447 build_uitofp i double_type
"booltmp" builder
1449 (* If it wasn't a builtin binary operator, it must be a user defined
1450 * one. Emit a call to it. *)
1451 let callee =
"binary" ^ (String.make
1 op) in
1453 match lookup_function callee the_module with
1454 | Some callee -
> callee
1455 | None -
> raise (Error
"binary operator not found!")
1457 build_call callee [|lhs_val; rhs_val|]
"binop" builder
1460 | Ast.Call (callee, args) -
>
1461 (* Look up the name in the module table. *)
1463 match lookup_function callee the_module with
1464 | Some callee -
> callee
1465 | None -
> raise (Error
"unknown function referenced")
1467 let params = params callee in
1469 (* If argument mismatch error. *)
1470 if Array.length params == Array.length args then () else
1471 raise (Error
"incorrect # arguments passed");
1472 let args = Array.map codegen_expr args in
1473 build_call callee args
"calltmp" builder
1474 | Ast.If (cond, then_, else_) -
>
1475 let cond = codegen_expr cond in
1477 (* Convert condition to a bool by comparing equal to
0.0 *)
1478 let zero = const_float double_type
0.0 in
1479 let cond_val = build_fcmp Fcmp.One cond zero
"ifcond" builder in
1481 (* Grab the first block so that we might later add the conditional branch
1482 * to it at the end of the function. *)
1483 let start_bb = insertion_block builder in
1484 let the_function = block_parent start_bb in
1486 let then_bb = append_block context
"then" the_function in
1488 (* Emit 'then' value. *)
1489 position_at_end then_bb builder;
1490 let then_val = codegen_expr then_ in
1492 (* Codegen of 'then' can change the current block, update then_bb for the
1493 * phi. We create a new name because one is used for the phi node, and the
1494 * other is used for the conditional branch. *)
1495 let new_then_bb = insertion_block builder in
1497 (* Emit 'else' value. *)
1498 let else_bb = append_block context
"else" the_function in
1499 position_at_end else_bb builder;
1500 let else_val = codegen_expr else_ in
1502 (* Codegen of 'else' can change the current block, update else_bb for the
1504 let new_else_bb = insertion_block builder in
1506 (* Emit merge block. *)
1507 let merge_bb = append_block context
"ifcont" the_function in
1508 position_at_end merge_bb builder;
1509 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1510 let phi = build_phi incoming
"iftmp" builder in
1512 (* Return to the start block to add the conditional branch. *)
1513 position_at_end start_bb builder;
1514 ignore (build_cond_br cond_val then_bb else_bb builder);
1516 (* Set a unconditional branch at the end of the 'then' block and the
1517 * 'else' block to the 'merge' block. *)
1518 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1519 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1521 (* Finally, set the builder to the end of the merge block. *)
1522 position_at_end merge_bb builder;
1525 | Ast.For (var_name, start, end_, step, body) -
>
1527 * var = alloca double
1530 * store start -
> var
1541 * nextvar = curvar + step
1542 * store nextvar -
> var
1543 * br endcond, loop, endloop
1546 let the_function = block_parent (insertion_block builder) in
1548 (* Create an alloca for the variable in the entry block. *)
1549 let alloca = create_entry_block_alloca the_function var_name in
1551 (* Emit the start code first, without 'variable' in scope. *)
1552 let start_val = codegen_expr start in
1554 (* Store the value into the alloca. *)
1555 ignore(build_store start_val alloca builder);
1557 (* Make the new basic block for the loop header, inserting after current
1559 let loop_bb = append_block context
"loop" the_function in
1561 (* Insert an explicit fall through from the current block to the
1563 ignore (build_br loop_bb builder);
1565 (* Start insertion in loop_bb. *)
1566 position_at_end loop_bb builder;
1568 (* Within the loop, the variable is defined equal to the PHI node. If it
1569 * shadows an existing variable, we have to restore it, so save it
1572 try Some (Hashtbl.find named_values var_name) with Not_found -
> None
1574 Hashtbl.add named_values var_name alloca;
1576 (* Emit the body of the loop. This, like any other expr, can change the
1577 * current BB. Note that we ignore the value computed by the body, but
1578 * don't allow an error *)
1579 ignore (codegen_expr body);
1581 (* Emit the step value. *)
1584 | Some step -
> codegen_expr step
1585 (* If not specified, use
1.0. *)
1586 | None -
> const_float double_type
1.0
1589 (* Compute the end condition. *)
1590 let end_cond = codegen_expr end_ in
1592 (* Reload, increment, and restore the alloca. This handles the case where
1593 * the body of the loop mutates the variable. *)
1594 let cur_var = build_load alloca var_name builder in
1595 let next_var = build_add cur_var step_val
"nextvar" builder in
1596 ignore(build_store next_var alloca builder);
1598 (* Convert condition to a bool by comparing equal to
0.0. *)
1599 let zero = const_float double_type
0.0 in
1600 let end_cond = build_fcmp Fcmp.One end_cond zero
"loopcond" builder in
1602 (* Create the
"after loop" block and insert it. *)
1603 let after_bb = append_block context
"afterloop" the_function in
1605 (* Insert the conditional branch into the end of loop_end_bb. *)
1606 ignore (build_cond_br end_cond loop_bb after_bb builder);
1608 (* Any new code will be inserted in after_bb. *)
1609 position_at_end after_bb builder;
1611 (* Restore the unshadowed variable. *)
1612 begin match old_val with
1613 | Some old_val -
> Hashtbl.add named_values var_name old_val
1617 (* for expr always returns
0.0. *)
1618 const_null double_type
1619 | Ast.Var (var_names, body) -
>
1620 let old_bindings = ref [] in
1622 let the_function = block_parent (insertion_block builder) in
1624 (* Register all variables and emit their initializer. *)
1625 Array.iter (fun (var_name, init) -
>
1626 (* Emit the initializer before adding the variable to scope, this
1627 * prevents the initializer from referencing the variable itself, and
1628 * permits stuff like this:
1630 * var a = a in ... # refers to outer 'a'. *)
1633 | Some init -
> codegen_expr init
1634 (* If not specified, use
0.0. *)
1635 | None -
> const_float double_type
0.0
1638 let alloca = create_entry_block_alloca the_function var_name in
1639 ignore(build_store init_val alloca builder);
1641 (* Remember the old variable binding so that we can restore the binding
1642 * when we unrecurse. *)
1645 let old_value = Hashtbl.find named_values var_name in
1646 old_bindings := (var_name, old_value) :: !old_bindings;
1647 with Not_found -
> ()
1650 (* Remember this binding. *)
1651 Hashtbl.add named_values var_name alloca;
1654 (* Codegen the body, now that all vars are in scope. *)
1655 let body_val = codegen_expr body in
1657 (* Pop all our variables from scope. *)
1658 List.iter (fun (var_name, old_value) -
>
1659 Hashtbl.add named_values var_name old_value
1662 (* Return the body computation. *)
1665 let codegen_proto = function
1666 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -
>
1667 (* Make the function type: double(double,double) etc. *)
1668 let doubles = Array.make (Array.length args) double_type in
1669 let ft = function_type double_type doubles in
1671 match lookup_function name the_module with
1672 | None -
> declare_function name ft the_module
1674 (* If 'f' conflicted, there was already something named 'name'. If it
1675 * has a body, don't allow redefinition or reextern. *)
1677 (* If 'f' already has a body, reject this. *)
1678 if block_begin f
<> At_end f then
1679 raise (Error
"redefinition of function");
1681 (* If 'f' took a different number of arguments, reject. *)
1682 if element_type (type_of f)
<> ft then
1683 raise (Error
"redefinition of function with different # args");
1687 (* Set names for all arguments. *)
1688 Array.iteri (fun i a -
>
1691 Hashtbl.add named_values n a;
1695 (* Create an alloca for each argument and register the argument in the symbol
1696 * table so that references to it will succeed. *)
1697 let create_argument_allocas the_function proto =
1698 let args = match proto with
1699 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -
> args
1701 Array.iteri (fun i ai -
>
1702 let var_name = args.(i) in
1703 (* Create an alloca for this variable. *)
1704 let alloca = create_entry_block_alloca the_function var_name in
1706 (* Store the initial value into the alloca. *)
1707 ignore(build_store ai alloca builder);
1709 (* Add arguments to variable symbol table. *)
1710 Hashtbl.add named_values var_name alloca;
1711 ) (params the_function)
1713 let codegen_func the_fpm = function
1714 | Ast.Function (proto, body) -
>
1715 Hashtbl.clear named_values;
1716 let the_function = codegen_proto proto in
1718 (* If this is an operator, install it. *)
1719 begin match proto with
1720 | Ast.BinOpPrototype (name, args, prec) -
>
1721 let op = name.[String.length name -
1] in
1722 Hashtbl.add Parser.binop_precedence op prec;
1726 (* Create a new basic block to start insertion into. *)
1727 let bb = append_block context
"entry" the_function in
1728 position_at_end bb builder;
1731 (* Add all arguments to the symbol table and create their allocas. *)
1732 create_argument_allocas the_function proto;
1734 let ret_val = codegen_expr body in
1736 (* Finish off the function. *)
1737 let _ = build_ret ret_val builder in
1739 (* Validate the generated code, checking for consistency. *)
1740 Llvm_analysis.assert_valid_function the_function;
1742 (* Optimize the function. *)
1743 let _ = PassManager.run_function the_function the_fpm in
1747 delete_function the_function;
1752 <dt>toplevel.ml:
</dt>
1753 <dd class=
"doc_code">
1755 (*===----------------------------------------------------------------------===
1756 * Top-Level parsing and JIT Driver
1757 *===----------------------------------------------------------------------===*)
1760 open Llvm_executionengine
1762 (* top ::= definition | external | expression | ';' *)
1763 let rec main_loop the_fpm the_execution_engine stream =
1764 match Stream.peek stream with
1767 (* ignore top-level semicolons. *)
1768 | Some (Token.Kwd ';') -
>
1770 main_loop the_fpm the_execution_engine stream
1774 try match token with
1776 let e = Parser.parse_definition stream in
1777 print_endline
"parsed a function definition.";
1778 dump_value (Codegen.codegen_func the_fpm e);
1779 | Token.Extern -
>
1780 let e = Parser.parse_extern stream in
1781 print_endline
"parsed an extern.";
1782 dump_value (Codegen.codegen_proto e);
1784 (* Evaluate a top-level expression into an anonymous function. *)
1785 let e = Parser.parse_toplevel stream in
1786 print_endline
"parsed a top-level expr";
1787 let the_function = Codegen.codegen_func the_fpm e in
1788 dump_value the_function;
1790 (* JIT the function, returning a function pointer. *)
1791 let result = ExecutionEngine.run_function the_function [||]
1792 the_execution_engine in
1794 print_string
"Evaluated to ";
1795 print_float (GenericValue.as_float Codegen.double_type result);
1797 with Stream.Error s | Codegen.Error s -
>
1798 (* Skip token for error recovery. *)
1802 print_string
"ready> "; flush stdout;
1803 main_loop the_fpm the_execution_engine stream
1808 <dd class=
"doc_code">
1810 (*===----------------------------------------------------------------------===
1812 *===----------------------------------------------------------------------===*)
1815 open Llvm_executionengine
1817 open Llvm_scalar_opts
1820 ignore (initialize_native_target ());
1822 (* Install standard binary operators.
1823 *
1 is the lowest precedence. *)
1824 Hashtbl.add Parser.binop_precedence '='
2;
1825 Hashtbl.add Parser.binop_precedence '
<'
10;
1826 Hashtbl.add Parser.binop_precedence '+'
20;
1827 Hashtbl.add Parser.binop_precedence '-'
20;
1828 Hashtbl.add Parser.binop_precedence '*'
40; (* highest. *)
1830 (* Prime the first token. *)
1831 print_string
"ready> "; flush stdout;
1832 let stream = Lexer.lex (Stream.of_channel stdin) in
1834 (* Create the JIT. *)
1835 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
1836 let the_fpm = PassManager.create_function Codegen.the_module in
1838 (* Set up the optimizer pipeline. Start with registering info about how the
1839 * target lays out data structures. *)
1840 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1842 (* Promote allocas to registers. *)
1843 add_memory_to_register_promotion the_fpm;
1845 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
1846 add_instruction_combination the_fpm;
1848 (* reassociate expressions. *)
1849 add_reassociation the_fpm;
1851 (* Eliminate Common SubExpressions. *)
1854 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1855 add_cfg_simplification the_fpm;
1857 ignore (PassManager.initialize the_fpm);
1859 (* Run the main
"interpreter loop" now. *)
1860 Toplevel.main_loop the_fpm the_execution_engine stream;
1862 (* Print out all the generated code. *)
1863 dump_module Codegen.the_module
1871 <dd class=
"doc_code">
1873 #include
<stdio.h
>
1875 /* putchard - putchar that takes a double and returns
0. */
1876 extern double putchard(double X) {
1881 /* printd - printf that takes a double prints it as
"%f\n", returning
0. */
1882 extern double printd(double X) {
1890 <a href=
"LangImpl8.html">Next: Conclusion and other useful LLVM tidbits
</a>
1893 <!-- *********************************************************************** -->
1896 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1897 src=
"http://jigsaw.w3.org/css-validator/images/vcss" alt=
"Valid CSS!"></a>
1898 <a href=
"http://validator.w3.org/check/referer"><img
1899 src=
"http://www.w3.org/Icons/valid-html401" alt=
"Valid HTML 4.01!"></a>
1901 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1902 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a><br>
1903 <a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a><br>
1904 Last modified: $Date$