a missed __builtin_object_size case.
[llvm.git] / lib / Target / README.txt
blob4e374e59d6dbf1c5f5d68042a06c8f2aad88cc10
1 Target Independent Opportunities:
3 //===---------------------------------------------------------------------===//
5 We should recognize idioms for add-with-carry and turn it into the appropriate
6 intrinsics.  This example:
8 unsigned add32carry(unsigned sum, unsigned x) {
9  unsigned z = sum + x;
10  if (sum + x < x)
11      z++;
12  return z;
15 Compiles to: clang t.c -S -o - -O3 -fomit-frame-pointer -m64 -mkernel
17 _add32carry:                            ## @add32carry
18         addl    %esi, %edi
19         cmpl    %esi, %edi
20         sbbl    %eax, %eax
21         andl    $1, %eax
22         addl    %edi, %eax
23         ret
25 with clang, but to:
27 _add32carry:
28         leal    (%rsi,%rdi), %eax
29         cmpl    %esi, %eax
30         adcl    $0, %eax
31         ret
33 with gcc.
35 //===---------------------------------------------------------------------===//
37 Dead argument elimination should be enhanced to handle cases when an argument is
38 dead to an externally visible function.  Though the argument can't be removed
39 from the externally visible function, the caller doesn't need to pass it in.
40 For example in this testcase:
42   void foo(int X) __attribute__((noinline));
43   void foo(int X) { sideeffect(); }
44   void bar(int A) { foo(A+1); }
46 We compile bar to:
48 define void @bar(i32 %A) nounwind ssp {
49   %0 = add nsw i32 %A, 1                          ; <i32> [#uses=1]
50   tail call void @foo(i32 %0) nounwind noinline ssp
51   ret void
54 The add is dead, we could pass in 'i32 undef' instead.  This occurs for C++
55 templates etc, which usually have linkonce_odr/weak_odr linkage, not internal
56 linkage.
58 //===---------------------------------------------------------------------===//
60 With the recent changes to make the implicit def/use set explicit in
61 machineinstrs, we should change the target descriptions for 'call' instructions
62 so that the .td files don't list all the call-clobbered registers as implicit
63 defs.  Instead, these should be added by the code generator (e.g. on the dag).
65 This has a number of uses:
67 1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
68    for their different impdef sets.
69 2. Targets with multiple calling convs (e.g. x86) which have different clobber
70    sets don't need copies of call instructions.
71 3. 'Interprocedural register allocation' can be done to reduce the clobber sets
72    of calls.
74 //===---------------------------------------------------------------------===//
76 We should recognized various "overflow detection" idioms and translate them into
77 llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
79 unsigned int mul(unsigned int a,unsigned int b) {
80  if ((unsigned long long)a*b>0xffffffff)
81    exit(0);
82   return a*b;
85 //===---------------------------------------------------------------------===//
87 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
88 precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
89 safe in general, even on darwin.  See the libm implementation of hypot for
90 examples (which special case when x/y are exactly zero to get signed zeros etc
91 right).
93 //===---------------------------------------------------------------------===//
95 Solve this DAG isel folding deficiency:
97 int X, Y;
99 void fn1(void)
101   X = X | (Y << 3);
104 compiles to
106 fn1:
107         movl Y, %eax
108         shll $3, %eax
109         orl X, %eax
110         movl %eax, X
111         ret
113 The problem is the store's chain operand is not the load X but rather
114 a TokenFactor of the load X and load Y, which prevents the folding.
116 There are two ways to fix this:
118 1. The dag combiner can start using alias analysis to realize that y/x
119    don't alias, making the store to X not dependent on the load from Y.
120 2. The generated isel could be made smarter in the case it can't
121    disambiguate the pointers.
123 Number 1 is the preferred solution.
125 This has been "fixed" by a TableGen hack. But that is a short term workaround
126 which will be removed once the proper fix is made.
128 //===---------------------------------------------------------------------===//
130 On targets with expensive 64-bit multiply, we could LSR this:
132 for (i = ...; ++i) {
133    x = 1ULL << i;
135 into:
136  long long tmp = 1;
137  for (i = ...; ++i, tmp+=tmp)
138    x = tmp;
140 This would be a win on ppc32, but not x86 or ppc64.
142 //===---------------------------------------------------------------------===//
144 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
146 //===---------------------------------------------------------------------===//
148 Reassociate should turn things like:
150 int factorial(int X) {
151  return X*X*X*X*X*X*X*X;
154 into llvm.powi calls, allowing the code generator to produce balanced
155 multiplication trees.
157 First, the intrinsic needs to be extended to support integers, and second the
158 code generator needs to be enhanced to lower these to multiplication trees.
160 //===---------------------------------------------------------------------===//
162 Interesting? testcase for add/shift/mul reassoc:
164 int bar(int x, int y) {
165   return x*x*x+y+x*x*x*x*x*y*y*y*y;
167 int foo(int z, int n) {
168   return bar(z, n) + bar(2*z, 2*n);
171 This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
172 is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
173 which is the same number of multiplies and is canonical, because the 2*X has
174 multiple uses.  Here's a simple example:
176 define i32 @test15(i32 %X1) {
177   %B = mul i32 %X1, 47   ; X1*47
178   %C = mul i32 %B, %B
179   ret i32 %C
183 //===---------------------------------------------------------------------===//
185 Reassociate should handle the example in GCC PR16157:
187 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 
188 void f () {  /* this can be optimized to four additions... */ 
189         b4 = a4 + a3 + a2 + a1 + a0; 
190         b3 = a3 + a2 + a1 + a0; 
191         b2 = a2 + a1 + a0; 
192         b1 = a1 + a0; 
195 This requires reassociating to forms of expressions that are already available,
196 something that reassoc doesn't think about yet.
199 //===---------------------------------------------------------------------===//
201 This function: (derived from GCC PR19988)
202 double foo(double x, double y) {
203   return ((x + 0.1234 * y) * (x + -0.1234 * y));
206 compiles to:
207 _foo:
208         movapd  %xmm1, %xmm2
209         mulsd   LCPI1_1(%rip), %xmm1
210         mulsd   LCPI1_0(%rip), %xmm2
211         addsd   %xmm0, %xmm1
212         addsd   %xmm0, %xmm2
213         movapd  %xmm1, %xmm0
214         mulsd   %xmm2, %xmm0
215         ret
217 Reassociate should be able to turn it into:
219 double foo(double x, double y) {
220   return ((x + 0.1234 * y) * (x - 0.1234 * y));
223 Which allows the multiply by constant to be CSE'd, producing:
225 _foo:
226         mulsd   LCPI1_0(%rip), %xmm1
227         movapd  %xmm1, %xmm2
228         addsd   %xmm0, %xmm2
229         subsd   %xmm1, %xmm0
230         mulsd   %xmm2, %xmm0
231         ret
233 This doesn't need -ffast-math support at all.  This is particularly bad because
234 the llvm-gcc frontend is canonicalizing the later into the former, but clang
235 doesn't have this problem.
237 //===---------------------------------------------------------------------===//
239 These two functions should generate the same code on big-endian systems:
241 int g(int *j,int *l)  {  return memcmp(j,l,4);  }
242 int h(int *j, int *l) {  return *j - *l; }
244 this could be done in SelectionDAGISel.cpp, along with other special cases,
245 for 1,2,4,8 bytes.
247 //===---------------------------------------------------------------------===//
249 It would be nice to revert this patch:
250 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
252 And teach the dag combiner enough to simplify the code expanded before 
253 legalize.  It seems plausible that this knowledge would let it simplify other
254 stuff too.
256 //===---------------------------------------------------------------------===//
258 For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
259 to the type size. It works but can be overly conservative as the alignment of
260 specific vector types are target dependent.
262 //===---------------------------------------------------------------------===//
264 We should produce an unaligned load from code like this:
266 v4sf example(float *P) {
267   return (v4sf){P[0], P[1], P[2], P[3] };
270 //===---------------------------------------------------------------------===//
272 Add support for conditional increments, and other related patterns.  Instead
275         movl 136(%esp), %eax
276         cmpl $0, %eax
277         je LBB16_2      #cond_next
278 LBB16_1:        #cond_true
279         incl _foo
280 LBB16_2:        #cond_next
282 emit:
283         movl    _foo, %eax
284         cmpl    $1, %edi
285         sbbl    $-1, %eax
286         movl    %eax, _foo
288 //===---------------------------------------------------------------------===//
290 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
292 Expand these to calls of sin/cos and stores:
293       double sincos(double x, double *sin, double *cos);
294       float sincosf(float x, float *sin, float *cos);
295       long double sincosl(long double x, long double *sin, long double *cos);
297 Doing so could allow SROA of the destination pointers.  See also:
298 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
300 This is now easily doable with MRVs.  We could even make an intrinsic for this
301 if anyone cared enough about sincos.
303 //===---------------------------------------------------------------------===//
305 quantum_sigma_x in 462.libquantum contains the following loop:
307       for(i=0; i<reg->size; i++)
308         {
309           /* Flip the target bit of each basis state */
310           reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
311         } 
313 Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
314 so cool to turn it into something like:
316    long long Res = ((MAX_UNSIGNED) 1 << target);
317    if (target < 32) {
318      for(i=0; i<reg->size; i++)
319        reg->node[i].state ^= Res & 0xFFFFFFFFULL;
320    } else {
321      for(i=0; i<reg->size; i++)
322        reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
323    }
324    
325 ... which would only do one 32-bit XOR per loop iteration instead of two.
327 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
328 this requires TBAA.
330 //===---------------------------------------------------------------------===//
332 This isn't recognized as bswap by instcombine (yes, it really is bswap):
334 unsigned long reverse(unsigned v) {
335     unsigned t;
336     t = v ^ ((v << 16) | (v >> 16));
337     t &= ~0xff0000;
338     v = (v << 24) | (v >> 8);
339     return v ^ (t >> 8);
342 Neither is this (very standard idiom):
344 int f(int n)
346   return (((n) << 24) | (((n) & 0xff00) << 8) 
347        | (((n) >> 8) & 0xff00) | ((n) >> 24));
350 //===---------------------------------------------------------------------===//
352 [LOOP RECOGNITION]
354 These idioms should be recognized as popcount (see PR1488):
356 unsigned countbits_slow(unsigned v) {
357   unsigned c;
358   for (c = 0; v; v >>= 1)
359     c += v & 1;
360   return c;
362 unsigned countbits_fast(unsigned v){
363   unsigned c;
364   for (c = 0; v; c++)
365     v &= v - 1; // clear the least significant bit set
366   return c;
369 BITBOARD = unsigned long long
370 int PopCnt(register BITBOARD a) {
371   register int c=0;
372   while(a) {
373     c++;
374     a &= a - 1;
375   }
376   return c;
378 unsigned int popcount(unsigned int input) {
379   unsigned int count = 0;
380   for (unsigned int i =  0; i < 4 * 8; i++)
381     count += (input >> i) & i;
382   return count;
385 This is a form of idiom recognition for loops, the same thing that could be
386 useful for recognizing memset/memcpy.  This sort of thing should be added to the
387 loop idiom pass.
389 //===---------------------------------------------------------------------===//
391 These should turn into single 16-bit (unaligned?) loads on little/big endian
392 processors.
394 unsigned short read_16_le(const unsigned char *adr) {
395   return adr[0] | (adr[1] << 8);
397 unsigned short read_16_be(const unsigned char *adr) {
398   return (adr[0] << 8) | adr[1];
401 //===---------------------------------------------------------------------===//
403 -instcombine should handle this transform:
404    icmp pred (sdiv X / C1 ), C2
405 when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands. 
407 Currently InstCombine avoids this transform but will do it when the signs of
408 the operands and the sign of the divide match. See the FIXME in 
409 InstructionCombining.cpp in the visitSetCondInst method after the switch case 
410 for Instruction::UDiv (around line 4447) for more details.
412 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
413 this construct. 
415 //===---------------------------------------------------------------------===//
417 [LOOP RECOGNITION]
419 viterbi speeds up *significantly* if the various "history" related copy loops
420 are turned into memcpy calls at the source level.  We need a "loops to memcpy"
421 pass.
423 //===---------------------------------------------------------------------===//
425 [LOOP OPTIMIZATION]
427 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
428 opportunities in its double_array_divs_variable function: it needs loop
429 interchange, memory promotion (which LICM already does), vectorization and
430 variable trip count loop unrolling (since it has a constant trip count). ICC
431 apparently produces this very nice code with -ffast-math:
433 ..B1.70:                        # Preds ..B1.70 ..B1.69
434        mulpd     %xmm0, %xmm1                                  #108.2
435        mulpd     %xmm0, %xmm1                                  #108.2
436        mulpd     %xmm0, %xmm1                                  #108.2
437        mulpd     %xmm0, %xmm1                                  #108.2
438        addl      $8, %edx                                      #
439        cmpl      $131072, %edx                                 #108.2
440        jb        ..B1.70       # Prob 99%                      #108.2
442 It would be better to count down to zero, but this is a lot better than what we
445 //===---------------------------------------------------------------------===//
447 Consider:
449 typedef unsigned U32;
450 typedef unsigned long long U64;
451 int test (U32 *inst, U64 *regs) {
452     U64 effective_addr2;
453     U32 temp = *inst;
454     int r1 = (temp >> 20) & 0xf;
455     int b2 = (temp >> 16) & 0xf;
456     effective_addr2 = temp & 0xfff;
457     if (b2) effective_addr2 += regs[b2];
458     b2 = (temp >> 12) & 0xf;
459     if (b2) effective_addr2 += regs[b2];
460     effective_addr2 &= regs[4];
461      if ((effective_addr2 & 3) == 0)
462         return 1;
463     return 0;
466 Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
467 we don't eliminate the computation of the top half of effective_addr2 because
468 we don't have whole-function selection dags.  On x86, this means we use one
469 extra register for the function when effective_addr2 is declared as U64 than
470 when it is declared U32.
472 PHI Slicing could be extended to do this.
474 //===---------------------------------------------------------------------===//
476 LSR should know what GPR types a target has from TargetData.  This code:
478 volatile short X, Y; // globals
480 void foo(int N) {
481   int i;
482   for (i = 0; i < N; i++) { X = i; Y = i*4; }
485 produces two near identical IV's (after promotion) on PPC/ARM:
487 LBB1_2:
488         ldr r3, LCPI1_0
489         ldr r3, [r3]
490         strh r2, [r3]
491         ldr r3, LCPI1_1
492         ldr r3, [r3]
493         strh r1, [r3]
494         add r1, r1, #4
495         add r2, r2, #1   <- [0,+,1]
496         sub r0, r0, #1   <- [0,-,1]
497         cmp r0, #0
498         bne LBB1_2
500 LSR should reuse the "+" IV for the exit test.
502 //===---------------------------------------------------------------------===//
504 Tail call elim should be more aggressive, checking to see if the call is
505 followed by an uncond branch to an exit block.
507 ; This testcase is due to tail-duplication not wanting to copy the return
508 ; instruction into the terminating blocks because there was other code
509 ; optimized out of the function after the taildup happened.
510 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
512 define i32 @t4(i32 %a) {
513 entry:
514         %tmp.1 = and i32 %a, 1          ; <i32> [#uses=1]
515         %tmp.2 = icmp ne i32 %tmp.1, 0          ; <i1> [#uses=1]
516         br i1 %tmp.2, label %then.0, label %else.0
518 then.0:         ; preds = %entry
519         %tmp.5 = add i32 %a, -1         ; <i32> [#uses=1]
520         %tmp.3 = call i32 @t4( i32 %tmp.5 )             ; <i32> [#uses=1]
521         br label %return
523 else.0:         ; preds = %entry
524         %tmp.7 = icmp ne i32 %a, 0              ; <i1> [#uses=1]
525         br i1 %tmp.7, label %then.1, label %return
527 then.1:         ; preds = %else.0
528         %tmp.11 = add i32 %a, -2                ; <i32> [#uses=1]
529         %tmp.9 = call i32 @t4( i32 %tmp.11 )            ; <i32> [#uses=1]
530         br label %return
532 return:         ; preds = %then.1, %else.0, %then.0
533         %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
534                             [ %tmp.9, %then.1 ]
535         ret i32 %result.0
538 //===---------------------------------------------------------------------===//
540 Tail recursion elimination should handle:
542 int pow2m1(int n) {
543  if (n == 0)
544    return 0;
545  return 2 * pow2m1 (n - 1) + 1;
548 Also, multiplies can be turned into SHL's, so they should be handled as if
549 they were associative.  "return foo() << 1" can be tail recursion eliminated.
551 //===---------------------------------------------------------------------===//
553 Argument promotion should promote arguments for recursive functions, like 
554 this:
556 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
558 define internal i32 @foo(i32* %x) {
559 entry:
560         %tmp = load i32* %x             ; <i32> [#uses=0]
561         %tmp.foo = call i32 @foo( i32* %x )             ; <i32> [#uses=1]
562         ret i32 %tmp.foo
565 define i32 @bar(i32* %x) {
566 entry:
567         %tmp3 = call i32 @foo( i32* %x )                ; <i32> [#uses=1]
568         ret i32 %tmp3
571 //===---------------------------------------------------------------------===//
573 We should investigate an instruction sinking pass.  Consider this silly
574 example in pic mode:
576 #include <assert.h>
577 void foo(int x) {
578   assert(x);
579   //...
582 we compile this to:
583 _foo:
584         subl    $28, %esp
585         call    "L1$pb"
586 "L1$pb":
587         popl    %eax
588         cmpl    $0, 32(%esp)
589         je      LBB1_2  # cond_true
590 LBB1_1: # return
591         # ...
592         addl    $28, %esp
593         ret
594 LBB1_2: # cond_true
597 The PIC base computation (call+popl) is only used on one path through the 
598 code, but is currently always computed in the entry block.  It would be 
599 better to sink the picbase computation down into the block for the 
600 assertion, as it is the only one that uses it.  This happens for a lot of 
601 code with early outs.
603 Another example is loads of arguments, which are usually emitted into the 
604 entry block on targets like x86.  If not used in all paths through a 
605 function, they should be sunk into the ones that do.
607 In this case, whole-function-isel would also handle this.
609 //===---------------------------------------------------------------------===//
611 Investigate lowering of sparse switch statements into perfect hash tables:
612 http://burtleburtle.net/bob/hash/perfect.html
614 //===---------------------------------------------------------------------===//
616 We should turn things like "load+fabs+store" and "load+fneg+store" into the
617 corresponding integer operations.  On a yonah, this loop:
619 double a[256];
620 void foo() {
621   int i, b;
622   for (b = 0; b < 10000000; b++)
623   for (i = 0; i < 256; i++)
624     a[i] = -a[i];
627 is twice as slow as this loop:
629 long long a[256];
630 void foo() {
631   int i, b;
632   for (b = 0; b < 10000000; b++)
633   for (i = 0; i < 256; i++)
634     a[i] ^= (1ULL << 63);
637 and I suspect other processors are similar.  On X86 in particular this is a
638 big win because doing this with integers allows the use of read/modify/write
639 instructions.
641 //===---------------------------------------------------------------------===//
643 DAG Combiner should try to combine small loads into larger loads when 
644 profitable.  For example, we compile this C++ example:
646 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
647 extern THotKey m_HotKey;
648 THotKey GetHotKey () { return m_HotKey; }
650 into (-O3 -fno-exceptions -static -fomit-frame-pointer):
652 __Z9GetHotKeyv:
653         pushl   %esi
654         movl    8(%esp), %eax
655         movb    _m_HotKey+3, %cl
656         movb    _m_HotKey+4, %dl
657         movb    _m_HotKey+2, %ch
658         movw    _m_HotKey, %si
659         movw    %si, (%eax)
660         movb    %ch, 2(%eax)
661         movb    %cl, 3(%eax)
662         movb    %dl, 4(%eax)
663         popl    %esi
664         ret     $4
666 GCC produces:
668 __Z9GetHotKeyv:
669         movl    _m_HotKey, %edx
670         movl    4(%esp), %eax
671         movl    %edx, (%eax)
672         movzwl  _m_HotKey+4, %edx
673         movw    %dx, 4(%eax)
674         ret     $4
676 The LLVM IR contains the needed alignment info, so we should be able to 
677 merge the loads and stores into 4-byte loads:
679         %struct.THotKey = type { i16, i8, i8, i8 }
680 define void @_Z9GetHotKeyv(%struct.THotKey* sret  %agg.result) nounwind  {
682         %tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8
683         %tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2
684         %tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1
685         %tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2
687 Alternatively, we should use a small amount of base-offset alias analysis
688 to make it so the scheduler doesn't need to hold all the loads in regs at
689 once.
691 //===---------------------------------------------------------------------===//
693 We should add an FRINT node to the DAG to model targets that have legal
694 implementations of ceil/floor/rint.
696 //===---------------------------------------------------------------------===//
698 Consider:
700 int test() {
701   long long input[8] = {1,0,1,0,1,0,1,0};
702   foo(input);
705 Clang compiles this into:
707   call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
708   %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
709   store i64 1, i64* %0, align 16
710   %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
711   store i64 1, i64* %1, align 16
712   %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
713   store i64 1, i64* %2, align 16
714   %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
715   store i64 1, i64* %3, align 16
717 Which gets codegen'd into:
719         pxor    %xmm0, %xmm0
720         movaps  %xmm0, -16(%rbp)
721         movaps  %xmm0, -32(%rbp)
722         movaps  %xmm0, -48(%rbp)
723         movaps  %xmm0, -64(%rbp)
724         movq    $1, -64(%rbp)
725         movq    $1, -48(%rbp)
726         movq    $1, -32(%rbp)
727         movq    $1, -16(%rbp)
729 It would be better to have 4 movq's of 0 instead of the movaps's.
731 //===---------------------------------------------------------------------===//
733 http://llvm.org/PR717:
735 The following code should compile into "ret int undef". Instead, LLVM
736 produces "ret int 0":
738 int f() {
739   int x = 4;
740   int y;
741   if (x == 3) y = 0;
742   return y;
745 //===---------------------------------------------------------------------===//
747 The loop unroller should partially unroll loops (instead of peeling them)
748 when code growth isn't too bad and when an unroll count allows simplification
749 of some code within the loop.  One trivial example is:
751 #include <stdio.h>
752 int main() {
753     int nRet = 17;
754     int nLoop;
755     for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
756         if ( nLoop & 1 )
757             nRet += 2;
758         else
759             nRet -= 1;
760     }
761     return nRet;
764 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
765 reduction in code size.  The resultant code would then also be suitable for
766 exit value computation.
768 //===---------------------------------------------------------------------===//
770 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
771 etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
772 matching code in dag combine doesn't look through truncates aggressively 
773 enough.  Here are some testcases reduces from GCC PR17886:
775 unsigned long long f(unsigned long long x, int y) {
776   return (x << y) | (x >> 64-y); 
778 unsigned f2(unsigned x, int y){
779   return (x << y) | (x >> 32-y); 
781 unsigned long long f3(unsigned long long x){
782   int y = 9;
783   return (x << y) | (x >> 64-y); 
785 unsigned f4(unsigned x){
786   int y = 10;
787   return (x << y) | (x >> 32-y); 
789 unsigned long long f5(unsigned long long x, unsigned long long y) {
790   return (x << 8) | ((y >> 48) & 0xffull);
792 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
793   switch(z) {
794   case 1:
795     return (x << 8) | ((y >> 48) & 0xffull);
796   case 2:
797     return (x << 16) | ((y >> 40) & 0xffffull);
798   case 3:
799     return (x << 24) | ((y >> 32) & 0xffffffull);
800   case 4:
801     return (x << 32) | ((y >> 24) & 0xffffffffull);
802   default:
803     return (x << 40) | ((y >> 16) & 0xffffffffffull);
804   }
807 On X86-64, we only handle f2/f3/f4 right.  On x86-32, a few of these 
808 generate truly horrible code, instead of using shld and friends.  On
809 ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is
810 badness.  PPC64 misses f, f5 and f6.  CellSPU aborts in isel.
812 //===---------------------------------------------------------------------===//
814 This (and similar related idioms):
816 unsigned int foo(unsigned char i) {
817   return i | (i<<8) | (i<<16) | (i<<24);
820 compiles into:
822 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
823 entry:
824   %conv = zext i8 %i to i32
825   %shl = shl i32 %conv, 8
826   %shl5 = shl i32 %conv, 16
827   %shl9 = shl i32 %conv, 24
828   %or = or i32 %shl9, %conv
829   %or6 = or i32 %or, %shl5
830   %or10 = or i32 %or6, %shl
831   ret i32 %or10
834 it would be better as:
836 unsigned int bar(unsigned char i) {
837   unsigned int j=i | (i << 8); 
838   return j | (j<<16);
841 aka:
843 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
844 entry:
845   %conv = zext i8 %i to i32
846   %shl = shl i32 %conv, 8
847   %or = or i32 %shl, %conv
848   %shl5 = shl i32 %or, 16
849   %or6 = or i32 %shl5, %or
850   ret i32 %or6
853 or even i*0x01010101, depending on the speed of the multiplier.  The best way to
854 handle this is to canonicalize it to a multiply in IR and have codegen handle
855 lowering multiplies to shifts on cpus where shifts are faster.
857 //===---------------------------------------------------------------------===//
859 We do a number of simplifications in simplify libcalls to strength reduce
860 standard library functions, but we don't currently merge them together.  For
861 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
862 be done safely if "b" isn't modified between the strlen and memcpy of course.
864 //===---------------------------------------------------------------------===//
866 We compile this program: (from GCC PR11680)
867 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
869 Into code that runs the same speed in fast/slow modes, but both modes run 2x
870 slower than when compile with GCC (either 4.0 or 4.2):
872 $ llvm-g++ perf.cpp -O3 -fno-exceptions
873 $ time ./a.out fast
874 1.821u 0.003s 0:01.82 100.0%    0+0k 0+0io 0pf+0w
876 $ g++ perf.cpp -O3 -fno-exceptions
877 $ time ./a.out fast
878 0.821u 0.001s 0:00.82 100.0%    0+0k 0+0io 0pf+0w
880 It looks like we are making the same inlining decisions, so this may be raw
881 codegen badness or something else (haven't investigated).
883 //===---------------------------------------------------------------------===//
885 We miss some instcombines for stuff like this:
886 void bar (void);
887 void foo (unsigned int a) {
888   /* This one is equivalent to a >= (3 << 2).  */
889   if ((a >> 2) >= 3)
890     bar ();
893 A few other related ones are in GCC PR14753.
895 //===---------------------------------------------------------------------===//
897 Divisibility by constant can be simplified (according to GCC PR12849) from
898 being a mulhi to being a mul lo (cheaper).  Testcase:
900 void bar(unsigned n) {
901   if (n % 3 == 0)
902     true();
905 This is equivalent to the following, where 2863311531 is the multiplicative
906 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
907 void bar(unsigned n) {
908   if (n * 2863311531U < 1431655766U)
909     true();
912 The same transformation can work with an even modulo with the addition of a
913 rotate: rotate the result of the multiply to the right by the number of bits
914 which need to be zero for the condition to be true, and shrink the compare RHS
915 by the same amount.  Unless the target supports rotates, though, that
916 transformation probably isn't worthwhile.
918 The transformation can also easily be made to work with non-zero equality
919 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
921 //===---------------------------------------------------------------------===//
923 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
924 bunch of other stuff from this example (see PR1604): 
926 #include <cstdio>
927 struct test {
928     int val;
929     virtual ~test() {}
932 int main() {
933     test t;
934     std::scanf("%d", &t.val);
935     std::printf("%d\n", t.val);
938 //===---------------------------------------------------------------------===//
940 These functions perform the same computation, but produce different assembly.
942 define i8 @select(i8 %x) readnone nounwind {
943   %A = icmp ult i8 %x, 250
944   %B = select i1 %A, i8 0, i8 1
945   ret i8 %B 
948 define i8 @addshr(i8 %x) readnone nounwind {
949   %A = zext i8 %x to i9
950   %B = add i9 %A, 6       ;; 256 - 250 == 6
951   %C = lshr i9 %B, 8
952   %D = trunc i9 %C to i8
953   ret i8 %D
956 //===---------------------------------------------------------------------===//
958 From gcc bug 24696:
960 f (unsigned long a, unsigned long b, unsigned long c)
962   return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
965 f (unsigned long a, unsigned long b, unsigned long c)
967   return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
969 Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
970 "clang -emit-llvm-bc | opt -std-compile-opts".
972 //===---------------------------------------------------------------------===//
974 From GCC Bug 20192:
975 #define PMD_MASK    (~((1UL << 23) - 1))
976 void clear_pmd_range(unsigned long start, unsigned long end)
978    if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
979        f();
981 The expression should optimize to something like
982 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
983 -emit-llvm-bc | opt -std-compile-opts".
985 //===---------------------------------------------------------------------===//
987 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
989 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
990 These should combine to the same thing.  Currently, the first function
991 produces better code on X86.
993 //===---------------------------------------------------------------------===//
995 From GCC Bug 15784:
996 #define abs(x) x>0?x:-x
997 int f(int x, int y)
999  return (abs(x)) >= 0;
1001 This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
1002 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1004 //===---------------------------------------------------------------------===//
1006 From GCC Bug 14753:
1007 void
1008 rotate_cst (unsigned int a)
1010  a = (a << 10) | (a >> 22);
1011  if (a == 123)
1012    bar ();
1014 void
1015 minus_cst (unsigned int a)
1017  unsigned int tem;
1019  tem = 20 - a;
1020  if (tem == 5)
1021    bar ();
1023 void
1024 mask_gt (unsigned int a)
1026  /* This is equivalent to a > 15.  */
1027  if ((a & ~7) > 8)
1028    bar ();
1030 void
1031 rshift_gt (unsigned int a)
1033  /* This is equivalent to a > 23.  */
1034  if ((a >> 2) > 5)
1035    bar ();
1037 All should simplify to a single comparison.  All of these are
1038 currently not optimized with "clang -emit-llvm-bc | opt
1039 -std-compile-opts".
1041 //===---------------------------------------------------------------------===//
1043 From GCC Bug 32605:
1044 int c(int* x) {return (char*)x+2 == (char*)x;}
1045 Should combine to 0.  Currently not optimized with "clang
1046 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
1048 //===---------------------------------------------------------------------===//
1050 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
1051 Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
1052 with "clang -emit-llvm-bc | opt -std-compile-opts".
1054 //===---------------------------------------------------------------------===//
1056 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
1057 Should combine to "x | (y & 3)".  Currently not optimized with "clang
1058 -emit-llvm-bc | opt -std-compile-opts".
1060 //===---------------------------------------------------------------------===//
1062 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
1063 Should fold to "(~a & c) | (a & b)".  Currently not optimized with
1064 "clang -emit-llvm-bc | opt -std-compile-opts".
1066 //===---------------------------------------------------------------------===//
1068 int a(int a,int b) {return (~(a|b))|a;}
1069 Should fold to "a|~b".  Currently not optimized with "clang
1070 -emit-llvm-bc | opt -std-compile-opts".
1072 //===---------------------------------------------------------------------===//
1074 int a(int a, int b) {return (a&&b) || (a&&!b);}
1075 Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
1076 | opt -std-compile-opts".
1078 //===---------------------------------------------------------------------===//
1080 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
1081 Should fold to "a ? b : c", or at least something sane.  Currently not
1082 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1084 //===---------------------------------------------------------------------===//
1086 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
1087 Should fold to a && (b || c).  Currently not optimized with "clang
1088 -emit-llvm-bc | opt -std-compile-opts".
1090 //===---------------------------------------------------------------------===//
1092 int a(int x) {return x | ((x & 8) ^ 8);}
1093 Should combine to x | 8.  Currently not optimized with "clang
1094 -emit-llvm-bc | opt -std-compile-opts".
1096 //===---------------------------------------------------------------------===//
1098 int a(int x) {return x ^ ((x & 8) ^ 8);}
1099 Should also combine to x | 8.  Currently not optimized with "clang
1100 -emit-llvm-bc | opt -std-compile-opts".
1102 //===---------------------------------------------------------------------===//
1104 int a(int x) {return ((x | -9) ^ 8) & x;}
1105 Should combine to x & -9.  Currently not optimized with "clang
1106 -emit-llvm-bc | opt -std-compile-opts".
1108 //===---------------------------------------------------------------------===//
1110 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
1111 Should combine to "a * 0x88888888 >> 31".  Currently not optimized
1112 with "clang -emit-llvm-bc | opt -std-compile-opts".
1114 //===---------------------------------------------------------------------===//
1116 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
1117 There's an unnecessary zext in the generated code with "clang
1118 -emit-llvm-bc | opt -std-compile-opts".
1120 //===---------------------------------------------------------------------===//
1122 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
1123 Should combine to "20 * (((unsigned)x) & -2)".  Currently not
1124 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
1126 //===---------------------------------------------------------------------===//
1128 This was noticed in the entryblock for grokdeclarator in 403.gcc:
1130         %tmp = icmp eq i32 %decl_context, 4          
1131         %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 
1132         %tmp1 = icmp eq i32 %decl_context_addr.0, 1 
1133         %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
1135 tmp1 should be simplified to something like:
1136   (!tmp || decl_context == 1)
1138 This allows recursive simplifications, tmp1 is used all over the place in
1139 the function, e.g. by:
1141         %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
1142         %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
1143         %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
1145 later.
1147 //===---------------------------------------------------------------------===//
1149 [STORE SINKING]
1151 Store sinking: This code:
1153 void f (int n, int *cond, int *res) {
1154     int i;
1155     *res = 0;
1156     for (i = 0; i < n; i++)
1157         if (*cond)
1158             *res ^= 234; /* (*) */
1161 On this function GVN hoists the fully redundant value of *res, but nothing
1162 moves the store out.  This gives us this code:
1164 bb:             ; preds = %bb2, %entry
1165         %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] 
1166         %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
1167         %1 = load i32* %cond, align 4
1168         %2 = icmp eq i32 %1, 0
1169         br i1 %2, label %bb2, label %bb1
1171 bb1:            ; preds = %bb
1172         %3 = xor i32 %.rle, 234 
1173         store i32 %3, i32* %res, align 4
1174         br label %bb2
1176 bb2:            ; preds = %bb, %bb1
1177         %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]   
1178         %indvar.next = add i32 %i.05, 1 
1179         %exitcond = icmp eq i32 %indvar.next, %n
1180         br i1 %exitcond, label %return, label %bb
1182 DSE should sink partially dead stores to get the store out of the loop.
1184 Here's another partial dead case:
1185 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1187 //===---------------------------------------------------------------------===//
1189 Scalar PRE hoists the mul in the common block up to the else:
1191 int test (int a, int b, int c, int g) {
1192   int d, e;
1193   if (a)
1194     d = b * c;
1195   else
1196     d = b - c;
1197   e = b * c + g;
1198   return d + e;
1201 It would be better to do the mul once to reduce codesize above the if.
1202 This is GCC PR38204.
1204 //===---------------------------------------------------------------------===//
1206 [STORE SINKING]
1208 GCC PR37810 is an interesting case where we should sink load/store reload
1209 into the if block and outside the loop, so we don't reload/store it on the
1210 non-call path.
1212 for () {
1213   *P += 1;
1214   if ()
1215     call();
1216   else
1217     ...
1219 tmp = *P
1220 for () {
1221   tmp += 1;
1222   if () {
1223     *P = tmp;
1224     call();
1225     tmp = *P;
1226   } else ...
1228 *P = tmp;
1230 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1231 we don't sink the store.  We need partially dead store sinking.
1233 //===---------------------------------------------------------------------===//
1235 [LOAD PRE CRIT EDGE SPLITTING]
1237 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1238 leading to excess stack traffic. This could be handled by GVN with some crazy
1239 symbolic phi translation.  The code we get looks like (g is on the stack):
1241 bb2:            ; preds = %bb1
1243         %9 = getelementptr %struct.f* %g, i32 0, i32 0          
1244         store i32 %8, i32* %9, align  bel %bb3
1246 bb3:            ; preds = %bb1, %bb2, %bb
1247         %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1248         %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1249         %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1250         %11 = load i32* %10, align 4
1252 %11 is partially redundant, an in BB2 it should have the value %8.
1254 GCC PR33344 and PR35287 are similar cases.
1257 //===---------------------------------------------------------------------===//
1259 [LOAD PRE]
1261 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1262 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1264 [CRIT EDGE BREAKING]
1265 loadpre3.c predcom-4.c
1267 [PRE OF READONLY CALL]
1268 loadpre5.c
1270 [TURN SELECT INTO BRANCH]
1271 loadpre14.c loadpre15.c 
1273 actually a conditional increment: loadpre18.c loadpre19.c
1275 //===---------------------------------------------------------------------===//
1277 [LOAD PRE / STORE SINKING / SPEC HACK]
1279 This is a chunk of code from 456.hmmer:
1281 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1282      int *tpdm, int xmb, int *bp, int *ms) {
1283  int k, sc;
1284  for (k = 1; k <= M; k++) {
1285      mc[k] = mpp[k-1]   + tpmm[k-1];
1286      if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
1287      if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
1288      if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
1289      mc[k] += ms[k];
1290    }
1293 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1294 into a conditional move (select instr in IR) and allow the final store to do the
1295 store.  See GCC PR27313 for more details.  Note that this is valid to xform even
1296 with the new C++ memory model, since mc[k] is previously loaded and later
1297 stored.
1299 //===---------------------------------------------------------------------===//
1301 [SCALAR PRE]
1302 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1303 GCC testsuite.
1305 //===---------------------------------------------------------------------===//
1307 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1308 GCC testsuite.  For example, we get the first example in predcom-1.c, but 
1309 miss the second one:
1311 unsigned fib[1000];
1312 unsigned avg[1000];
1314 __attribute__ ((noinline))
1315 void count_averages(int n) {
1316   int i;
1317   for (i = 1; i < n; i++)
1318     avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1321 which compiles into two loads instead of one in the loop.
1323 predcom-2.c is the same as predcom-1.c
1325 predcom-3.c is very similar but needs loads feeding each other instead of
1326 store->load.
1329 //===---------------------------------------------------------------------===//
1331 [ALIAS ANALYSIS]
1333 Type based alias analysis:
1334 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1336 We should do better analysis of posix_memalign.  At the least it should
1337 no-capture its pointer argument, at best, we should know that the out-value
1338 result doesn't point to anything (like malloc).  One example of this is in
1339 SingleSource/Benchmarks/Misc/dt.c
1341 //===---------------------------------------------------------------------===//
1343 A/B get pinned to the stack because we turn an if/then into a select instead
1344 of PRE'ing the load/store.  This may be fixable in instcombine:
1345 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37892
1347 struct X { int i; };
1348 int foo (int x) {
1349   struct X a;
1350   struct X b;
1351   struct X *p;
1352   a.i = 1;
1353   b.i = 2;
1354   if (x)
1355     p = &a;
1356   else
1357     p = &b;
1358   return p->i;
1361 //===---------------------------------------------------------------------===//
1363 Interesting missed case because of control flow flattening (should be 2 loads):
1364 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1365 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 
1366              opt -mem2reg -gvn -instcombine | llvm-dis
1367 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1368 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1370 //===---------------------------------------------------------------------===//
1372 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1373 We could eliminate the branch condition here, loading from null is undefined:
1375 struct S { int w, x, y, z; };
1376 struct T { int r; struct S s; };
1377 void bar (struct S, int);
1378 void foo (int a, struct T b)
1380   struct S *c = 0;
1381   if (a)
1382     c = &b.s;
1383   bar (*c, a);
1386 //===---------------------------------------------------------------------===//
1388 simplifylibcalls should do several optimizations for strspn/strcspn:
1390 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1392 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1393                      int __reject3) {
1394   register size_t __result = 0;
1395   while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1396          __s[__result] != __reject2 && __s[__result] != __reject3)
1397     ++__result;
1398   return __result;
1401 This should turn into a switch on the character.  See PR3253 for some notes on
1402 codegen.
1404 456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
1406 //===---------------------------------------------------------------------===//
1408 "gas" uses this idiom:
1409   else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1411   else if (strchr ("<>", *intel_parser.op_string)
1413 Those should be turned into a switch.
1415 //===---------------------------------------------------------------------===//
1417 252.eon contains this interesting code:
1419         %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1420         %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1421         %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
1422         %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1423         call void @llvm.memcpy.i32(i8* %endptr, 
1424           i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1425         %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 
1426         
1427 This is interesting for a couple reasons.  First, in this:
1429 The memcpy+strlen strlen can be replaced with:
1431         %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 
1433 Because the destination was just copied into the specified memory buffer.  This,
1434 in turn, can be constant folded to "4".
1436 In other code, it contains:
1438         %endptr6978 = bitcast i8* %endptr69 to i32*            
1439         store i32 7107374, i32* %endptr6978, align 1
1440         %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly    
1442 Which could also be constant folded.  Whatever is producing this should probably
1443 be fixed to leave this as a memcpy from a string.
1445 Further, eon also has an interesting partially redundant strlen call:
1447 bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1448         %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
1449         %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
1450         %684 = load i8* %683, align 1           ; <i8> [#uses=1]
1451         %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
1452         br i1 %685, label %bb10, label %bb9
1454 bb9:            ; preds = %bb8
1455         %686 = call i32 @strlen(i8* %683) nounwind readonly          
1456         %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
1457         br i1 %687, label %bb10, label %bb11
1459 bb10:           ; preds = %bb9, %bb8
1460         %688 = call i32 @strlen(i8* %683) nounwind readonly          
1462 This could be eliminated by doing the strlen once in bb8, saving code size and
1463 improving perf on the bb8->9->10 path.
1465 //===---------------------------------------------------------------------===//
1467 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1468 which looks like:
1469        %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 
1472 bb62:           ; preds = %bb55, %bb53
1473         %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]             
1474         %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1475         %172 = add i32 %171, -1         ; <i32> [#uses=1]
1476         %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172       
1478 ...  no stores ...
1479        br i1 %or.cond, label %bb65, label %bb72
1481 bb65:           ; preds = %bb62
1482         store i8 0, i8* %173, align 1
1483         br label %bb72
1485 bb72:           ; preds = %bb65, %bb62
1486         %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]            
1487         %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1489 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1490 redundant with the %171 call.  At worst, we could shove the %177 strlen call
1491 up into the bb65 block moving it out of the bb62->bb72 path.   However, note
1492 that bb65 stores to the string, zeroing out the last byte.  This means that on
1493 that path the value of %177 is actually just %171-1.  A sub is cheaper than a
1494 strlen!
1496 This pattern repeats several times, basically doing:
1498   A = strlen(P);
1499   P[A-1] = 0;
1500   B = strlen(P);
1501   where it is "obvious" that B = A-1.
1503 //===---------------------------------------------------------------------===//
1505 186.crafty has this interesting pattern with the "out.4543" variable:
1507 call void @llvm.memcpy.i32(
1508         i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1509        i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 
1510 %101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind 
1512 It is basically doing:
1514   memcpy(globalarray, "string");
1515   printf(...,  globalarray);
1516   
1517 Anyway, by knowing that printf just reads the memory and forward substituting
1518 the string directly into the printf, this eliminates reads from globalarray.
1519 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1520 other similar functions) there are many stores to "out".  Once all the printfs
1521 stop using "out", all that is left is the memcpy's into it.  This should allow
1522 globalopt to remove the "stored only" global.
1524 //===---------------------------------------------------------------------===//
1526 This code:
1528 define inreg i32 @foo(i8* inreg %p) nounwind {
1529   %tmp0 = load i8* %p
1530   %tmp1 = ashr i8 %tmp0, 5
1531   %tmp2 = sext i8 %tmp1 to i32
1532   ret i32 %tmp2
1535 could be dagcombine'd to a sign-extending load with a shift.
1536 For example, on x86 this currently gets this:
1538         movb    (%eax), %al
1539         sarb    $5, %al
1540         movsbl  %al, %eax
1542 while it could get this:
1544         movsbl  (%eax), %eax
1545         sarl    $5, %eax
1547 //===---------------------------------------------------------------------===//
1549 GCC PR31029:
1551 int test(int x) { return 1-x == x; }     // --> return false
1552 int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
1554 Always foldable for odd constants, what is the rule for even?
1556 //===---------------------------------------------------------------------===//
1558 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1559 for next field in struct (which is at same address).
1561 For example: store of float into { {{}}, float } could be turned into a store to
1562 the float directly.
1564 //===---------------------------------------------------------------------===//
1566 The arg promotion pass should make use of nocapture to make its alias analysis
1567 stuff much more precise.
1569 //===---------------------------------------------------------------------===//
1571 The following functions should be optimized to use a select instead of a
1572 branch (from gcc PR40072):
1574 char char_int(int m) {if(m>7) return 0; return m;}
1575 int int_char(char m) {if(m>7) return 0; return m;}
1577 //===---------------------------------------------------------------------===//
1579 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1581 Generates this:
1583 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1584 entry:
1585   %0 = and i32 %a, 128                            ; <i32> [#uses=1]
1586   %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
1587   %2 = or i32 %b, 128                             ; <i32> [#uses=1]
1588   %3 = and i32 %b, -129                           ; <i32> [#uses=1]
1589   %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
1590   ret i32 %b_addr.0
1593 However, it's functionally equivalent to:
1595          b = (b & ~0x80) | (a & 0x80);
1597 Which generates this:
1599 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1600 entry:
1601   %0 = and i32 %b, -129                           ; <i32> [#uses=1]
1602   %1 = and i32 %a, 128                            ; <i32> [#uses=1]
1603   %2 = or i32 %0, %1                              ; <i32> [#uses=1]
1604   ret i32 %2
1607 This can be generalized for other forms:
1609      b = (b & ~0x80) | (a & 0x40) << 1;
1611 //===---------------------------------------------------------------------===//
1613 These two functions produce different code. They shouldn't:
1615 #include <stdint.h>
1617 uint8_t p1(uint8_t b, uint8_t a) {
1618   b = (b & ~0xc0) | (a & 0xc0);
1619   return (b);
1622 uint8_t p2(uint8_t b, uint8_t a) {
1623   b = (b & ~0x40) | (a & 0x40);
1624   b = (b & ~0x80) | (a & 0x80);
1625   return (b);
1628 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1629 entry:
1630   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1631   %1 = and i8 %a, -64                             ; <i8> [#uses=1]
1632   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1633   ret i8 %2
1636 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1637 entry:
1638   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1639   %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
1640   %1 = and i8 %a, -128                            ; <i8> [#uses=1]
1641   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1642   %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
1643   ret i8 %3
1646 //===---------------------------------------------------------------------===//
1648 IPSCCP does not currently propagate argument dependent constants through
1649 functions where it does not not all of the callers.  This includes functions
1650 with normal external linkage as well as templates, C99 inline functions etc.
1651 Specifically, it does nothing to:
1653 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1654 entry:
1655   %0 = add nsw i32 %y, %z                         
1656   %1 = mul i32 %0, %x                             
1657   %2 = mul i32 %y, %z                             
1658   %3 = add nsw i32 %1, %2                         
1659   ret i32 %3
1662 define i32 @test2() nounwind {
1663 entry:
1664   %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1665   ret i32 %0
1668 It would be interesting extend IPSCCP to be able to handle simple cases like
1669 this, where all of the arguments to a call are constant.  Because IPSCCP runs
1670 before inlining, trivial templates and inline functions are not yet inlined.
1671 The results for a function + set of constant arguments should be memoized in a
1672 map.
1674 //===---------------------------------------------------------------------===//
1676 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1677 libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
1678 handle simple things like this:
1680 static int foo(const char *X) { return strlen(X); }
1681 int bar() { return foo("abcd"); }
1683 //===---------------------------------------------------------------------===//
1685 InstCombine should use SimplifyDemandedBits to remove the or instruction:
1687 define i1 @test(i8 %x, i8 %y) {
1688   %A = or i8 %x, 1
1689   %B = icmp ugt i8 %A, 3
1690   ret i1 %B
1693 Currently instcombine calls SimplifyDemandedBits with either all bits or just
1694 the sign bit, if the comparison is obviously a sign test. In this case, we only
1695 need all but the bottom two bits from %A, and if we gave that mask to SDB it
1696 would delete the or instruction for us.
1698 //===---------------------------------------------------------------------===//
1700 functionattrs doesn't know much about memcpy/memset.  This function should be
1701 marked readnone rather than readonly, since it only twiddles local memory, but
1702 functionattrs doesn't handle memset/memcpy/memmove aggressively:
1704 struct X { int *p; int *q; };
1705 int foo() {
1706  int i = 0, j = 1;
1707  struct X x, y;
1708  int **p;
1709  y.p = &i;
1710  x.q = &j;
1711  p = __builtin_memcpy (&x, &y, sizeof (int *));
1712  return **p;
1715 This can be seen at:
1716 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1719 //===---------------------------------------------------------------------===//
1721 Missed instcombine transformation:
1722 define i1 @a(i32 %x) nounwind readnone {
1723 entry:
1724   %cmp = icmp eq i32 %x, 30
1725   %sub = add i32 %x, -30
1726   %cmp2 = icmp ugt i32 %sub, 9
1727   %or = or i1 %cmp, %cmp2
1728   ret i1 %or
1730 This should be optimized to a single compare.  Testcase derived from gcc.
1732 //===---------------------------------------------------------------------===//
1734 Missed instcombine or reassociate transformation:
1735 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1737 The sgt and slt should be combined into a single comparison. Testcase derived
1738 from gcc.
1740 //===---------------------------------------------------------------------===//
1742 Missed instcombine transformation:
1744   %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
1745   %383 = zext i32 %382 to i64                     ; [#uses=1]
1746   %384 = shl i64 %381, %383                       ; [#uses=1]
1747   %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
1749 The srem can be transformed to an and because if %tmp14.i is negative, the
1750 shift is undefined.  Testcase derived from 403.gcc.
1752 //===---------------------------------------------------------------------===//
1754 This is a range comparison on a divided result (from 403.gcc):
1756   %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
1757   %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
1758   %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
1759   
1760 We already catch this (removing the sdiv) if there isn't an add, we should
1761 handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
1762 C testcase:
1764 int a(int x) { return (unsigned)(x/16+7) < 15; }
1766 Another similar case involves truncations on 64-bit targets:
1768   %361 = sdiv i64 %.046, 8                        ; [#uses=1]
1769   %362 = trunc i64 %361 to i32                    ; [#uses=2]
1771   %367 = icmp eq i32 %362, 0                      ; [#uses=1]
1773 //===---------------------------------------------------------------------===//
1775 Missed instcombine/dagcombine transformation:
1776 define void @lshift_lt(i8 zeroext %a) nounwind {
1777 entry:
1778   %conv = zext i8 %a to i32
1779   %shl = shl i32 %conv, 3
1780   %cmp = icmp ult i32 %shl, 33
1781   br i1 %cmp, label %if.then, label %if.end
1783 if.then:
1784   tail call void @bar() nounwind
1785   ret void
1787 if.end:
1788   ret void
1790 declare void @bar() nounwind
1792 The shift should be eliminated.  Testcase derived from gcc.
1794 //===---------------------------------------------------------------------===//
1796 These compile into different code, one gets recognized as a switch and the
1797 other doesn't due to phase ordering issues (PR6212):
1799 int test1(int mainType, int subType) {
1800   if (mainType == 7)
1801     subType = 4;
1802   else if (mainType == 9)
1803     subType = 6;
1804   else if (mainType == 11)
1805     subType = 9;
1806   return subType;
1809 int test2(int mainType, int subType) {
1810   if (mainType == 7)
1811     subType = 4;
1812   if (mainType == 9)
1813     subType = 6;
1814   if (mainType == 11)
1815     subType = 9;
1816   return subType;
1819 //===---------------------------------------------------------------------===//
1821 The following test case (from PR6576):
1823 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1824 entry:
1825  %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
1826  br i1 %cond1, label %exit, label %bb.nph
1827 bb.nph:                                           ; preds = %entry
1828  %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
1829  ret i32 %tmp
1830 exit:                                             ; preds = %entry
1831  ret i32 0
1834 could be reduced to:
1836 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1837 entry:
1838  %tmp = mul i32 %b, %a
1839  ret i32 %tmp
1842 //===---------------------------------------------------------------------===//
1844 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1845 See GCC PR34949
1847 Another interesting case is that something related could be used for variables
1848 that go const after their ctor has finished.  In these cases, globalopt (which
1849 can statically run the constructor) could mark the global const (so it gets put
1850 in the readonly section).  A testcase would be:
1852 #include <complex>
1853 using namespace std;
1854 const complex<char> should_be_in_rodata (42,-42);
1855 complex<char> should_be_in_data (42,-42);
1856 complex<char> should_be_in_bss;
1858 Where we currently evaluate the ctors but the globals don't become const because
1859 the optimizer doesn't know they "become const" after the ctor is done.  See
1860 GCC PR4131 for more examples.
1862 //===---------------------------------------------------------------------===//
1864 In this code:
1866 long foo(long x) {
1867   return x > 1 ? x : 1;
1870 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1871 and cheaper on most targets.
1873 LLVM prefers comparisons with zero over non-zero in general, but in this
1874 case it choses instead to keep the max operation obvious.
1876 //===---------------------------------------------------------------------===//
1878 Take the following testcase on x86-64 (similar testcases exist for all targets
1879 with addc/adde):
1881 define void @a(i64* nocapture %s, i64* nocapture %t, i64 %a, i64 %b,
1882 i64 %c) nounwind {
1883 entry:
1884  %0 = zext i64 %a to i128                        ; <i128> [#uses=1]
1885  %1 = zext i64 %b to i128                        ; <i128> [#uses=1]
1886  %2 = add i128 %1, %0                            ; <i128> [#uses=2]
1887  %3 = zext i64 %c to i128                        ; <i128> [#uses=1]
1888  %4 = shl i128 %3, 64                            ; <i128> [#uses=1]
1889  %5 = add i128 %4, %2                            ; <i128> [#uses=1]
1890  %6 = lshr i128 %5, 64                           ; <i128> [#uses=1]
1891  %7 = trunc i128 %6 to i64                       ; <i64> [#uses=1]
1892  store i64 %7, i64* %s, align 8
1893  %8 = trunc i128 %2 to i64                       ; <i64> [#uses=1]
1894  store i64 %8, i64* %t, align 8
1895  ret void
1898 Generated code:
1899        addq    %rcx, %rdx
1900        movl    $0, %eax
1901        adcq    $0, %rax
1902        addq    %r8, %rax
1903        movq    %rax, (%rdi)
1904        movq    %rdx, (%rsi)
1905        ret
1907 Expected code:
1908        addq    %rcx, %rdx
1909        adcq    $0, %r8
1910        movq    %r8, (%rdi)
1911        movq    %rdx, (%rsi)
1912        ret
1914 The generated SelectionDAG has an ADD of an ADDE, where both operands of the
1915 ADDE are zero. Replacing one of the operands of the ADDE with the other operand
1916 of the ADD, and replacing the ADD with the ADDE, should give the desired result.
1918 (That said, we are doing a lot better than gcc on this testcase. :) )
1920 //===---------------------------------------------------------------------===//
1922 Switch lowering generates less than ideal code for the following switch:
1923 define void @a(i32 %x) nounwind {
1924 entry:
1925   switch i32 %x, label %if.end [
1926     i32 0, label %if.then
1927     i32 1, label %if.then
1928     i32 2, label %if.then
1929     i32 3, label %if.then
1930     i32 5, label %if.then
1931   ]
1932 if.then:
1933   tail call void @foo() nounwind
1934   ret void
1935 if.end:
1936   ret void
1938 declare void @foo()
1940 Generated code on x86-64 (other platforms give similar results):
1942         cmpl    $5, %edi
1943         ja      .LBB0_2
1944         movl    %edi, %eax
1945         movl    $47, %ecx
1946         btq     %rax, %rcx
1947         jb      .LBB0_3
1948 .LBB0_2:
1949         ret
1950 .LBB0_3:
1951         jmp     foo  # TAILCALL
1953 The movl+movl+btq+jb could be simplified to a cmpl+jne.
1955 Or, if we wanted to be really clever, we could simplify the whole thing to
1956 something like the following, which eliminates a branch:
1957         xorl    $1, %edi
1958         cmpl    $4, %edi
1959         ja      .LBB0_2
1960         ret
1961 .LBB0_2:
1962         jmp     foo  # TAILCALL
1963 //===---------------------------------------------------------------------===//
1964 Given a branch where the two target blocks are identical ("ret i32 %b" in
1965 both), simplifycfg will simplify them away. But not so for a switch statement:
1967 define i32 @f(i32 %a, i32 %b) nounwind readnone {
1968 entry:
1969         switch i32 %a, label %bb3 [
1970                 i32 4, label %bb
1971                 i32 6, label %bb
1972         ]
1974 bb:             ; preds = %entry, %entry
1975         ret i32 %b
1977 bb3:            ; preds = %entry
1978         ret i32 %b
1980 //===---------------------------------------------------------------------===//
1982 clang -O3 fails to devirtualize this virtual inheritance case: (GCC PR45875)
1983 Looks related to PR3100
1985 struct c1 {};
1986 struct c10 : c1{
1987   virtual void foo ();
1989 struct c11 : c10, c1{
1990   virtual void f6 ();
1992 struct c28 : virtual c11{
1993   void f6 ();
1995 void check_c28 () {
1996   c28 obj;
1997   c11 *ptr = &obj;
1998   ptr->f6 ();
2001 //===---------------------------------------------------------------------===//
2003 We compile this:
2005 int foo(int a) { return (a & (~15)) / 16; }
2007 Into:
2009 define i32 @foo(i32 %a) nounwind readnone ssp {
2010 entry:
2011   %and = and i32 %a, -16
2012   %div = sdiv i32 %and, 16
2013   ret i32 %div
2016 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
2017 should be instcombined into just "a >> 4".
2019 We do get this at the codegen level, so something knows about it, but 
2020 instcombine should catch it earlier:
2022 _foo:                                   ## @foo
2023 ## BB#0:                                ## %entry
2024         movl    %edi, %eax
2025         sarl    $4, %eax
2026         ret
2028 //===---------------------------------------------------------------------===//
2030 This code (from GCC PR28685):
2032 int test(int a, int b) {
2033   int lt = a < b;
2034   int eq = a == b;
2035   if (lt)
2036     return 1;
2037   return eq;
2040 Is compiled to:
2042 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
2043 entry:
2044   %cmp = icmp slt i32 %a, %b
2045   br i1 %cmp, label %return, label %if.end
2047 if.end:                                           ; preds = %entry
2048   %cmp5 = icmp eq i32 %a, %b
2049   %conv6 = zext i1 %cmp5 to i32
2050   ret i32 %conv6
2052 return:                                           ; preds = %entry
2053   ret i32 1
2056 it could be:
2058 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
2059 entry:
2060   %0 = icmp sle i32 %a, %b
2061   %retval = zext i1 %0 to i32
2062   ret i32 %retval
2065 //===---------------------------------------------------------------------===//
2067 This compare could fold to false:
2069 define i1 @g(i32 a) nounwind readnone {
2070        %add = shl i32 %a, 1
2071        %mul = shl i32 %a, 1
2072        %cmp = icmp ugt i32 %add, %mul
2073        ret i1 %cmp
2076 //===---------------------------------------------------------------------===//
2078 This code can be seen in viterbi:
2080   %64 = call noalias i8* @malloc(i64 %62) nounwind
2082   %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
2083   %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
2085 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
2086 fold to %62.  This is a security win (overflows of malloc will get caught)
2087 and also a performance win by exposing more memsets to the optimizer.
2089 This occurs several times in viterbi.
2091 //===---------------------------------------------------------------------===//