1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <title>LLVM Assembly Language Reference Manual
</title>
6 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
7 <meta name=
"author" content=
"Chris Lattner">
8 <meta name=
"description"
9 content=
"LLVM Assembly Language Reference Manual.">
10 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
15 <div class=
"doc_title"> LLVM Language Reference Manual
</div>
17 <li><a href=
"#abstract">Abstract
</a></li>
18 <li><a href=
"#introduction">Introduction
</a></li>
19 <li><a href=
"#identifiers">Identifiers
</a></li>
20 <li><a href=
"#highlevel">High Level Structure
</a>
22 <li><a href=
"#modulestructure">Module Structure
</a></li>
23 <li><a href=
"#linkage">Linkage Types
</a>
25 <li><a href=
"#linkage_private">'
<tt>private
</tt>' Linkage
</a></li>
26 <li><a href=
"#linkage_linker_private">'
<tt>linker_private
</tt>' Linkage
</a></li>
27 <li><a href=
"#linkage_internal">'
<tt>internal
</tt>' Linkage
</a></li>
28 <li><a href=
"#linkage_available_externally">'
<tt>available_externally
</tt>' Linkage
</a></li>
29 <li><a href=
"#linkage_linkonce">'
<tt>linkonce
</tt>' Linkage
</a></li>
30 <li><a href=
"#linkage_common">'
<tt>common
</tt>' Linkage
</a></li>
31 <li><a href=
"#linkage_weak">'
<tt>weak
</tt>' Linkage
</a></li>
32 <li><a href=
"#linkage_appending">'
<tt>appending
</tt>' Linkage
</a></li>
33 <li><a href=
"#linkage_externweak">'
<tt>extern_weak
</tt>' Linkage
</a></li>
34 <li><a href=
"#linkage_linkonce_odr">'
<tt>linkonce_odr
</tt>' Linkage
</a></li>
35 <li><a href=
"#linkage_weak">'
<tt>weak_odr
</tt>' Linkage
</a></li>
36 <li><a href=
"#linkage_external">'
<tt>externally visible
</tt>' Linkage
</a></li>
37 <li><a href=
"#linkage_dllimport">'
<tt>dllimport
</tt>' Linkage
</a></li>
38 <li><a href=
"#linkage_dllexport">'
<tt>dllexport
</tt>' Linkage
</a></li>
41 <li><a href=
"#callingconv">Calling Conventions
</a></li>
42 <li><a href=
"#namedtypes">Named Types
</a></li>
43 <li><a href=
"#globalvars">Global Variables
</a></li>
44 <li><a href=
"#functionstructure">Functions
</a></li>
45 <li><a href=
"#aliasstructure">Aliases
</a></li>
46 <li><a href=
"#paramattrs">Parameter Attributes
</a></li>
47 <li><a href=
"#fnattrs">Function Attributes
</a></li>
48 <li><a href=
"#gc">Garbage Collector Names
</a></li>
49 <li><a href=
"#moduleasm">Module-Level Inline Assembly
</a></li>
50 <li><a href=
"#datalayout">Data Layout
</a></li>
51 <li><a href=
"#pointeraliasing">Pointer Aliasing Rules
</a></li>
54 <li><a href=
"#typesystem">Type System
</a>
56 <li><a href=
"#t_classifications">Type Classifications
</a></li>
57 <li><a href=
"#t_primitive">Primitive Types
</a>
59 <li><a href=
"#t_integer">Integer Type
</a></li>
60 <li><a href=
"#t_floating">Floating Point Types
</a></li>
61 <li><a href=
"#t_void">Void Type
</a></li>
62 <li><a href=
"#t_label">Label Type
</a></li>
63 <li><a href=
"#t_metadata">Metadata Type
</a></li>
66 <li><a href=
"#t_derived">Derived Types
</a>
68 <li><a href=
"#t_array">Array Type
</a></li>
69 <li><a href=
"#t_function">Function Type
</a></li>
70 <li><a href=
"#t_pointer">Pointer Type
</a></li>
71 <li><a href=
"#t_struct">Structure Type
</a></li>
72 <li><a href=
"#t_pstruct">Packed Structure Type
</a></li>
73 <li><a href=
"#t_vector">Vector Type
</a></li>
74 <li><a href=
"#t_opaque">Opaque Type
</a></li>
77 <li><a href=
"#t_uprefs">Type Up-references
</a></li>
80 <li><a href=
"#constants">Constants
</a>
82 <li><a href=
"#simpleconstants">Simple Constants
</a></li>
83 <li><a href=
"#complexconstants">Complex Constants
</a></li>
84 <li><a href=
"#globalconstants">Global Variable and Function Addresses
</a></li>
85 <li><a href=
"#undefvalues">Undefined Values
</a></li>
86 <li><a href=
"#blockaddress">Addresses of Basic Blocks
</a></li>
87 <li><a href=
"#constantexprs">Constant Expressions
</a></li>
88 <li><a href=
"#metadata">Embedded Metadata
</a></li>
91 <li><a href=
"#othervalues">Other Values
</a>
93 <li><a href=
"#inlineasm">Inline Assembler Expressions
</a></li>
96 <li><a href=
"#intrinsic_globals">Intrinsic Global Variables
</a>
98 <li><a href=
"#intg_used">The '
<tt>llvm.used
</tt>' Global Variable
</a></li>
99 <li><a href=
"#intg_compiler_used">The '
<tt>llvm.compiler.used
</tt>'
100 Global Variable
</a></li>
101 <li><a href=
"#intg_global_ctors">The '
<tt>llvm.global_ctors
</tt>'
102 Global Variable
</a></li>
103 <li><a href=
"#intg_global_dtors">The '
<tt>llvm.global_dtors
</tt>'
104 Global Variable
</a></li>
107 <li><a href=
"#instref">Instruction Reference
</a>
109 <li><a href=
"#terminators">Terminator Instructions
</a>
111 <li><a href=
"#i_ret">'
<tt>ret
</tt>' Instruction
</a></li>
112 <li><a href=
"#i_br">'
<tt>br
</tt>' Instruction
</a></li>
113 <li><a href=
"#i_switch">'
<tt>switch
</tt>' Instruction
</a></li>
114 <li><a href=
"#i_indirectbr">'
<tt>indirectbr
</tt>' Instruction
</a></li>
115 <li><a href=
"#i_invoke">'
<tt>invoke
</tt>' Instruction
</a></li>
116 <li><a href=
"#i_unwind">'
<tt>unwind
</tt>' Instruction
</a></li>
117 <li><a href=
"#i_unreachable">'
<tt>unreachable
</tt>' Instruction
</a></li>
120 <li><a href=
"#binaryops">Binary Operations
</a>
122 <li><a href=
"#i_add">'
<tt>add
</tt>' Instruction
</a></li>
123 <li><a href=
"#i_fadd">'
<tt>fadd
</tt>' Instruction
</a></li>
124 <li><a href=
"#i_sub">'
<tt>sub
</tt>' Instruction
</a></li>
125 <li><a href=
"#i_fsub">'
<tt>fsub
</tt>' Instruction
</a></li>
126 <li><a href=
"#i_mul">'
<tt>mul
</tt>' Instruction
</a></li>
127 <li><a href=
"#i_fmul">'
<tt>fmul
</tt>' Instruction
</a></li>
128 <li><a href=
"#i_udiv">'
<tt>udiv
</tt>' Instruction
</a></li>
129 <li><a href=
"#i_sdiv">'
<tt>sdiv
</tt>' Instruction
</a></li>
130 <li><a href=
"#i_fdiv">'
<tt>fdiv
</tt>' Instruction
</a></li>
131 <li><a href=
"#i_urem">'
<tt>urem
</tt>' Instruction
</a></li>
132 <li><a href=
"#i_srem">'
<tt>srem
</tt>' Instruction
</a></li>
133 <li><a href=
"#i_frem">'
<tt>frem
</tt>' Instruction
</a></li>
136 <li><a href=
"#bitwiseops">Bitwise Binary Operations
</a>
138 <li><a href=
"#i_shl">'
<tt>shl
</tt>' Instruction
</a></li>
139 <li><a href=
"#i_lshr">'
<tt>lshr
</tt>' Instruction
</a></li>
140 <li><a href=
"#i_ashr">'
<tt>ashr
</tt>' Instruction
</a></li>
141 <li><a href=
"#i_and">'
<tt>and
</tt>' Instruction
</a></li>
142 <li><a href=
"#i_or">'
<tt>or
</tt>' Instruction
</a></li>
143 <li><a href=
"#i_xor">'
<tt>xor
</tt>' Instruction
</a></li>
146 <li><a href=
"#vectorops">Vector Operations
</a>
148 <li><a href=
"#i_extractelement">'
<tt>extractelement
</tt>' Instruction
</a></li>
149 <li><a href=
"#i_insertelement">'
<tt>insertelement
</tt>' Instruction
</a></li>
150 <li><a href=
"#i_shufflevector">'
<tt>shufflevector
</tt>' Instruction
</a></li>
153 <li><a href=
"#aggregateops">Aggregate Operations
</a>
155 <li><a href=
"#i_extractvalue">'
<tt>extractvalue
</tt>' Instruction
</a></li>
156 <li><a href=
"#i_insertvalue">'
<tt>insertvalue
</tt>' Instruction
</a></li>
159 <li><a href=
"#memoryops">Memory Access and Addressing Operations
</a>
161 <li><a href=
"#i_alloca">'
<tt>alloca
</tt>' Instruction
</a></li>
162 <li><a href=
"#i_load">'
<tt>load
</tt>' Instruction
</a></li>
163 <li><a href=
"#i_store">'
<tt>store
</tt>' Instruction
</a></li>
164 <li><a href=
"#i_getelementptr">'
<tt>getelementptr
</tt>' Instruction
</a></li>
167 <li><a href=
"#convertops">Conversion Operations
</a>
169 <li><a href=
"#i_trunc">'
<tt>trunc .. to
</tt>' Instruction
</a></li>
170 <li><a href=
"#i_zext">'
<tt>zext .. to
</tt>' Instruction
</a></li>
171 <li><a href=
"#i_sext">'
<tt>sext .. to
</tt>' Instruction
</a></li>
172 <li><a href=
"#i_fptrunc">'
<tt>fptrunc .. to
</tt>' Instruction
</a></li>
173 <li><a href=
"#i_fpext">'
<tt>fpext .. to
</tt>' Instruction
</a></li>
174 <li><a href=
"#i_fptoui">'
<tt>fptoui .. to
</tt>' Instruction
</a></li>
175 <li><a href=
"#i_fptosi">'
<tt>fptosi .. to
</tt>' Instruction
</a></li>
176 <li><a href=
"#i_uitofp">'
<tt>uitofp .. to
</tt>' Instruction
</a></li>
177 <li><a href=
"#i_sitofp">'
<tt>sitofp .. to
</tt>' Instruction
</a></li>
178 <li><a href=
"#i_ptrtoint">'
<tt>ptrtoint .. to
</tt>' Instruction
</a></li>
179 <li><a href=
"#i_inttoptr">'
<tt>inttoptr .. to
</tt>' Instruction
</a></li>
180 <li><a href=
"#i_bitcast">'
<tt>bitcast .. to
</tt>' Instruction
</a></li>
183 <li><a href=
"#otherops">Other Operations
</a>
185 <li><a href=
"#i_icmp">'
<tt>icmp
</tt>' Instruction
</a></li>
186 <li><a href=
"#i_fcmp">'
<tt>fcmp
</tt>' Instruction
</a></li>
187 <li><a href=
"#i_phi">'
<tt>phi
</tt>' Instruction
</a></li>
188 <li><a href=
"#i_select">'
<tt>select
</tt>' Instruction
</a></li>
189 <li><a href=
"#i_call">'
<tt>call
</tt>' Instruction
</a></li>
190 <li><a href=
"#i_va_arg">'
<tt>va_arg
</tt>' Instruction
</a></li>
195 <li><a href=
"#intrinsics">Intrinsic Functions
</a>
197 <li><a href=
"#int_varargs">Variable Argument Handling Intrinsics
</a>
199 <li><a href=
"#int_va_start">'
<tt>llvm.va_start
</tt>' Intrinsic
</a></li>
200 <li><a href=
"#int_va_end">'
<tt>llvm.va_end
</tt>' Intrinsic
</a></li>
201 <li><a href=
"#int_va_copy">'
<tt>llvm.va_copy
</tt>' Intrinsic
</a></li>
204 <li><a href=
"#int_gc">Accurate Garbage Collection Intrinsics
</a>
206 <li><a href=
"#int_gcroot">'
<tt>llvm.gcroot
</tt>' Intrinsic
</a></li>
207 <li><a href=
"#int_gcread">'
<tt>llvm.gcread
</tt>' Intrinsic
</a></li>
208 <li><a href=
"#int_gcwrite">'
<tt>llvm.gcwrite
</tt>' Intrinsic
</a></li>
211 <li><a href=
"#int_codegen">Code Generator Intrinsics
</a>
213 <li><a href=
"#int_returnaddress">'
<tt>llvm.returnaddress
</tt>' Intrinsic
</a></li>
214 <li><a href=
"#int_frameaddress">'
<tt>llvm.frameaddress
</tt>' Intrinsic
</a></li>
215 <li><a href=
"#int_stacksave">'
<tt>llvm.stacksave
</tt>' Intrinsic
</a></li>
216 <li><a href=
"#int_stackrestore">'
<tt>llvm.stackrestore
</tt>' Intrinsic
</a></li>
217 <li><a href=
"#int_prefetch">'
<tt>llvm.prefetch
</tt>' Intrinsic
</a></li>
218 <li><a href=
"#int_pcmarker">'
<tt>llvm.pcmarker
</tt>' Intrinsic
</a></li>
219 <li><a href=
"#int_readcyclecounter"><tt>llvm.readcyclecounter
</tt>' Intrinsic
</a></li>
222 <li><a href=
"#int_libc">Standard C Library Intrinsics
</a>
224 <li><a href=
"#int_memcpy">'
<tt>llvm.memcpy.*
</tt>' Intrinsic
</a></li>
225 <li><a href=
"#int_memmove">'
<tt>llvm.memmove.*
</tt>' Intrinsic
</a></li>
226 <li><a href=
"#int_memset">'
<tt>llvm.memset.*
</tt>' Intrinsic
</a></li>
227 <li><a href=
"#int_sqrt">'
<tt>llvm.sqrt.*
</tt>' Intrinsic
</a></li>
228 <li><a href=
"#int_powi">'
<tt>llvm.powi.*
</tt>' Intrinsic
</a></li>
229 <li><a href=
"#int_sin">'
<tt>llvm.sin.*
</tt>' Intrinsic
</a></li>
230 <li><a href=
"#int_cos">'
<tt>llvm.cos.*
</tt>' Intrinsic
</a></li>
231 <li><a href=
"#int_pow">'
<tt>llvm.pow.*
</tt>' Intrinsic
</a></li>
234 <li><a href=
"#int_manip">Bit Manipulation Intrinsics
</a>
236 <li><a href=
"#int_bswap">'
<tt>llvm.bswap.*
</tt>' Intrinsics
</a></li>
237 <li><a href=
"#int_ctpop">'
<tt>llvm.ctpop.*
</tt>' Intrinsic
</a></li>
238 <li><a href=
"#int_ctlz">'
<tt>llvm.ctlz.*
</tt>' Intrinsic
</a></li>
239 <li><a href=
"#int_cttz">'
<tt>llvm.cttz.*
</tt>' Intrinsic
</a></li>
242 <li><a href=
"#int_overflow">Arithmetic with Overflow Intrinsics
</a>
244 <li><a href=
"#int_sadd_overflow">'
<tt>llvm.sadd.with.overflow.*
</tt> Intrinsics
</a></li>
245 <li><a href=
"#int_uadd_overflow">'
<tt>llvm.uadd.with.overflow.*
</tt> Intrinsics
</a></li>
246 <li><a href=
"#int_ssub_overflow">'
<tt>llvm.ssub.with.overflow.*
</tt> Intrinsics
</a></li>
247 <li><a href=
"#int_usub_overflow">'
<tt>llvm.usub.with.overflow.*
</tt> Intrinsics
</a></li>
248 <li><a href=
"#int_smul_overflow">'
<tt>llvm.smul.with.overflow.*
</tt> Intrinsics
</a></li>
249 <li><a href=
"#int_umul_overflow">'
<tt>llvm.umul.with.overflow.*
</tt> Intrinsics
</a></li>
252 <li><a href=
"#int_debugger">Debugger intrinsics
</a></li>
253 <li><a href=
"#int_eh">Exception Handling intrinsics
</a></li>
254 <li><a href=
"#int_trampoline">Trampoline Intrinsic
</a>
256 <li><a href=
"#int_it">'
<tt>llvm.init.trampoline
</tt>' Intrinsic
</a></li>
259 <li><a href=
"#int_atomics">Atomic intrinsics
</a>
261 <li><a href=
"#int_memory_barrier"><tt>llvm.memory_barrier
</tt></a></li>
262 <li><a href=
"#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap
</tt></a></li>
263 <li><a href=
"#int_atomic_swap"><tt>llvm.atomic.swap
</tt></a></li>
264 <li><a href=
"#int_atomic_load_add"><tt>llvm.atomic.load.add
</tt></a></li>
265 <li><a href=
"#int_atomic_load_sub"><tt>llvm.atomic.load.sub
</tt></a></li>
266 <li><a href=
"#int_atomic_load_and"><tt>llvm.atomic.load.and
</tt></a></li>
267 <li><a href=
"#int_atomic_load_nand"><tt>llvm.atomic.load.nand
</tt></a></li>
268 <li><a href=
"#int_atomic_load_or"><tt>llvm.atomic.load.or
</tt></a></li>
269 <li><a href=
"#int_atomic_load_xor"><tt>llvm.atomic.load.xor
</tt></a></li>
270 <li><a href=
"#int_atomic_load_max"><tt>llvm.atomic.load.max
</tt></a></li>
271 <li><a href=
"#int_atomic_load_min"><tt>llvm.atomic.load.min
</tt></a></li>
272 <li><a href=
"#int_atomic_load_umax"><tt>llvm.atomic.load.umax
</tt></a></li>
273 <li><a href=
"#int_atomic_load_umin"><tt>llvm.atomic.load.umin
</tt></a></li>
276 <li><a href=
"#int_memorymarkers">Memory Use Markers
</a>
278 <li><a href=
"#int_lifetime_start"><tt>llvm.lifetime.start
</tt></a></li>
279 <li><a href=
"#int_lifetime_end"><tt>llvm.lifetime.end
</tt></a></li>
280 <li><a href=
"#int_invariant_start"><tt>llvm.invariant.start
</tt></a></li>
281 <li><a href=
"#int_invariant_end"><tt>llvm.invariant.end
</tt></a></li>
284 <li><a href=
"#int_general">General intrinsics
</a>
286 <li><a href=
"#int_var_annotation">
287 '
<tt>llvm.var.annotation
</tt>' Intrinsic
</a></li>
288 <li><a href=
"#int_annotation">
289 '
<tt>llvm.annotation.*
</tt>' Intrinsic
</a></li>
290 <li><a href=
"#int_trap">
291 '
<tt>llvm.trap
</tt>' Intrinsic
</a></li>
292 <li><a href=
"#int_stackprotector">
293 '
<tt>llvm.stackprotector
</tt>' Intrinsic
</a></li>
294 <li><a href=
"#int_objectsize">
295 '
<tt>llvm.objectsize
</tt>' Intrinsic
</a></li>
302 <div class=
"doc_author">
303 <p>Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
304 and
<a href=
"mailto:vadve@cs.uiuc.edu">Vikram Adve
</a></p>
307 <!-- *********************************************************************** -->
308 <div class=
"doc_section"> <a name=
"abstract">Abstract
</a></div>
309 <!-- *********************************************************************** -->
311 <div class=
"doc_text">
313 <p>This document is a reference manual for the LLVM assembly language. LLVM is
314 a Static Single Assignment (SSA) based representation that provides type
315 safety, low-level operations, flexibility, and the capability of representing
316 'all' high-level languages cleanly. It is the common code representation
317 used throughout all phases of the LLVM compilation strategy.
</p>
321 <!-- *********************************************************************** -->
322 <div class=
"doc_section"> <a name=
"introduction">Introduction
</a> </div>
323 <!-- *********************************************************************** -->
325 <div class=
"doc_text">
327 <p>The LLVM code representation is designed to be used in three different forms:
328 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
329 for fast loading by a Just-In-Time compiler), and as a human readable
330 assembly language representation. This allows LLVM to provide a powerful
331 intermediate representation for efficient compiler transformations and
332 analysis, while providing a natural means to debug and visualize the
333 transformations. The three different forms of LLVM are all equivalent. This
334 document describes the human readable representation and notation.
</p>
336 <p>The LLVM representation aims to be light-weight and low-level while being
337 expressive, typed, and extensible at the same time. It aims to be a
338 "universal IR" of sorts, by being at a low enough level that high-level ideas
339 may be cleanly mapped to it (similar to how microprocessors are
"universal
340 IR's", allowing many source languages to be mapped to them). By providing
341 type information, LLVM can be used as the target of optimizations: for
342 example, through pointer analysis, it can be proven that a C automatic
343 variable is never accessed outside of the current function, allowing it to
344 be promoted to a simple SSA value instead of a memory location.
</p>
348 <!-- _______________________________________________________________________ -->
349 <div class=
"doc_subsubsection"> <a name=
"wellformed">Well-Formedness
</a> </div>
351 <div class=
"doc_text">
353 <p>It is important to note that this document describes 'well formed' LLVM
354 assembly language. There is a difference between what the parser accepts and
355 what is considered 'well formed'. For example, the following instruction is
356 syntactically okay, but not well formed:
</p>
358 <div class=
"doc_code">
360 %x =
<a href=
"#i_add">add
</a> i32
1, %x
364 <p>because the definition of
<tt>%x
</tt> does not dominate all of its uses. The
365 LLVM infrastructure provides a verification pass that may be used to verify
366 that an LLVM module is well formed. This pass is automatically run by the
367 parser after parsing input assembly and by the optimizer before it outputs
368 bitcode. The violations pointed out by the verifier pass indicate bugs in
369 transformation passes or input to the parser.
</p>
373 <!-- Describe the typesetting conventions here. -->
375 <!-- *********************************************************************** -->
376 <div class=
"doc_section"> <a name=
"identifiers">Identifiers
</a> </div>
377 <!-- *********************************************************************** -->
379 <div class=
"doc_text">
381 <p>LLVM identifiers come in two basic types: global and local. Global
382 identifiers (functions, global variables) begin with the
<tt>'@'
</tt>
383 character. Local identifiers (register names, types) begin with
384 the
<tt>'%'
</tt> character. Additionally, there are three different formats
385 for identifiers, for different purposes:
</p>
388 <li>Named values are represented as a string of characters with their prefix.
389 For example,
<tt>%foo
</tt>,
<tt>@DivisionByZero
</tt>,
390 <tt>%a.really.long.identifier
</tt>. The actual regular expression used is
391 '
<tt>[%@][a-zA-Z$._][a-zA-Z$._0-
9]*
</tt>'. Identifiers which require
392 other characters in their names can be surrounded with quotes. Special
393 characters may be escaped using
<tt>"\xx"</tt> where
<tt>xx
</tt> is the
394 ASCII code for the character in hexadecimal. In this way, any character
395 can be used in a name value, even quotes themselves.
</li>
397 <li>Unnamed values are represented as an unsigned numeric value with their
398 prefix. For example,
<tt>%
12</tt>,
<tt>@
2</tt>,
<tt>%
44</tt>.
</li>
400 <li>Constants, which are described in a
<a href=
"#constants">section about
401 constants
</a>, below.
</li>
404 <p>LLVM requires that values start with a prefix for two reasons: Compilers
405 don't need to worry about name clashes with reserved words, and the set of
406 reserved words may be expanded in the future without penalty. Additionally,
407 unnamed identifiers allow a compiler to quickly come up with a temporary
408 variable without having to avoid symbol table conflicts.
</p>
410 <p>Reserved words in LLVM are very similar to reserved words in other
411 languages. There are keywords for different opcodes
412 ('
<tt><a href=
"#i_add">add
</a></tt>',
413 '
<tt><a href=
"#i_bitcast">bitcast
</a></tt>',
414 '
<tt><a href=
"#i_ret">ret
</a></tt>', etc...), for primitive type names
415 ('
<tt><a href=
"#t_void">void
</a></tt>',
416 '
<tt><a href=
"#t_primitive">i32
</a></tt>', etc...), and others. These
417 reserved words cannot conflict with variable names, because none of them
418 start with a prefix character (
<tt>'%'
</tt> or
<tt>'@'
</tt>).
</p>
420 <p>Here is an example of LLVM code to multiply the integer variable
421 '
<tt>%X
</tt>' by
8:
</p>
425 <div class=
"doc_code">
427 %result =
<a href=
"#i_mul">mul
</a> i32 %X,
8
431 <p>After strength reduction:
</p>
433 <div class=
"doc_code">
435 %result =
<a href=
"#i_shl">shl
</a> i32 %X, i8
3
439 <p>And the hard way:
</p>
441 <div class=
"doc_code">
443 %
0 =
<a href=
"#i_add">add
</a> i32 %X, %X
<i>; yields {i32}:%
0</i>
444 %
1 =
<a href=
"#i_add">add
</a> i32 %
0, %
0 <i>; yields {i32}:%
1</i>
445 %result =
<a href=
"#i_add">add
</a> i32 %
1, %
1
449 <p>This last way of multiplying
<tt>%X
</tt> by
8 illustrates several important
450 lexical features of LLVM:
</p>
453 <li>Comments are delimited with a '
<tt>;
</tt>' and go until the end of
456 <li>Unnamed temporaries are created when the result of a computation is not
457 assigned to a named value.
</li>
459 <li>Unnamed temporaries are numbered sequentially
</li>
462 <p>It also shows a convention that we follow in this document. When
463 demonstrating instructions, we will follow an instruction with a comment that
464 defines the type and name of value produced. Comments are shown in italic
469 <!-- *********************************************************************** -->
470 <div class=
"doc_section"> <a name=
"highlevel">High Level Structure
</a> </div>
471 <!-- *********************************************************************** -->
473 <!-- ======================================================================= -->
474 <div class=
"doc_subsection"> <a name=
"modulestructure">Module Structure
</a>
477 <div class=
"doc_text">
479 <p>LLVM programs are composed of
"Module"s, each of which is a translation unit
480 of the input programs. Each module consists of functions, global variables,
481 and symbol table entries. Modules may be combined together with the LLVM
482 linker, which merges function (and global variable) definitions, resolves
483 forward declarations, and merges symbol table entries. Here is an example of
484 the
"hello world" module:
</p>
486 <div class=
"doc_code">
488 <i>; Declare the string constant as a global constant.
</i>
489 <a href=
"#identifiers">@.LC0
</a> =
<a href=
"#linkage_internal">internal
</a> <a href=
"#globalvars">constant
</a> <a href=
"#t_array">[
13 x i8]
</a> c
"hello world\0A\00" <i>; [
13 x i8]*
</i>
491 <i>; External declaration of the puts function
</i>
492 <a href=
"#functionstructure">declare
</a> i32 @puts(i8 *)
<i>; i32(i8 *)*
</i>
494 <i>; Definition of main function
</i>
495 define i32 @main() {
<i>; i32()*
</i>
496 <i>; Convert [
13 x i8]* to i8 *...
</i>
497 %cast210 =
<a href=
"#i_getelementptr">getelementptr
</a> [
13 x i8]* @.LC0, i64
0, i64
0 <i>; i8 *
</i>
499 <i>; Call puts function to write out the string to stdout.
</i>
500 <a href=
"#i_call">call
</a> i32 @puts(i8 * %cast210)
<i>; i32
</i>
501 <a href=
"#i_ret">ret
</a> i32
0<br>}
<br>
505 <p>This example is made up of a
<a href=
"#globalvars">global variable
</a> named
506 "<tt>.LC0</tt>", an external declaration of the
"<tt>puts</tt>" function, and
507 a
<a href=
"#functionstructure">function definition
</a> for
510 <p>In general, a module is made up of a list of global values, where both
511 functions and global variables are global values. Global values are
512 represented by a pointer to a memory location (in this case, a pointer to an
513 array of char, and a pointer to a function), and have one of the
514 following
<a href=
"#linkage">linkage types
</a>.
</p>
518 <!-- ======================================================================= -->
519 <div class=
"doc_subsection">
520 <a name=
"linkage">Linkage Types
</a>
523 <div class=
"doc_text">
525 <p>All Global Variables and Functions have one of the following types of
529 <dt><tt><b><a name=
"linkage_private">private
</a></b></tt></dt>
530 <dd>Global values with private linkage are only directly accessible by objects
531 in the current module. In particular, linking code into a module with an
532 private global value may cause the private to be renamed as necessary to
533 avoid collisions. Because the symbol is private to the module, all
534 references can be updated. This doesn't show up in any symbol table in the
537 <dt><tt><b><a name=
"linkage_linker_private">linker_private
</a></b></tt></dt>
538 <dd>Similar to private, but the symbol is passed through the assembler and
539 removed by the linker after evaluation. Note that (unlike private
540 symbols) linker_private symbols are subject to coalescing by the linker:
541 weak symbols get merged and redefinitions are rejected. However, unlike
542 normal strong symbols, they are removed by the linker from the final
543 linked image (executable or dynamic library).
</dd>
545 <dt><tt><b><a name=
"linkage_internal">internal
</a></b></tt></dt>
546 <dd>Similar to private, but the value shows as a local symbol
547 (
<tt>STB_LOCAL
</tt> in the case of ELF) in the object file. This
548 corresponds to the notion of the '
<tt>static
</tt>' keyword in C.
</dd>
550 <dt><tt><b><a name=
"linkage_available_externally">available_externally
</a></b></tt></dt>
551 <dd>Globals with
"<tt>available_externally</tt>" linkage are never emitted
552 into the object file corresponding to the LLVM module. They exist to
553 allow inlining and other optimizations to take place given knowledge of
554 the definition of the global, which is known to be somewhere outside the
555 module. Globals with
<tt>available_externally
</tt> linkage are allowed to
556 be discarded at will, and are otherwise the same as
<tt>linkonce_odr
</tt>.
557 This linkage type is only allowed on definitions, not declarations.
</dd>
559 <dt><tt><b><a name=
"linkage_linkonce">linkonce
</a></b></tt></dt>
560 <dd>Globals with
"<tt>linkonce</tt>" linkage are merged with other globals of
561 the same name when linkage occurs. This is typically used to implement
562 inline functions, templates, or other code which must be generated in each
563 translation unit that uses it. Unreferenced
<tt>linkonce
</tt> globals are
564 allowed to be discarded.
</dd>
566 <dt><tt><b><a name=
"linkage_weak">weak
</a></b></tt></dt>
567 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
568 <tt>linkonce
</tt> linkage, except that unreferenced globals with
569 <tt>weak
</tt> linkage may not be discarded. This is used for globals that
570 are declared
"weak" in C source code.
</dd>
572 <dt><tt><b><a name=
"linkage_common">common
</a></b></tt></dt>
573 <dd>"<tt>common</tt>" linkage is most similar to
"<tt>weak</tt>" linkage, but
574 they are used for tentative definitions in C, such as
"<tt>int X;</tt>" at
576 Symbols with
"<tt>common</tt>" linkage are merged in the same way as
577 <tt>weak symbols
</tt>, and they may not be deleted if unreferenced.
578 <tt>common
</tt> symbols may not have an explicit section,
579 must have a zero initializer, and may not be marked '
<a
580 href=
"#globalvars"><tt>constant
</tt></a>'. Functions and aliases may not
581 have common linkage.
</dd>
584 <dt><tt><b><a name=
"linkage_appending">appending
</a></b></tt></dt>
585 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
586 pointer to array type. When two global variables with appending linkage
587 are linked together, the two global arrays are appended together. This is
588 the LLVM, typesafe, equivalent of having the system linker append together
589 "sections" with identical names when .o files are linked.
</dd>
591 <dt><tt><b><a name=
"linkage_externweak">extern_weak
</a></b></tt></dt>
592 <dd>The semantics of this linkage follow the ELF object file model: the symbol
593 is weak until linked, if not linked, the symbol becomes null instead of
594 being an undefined reference.
</dd>
596 <dt><tt><b><a name=
"linkage_linkonce_odr">linkonce_odr
</a></b></tt></dt>
597 <dt><tt><b><a name=
"linkage_weak_odr">weak_odr
</a></b></tt></dt>
598 <dd>Some languages allow differing globals to be merged, such as two functions
599 with different semantics. Other languages, such as
<tt>C++
</tt>, ensure
600 that only equivalent globals are ever merged (the
"one definition rule" -
601 "ODR"). Such languages can use the
<tt>linkonce_odr
</tt>
602 and
<tt>weak_odr
</tt> linkage types to indicate that the global will only
603 be merged with equivalent globals. These linkage types are otherwise the
604 same as their non-
<tt>odr
</tt> versions.
</dd>
606 <dt><tt><b><a name=
"linkage_external">externally visible
</a></b></tt>:
</dt>
607 <dd>If none of the above identifiers are used, the global is externally
608 visible, meaning that it participates in linkage and can be used to
609 resolve external symbol references.
</dd>
612 <p>The next two types of linkage are targeted for Microsoft Windows platform
613 only. They are designed to support importing (exporting) symbols from (to)
614 DLLs (Dynamic Link Libraries).
</p>
617 <dt><tt><b><a name=
"linkage_dllimport">dllimport
</a></b></tt></dt>
618 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
619 or variable via a global pointer to a pointer that is set up by the DLL
620 exporting the symbol. On Microsoft Windows targets, the pointer name is
621 formed by combining
<code>__imp_
</code> and the function or variable
624 <dt><tt><b><a name=
"linkage_dllexport">dllexport
</a></b></tt></dt>
625 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
626 pointer to a pointer in a DLL, so that it can be referenced with the
627 <tt>dllimport
</tt> attribute. On Microsoft Windows targets, the pointer
628 name is formed by combining
<code>__imp_
</code> and the function or
632 <p>For example, since the
"<tt>.LC0</tt>" variable is defined to be internal, if
633 another module defined a
"<tt>.LC0</tt>" variable and was linked with this
634 one, one of the two would be renamed, preventing a collision. Since
635 "<tt>main</tt>" and
"<tt>puts</tt>" are external (i.e., lacking any linkage
636 declarations), they are accessible outside of the current module.
</p>
638 <p>It is illegal for a function
<i>declaration
</i> to have any linkage type
639 other than
"externally visible",
<tt>dllimport
</tt>
640 or
<tt>extern_weak
</tt>.
</p>
642 <p>Aliases can have only
<tt>external
</tt>,
<tt>internal
</tt>,
<tt>weak
</tt>
643 or
<tt>weak_odr
</tt> linkages.
</p>
647 <!-- ======================================================================= -->
648 <div class=
"doc_subsection">
649 <a name=
"callingconv">Calling Conventions
</a>
652 <div class=
"doc_text">
654 <p>LLVM
<a href=
"#functionstructure">functions
</a>,
<a href=
"#i_call">calls
</a>
655 and
<a href=
"#i_invoke">invokes
</a> can all have an optional calling
656 convention specified for the call. The calling convention of any pair of
657 dynamic caller/callee must match, or the behavior of the program is
658 undefined. The following calling conventions are supported by LLVM, and more
659 may be added in the future:
</p>
662 <dt><b>"<tt>ccc</tt>" - The C calling convention
</b>:
</dt>
663 <dd>This calling convention (the default if no other calling convention is
664 specified) matches the target C calling conventions. This calling
665 convention supports varargs function calls and tolerates some mismatch in
666 the declared prototype and implemented declaration of the function (as
669 <dt><b>"<tt>fastcc</tt>" - The fast calling convention
</b>:
</dt>
670 <dd>This calling convention attempts to make calls as fast as possible
671 (e.g. by passing things in registers). This calling convention allows the
672 target to use whatever tricks it wants to produce fast code for the
673 target, without having to conform to an externally specified ABI
674 (Application Binary Interface). Implementations of this convention should
675 allow arbitrary
<a href=
"CodeGenerator.html#tailcallopt">tail call
676 optimization
</a> to be supported. This calling convention does not
677 support varargs and requires the prototype of all callees to exactly match
678 the prototype of the function definition.
</dd>
680 <dt><b>"<tt>coldcc</tt>" - The cold calling convention
</b>:
</dt>
681 <dd>This calling convention attempts to make code in the caller as efficient
682 as possible under the assumption that the call is not commonly executed.
683 As such, these calls often preserve all registers so that the call does
684 not break any live ranges in the caller side. This calling convention
685 does not support varargs and requires the prototype of all callees to
686 exactly match the prototype of the function definition.
</dd>
688 <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention
</b>:
</dt>
689 <dd>Any calling convention may be specified by number, allowing
690 target-specific calling conventions to be used. Target specific calling
691 conventions start at
64.
</dd>
694 <p>More calling conventions can be added/defined on an as-needed basis, to
695 support Pascal conventions or any other well-known target-independent
700 <!-- ======================================================================= -->
701 <div class=
"doc_subsection">
702 <a name=
"visibility">Visibility Styles
</a>
705 <div class=
"doc_text">
707 <p>All Global Variables and Functions have one of the following visibility
711 <dt><b>"<tt>default</tt>" - Default style
</b>:
</dt>
712 <dd>On targets that use the ELF object file format, default visibility means
713 that the declaration is visible to other modules and, in shared libraries,
714 means that the declared entity may be overridden. On Darwin, default
715 visibility means that the declaration is visible to other modules. Default
716 visibility corresponds to
"external linkage" in the language.
</dd>
718 <dt><b>"<tt>hidden</tt>" - Hidden style
</b>:
</dt>
719 <dd>Two declarations of an object with hidden visibility refer to the same
720 object if they are in the same shared object. Usually, hidden visibility
721 indicates that the symbol will not be placed into the dynamic symbol
722 table, so no other module (executable or shared library) can reference it
725 <dt><b>"<tt>protected</tt>" - Protected style
</b>:
</dt>
726 <dd>On ELF, protected visibility indicates that the symbol will be placed in
727 the dynamic symbol table, but that references within the defining module
728 will bind to the local symbol. That is, the symbol cannot be overridden by
734 <!-- ======================================================================= -->
735 <div class=
"doc_subsection">
736 <a name=
"namedtypes">Named Types
</a>
739 <div class=
"doc_text">
741 <p>LLVM IR allows you to specify name aliases for certain types. This can make
742 it easier to read the IR and make the IR more condensed (particularly when
743 recursive types are involved). An example of a name specification is:
</p>
745 <div class=
"doc_code">
747 %mytype = type { %mytype*, i32 }
751 <p>You may give a name to any
<a href=
"#typesystem">type
</a> except
752 "<a href="t_void
">void</a>". Type name aliases may be used anywhere a type
753 is expected with the syntax
"%mytype".
</p>
755 <p>Note that type names are aliases for the structural type that they indicate,
756 and that you can therefore specify multiple names for the same type. This
757 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
758 uses structural typing, the name is not part of the type. When printing out
759 LLVM IR, the printer will pick
<em>one name
</em> to render all types of a
760 particular shape. This means that if you have code where two different
761 source types end up having the same LLVM type, that the dumper will sometimes
762 print the
"wrong" or unexpected type. This is an important design point and
763 isn't going to change.
</p>
767 <!-- ======================================================================= -->
768 <div class=
"doc_subsection">
769 <a name=
"globalvars">Global Variables
</a>
772 <div class=
"doc_text">
774 <p>Global variables define regions of memory allocated at compilation time
775 instead of run-time. Global variables may optionally be initialized, may
776 have an explicit section to be placed in, and may have an optional explicit
777 alignment specified. A variable may be defined as
"thread_local", which
778 means that it will not be shared by threads (each thread will have a
779 separated copy of the variable). A variable may be defined as a global
780 "constant," which indicates that the contents of the variable
781 will
<b>never
</b> be modified (enabling better optimization, allowing the
782 global data to be placed in the read-only section of an executable, etc).
783 Note that variables that need runtime initialization cannot be marked
784 "constant" as there is a store to the variable.
</p>
786 <p>LLVM explicitly allows
<em>declarations
</em> of global variables to be marked
787 constant, even if the final definition of the global is not. This capability
788 can be used to enable slightly better optimization of the program, but
789 requires the language definition to guarantee that optimizations based on the
790 'constantness' are valid for the translation units that do not include the
793 <p>As SSA values, global variables define pointer values that are in scope
794 (i.e. they dominate) all basic blocks in the program. Global variables
795 always define a pointer to their
"content" type because they describe a
796 region of memory, and all memory objects in LLVM are accessed through
799 <p>A global variable may be declared to reside in a target-specific numbered
800 address space. For targets that support them, address spaces may affect how
801 optimizations are performed and/or what target instructions are used to
802 access the variable. The default address space is zero. The address space
803 qualifier must precede any other attributes.
</p>
805 <p>LLVM allows an explicit section to be specified for globals. If the target
806 supports it, it will emit globals to the section specified.
</p>
808 <p>An explicit alignment may be specified for a global. If not present, or if
809 the alignment is set to zero, the alignment of the global is set by the
810 target to whatever it feels convenient. If an explicit alignment is
811 specified, the global is forced to have at least that much alignment. All
812 alignments must be a power of
2.
</p>
814 <p>For example, the following defines a global in a numbered address space with
815 an initializer, section, and alignment:
</p>
817 <div class=
"doc_code">
819 @G = addrspace(
5) constant float
1.0, section
"foo", align
4
826 <!-- ======================================================================= -->
827 <div class=
"doc_subsection">
828 <a name=
"functionstructure">Functions
</a>
831 <div class=
"doc_text">
833 <p>LLVM function definitions consist of the
"<tt>define</tt>" keyord, an
834 optional
<a href=
"#linkage">linkage type
</a>, an optional
835 <a href=
"#visibility">visibility style
</a>, an optional
836 <a href=
"#callingconv">calling convention
</a>, a return type, an optional
837 <a href=
"#paramattrs">parameter attribute
</a> for the return type, a function
838 name, a (possibly empty) argument list (each with optional
839 <a href=
"#paramattrs">parameter attributes
</a>), optional
840 <a href=
"#fnattrs">function attributes
</a>, an optional section, an optional
841 alignment, an optional
<a href=
"#gc">garbage collector name
</a>, an opening
842 curly brace, a list of basic blocks, and a closing curly brace.
</p>
844 <p>LLVM function declarations consist of the
"<tt>declare</tt>" keyword, an
845 optional
<a href=
"#linkage">linkage type
</a>, an optional
846 <a href=
"#visibility">visibility style
</a>, an optional
847 <a href=
"#callingconv">calling convention
</a>, a return type, an optional
848 <a href=
"#paramattrs">parameter attribute
</a> for the return type, a function
849 name, a possibly empty list of arguments, an optional alignment, and an
850 optional
<a href=
"#gc">garbage collector name
</a>.
</p>
852 <p>A function definition contains a list of basic blocks, forming the CFG
853 (Control Flow Graph) for the function. Each basic block may optionally start
854 with a label (giving the basic block a symbol table entry), contains a list
855 of instructions, and ends with a
<a href=
"#terminators">terminator
</a>
856 instruction (such as a branch or function return).
</p>
858 <p>The first basic block in a function is special in two ways: it is immediately
859 executed on entrance to the function, and it is not allowed to have
860 predecessor basic blocks (i.e. there can not be any branches to the entry
861 block of a function). Because the block can have no predecessors, it also
862 cannot have any
<a href=
"#i_phi">PHI nodes
</a>.
</p>
864 <p>LLVM allows an explicit section to be specified for functions. If the target
865 supports it, it will emit functions to the section specified.
</p>
867 <p>An explicit alignment may be specified for a function. If not present, or if
868 the alignment is set to zero, the alignment of the function is set by the
869 target to whatever it feels convenient. If an explicit alignment is
870 specified, the function is forced to have at least that much alignment. All
871 alignments must be a power of
2.
</p>
874 <div class=
"doc_code">
876 define [
<a href=
"#linkage">linkage
</a>] [
<a href=
"#visibility">visibility
</a>]
877 [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
878 <ResultType
> @
<FunctionName
> ([argument list])
879 [
<a href=
"#fnattrs">fn Attrs
</a>] [section
"name"] [align N]
880 [
<a href=
"#gc">gc
</a>] { ... }
886 <!-- ======================================================================= -->
887 <div class=
"doc_subsection">
888 <a name=
"aliasstructure">Aliases
</a>
891 <div class=
"doc_text">
893 <p>Aliases act as
"second name" for the aliasee value (which can be either
894 function, global variable, another alias or bitcast of global value). Aliases
895 may have an optional
<a href=
"#linkage">linkage type
</a>, and an
896 optional
<a href=
"#visibility">visibility style
</a>.
</p>
899 <div class=
"doc_code">
901 @
<Name
> = alias [Linkage] [Visibility]
<AliaseeTy
> @
<Aliasee
>
907 <!-- ======================================================================= -->
908 <div class=
"doc_subsection"><a name=
"paramattrs">Parameter Attributes
</a></div>
910 <div class=
"doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes
</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.
</p>
919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
923 <div class=
"doc_code">
925 declare i32 @printf(i8* noalias nocapture, ...)
926 declare i32 @atoi(i8 zeroext)
927 declare signext i8 @returns_signed_char()
931 <p>Note that any attributes for the function result (
<tt>nounwind
</tt>,
932 <tt>readonly
</tt>) come immediately after the argument list.
</p>
934 <p>Currently, only the following parameter attributes are defined:
</p>
937 <dt><tt><b>zeroext
</b></tt></dt>
938 <dd>This indicates to the code generator that the parameter or return value
939 should be zero-extended to a
32-bit value by the caller (for a parameter)
940 or the callee (for a return value).
</dd>
942 <dt><tt><b>signext
</b></tt></dt>
943 <dd>This indicates to the code generator that the parameter or return value
944 should be sign-extended to a
32-bit value by the caller (for a parameter)
945 or the callee (for a return value).
</dd>
947 <dt><tt><b>inreg
</b></tt></dt>
948 <dd>This indicates that this parameter or return value should be treated in a
949 special target-dependent fashion during while emitting code for a function
950 call or return (usually, by putting it in a register as opposed to memory,
951 though some targets use it to distinguish between two different kinds of
952 registers). Use of this attribute is target-specific.
</dd>
954 <dt><tt><b><a name=
"byval">byval
</a></b></tt></dt>
955 <dd>This indicates that the pointer parameter should really be passed by value
956 to the function. The attribute implies that a hidden copy of the pointee
957 is made between the caller and the callee, so the callee is unable to
958 modify the value in the callee. This attribute is only valid on LLVM
959 pointer arguments. It is generally used to pass structs and arrays by
960 value, but is also valid on pointers to scalars. The copy is considered
961 to belong to the caller not the callee (for example,
962 <tt><a href=
"#readonly">readonly
</a></tt> functions should not write to
963 <tt>byval
</tt> parameters). This is not a valid attribute for return
964 values. The byval attribute also supports specifying an alignment with
965 the align attribute. This has a target-specific effect on the code
966 generator that usually indicates a desired alignment for the synthesized
969 <dt><tt><b>sret
</b></tt></dt>
970 <dd>This indicates that the pointer parameter specifies the address of a
971 structure that is the return value of the function in the source program.
972 This pointer must be guaranteed by the caller to be valid: loads and
973 stores to the structure may be assumed by the callee to not to trap. This
974 may only be applied to the first parameter. This is not a valid attribute
975 for return values.
</dd>
977 <dt><tt><b>noalias
</b></tt></dt>
978 <dd>This indicates that the pointer does not alias any global or any other
979 parameter. The caller is responsible for ensuring that this is the
980 case. On a function return value,
<tt>noalias
</tt> additionally indicates
981 that the pointer does not alias any other pointers visible to the
982 caller. For further details, please see the discussion of the NoAlias
984 <a href=
"http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
987 <dt><tt><b>nocapture
</b></tt></dt>
988 <dd>This indicates that the callee does not make any copies of the pointer
989 that outlive the callee itself. This is not a valid attribute for return
992 <dt><tt><b>nest
</b></tt></dt>
993 <dd>This indicates that the pointer parameter can be excised using the
994 <a href=
"#int_trampoline">trampoline intrinsics
</a>. This is not a valid
995 attribute for return values.
</dd>
1000 <!-- ======================================================================= -->
1001 <div class=
"doc_subsection">
1002 <a name=
"gc">Garbage Collector Names
</a>
1005 <div class=
"doc_text">
1007 <p>Each function may specify a garbage collector name, which is simply a
1010 <div class=
"doc_code">
1012 define void @f() gc
"name" { ... }
1016 <p>The compiler declares the supported values of
<i>name
</i>. Specifying a
1017 collector which will cause the compiler to alter its output in order to
1018 support the named garbage collection algorithm.
</p>
1022 <!-- ======================================================================= -->
1023 <div class=
"doc_subsection">
1024 <a name=
"fnattrs">Function Attributes
</a>
1027 <div class=
"doc_text">
1029 <p>Function attributes are set to communicate additional information about a
1030 function. Function attributes are considered to be part of the function, not
1031 of the function type, so functions with different parameter attributes can
1032 have the same function type.
</p>
1034 <p>Function attributes are simple keywords that follow the type specified. If
1035 multiple attributes are needed, they are space separated. For example:
</p>
1037 <div class=
"doc_code">
1039 define void @f() noinline { ... }
1040 define void @f() alwaysinline { ... }
1041 define void @f() alwaysinline optsize { ... }
1042 define void @f() optsize { ... }
1047 <dt><tt><b>alwaysinline
</b></tt></dt>
1048 <dd>This attribute indicates that the inliner should attempt to inline this
1049 function into callers whenever possible, ignoring any active inlining size
1050 threshold for this caller.
</dd>
1052 <dt><tt><b>inlinehint
</b></tt></dt>
1053 <dd>This attribute indicates that the source code contained a hint that inlining
1054 this function is desirable (such as the
"inline" keyword in C/C++). It
1055 is just a hint; it imposes no requirements on the inliner.
</dd>
1057 <dt><tt><b>noinline
</b></tt></dt>
1058 <dd>This attribute indicates that the inliner should never inline this
1059 function in any situation. This attribute may not be used together with
1060 the
<tt>alwaysinline
</tt> attribute.
</dd>
1062 <dt><tt><b>optsize
</b></tt></dt>
1063 <dd>This attribute suggests that optimization passes and code generator passes
1064 make choices that keep the code size of this function low, and otherwise
1065 do optimizations specifically to reduce code size.
</dd>
1067 <dt><tt><b>noreturn
</b></tt></dt>
1068 <dd>This function attribute indicates that the function never returns
1069 normally. This produces undefined behavior at runtime if the function
1070 ever does dynamically return.
</dd>
1072 <dt><tt><b>nounwind
</b></tt></dt>
1073 <dd>This function attribute indicates that the function never returns with an
1074 unwind or exceptional control flow. If the function does unwind, its
1075 runtime behavior is undefined.
</dd>
1077 <dt><tt><b>readnone
</b></tt></dt>
1078 <dd>This attribute indicates that the function computes its result (or decides
1079 to unwind an exception) based strictly on its arguments, without
1080 dereferencing any pointer arguments or otherwise accessing any mutable
1081 state (e.g. memory, control registers, etc) visible to caller functions.
1082 It does not write through any pointer arguments
1083 (including
<tt><a href=
"#byval">byval
</a></tt> arguments) and never
1084 changes any state visible to callers. This means that it cannot unwind
1085 exceptions by calling the
<tt>C++
</tt> exception throwing methods, but
1086 could use the
<tt>unwind
</tt> instruction.
</dd>
1088 <dt><tt><b><a name=
"readonly">readonly
</a></b></tt></dt>
1089 <dd>This attribute indicates that the function does not write through any
1090 pointer arguments (including
<tt><a href=
"#byval">byval
</a></tt>
1091 arguments) or otherwise modify any state (e.g. memory, control registers,
1092 etc) visible to caller functions. It may dereference pointer arguments
1093 and read state that may be set in the caller. A readonly function always
1094 returns the same value (or unwinds an exception identically) when called
1095 with the same set of arguments and global state. It cannot unwind an
1096 exception by calling the
<tt>C++
</tt> exception throwing methods, but may
1097 use the
<tt>unwind
</tt> instruction.
</dd>
1099 <dt><tt><b><a name=
"ssp">ssp
</a></b></tt></dt>
1100 <dd>This attribute indicates that the function should emit a stack smashing
1101 protector. It is in the form of a
"canary"—a random value placed on
1102 the stack before the local variables that's checked upon return from the
1103 function to see if it has been overwritten. A heuristic is used to
1104 determine if a function needs stack protectors or not.
<br>
1106 If a function that has an
<tt>ssp
</tt> attribute is inlined into a
1107 function that doesn't have an
<tt>ssp
</tt> attribute, then the resulting
1108 function will have an
<tt>ssp
</tt> attribute.
</dd>
1110 <dt><tt><b>sspreq
</b></tt></dt>
1111 <dd>This attribute indicates that the function should
<em>always
</em> emit a
1112 stack smashing protector. This overrides
1113 the
<tt><a href=
"#ssp">ssp
</a></tt> function attribute.
<br>
1115 If a function that has an
<tt>sspreq
</tt> attribute is inlined into a
1116 function that doesn't have an
<tt>sspreq
</tt> attribute or which has
1117 an
<tt>ssp
</tt> attribute, then the resulting function will have
1118 an
<tt>sspreq
</tt> attribute.
</dd>
1120 <dt><tt><b>noredzone
</b></tt></dt>
1121 <dd>This attribute indicates that the code generator should not use a red
1122 zone, even if the target-specific ABI normally permits it.
</dd>
1124 <dt><tt><b>noimplicitfloat
</b></tt></dt>
1125 <dd>This attributes disables implicit floating point instructions.
</dd>
1127 <dt><tt><b>naked
</b></tt></dt>
1128 <dd>This attribute disables prologue / epilogue emission for the function.
1129 This can have very system-specific consequences.
</dd>
1134 <!-- ======================================================================= -->
1135 <div class=
"doc_subsection">
1136 <a name=
"moduleasm">Module-Level Inline Assembly
</a>
1139 <div class=
"doc_text">
1141 <p>Modules may contain
"module-level inline asm" blocks, which corresponds to
1142 the GCC
"file scope inline asm" blocks. These blocks are internally
1143 concatenated by LLVM and treated as a single unit, but may be separated in
1144 the
<tt>.ll
</tt> file if desired. The syntax is very simple:
</p>
1146 <div class=
"doc_code">
1148 module asm
"inline asm code goes here"
1149 module asm
"more can go here"
1153 <p>The strings can contain any character by escaping non-printable characters.
1154 The escape sequence used is simply
"\xx" where
"xx" is the two digit hex code
1157 <p>The inline asm code is simply printed to the machine code .s file when
1158 assembly code is generated.
</p>
1162 <!-- ======================================================================= -->
1163 <div class=
"doc_subsection">
1164 <a name=
"datalayout">Data Layout
</a>
1167 <div class=
"doc_text">
1169 <p>A module may specify a target specific data layout string that specifies how
1170 data is to be laid out in memory. The syntax for the data layout is
1173 <div class=
"doc_code">
1175 target datalayout =
"<i>layout specification</i>"
1179 <p>The
<i>layout specification
</i> consists of a list of specifications
1180 separated by the minus sign character ('-'). Each specification starts with
1181 a letter and may include other information after the letter to define some
1182 aspect of the data layout. The specifications accepted are as follows:
</p>
1186 <dd>Specifies that the target lays out data in big-endian form. That is, the
1187 bits with the most significance have the lowest address location.
</dd>
1190 <dd>Specifies that the target lays out data in little-endian form. That is,
1191 the bits with the least significance have the lowest address
1194 <dt><tt>p:
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1195 <dd>This specifies the
<i>size
</i> of a pointer and its
<i>abi
</i> and
1196 <i>preferred
</i> alignments. All sizes are in bits. Specifying
1197 the
<i>pref
</i> alignment is optional. If omitted, the
1198 preceding
<tt>:
</tt> should be omitted too.
</dd>
1200 <dt><tt>i
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1201 <dd>This specifies the alignment for an integer type of a given bit
1202 <i>size
</i>. The value of
<i>size
</i> must be in the range [
1,
2^
23).
</dd>
1204 <dt><tt>v
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1205 <dd>This specifies the alignment for a vector type of a given bit
1208 <dt><tt>f
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1209 <dd>This specifies the alignment for a floating point type of a given bit
1210 <i>size
</i>. The value of
<i>size
</i> must be either
32 (float) or
64
1213 <dt><tt>a
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1214 <dd>This specifies the alignment for an aggregate type of a given bit
1217 <dt><tt>s
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1218 <dd>This specifies the alignment for a stack object of a given bit
1221 <dt><tt>n
<i>size1
</i>:
<i>size2
</i>:
<i>size3
</i>...
</tt></dt>
1222 <dd>This specifies a set of native integer widths for the target CPU
1223 in bits. For example, it might contain
"n32" for
32-bit PowerPC,
1224 "n32:64" for PowerPC
64, or
"n8:16:32:64" for X86-
64. Elements of
1225 this set are considered to support most general arithmetic
1226 operations efficiently.
</dd>
1229 <p>When constructing the data layout for a given target, LLVM starts with a
1230 default set of specifications which are then (possibly) overriden by the
1231 specifications in the
<tt>datalayout
</tt> keyword. The default specifications
1232 are given in this list:
</p>
1235 <li><tt>E
</tt> - big endian
</li>
1236 <li><tt>p:
32:
64:
64</tt> -
32-bit pointers with
64-bit alignment
</li>
1237 <li><tt>i1:
8:
8</tt> - i1 is
8-bit (byte) aligned
</li>
1238 <li><tt>i8:
8:
8</tt> - i8 is
8-bit (byte) aligned
</li>
1239 <li><tt>i16:
16:
16</tt> - i16 is
16-bit aligned
</li>
1240 <li><tt>i32:
32:
32</tt> - i32 is
32-bit aligned
</li>
1241 <li><tt>i64:
32:
64</tt> - i64 has ABI alignment of
32-bits but preferred
1242 alignment of
64-bits
</li>
1243 <li><tt>f32:
32:
32</tt> - float is
32-bit aligned
</li>
1244 <li><tt>f64:
64:
64</tt> - double is
64-bit aligned
</li>
1245 <li><tt>v64:
64:
64</tt> -
64-bit vector is
64-bit aligned
</li>
1246 <li><tt>v128:
128:
128</tt> -
128-bit vector is
128-bit aligned
</li>
1247 <li><tt>a0:
0:
1</tt> - aggregates are
8-bit aligned
</li>
1248 <li><tt>s0:
64:
64</tt> - stack objects are
64-bit aligned
</li>
1251 <p>When LLVM is determining the alignment for a given type, it uses the
1252 following rules:
</p>
1255 <li>If the type sought is an exact match for one of the specifications, that
1256 specification is used.
</li>
1258 <li>If no match is found, and the type sought is an integer type, then the
1259 smallest integer type that is larger than the bitwidth of the sought type
1260 is used. If none of the specifications are larger than the bitwidth then
1261 the the largest integer type is used. For example, given the default
1262 specifications above, the i7 type will use the alignment of i8 (next
1263 largest) while both i65 and i256 will use the alignment of i64 (largest
1266 <li>If no match is found, and the type sought is a vector type, then the
1267 largest vector type that is smaller than the sought vector type will be
1268 used as a fall back. This happens because
<128 x double
> can be
1269 implemented in terms of
64 <2 x double
>, for example.
</li>
1274 <!-- ======================================================================= -->
1275 <div class=
"doc_subsection">
1276 <a name=
"pointeraliasing">Pointer Aliasing Rules
</a>
1279 <div class=
"doc_text">
1281 <p>Any memory access must be done through a pointer value associated
1282 with an address range of the memory access, otherwise the behavior
1283 is undefined. Pointer values are associated with address ranges
1284 according to the following rules:
</p>
1287 <li>A pointer value formed from a
1288 <tt><a href=
"#i_getelementptr">getelementptr
</a></tt> instruction
1289 is associated with the addresses associated with the first operand
1290 of the
<tt>getelementptr
</tt>.
</li>
1291 <li>An address of a global variable is associated with the address
1292 range of the variable's storage.
</li>
1293 <li>The result value of an allocation instruction is associated with
1294 the address range of the allocated storage.
</li>
1295 <li>A null pointer in the default address-space is associated with
1297 <li>A pointer value formed by an
1298 <tt><a href=
"#i_inttoptr">inttoptr
</a></tt> is associated with all
1299 address ranges of all pointer values that contribute (directly or
1300 indirectly) to the computation of the pointer's value.
</li>
1301 <li>The result value of a
1302 <tt><a href=
"#i_bitcast">bitcast
</a></tt> is associated with all
1303 addresses associated with the operand of the
<tt>bitcast
</tt>.
</li>
1304 <li>An integer constant other than zero or a pointer value returned
1305 from a function not defined within LLVM may be associated with address
1306 ranges allocated through mechanisms other than those provided by
1307 LLVM. Such ranges shall not overlap with any ranges of addresses
1308 allocated by mechanisms provided by LLVM.
</li>
1311 <p>LLVM IR does not associate types with memory. The result type of a
1312 <tt><a href=
"#i_load">load
</a></tt> merely indicates the size and
1313 alignment of the memory from which to load, as well as the
1314 interpretation of the value. The first operand of a
1315 <tt><a href=
"#i_store">store
</a></tt> similarly only indicates the size
1316 and alignment of the store.
</p>
1318 <p>Consequently, type-based alias analysis, aka TBAA, aka
1319 <tt>-fstrict-aliasing
</tt>, is not applicable to general unadorned
1320 LLVM IR.
<a href=
"#metadata">Metadata
</a> may be used to encode
1321 additional information which specialized optimization passes may use
1322 to implement type-based alias analysis.
</p>
1326 <!-- *********************************************************************** -->
1327 <div class=
"doc_section"> <a name=
"typesystem">Type System
</a> </div>
1328 <!-- *********************************************************************** -->
1330 <div class=
"doc_text">
1332 <p>The LLVM type system is one of the most important features of the
1333 intermediate representation. Being typed enables a number of optimizations
1334 to be performed on the intermediate representation directly, without having
1335 to do extra analyses on the side before the transformation. A strong type
1336 system makes it easier to read the generated code and enables novel analyses
1337 and transformations that are not feasible to perform on normal three address
1338 code representations.
</p>
1342 <!-- ======================================================================= -->
1343 <div class=
"doc_subsection"> <a name=
"t_classifications">Type
1344 Classifications
</a> </div>
1346 <div class=
"doc_text">
1348 <p>The types fall into a few useful classifications:
</p>
1350 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
1352 <tr><th>Classification
</th><th>Types
</th></tr>
1354 <td><a href=
"#t_integer">integer
</a></td>
1355 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ...
</tt></td>
1358 <td><a href=
"#t_floating">floating point
</a></td>
1359 <td><tt>float, double, x86_fp80, fp128, ppc_fp128
</tt></td>
1362 <td><a name=
"t_firstclass">first class
</a></td>
1363 <td><a href=
"#t_integer">integer
</a>,
1364 <a href=
"#t_floating">floating point
</a>,
1365 <a href=
"#t_pointer">pointer
</a>,
1366 <a href=
"#t_vector">vector
</a>,
1367 <a href=
"#t_struct">structure
</a>,
1368 <a href=
"#t_array">array
</a>,
1369 <a href=
"#t_label">label
</a>,
1370 <a href=
"#t_metadata">metadata
</a>.
1374 <td><a href=
"#t_primitive">primitive
</a></td>
1375 <td><a href=
"#t_label">label
</a>,
1376 <a href=
"#t_void">void
</a>,
1377 <a href=
"#t_floating">floating point
</a>,
1378 <a href=
"#t_metadata">metadata
</a>.
</td>
1381 <td><a href=
"#t_derived">derived
</a></td>
1382 <td><a href=
"#t_integer">integer
</a>,
1383 <a href=
"#t_array">array
</a>,
1384 <a href=
"#t_function">function
</a>,
1385 <a href=
"#t_pointer">pointer
</a>,
1386 <a href=
"#t_struct">structure
</a>,
1387 <a href=
"#t_pstruct">packed structure
</a>,
1388 <a href=
"#t_vector">vector
</a>,
1389 <a href=
"#t_opaque">opaque
</a>.
1395 <p>The
<a href=
"#t_firstclass">first class
</a> types are perhaps the most
1396 important. Values of these types are the only ones which can be produced by
1401 <!-- ======================================================================= -->
1402 <div class=
"doc_subsection"> <a name=
"t_primitive">Primitive Types
</a> </div>
1404 <div class=
"doc_text">
1406 <p>The primitive types are the fundamental building blocks of the LLVM
1411 <!-- _______________________________________________________________________ -->
1412 <div class=
"doc_subsubsection"> <a name=
"t_integer">Integer Type
</a> </div>
1414 <div class=
"doc_text">
1417 <p>The integer type is a very simple type that simply specifies an arbitrary
1418 bit width for the integer type desired. Any bit width from
1 bit to
1419 2<sup>23</sup>-
1 (about
8 million) can be specified.
</p>
1426 <p>The number of bits the integer will occupy is specified by the
<tt>N
</tt>
1430 <table class=
"layout">
1432 <td class=
"left"><tt>i1
</tt></td>
1433 <td class=
"left">a single-bit integer.
</td>
1436 <td class=
"left"><tt>i32
</tt></td>
1437 <td class=
"left">a
32-bit integer.
</td>
1440 <td class=
"left"><tt>i1942652
</tt></td>
1441 <td class=
"left">a really big integer of over
1 million bits.
</td>
1447 <!-- _______________________________________________________________________ -->
1448 <div class=
"doc_subsubsection"> <a name=
"t_floating">Floating Point Types
</a> </div>
1450 <div class=
"doc_text">
1454 <tr><th>Type
</th><th>Description
</th></tr>
1455 <tr><td><tt>float
</tt></td><td>32-bit floating point value
</td></tr>
1456 <tr><td><tt>double
</tt></td><td>64-bit floating point value
</td></tr>
1457 <tr><td><tt>fp128
</tt></td><td>128-bit floating point value (
112-bit mantissa)
</td></tr>
1458 <tr><td><tt>x86_fp80
</tt></td><td>80-bit floating point value (X87)
</td></tr>
1459 <tr><td><tt>ppc_fp128
</tt></td><td>128-bit floating point value (two
64-bits)
</td></tr>
1465 <!-- _______________________________________________________________________ -->
1466 <div class=
"doc_subsubsection"> <a name=
"t_void">Void Type
</a> </div>
1468 <div class=
"doc_text">
1471 <p>The void type does not represent any value and has no size.
</p>
1480 <!-- _______________________________________________________________________ -->
1481 <div class=
"doc_subsubsection"> <a name=
"t_label">Label Type
</a> </div>
1483 <div class=
"doc_text">
1486 <p>The label type represents code labels.
</p>
1495 <!-- _______________________________________________________________________ -->
1496 <div class=
"doc_subsubsection"> <a name=
"t_metadata">Metadata Type
</a> </div>
1498 <div class=
"doc_text">
1501 <p>The metadata type represents embedded metadata. No derived types may be
1502 created from metadata except for
<a href=
"#t_function">function
</a>
1513 <!-- ======================================================================= -->
1514 <div class=
"doc_subsection"> <a name=
"t_derived">Derived Types
</a> </div>
1516 <div class=
"doc_text">
1518 <p>The real power in LLVM comes from the derived types in the system. This is
1519 what allows a programmer to represent arrays, functions, pointers, and other
1520 useful types. Each of these types contain one or more element types which
1521 may be a primitive type, or another derived type. For example, it is
1522 possible to have a two dimensional array, using an array as the element type
1523 of another array.
</p>
1527 <!-- _______________________________________________________________________ -->
1528 <div class=
"doc_subsubsection"> <a name=
"t_array">Array Type
</a> </div>
1530 <div class=
"doc_text">
1533 <p>The array type is a very simple derived type that arranges elements
1534 sequentially in memory. The array type requires a size (number of elements)
1535 and an underlying data type.
</p>
1539 [
<# elements
> x
<elementtype
>]
1542 <p>The number of elements is a constant integer value;
<tt>elementtype
</tt> may
1543 be any type with a size.
</p>
1546 <table class=
"layout">
1548 <td class=
"left"><tt>[
40 x i32]
</tt></td>
1549 <td class=
"left">Array of
40 32-bit integer values.
</td>
1552 <td class=
"left"><tt>[
41 x i32]
</tt></td>
1553 <td class=
"left">Array of
41 32-bit integer values.
</td>
1556 <td class=
"left"><tt>[
4 x i8]
</tt></td>
1557 <td class=
"left">Array of
4 8-bit integer values.
</td>
1560 <p>Here are some examples of multidimensional arrays:
</p>
1561 <table class=
"layout">
1563 <td class=
"left"><tt>[
3 x [
4 x i32]]
</tt></td>
1564 <td class=
"left">3x4 array of
32-bit integer values.
</td>
1567 <td class=
"left"><tt>[
12 x [
10 x float]]
</tt></td>
1568 <td class=
"left">12x10 array of single precision floating point values.
</td>
1571 <td class=
"left"><tt>[
2 x [
3 x [
4 x i16]]]
</tt></td>
1572 <td class=
"left">2x3x4 array of
16-bit integer values.
</td>
1576 <p>There is no restriction on indexing beyond the end of the array implied by
1577 a static type (though there are restrictions on indexing beyond the bounds
1578 of an allocated object in some cases). This means that single-dimension
1579 'variable sized array' addressing can be implemented in LLVM with a zero
1580 length array type. An implementation of 'pascal style arrays' in LLVM could
1581 use the type
"<tt>{ i32, [0 x float]}</tt>", for example.
</p>
1585 <!-- _______________________________________________________________________ -->
1586 <div class=
"doc_subsubsection"> <a name=
"t_function">Function Type
</a> </div>
1588 <div class=
"doc_text">
1591 <p>The function type can be thought of as a function signature. It consists of
1592 a return type and a list of formal parameter types. The return type of a
1593 function type is a scalar type, a void type, or a struct type. If the return
1594 type is a struct type then all struct elements must be of first class types,
1595 and the struct must have at least one element.
</p>
1599 <returntype
> (
<parameter list
>)
1602 <p>...where '
<tt><parameter list
></tt>' is a comma-separated list of type
1603 specifiers. Optionally, the parameter list may include a type
<tt>...
</tt>,
1604 which indicates that the function takes a variable number of arguments.
1605 Variable argument functions can access their arguments with
1606 the
<a href=
"#int_varargs">variable argument handling intrinsic
</a>
1607 functions. '
<tt><returntype
></tt>' is a any type except
1608 <a href=
"#t_label">label
</a>.
</p>
1611 <table class=
"layout">
1613 <td class=
"left"><tt>i32 (i32)
</tt></td>
1614 <td class=
"left">function taking an
<tt>i32
</tt>, returning an
<tt>i32
</tt>
1616 </tr><tr class=
"layout">
1617 <td class=
"left"><tt>float
(i16
signext,
i32
*)
*
1619 <td class=
"left"><a href=
"#t_pointer">Pointer
</a> to a function that takes
1620 an
<tt>i16
</tt> that should be sign extended and a
1621 <a href=
"#t_pointer">pointer
</a> to
<tt>i32
</tt>, returning
1624 </tr><tr class=
"layout">
1625 <td class=
"left"><tt>i32 (i8*, ...)
</tt></td>
1626 <td class=
"left">A vararg function that takes at least one
1627 <a href=
"#t_pointer">pointer
</a> to
<tt>i8
</tt> (char in C),
1628 which returns an integer. This is the signature for
<tt>printf
</tt> in
1631 </tr><tr class=
"layout">
1632 <td class=
"left"><tt>{i32, i32} (i32)
</tt></td>
1633 <td class=
"left">A function taking an
<tt>i32
</tt>, returning a
1634 <a href=
"#t_struct">structure
</a> containing two
<tt>i32
</tt> values
1641 <!-- _______________________________________________________________________ -->
1642 <div class=
"doc_subsubsection"> <a name=
"t_struct">Structure Type
</a> </div>
1644 <div class=
"doc_text">
1647 <p>The structure type is used to represent a collection of data members together
1648 in memory. The packing of the field types is defined to match the ABI of the
1649 underlying processor. The elements of a structure may be any type that has a
1652 <p>Structures are accessed using '
<tt><a href=
"#i_load">load
</a></tt> and
1653 '
<tt><a href=
"#i_store">store
</a></tt>' by getting a pointer to a field with
1654 the '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
</p>
1658 {
<type list
> }
1662 <table class=
"layout">
1664 <td class=
"left"><tt>{ i32, i32, i32 }
</tt></td>
1665 <td class=
"left">A triple of three
<tt>i32
</tt> values
</td>
1666 </tr><tr class=
"layout">
1667 <td class=
"left"><tt>{
float,
i32
(i32)
*
}
</tt></td>
1668 <td class=
"left">A pair, where the first element is a
<tt>float
</tt> and the
1669 second element is a
<a href=
"#t_pointer">pointer
</a> to a
1670 <a href=
"#t_function">function
</a> that takes an
<tt>i32
</tt>, returning
1671 an
<tt>i32
</tt>.
</td>
1677 <!-- _______________________________________________________________________ -->
1678 <div class=
"doc_subsubsection"> <a name=
"t_pstruct">Packed Structure Type
</a>
1681 <div class=
"doc_text">
1684 <p>The packed structure type is used to represent a collection of data members
1685 together in memory. There is no padding between fields. Further, the
1686 alignment of a packed structure is
1 byte. The elements of a packed
1687 structure may be any type that has a size.
</p>
1689 <p>Structures are accessed using '
<tt><a href=
"#i_load">load
</a></tt> and
1690 '
<tt><a href=
"#i_store">store
</a></tt>' by getting a pointer to a field with
1691 the '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
</p>
1695 < {
<type list
> }
>
1699 <table class=
"layout">
1701 <td class=
"left"><tt>< { i32, i32, i32 }
></tt></td>
1702 <td class=
"left">A triple of three
<tt>i32
</tt> values
</td>
1703 </tr><tr class=
"layout">
1705 <tt>< {
float,
i32
(i32)*
}
></tt></td>
1706 <td class=
"left">A pair, where the first element is a
<tt>float
</tt> and the
1707 second element is a
<a href=
"#t_pointer">pointer
</a> to a
1708 <a href=
"#t_function">function
</a> that takes an
<tt>i32
</tt>, returning
1709 an
<tt>i32
</tt>.
</td>
1715 <!-- _______________________________________________________________________ -->
1716 <div class=
"doc_subsubsection"> <a name=
"t_pointer">Pointer Type
</a> </div>
1718 <div class=
"doc_text">
1721 <p>As in many languages, the pointer type represents a pointer or reference to
1722 another object, which must live in memory. Pointer types may have an optional
1723 address space attribute defining the target-specific numbered address space
1724 where the pointed-to object resides. The default address space is zero.
</p>
1726 <p>Note that LLVM does not permit pointers to void (
<tt>void*
</tt>) nor does it
1727 permit pointers to labels (
<tt>label*
</tt>). Use
<tt>i8*
</tt> instead.
</p>
1735 <table class=
"layout">
1737 <td class=
"left"><tt>[
4 x i32]*
</tt></td>
1738 <td class=
"left">A
<a href=
"#t_pointer">pointer
</a> to
<a
1739 href=
"#t_array">array
</a> of four
<tt>i32
</tt> values.
</td>
1742 <td class=
"left"><tt>i32 (i32 *) *
</tt></td>
1743 <td class=
"left"> A
<a href=
"#t_pointer">pointer
</a> to a
<a
1744 href=
"#t_function">function
</a> that takes an
<tt>i32*
</tt>, returning an
1748 <td class=
"left"><tt>i32 addrspace(
5)*
</tt></td>
1749 <td class=
"left">A
<a href=
"#t_pointer">pointer
</a> to an
<tt>i32
</tt> value
1750 that resides in address space #
5.
</td>
1756 <!-- _______________________________________________________________________ -->
1757 <div class=
"doc_subsubsection"> <a name=
"t_vector">Vector Type
</a> </div>
1759 <div class=
"doc_text">
1762 <p>A vector type is a simple derived type that represents a vector of elements.
1763 Vector types are used when multiple primitive data are operated in parallel
1764 using a single instruction (SIMD). A vector type requires a size (number of
1765 elements) and an underlying primitive data type. Vector types are considered
1766 <a href=
"#t_firstclass">first class
</a>.
</p>
1770 < <# elements
> x
<elementtype
> >
1773 <p>The number of elements is a constant integer value; elementtype may be any
1774 integer or floating point type.
</p>
1777 <table class=
"layout">
1779 <td class=
"left"><tt><4 x i32
></tt></td>
1780 <td class=
"left">Vector of
4 32-bit integer values.
</td>
1783 <td class=
"left"><tt><8 x float
></tt></td>
1784 <td class=
"left">Vector of
8 32-bit floating-point values.
</td>
1787 <td class=
"left"><tt><2 x i64
></tt></td>
1788 <td class=
"left">Vector of
2 64-bit integer values.
</td>
1794 <!-- _______________________________________________________________________ -->
1795 <div class=
"doc_subsubsection"> <a name=
"t_opaque">Opaque Type
</a> </div>
1796 <div class=
"doc_text">
1799 <p>Opaque types are used to represent unknown types in the system. This
1800 corresponds (for example) to the C notion of a forward declared structure
1801 type. In LLVM, opaque types can eventually be resolved to any type (not just
1802 a structure type).
</p>
1810 <table class=
"layout">
1812 <td class=
"left"><tt>opaque
</tt></td>
1813 <td class=
"left">An opaque type.
</td>
1819 <!-- ======================================================================= -->
1820 <div class=
"doc_subsection">
1821 <a name=
"t_uprefs">Type Up-references
</a>
1824 <div class=
"doc_text">
1827 <p>An
"up reference" allows you to refer to a lexically enclosing type without
1828 requiring it to have a name. For instance, a structure declaration may
1829 contain a pointer to any of the types it is lexically a member of. Example
1830 of up references (with their equivalent as named type declarations)
1834 { \
2 * } %x = type { %x* }
1835 { \
2 }* %y = type { %y }*
1839 <p>An up reference is needed by the asmprinter for printing out cyclic types
1840 when there is no declared name for a type in the cycle. Because the
1841 asmprinter does not want to print out an infinite type string, it needs a
1842 syntax to handle recursive types that have no names (all names are optional
1850 <p>The level is the count of the lexical type that is being referred to.
</p>
1853 <table class=
"layout">
1855 <td class=
"left"><tt>\
1*
</tt></td>
1856 <td class=
"left">Self-referential pointer.
</td>
1859 <td class=
"left"><tt>{ { \
3*, i8 }, i32 }
</tt></td>
1860 <td class=
"left">Recursive structure where the upref refers to the out-most
1867 <!-- *********************************************************************** -->
1868 <div class=
"doc_section"> <a name=
"constants">Constants
</a> </div>
1869 <!-- *********************************************************************** -->
1871 <div class=
"doc_text">
1873 <p>LLVM has several different basic types of constants. This section describes
1874 them all and their syntax.
</p>
1878 <!-- ======================================================================= -->
1879 <div class=
"doc_subsection"><a name=
"simpleconstants">Simple Constants
</a></div>
1881 <div class=
"doc_text">
1884 <dt><b>Boolean constants
</b></dt>
1885 <dd>The two strings '
<tt>true
</tt>' and '
<tt>false
</tt>' are both valid
1886 constants of the
<tt><a href=
"#t_integer">i1
</a></tt> type.
</dd>
1888 <dt><b>Integer constants
</b></dt>
1889 <dd>Standard integers (such as '
4') are constants of
1890 the
<a href=
"#t_integer">integer
</a> type. Negative numbers may be used
1891 with integer types.
</dd>
1893 <dt><b>Floating point constants
</b></dt>
1894 <dd>Floating point constants use standard decimal notation (e.g.
123.421),
1895 exponential notation (e.g.
1.23421e+2), or a more precise hexadecimal
1896 notation (see below). The assembler requires the exact decimal value of a
1897 floating-point constant. For example, the assembler accepts
1.25 but
1898 rejects
1.3 because
1.3 is a repeating decimal in binary. Floating point
1899 constants must have a
<a href=
"#t_floating">floating point
</a> type.
</dd>
1901 <dt><b>Null pointer constants
</b></dt>
1902 <dd>The identifier '
<tt>null
</tt>' is recognized as a null pointer constant
1903 and must be of
<a href=
"#t_pointer">pointer type
</a>.
</dd>
1906 <p>The one non-intuitive notation for constants is the hexadecimal form of
1907 floating point constants. For example, the form '
<tt>double
1908 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1909 '
<tt>double
4.5e+15</tt>'. The only time hexadecimal floating point
1910 constants are required (and the only time that they are generated by the
1911 disassembler) is when a floating point constant must be emitted but it cannot
1912 be represented as a decimal floating point number in a reasonable number of
1913 digits. For example, NaN's, infinities, and other special values are
1914 represented in their IEEE hexadecimal format so that assembly and disassembly
1915 do not cause any bits to change in the constants.
</p>
1917 <p>When using the hexadecimal form, constants of types float and double are
1918 represented using the
16-digit form shown above (which matches the IEEE754
1919 representation for double); float values must, however, be exactly
1920 representable as IEE754 single precision. Hexadecimal format is always used
1921 for long double, and there are three forms of long double. The
80-bit format
1922 used by x86 is represented as
<tt>0xK
</tt> followed by
20 hexadecimal digits.
1923 The
128-bit format used by PowerPC (two adjacent doubles) is represented
1924 by
<tt>0xM
</tt> followed by
32 hexadecimal digits. The IEEE
128-bit format
1925 is represented by
<tt>0xL
</tt> followed by
32 hexadecimal digits; no
1926 currently supported target uses this format. Long doubles will only work if
1927 they match the long double format on your target. All hexadecimal formats
1928 are big-endian (sign bit at the left).
</p>
1932 <!-- ======================================================================= -->
1933 <div class=
"doc_subsection">
1934 <a name=
"aggregateconstants"></a> <!-- old anchor -->
1935 <a name=
"complexconstants">Complex Constants
</a>
1938 <div class=
"doc_text">
1940 <p>Complex constants are a (potentially recursive) combination of simple
1941 constants and smaller complex constants.
</p>
1944 <dt><b>Structure constants
</b></dt>
1945 <dd>Structure constants are represented with notation similar to structure
1946 type definitions (a comma separated list of elements, surrounded by braces
1947 (
<tt>{}
</tt>)). For example:
"<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1948 where
"<tt>@G</tt>" is declared as
"<tt>@G = external global i32</tt>".
1949 Structure constants must have
<a href=
"#t_struct">structure type
</a>, and
1950 the number and types of elements must match those specified by the
1953 <dt><b>Array constants
</b></dt>
1954 <dd>Array constants are represented with notation similar to array type
1955 definitions (a comma separated list of elements, surrounded by square
1956 brackets (
<tt>[]
</tt>)). For example:
"<tt>[ i32 42, i32 11, i32 74
1957 ]</tt>". Array constants must have
<a href=
"#t_array">array type
</a>, and
1958 the number and types of elements must match those specified by the
1961 <dt><b>Vector constants
</b></dt>
1962 <dd>Vector constants are represented with notation similar to vector type
1963 definitions (a comma separated list of elements, surrounded by
1964 less-than/greater-than's (
<tt><></tt>)). For example:
"<tt>< i32
1965 42, i32 11, i32 74, i32 100 ></tt>". Vector constants must
1966 have
<a href=
"#t_vector">vector type
</a>, and the number and types of
1967 elements must match those specified by the type.
</dd>
1969 <dt><b>Zero initialization
</b></dt>
1970 <dd>The string '
<tt>zeroinitializer
</tt>' can be used to zero initialize a
1971 value to zero of
<em>any
</em> type, including scalar and aggregate types.
1972 This is often used to avoid having to print large zero initializers
1973 (e.g. for large arrays) and is always exactly equivalent to using explicit
1974 zero initializers.
</dd>
1976 <dt><b>Metadata node
</b></dt>
1977 <dd>A metadata node is a structure-like constant with
1978 <a href=
"#t_metadata">metadata type
</a>. For example:
"<tt>metadata !{
1979 i32 0, metadata !"test
" }</tt>". Unlike other constants that are meant to
1980 be interpreted as part of the instruction stream, metadata is a place to
1981 attach additional information such as debug info.
</dd>
1986 <!-- ======================================================================= -->
1987 <div class=
"doc_subsection">
1988 <a name=
"globalconstants">Global Variable and Function Addresses
</a>
1991 <div class=
"doc_text">
1993 <p>The addresses of
<a href=
"#globalvars">global variables
</a>
1994 and
<a href=
"#functionstructure">functions
</a> are always implicitly valid
1995 (link-time) constants. These constants are explicitly referenced when
1996 the
<a href=
"#identifiers">identifier for the global
</a> is used and always
1997 have
<a href=
"#t_pointer">pointer
</a> type. For example, the following is a
1998 legal LLVM file:
</p>
2000 <div class=
"doc_code">
2004 @Z = global [
2 x i32*] [ i32* @X, i32* @Y ]
2010 <!-- ======================================================================= -->
2011 <div class=
"doc_subsection"><a name=
"undefvalues">Undefined Values
</a></div>
2012 <div class=
"doc_text">
2014 <p>The string '
<tt>undef
</tt>' can be used anywhere a constant is expected, and
2015 indicates that the user of the value may receive an unspecified bit-pattern.
2016 Undefined values may be of any type (other than label or void) and be used
2017 anywhere a constant is permitted.
</p>
2019 <p>Undefined values are useful because they indicate to the compiler that the
2020 program is well defined no matter what value is used. This gives the
2021 compiler more freedom to optimize. Here are some examples of (potentially
2022 surprising) transformations that are valid (in pseudo IR):
</p>
2025 <div class=
"doc_code">
2037 <p>This is safe because all of the output bits are affected by the undef bits.
2038 Any output bit can have a zero or one depending on the input bits.
</p>
2040 <div class=
"doc_code">
2053 <p>These logical operations have bits that are not always affected by the input.
2054 For example, if
"%X" has a zero bit, then the output of the 'and' operation will
2055 always be a zero, no matter what the corresponding bit from the undef is. As
2056 such, it is unsafe to optimize or assume that the result of the and is undef.
2057 However, it is safe to assume that all bits of the undef could be
0, and
2058 optimize the and to
0. Likewise, it is safe to assume that all the bits of
2059 the undef operand to the or could be set, allowing the or to be folded to
2062 <div class=
"doc_code">
2064 %A = select undef, %X, %Y
2065 %B = select undef,
42, %Y
2066 %C = select %X, %Y, undef
2078 <p>This set of examples show that undefined select (and conditional branch)
2079 conditions can go
"either way" but they have to come from one of the two
2080 operands. In the %A example, if %X and %Y were both known to have a clear low
2081 bit, then %A would have to have a cleared low bit. However, in the %C example,
2082 the optimizer is allowed to assume that the undef operand could be the same as
2083 %Y, allowing the whole select to be eliminated.
</p>
2086 <div class=
"doc_code">
2088 %A = xor undef, undef
2107 <p>This example points out that two undef operands are not necessarily the same.
2108 This can be surprising to people (and also matches C semantics) where they
2109 assume that
"X^X" is always zero, even if X is undef. This isn't true for a
2110 number of reasons, but the short answer is that an undef
"variable" can
2111 arbitrarily change its value over its
"live range". This is true because the
2112 "variable" doesn't actually
<em>have a live range
</em>. Instead, the value is
2113 logically read from arbitrary registers that happen to be around when needed,
2114 so the value is not necessarily consistent over time. In fact, %A and %C need
2115 to have the same semantics or the core LLVM
"replace all uses with" concept
2118 <div class=
"doc_code">
2128 <p>These examples show the crucial difference between an
<em>undefined
2129 value
</em> and
<em>undefined behavior
</em>. An undefined value (like undef) is
2130 allowed to have an arbitrary bit-pattern. This means that the %A operation
2131 can be constant folded to undef because the undef could be an SNaN, and fdiv is
2132 not (currently) defined on SNaN's. However, in the second example, we can make
2133 a more aggressive assumption: because the undef is allowed to be an arbitrary
2134 value, we are allowed to assume that it could be zero. Since a divide by zero
2135 has
<em>undefined behavior
</em>, we are allowed to assume that the operation
2136 does not execute at all. This allows us to delete the divide and all code after
2137 it: since the undefined operation
"can't happen", the optimizer can assume that
2138 it occurs in dead code.
2141 <div class=
"doc_code">
2143 a: store undef -
> %X
2144 b: store %X -
> undef
2151 <p>These examples reiterate the fdiv example: a store
"of" an undefined value
2152 can be assumed to not have any effect: we can assume that the value is
2153 overwritten with bits that happen to match what was already there. However, a
2154 store
"to" an undefined location could clobber arbitrary memory, therefore, it
2155 has undefined behavior.
</p>
2159 <!-- ======================================================================= -->
2160 <div class=
"doc_subsection"><a name=
"blockaddress">Addresses of Basic
2162 <div class=
"doc_text">
2164 <p><b><tt>blockaddress(@function, %block)
</tt></b></p>
2166 <p>The '
<tt>blockaddress
</tt>' constant computes the address of the specified
2167 basic block in the specified function, and always has an i8* type. Taking
2168 the address of the entry block is illegal.
</p>
2170 <p>This value only has defined behavior when used as an operand to the
2171 '
<a href=
"#i_indirectbr"><tt>indirectbr
</tt></a>' instruction or for comparisons
2172 against null. Pointer equality tests between labels addresses is undefined
2173 behavior - though, again, comparison against null is ok, and no label is
2174 equal to the null pointer. This may also be passed around as an opaque
2175 pointer sized value as long as the bits are not inspected. This allows
2176 <tt>ptrtoint
</tt> and arithmetic to be performed on these values so long as
2177 the original value is reconstituted before the
<tt>indirectbr
</tt>.
</p>
2179 <p>Finally, some targets may provide defined semantics when
2180 using the value as the operand to an inline assembly, but that is target
2187 <!-- ======================================================================= -->
2188 <div class=
"doc_subsection"><a name=
"constantexprs">Constant Expressions
</a>
2191 <div class=
"doc_text">
2193 <p>Constant expressions are used to allow expressions involving other constants
2194 to be used as constants. Constant expressions may be of
2195 any
<a href=
"#t_firstclass">first class
</a> type and may involve any LLVM
2196 operation that does not have side effects (e.g. load and call are not
2197 supported). The following is the syntax for constant expressions:
</p>
2200 <dt><b><tt>trunc ( CST to TYPE )
</tt></b></dt>
2201 <dd>Truncate a constant to another type. The bit size of CST must be larger
2202 than the bit size of TYPE. Both types must be integers.
</dd>
2204 <dt><b><tt>zext ( CST to TYPE )
</tt></b></dt>
2205 <dd>Zero extend a constant to another type. The bit size of CST must be
2206 smaller or equal to the bit size of TYPE. Both types must be
2209 <dt><b><tt>sext ( CST to TYPE )
</tt></b></dt>
2210 <dd>Sign extend a constant to another type. The bit size of CST must be
2211 smaller or equal to the bit size of TYPE. Both types must be
2214 <dt><b><tt>fptrunc ( CST to TYPE )
</tt></b></dt>
2215 <dd>Truncate a floating point constant to another floating point type. The
2216 size of CST must be larger than the size of TYPE. Both types must be
2217 floating point.
</dd>
2219 <dt><b><tt>fpext ( CST to TYPE )
</tt></b></dt>
2220 <dd>Floating point extend a constant to another type. The size of CST must be
2221 smaller or equal to the size of TYPE. Both types must be floating
2224 <dt><b><tt>fptoui ( CST to TYPE )
</tt></b></dt>
2225 <dd>Convert a floating point constant to the corresponding unsigned integer
2226 constant. TYPE must be a scalar or vector integer type. CST must be of
2227 scalar or vector floating point type. Both CST and TYPE must be scalars,
2228 or vectors of the same number of elements. If the value won't fit in the
2229 integer type, the results are undefined.
</dd>
2231 <dt><b><tt>fptosi ( CST to TYPE )
</tt></b></dt>
2232 <dd>Convert a floating point constant to the corresponding signed integer
2233 constant. TYPE must be a scalar or vector integer type. CST must be of
2234 scalar or vector floating point type. Both CST and TYPE must be scalars,
2235 or vectors of the same number of elements. If the value won't fit in the
2236 integer type, the results are undefined.
</dd>
2238 <dt><b><tt>uitofp ( CST to TYPE )
</tt></b></dt>
2239 <dd>Convert an unsigned integer constant to the corresponding floating point
2240 constant. TYPE must be a scalar or vector floating point type. CST must be
2241 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2242 vectors of the same number of elements. If the value won't fit in the
2243 floating point type, the results are undefined.
</dd>
2245 <dt><b><tt>sitofp ( CST to TYPE )
</tt></b></dt>
2246 <dd>Convert a signed integer constant to the corresponding floating point
2247 constant. TYPE must be a scalar or vector floating point type. CST must be
2248 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2249 vectors of the same number of elements. If the value won't fit in the
2250 floating point type, the results are undefined.
</dd>
2252 <dt><b><tt>ptrtoint ( CST to TYPE )
</tt></b></dt>
2253 <dd>Convert a pointer typed constant to the corresponding integer constant
2254 <tt>TYPE
</tt> must be an integer type.
<tt>CST
</tt> must be of pointer
2255 type. The
<tt>CST
</tt> value is zero extended, truncated, or unchanged to
2256 make it fit in
<tt>TYPE
</tt>.
</dd>
2258 <dt><b><tt>inttoptr ( CST to TYPE )
</tt></b></dt>
2259 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2260 type. CST must be of integer type. The CST value is zero extended,
2261 truncated, or unchanged to make it fit in a pointer size. This one is
2262 <i>really
</i> dangerous!
</dd>
2264 <dt><b><tt>bitcast ( CST to TYPE )
</tt></b></dt>
2265 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2266 are the same as those for the
<a href=
"#i_bitcast">bitcast
2267 instruction
</a>.
</dd>
2269 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )
</tt></b></dt>
2270 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )
</tt></b></dt>
2271 <dd>Perform the
<a href=
"#i_getelementptr">getelementptr operation
</a> on
2272 constants. As with the
<a href=
"#i_getelementptr">getelementptr
</a>
2273 instruction, the index list may have zero or more indexes, which are
2274 required to make sense for the type of
"CSTPTR".
</dd>
2276 <dt><b><tt>select ( COND, VAL1, VAL2 )
</tt></b></dt>
2277 <dd>Perform the
<a href=
"#i_select">select operation
</a> on constants.
</dd>
2279 <dt><b><tt>icmp COND ( VAL1, VAL2 )
</tt></b></dt>
2280 <dd>Performs the
<a href=
"#i_icmp">icmp operation
</a> on constants.
</dd>
2282 <dt><b><tt>fcmp COND ( VAL1, VAL2 )
</tt></b></dt>
2283 <dd>Performs the
<a href=
"#i_fcmp">fcmp operation
</a> on constants.
</dd>
2285 <dt><b><tt>extractelement ( VAL, IDX )
</tt></b></dt>
2286 <dd>Perform the
<a href=
"#i_extractelement">extractelement operation
</a> on
2289 <dt><b><tt>insertelement ( VAL, ELT, IDX )
</tt></b></dt>
2290 <dd>Perform the
<a href=
"#i_insertelement">insertelement operation
</a> on
2293 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )
</tt></b></dt>
2294 <dd>Perform the
<a href=
"#i_shufflevector">shufflevector operation
</a> on
2297 <dt><b><tt>OPCODE ( LHS, RHS )
</tt></b></dt>
2298 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2299 be any of the
<a href=
"#binaryops">binary
</a>
2300 or
<a href=
"#bitwiseops">bitwise binary
</a> operations. The constraints
2301 on operands are the same as those for the corresponding instruction
2302 (e.g. no bitwise operations on floating point values are allowed).
</dd>
2307 <!-- ======================================================================= -->
2308 <div class=
"doc_subsection"><a name=
"metadata">Embedded Metadata
</a>
2311 <div class=
"doc_text">
2313 <p>Embedded metadata provides a way to attach arbitrary data to the instruction
2314 stream without affecting the behaviour of the program. There are two
2315 metadata primitives, strings and nodes. All metadata has the
2316 <tt>metadata
</tt> type and is identified in syntax by a preceding exclamation
2317 point ('
<tt>!
</tt>').
</p>
2319 <p>A metadata string is a string surrounded by double quotes. It can contain
2320 any character by escaping non-printable characters with
"\xx" where
"xx" is
2321 the two digit hex code. For example:
"<tt>!"test\
00"</tt>".
</p>
2323 <p>Metadata nodes are represented with notation similar to structure constants
2324 (a comma separated list of elements, surrounded by braces and preceded by an
2325 exclamation point). For example:
"<tt>!{ metadata !"test\
00", i32
2328 <p>A metadata node will attempt to track changes to the values it holds. In the
2329 event that a value is deleted, it will be replaced with a typeless
2330 "<tt>null</tt>", such as
"<tt>metadata !{null, i32 10}</tt>".
</p>
2332 <p>Optimizations may rely on metadata to provide additional information about
2333 the program that isn't available in the instructions, or that isn't easily
2334 computable. Similarly, the code generator may expect a certain metadata
2335 format to be used to express debugging information.
</p>
2339 <!-- *********************************************************************** -->
2340 <div class=
"doc_section"> <a name=
"othervalues">Other Values
</a> </div>
2341 <!-- *********************************************************************** -->
2343 <!-- ======================================================================= -->
2344 <div class=
"doc_subsection">
2345 <a name=
"inlineasm">Inline Assembler Expressions
</a>
2348 <div class=
"doc_text">
2350 <p>LLVM supports inline assembler expressions (as opposed
2351 to
<a href=
"#moduleasm"> Module-Level Inline Assembly
</a>) through the use of
2352 a special value. This value represents the inline assembler as a string
2353 (containing the instructions to emit), a list of operand constraints (stored
2354 as a string), a flag that indicates whether or not the inline asm
2355 expression has side effects, and a flag indicating whether the function
2356 containing the asm needs to align its stack conservatively. An example
2357 inline assembler expression is:
</p>
2359 <div class=
"doc_code">
2361 i32 (i32) asm
"bswap $0",
"=r,r"
2365 <p>Inline assembler expressions may
<b>only
</b> be used as the callee operand of
2366 a
<a href=
"#i_call"><tt>call
</tt> instruction
</a>. Thus, typically we
2369 <div class=
"doc_code">
2371 %X = call i32 asm
"<a href="#int_bswap
">bswap</a> $0",
"=r,r"(i32 %Y)
2375 <p>Inline asms with side effects not visible in the constraint list must be
2376 marked as having side effects. This is done through the use of the
2377 '
<tt>sideeffect
</tt>' keyword, like so:
</p>
2379 <div class=
"doc_code">
2381 call void asm sideeffect
"eieio",
""()
2385 <p>In some cases inline asms will contain code that will not work unless the
2386 stack is aligned in some way, such as calls or SSE instructions on x86,
2387 yet will not contain code that does that alignment within the asm.
2388 The compiler should make conservative assumptions about what the asm might
2389 contain and should generate its usual stack alignment code in the prologue
2390 if the '
<tt>alignstack
</tt>' keyword is present:
</p>
2392 <div class=
"doc_code">
2394 call void asm alignstack
"eieio",
""()
2398 <p>If both keywords appear the '
<tt>sideeffect
</tt>' keyword must come
2401 <p>TODO: The format of the asm and constraints string still need to be
2402 documented here. Constraints on what can be done (e.g. duplication, moving,
2403 etc need to be documented). This is probably best done by reference to
2404 another document that covers inline asm from a holistic perspective.
</p>
2409 <!-- *********************************************************************** -->
2410 <div class=
"doc_section">
2411 <a name=
"intrinsic_globals">Intrinsic Global Variables
</a>
2413 <!-- *********************************************************************** -->
2415 <p>LLVM has a number of
"magic" global variables that contain data that affect
2416 code generation or other IR semantics. These are documented here. All globals
2417 of this sort should have a section specified as
"<tt>llvm.metadata</tt>". This
2418 section and all globals that start with
"<tt>llvm.</tt>" are reserved for use
2421 <!-- ======================================================================= -->
2422 <div class=
"doc_subsection">
2423 <a name=
"intg_used">The '
<tt>llvm.used
</tt>' Global Variable
</a>
2426 <div class=
"doc_text">
2428 <p>The
<tt>@llvm.used
</tt> global is an array with i8* element type which has
<a
2429 href=
"#linkage_appending">appending linkage
</a>. This array contains a list of
2430 pointers to global variables and functions which may optionally have a pointer
2431 cast formed of bitcast or getelementptr. For example, a legal use of it is:
</p>
2437 @llvm.used = appending global [
2 x i8*] [
2439 i8* bitcast (i32* @Y to i8*)
2440 ], section
"llvm.metadata"
2443 <p>If a global variable appears in the
<tt>@llvm.used
</tt> list, then the
2444 compiler, assembler, and linker are required to treat the symbol as if there is
2445 a reference to the global that it cannot see. For example, if a variable has
2446 internal linkage and no references other than that from the
<tt>@llvm.used
</tt>
2447 list, it cannot be deleted. This is commonly used to represent references from
2448 inline asms and other things the compiler cannot
"see", and corresponds to
2449 "attribute((used))" in GNU C.
</p>
2451 <p>On some targets, the code generator must emit a directive to the assembler or
2452 object file to prevent the assembler and linker from molesting the symbol.
</p>
2456 <!-- ======================================================================= -->
2457 <div class=
"doc_subsection">
2458 <a name=
"intg_compiler_used">The '
<tt>llvm.compiler.used
</tt>' Global Variable
</a>
2461 <div class=
"doc_text">
2463 <p>The
<tt>@llvm.compiler.used
</tt> directive is the same as the
2464 <tt>@llvm.used
</tt> directive, except that it only prevents the compiler from
2465 touching the symbol. On targets that support it, this allows an intelligent
2466 linker to optimize references to the symbol without being impeded as it would be
2467 by
<tt>@llvm.used
</tt>.
</p>
2469 <p>This is a rare construct that should only be used in rare circumstances, and
2470 should not be exposed to source languages.
</p>
2474 <!-- ======================================================================= -->
2475 <div class=
"doc_subsection">
2476 <a name=
"intg_global_ctors">The '
<tt>llvm.global_ctors
</tt>' Global Variable
</a>
2479 <div class=
"doc_text">
2481 <p>TODO: Describe this.
</p>
2485 <!-- ======================================================================= -->
2486 <div class=
"doc_subsection">
2487 <a name=
"intg_global_dtors">The '
<tt>llvm.global_dtors
</tt>' Global Variable
</a>
2490 <div class=
"doc_text">
2492 <p>TODO: Describe this.
</p>
2497 <!-- *********************************************************************** -->
2498 <div class=
"doc_section"> <a name=
"instref">Instruction Reference
</a> </div>
2499 <!-- *********************************************************************** -->
2501 <div class=
"doc_text">
2503 <p>The LLVM instruction set consists of several different classifications of
2504 instructions:
<a href=
"#terminators">terminator
2505 instructions
</a>,
<a href=
"#binaryops">binary instructions
</a>,
2506 <a href=
"#bitwiseops">bitwise binary instructions
</a>,
2507 <a href=
"#memoryops">memory instructions
</a>, and
2508 <a href=
"#otherops">other instructions
</a>.
</p>
2512 <!-- ======================================================================= -->
2513 <div class=
"doc_subsection"> <a name=
"terminators">Terminator
2514 Instructions
</a> </div>
2516 <div class=
"doc_text">
2518 <p>As mentioned
<a href=
"#functionstructure">previously
</a>, every basic block
2519 in a program ends with a
"Terminator" instruction, which indicates which
2520 block should be executed after the current block is finished. These
2521 terminator instructions typically yield a '
<tt>void
</tt>' value: they produce
2522 control flow, not values (the one exception being the
2523 '
<a href=
"#i_invoke"><tt>invoke
</tt></a>' instruction).
</p>
2525 <p>There are six different terminator instructions: the
2526 '
<a href=
"#i_ret"><tt>ret
</tt></a>' instruction, the
2527 '
<a href=
"#i_br"><tt>br
</tt></a>' instruction, the
2528 '
<a href=
"#i_switch"><tt>switch
</tt></a>' instruction, the
2529 '
<a href=
"#i_indirectbr">'
<tt>indirectbr
</tt></a>' Instruction, the
2530 '
<a href=
"#i_invoke"><tt>invoke
</tt></a>' instruction, the
2531 '
<a href=
"#i_unwind"><tt>unwind
</tt></a>' instruction, and the
2532 '
<a href=
"#i_unreachable"><tt>unreachable
</tt></a>' instruction.
</p>
2536 <!-- _______________________________________________________________________ -->
2537 <div class=
"doc_subsubsection"> <a name=
"i_ret">'
<tt>ret
</tt>'
2538 Instruction
</a> </div>
2540 <div class=
"doc_text">
2544 ret
<type
> <value
> <i>; Return a value from a non-void function
</i>
2545 ret void
<i>; Return from void function
</i>
2549 <p>The '
<tt>ret
</tt>' instruction is used to return control flow (and optionally
2550 a value) from a function back to the caller.
</p>
2552 <p>There are two forms of the '
<tt>ret
</tt>' instruction: one that returns a
2553 value and then causes control flow, and one that just causes control flow to
2557 <p>The '
<tt>ret
</tt>' instruction optionally accepts a single argument, the
2558 return value. The type of the return value must be a
2559 '
<a href=
"#t_firstclass">first class
</a>' type.
</p>
2561 <p>A function is not
<a href=
"#wellformed">well formed
</a> if it it has a
2562 non-void return type and contains a '
<tt>ret
</tt>' instruction with no return
2563 value or a return value with a type that does not match its type, or if it
2564 has a void return type and contains a '
<tt>ret
</tt>' instruction with a
2568 <p>When the '
<tt>ret
</tt>' instruction is executed, control flow returns back to
2569 the calling function's context. If the caller is a
2570 "<a href="#i_call
"><tt>call</tt></a>" instruction, execution continues at the
2571 instruction after the call. If the caller was an
2572 "<a href="#i_invoke
"><tt>invoke</tt></a>" instruction, execution continues at
2573 the beginning of the
"normal" destination block. If the instruction returns
2574 a value, that value shall set the call or invoke instruction's return
2579 ret i32
5 <i>; Return an integer value of
5</i>
2580 ret void
<i>; Return from a void function
</i>
2581 ret { i32, i8 } { i32
4, i8
2 }
<i>; Return a struct of values
4 and
2</i>
2585 <!-- _______________________________________________________________________ -->
2586 <div class=
"doc_subsubsection"> <a name=
"i_br">'
<tt>br
</tt>' Instruction
</a> </div>
2588 <div class=
"doc_text">
2592 br i1
<cond
>, label
<iftrue
>, label
<iffalse
><br> br label
<dest
> <i>; Unconditional branch
</i>
2596 <p>The '
<tt>br
</tt>' instruction is used to cause control flow to transfer to a
2597 different basic block in the current function. There are two forms of this
2598 instruction, corresponding to a conditional branch and an unconditional
2602 <p>The conditional branch form of the '
<tt>br
</tt>' instruction takes a single
2603 '
<tt>i1
</tt>' value and two '
<tt>label
</tt>' values. The unconditional form
2604 of the '
<tt>br
</tt>' instruction takes a single '
<tt>label
</tt>' value as a
2608 <p>Upon execution of a conditional '
<tt>br
</tt>' instruction, the '
<tt>i1
</tt>'
2609 argument is evaluated. If the value is
<tt>true
</tt>, control flows to the
2610 '
<tt>iftrue
</tt>'
<tt>label
</tt> argument. If
"cond" is
<tt>false
</tt>,
2611 control flows to the '
<tt>iffalse
</tt>'
<tt>label
</tt> argument.
</p>
2616 %cond =
<a href=
"#i_icmp">icmp
</a> eq i32 %a, %b
2617 br i1 %cond, label %IfEqual, label %IfUnequal
2619 <a href=
"#i_ret">ret
</a> i32
1
2621 <a href=
"#i_ret">ret
</a> i32
0
2626 <!-- _______________________________________________________________________ -->
2627 <div class=
"doc_subsubsection">
2628 <a name=
"i_switch">'
<tt>switch
</tt>' Instruction
</a>
2631 <div class=
"doc_text">
2635 switch
<intty
> <value
>, label
<defaultdest
> [
<intty
> <val
>, label
<dest
> ... ]
2639 <p>The '
<tt>switch
</tt>' instruction is used to transfer control flow to one of
2640 several different places. It is a generalization of the '
<tt>br
</tt>'
2641 instruction, allowing a branch to occur to one of many possible
2645 <p>The '
<tt>switch
</tt>' instruction uses three parameters: an integer
2646 comparison value '
<tt>value
</tt>', a default '
<tt>label
</tt>' destination,
2647 and an array of pairs of comparison value constants and '
<tt>label
</tt>'s.
2648 The table is not allowed to contain duplicate constant entries.
</p>
2651 <p>The
<tt>switch
</tt> instruction specifies a table of values and
2652 destinations. When the '
<tt>switch
</tt>' instruction is executed, this table
2653 is searched for the given value. If the value is found, control flow is
2654 transferred to the corresponding destination; otherwise, control flow is
2655 transferred to the default destination.
</p>
2657 <h5>Implementation:
</h5>
2658 <p>Depending on properties of the target machine and the particular
2659 <tt>switch
</tt> instruction, this instruction may be code generated in
2660 different ways. For example, it could be generated as a series of chained
2661 conditional branches or with a lookup table.
</p>
2665 <i>; Emulate a conditional br instruction
</i>
2666 %Val =
<a href=
"#i_zext">zext
</a> i1 %value to i32
2667 switch i32 %Val, label %truedest [ i32
0, label %falsedest ]
2669 <i>; Emulate an unconditional br instruction
</i>
2670 switch i32
0, label %dest [ ]
2672 <i>; Implement a jump table:
</i>
2673 switch i32 %val, label %otherwise [ i32
0, label %onzero
2675 i32
2, label %ontwo ]
2681 <!-- _______________________________________________________________________ -->
2682 <div class=
"doc_subsubsection">
2683 <a name=
"i_indirectbr">'
<tt>indirectbr
</tt>' Instruction
</a>
2686 <div class=
"doc_text">
2690 indirectbr
<somety
>*
<address
>, [ label
<dest1
>, label
<dest2
>, ... ]
2695 <p>The '
<tt>indirectbr
</tt>' instruction implements an indirect branch to a label
2696 within the current function, whose address is specified by
2697 "<tt>address</tt>". Address must be derived from a
<a
2698 href=
"#blockaddress">blockaddress
</a> constant.
</p>
2702 <p>The '
<tt>address
</tt>' argument is the address of the label to jump to. The
2703 rest of the arguments indicate the full set of possible destinations that the
2704 address may point to. Blocks are allowed to occur multiple times in the
2705 destination list, though this isn't particularly useful.
</p>
2707 <p>This destination list is required so that dataflow analysis has an accurate
2708 understanding of the CFG.
</p>
2712 <p>Control transfers to the block specified in the address argument. All
2713 possible destination blocks must be listed in the label list, otherwise this
2714 instruction has undefined behavior. This implies that jumps to labels
2715 defined in other functions have undefined behavior as well.
</p>
2717 <h5>Implementation:
</h5>
2719 <p>This is typically implemented with a jump through a register.
</p>
2723 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2729 <!-- _______________________________________________________________________ -->
2730 <div class=
"doc_subsubsection">
2731 <a name=
"i_invoke">'
<tt>invoke
</tt>' Instruction
</a>
2734 <div class=
"doc_text">
2738 <result
> = invoke [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
<ptr to function ty
> <function ptr val
>(
<function args
>) [
<a href=
"#fnattrs">fn attrs
</a>]
2739 to label
<normal label
> unwind label
<exception label
>
2743 <p>The '
<tt>invoke
</tt>' instruction causes control to transfer to a specified
2744 function, with the possibility of control flow transfer to either the
2745 '
<tt>normal
</tt>' label or the '
<tt>exception
</tt>' label. If the callee
2746 function returns with the
"<tt><a href="#i_ret
">ret</a></tt>" instruction,
2747 control flow will return to the
"normal" label. If the callee (or any
2748 indirect callees) returns with the
"<a href="#i_unwind
"><tt>unwind</tt></a>"
2749 instruction, control is interrupted and continued at the dynamically nearest
2750 "exception" label.
</p>
2753 <p>This instruction requires several arguments:
</p>
2756 <li>The optional
"cconv" marker indicates which
<a href=
"#callingconv">calling
2757 convention
</a> the call should use. If none is specified, the call
2758 defaults to using C calling conventions.
</li>
2760 <li>The optional
<a href=
"#paramattrs">Parameter Attributes
</a> list for
2761 return values. Only '
<tt>zeroext
</tt>', '
<tt>signext
</tt>', and
2762 '
<tt>inreg
</tt>' attributes are valid here.
</li>
2764 <li>'
<tt>ptr to function ty
</tt>': shall be the signature of the pointer to
2765 function value being invoked. In most cases, this is a direct function
2766 invocation, but indirect
<tt>invoke
</tt>s are just as possible, branching
2767 off an arbitrary pointer to function value.
</li>
2769 <li>'
<tt>function ptr val
</tt>': An LLVM value containing a pointer to a
2770 function to be invoked.
</li>
2772 <li>'
<tt>function args
</tt>': argument list whose types match the function
2773 signature argument types. If the function signature indicates the
2774 function accepts a variable number of arguments, the extra arguments can
2777 <li>'
<tt>normal label
</tt>': the label reached when the called function
2778 executes a '
<tt><a href=
"#i_ret">ret
</a></tt>' instruction.
</li>
2780 <li>'
<tt>exception label
</tt>': the label reached when a callee returns with
2781 the
<a href=
"#i_unwind"><tt>unwind
</tt></a> instruction.
</li>
2783 <li>The optional
<a href=
"#fnattrs">function attributes
</a> list. Only
2784 '
<tt>noreturn
</tt>', '
<tt>nounwind
</tt>', '
<tt>readonly
</tt>' and
2785 '
<tt>readnone
</tt>' attributes are valid here.
</li>
2789 <p>This instruction is designed to operate as a standard
2790 '
<tt><a href=
"#i_call">call
</a></tt>' instruction in most regards. The
2791 primary difference is that it establishes an association with a label, which
2792 is used by the runtime library to unwind the stack.
</p>
2794 <p>This instruction is used in languages with destructors to ensure that proper
2795 cleanup is performed in the case of either a
<tt>longjmp
</tt> or a thrown
2796 exception. Additionally, this is important for implementation of
2797 '
<tt>catch
</tt>' clauses in high-level languages that support them.
</p>
2799 <p>For the purposes of the SSA form, the definition of the value returned by the
2800 '
<tt>invoke
</tt>' instruction is deemed to occur on the edge from the current
2801 block to the
"normal" label. If the callee unwinds then no return value is
2806 %retval = invoke i32 @Test(i32
15) to label %Continue
2807 unwind label %TestCleanup
<i>; {i32}:retval set
</i>
2808 %retval = invoke
<a href=
"#callingconv">coldcc
</a> i32 %Testfnptr(i32
15) to label %Continue
2809 unwind label %TestCleanup
<i>; {i32}:retval set
</i>
2814 <!-- _______________________________________________________________________ -->
2816 <div class=
"doc_subsubsection"> <a name=
"i_unwind">'
<tt>unwind
</tt>'
2817 Instruction
</a> </div>
2819 <div class=
"doc_text">
2827 <p>The '
<tt>unwind
</tt>' instruction unwinds the stack, continuing control flow
2828 at the first callee in the dynamic call stack which used
2829 an
<a href=
"#i_invoke"><tt>invoke
</tt></a> instruction to perform the call.
2830 This is primarily used to implement exception handling.
</p>
2833 <p>The '
<tt>unwind
</tt>' instruction causes execution of the current function to
2834 immediately halt. The dynamic call stack is then searched for the
2835 first
<a href=
"#i_invoke"><tt>invoke
</tt></a> instruction on the call stack.
2836 Once found, execution continues at the
"exceptional" destination block
2837 specified by the
<tt>invoke
</tt> instruction. If there is no
<tt>invoke
</tt>
2838 instruction in the dynamic call chain, undefined behavior results.
</p>
2842 <!-- _______________________________________________________________________ -->
2844 <div class=
"doc_subsubsection"> <a name=
"i_unreachable">'
<tt>unreachable
</tt>'
2845 Instruction
</a> </div>
2847 <div class=
"doc_text">
2855 <p>The '
<tt>unreachable
</tt>' instruction has no defined semantics. This
2856 instruction is used to inform the optimizer that a particular portion of the
2857 code is not reachable. This can be used to indicate that the code after a
2858 no-return function cannot be reached, and other facts.
</p>
2861 <p>The '
<tt>unreachable
</tt>' instruction has no defined semantics.
</p>
2865 <!-- ======================================================================= -->
2866 <div class=
"doc_subsection"> <a name=
"binaryops">Binary Operations
</a> </div>
2868 <div class=
"doc_text">
2870 <p>Binary operators are used to do most of the computation in a program. They
2871 require two operands of the same type, execute an operation on them, and
2872 produce a single value. The operands might represent multiple data, as is
2873 the case with the
<a href=
"#t_vector">vector
</a> data type. The result value
2874 has the same type as its operands.
</p>
2876 <p>There are several different binary operators:
</p>
2880 <!-- _______________________________________________________________________ -->
2881 <div class=
"doc_subsubsection">
2882 <a name=
"i_add">'
<tt>add
</tt>' Instruction
</a>
2885 <div class=
"doc_text">
2889 <result
> = add
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2890 <result
> = add nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2891 <result
> = add nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2892 <result
> = add nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2896 <p>The '
<tt>add
</tt>' instruction returns the sum of its two operands.
</p>
2899 <p>The two arguments to the '
<tt>add
</tt>' instruction must
2900 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
2901 integer values. Both arguments must have identical types.
</p>
2904 <p>The value produced is the integer sum of the two operands.
</p>
2906 <p>If the sum has unsigned overflow, the result returned is the mathematical
2907 result modulo
2<sup>n
</sup>, where n is the bit width of the result.
</p>
2909 <p>Because LLVM integers use a two's complement representation, this instruction
2910 is appropriate for both signed and unsigned integers.
</p>
2912 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
2913 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
2914 <tt>nsw
</tt> keywords are present, the result value of the
<tt>add
</tt>
2915 is undefined if unsigned and/or signed overflow, respectively, occurs.
</p>
2919 <result
> = add i32
4, %var
<i>; yields {i32}:result =
4 + %var
</i>
2924 <!-- _______________________________________________________________________ -->
2925 <div class=
"doc_subsubsection">
2926 <a name=
"i_fadd">'
<tt>fadd
</tt>' Instruction
</a>
2929 <div class=
"doc_text">
2933 <result
> = fadd
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2937 <p>The '
<tt>fadd
</tt>' instruction returns the sum of its two operands.
</p>
2940 <p>The two arguments to the '
<tt>fadd
</tt>' instruction must be
2941 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
2942 floating point values. Both arguments must have identical types.
</p>
2945 <p>The value produced is the floating point sum of the two operands.
</p>
2949 <result
> = fadd float
4.0, %var
<i>; yields {float}:result =
4.0 + %var
</i>
2954 <!-- _______________________________________________________________________ -->
2955 <div class=
"doc_subsubsection">
2956 <a name=
"i_sub">'
<tt>sub
</tt>' Instruction
</a>
2959 <div class=
"doc_text">
2963 <result
> = sub
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2964 <result
> = sub nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2965 <result
> = sub nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2966 <result
> = sub nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
2970 <p>The '
<tt>sub
</tt>' instruction returns the difference of its two
2973 <p>Note that the '
<tt>sub
</tt>' instruction is used to represent the
2974 '
<tt>neg
</tt>' instruction present in most other intermediate
2975 representations.
</p>
2978 <p>The two arguments to the '
<tt>sub
</tt>' instruction must
2979 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
2980 integer values. Both arguments must have identical types.
</p>
2983 <p>The value produced is the integer difference of the two operands.
</p>
2985 <p>If the difference has unsigned overflow, the result returned is the
2986 mathematical result modulo
2<sup>n
</sup>, where n is the bit width of the
2989 <p>Because LLVM integers use a two's complement representation, this instruction
2990 is appropriate for both signed and unsigned integers.
</p>
2992 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
2993 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
2994 <tt>nsw
</tt> keywords are present, the result value of the
<tt>sub
</tt>
2995 is undefined if unsigned and/or signed overflow, respectively, occurs.
</p>
2999 <result
> = sub i32
4, %var
<i>; yields {i32}:result =
4 - %var
</i>
3000 <result
> = sub i32
0, %val
<i>; yields {i32}:result = -%var
</i>
3005 <!-- _______________________________________________________________________ -->
3006 <div class=
"doc_subsubsection">
3007 <a name=
"i_fsub">'
<tt>fsub
</tt>' Instruction
</a>
3010 <div class=
"doc_text">
3014 <result
> = fsub
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3018 <p>The '
<tt>fsub
</tt>' instruction returns the difference of its two
3021 <p>Note that the '
<tt>fsub
</tt>' instruction is used to represent the
3022 '
<tt>fneg
</tt>' instruction present in most other intermediate
3023 representations.
</p>
3026 <p>The two arguments to the '
<tt>fsub
</tt>' instruction must be
3027 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3028 floating point values. Both arguments must have identical types.
</p>
3031 <p>The value produced is the floating point difference of the two operands.
</p>
3035 <result
> = fsub float
4.0, %var
<i>; yields {float}:result =
4.0 - %var
</i>
3036 <result
> = fsub float -
0.0, %val
<i>; yields {float}:result = -%var
</i>
3041 <!-- _______________________________________________________________________ -->
3042 <div class=
"doc_subsubsection">
3043 <a name=
"i_mul">'
<tt>mul
</tt>' Instruction
</a>
3046 <div class=
"doc_text">
3050 <result
> = mul
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3051 <result
> = mul nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3052 <result
> = mul nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3053 <result
> = mul nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3057 <p>The '
<tt>mul
</tt>' instruction returns the product of its two operands.
</p>
3060 <p>The two arguments to the '
<tt>mul
</tt>' instruction must
3061 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3062 integer values. Both arguments must have identical types.
</p>
3065 <p>The value produced is the integer product of the two operands.
</p>
3067 <p>If the result of the multiplication has unsigned overflow, the result
3068 returned is the mathematical result modulo
2<sup>n
</sup>, where n is the bit
3069 width of the result.
</p>
3071 <p>Because LLVM integers use a two's complement representation, and the result
3072 is the same width as the operands, this instruction returns the correct
3073 result for both signed and unsigned integers. If a full product
3074 (e.g.
<tt>i32
</tt>x
<tt>i32
</tt>-
><tt>i64
</tt>) is needed, the operands should
3075 be sign-extended or zero-extended as appropriate to the width of the full
3078 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
3079 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
3080 <tt>nsw
</tt> keywords are present, the result value of the
<tt>mul
</tt>
3081 is undefined if unsigned and/or signed overflow, respectively, occurs.
</p>
3085 <result
> = mul i32
4, %var
<i>; yields {i32}:result =
4 * %var
</i>
3090 <!-- _______________________________________________________________________ -->
3091 <div class=
"doc_subsubsection">
3092 <a name=
"i_fmul">'
<tt>fmul
</tt>' Instruction
</a>
3095 <div class=
"doc_text">
3099 <result
> = fmul
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3103 <p>The '
<tt>fmul
</tt>' instruction returns the product of its two operands.
</p>
3106 <p>The two arguments to the '
<tt>fmul
</tt>' instruction must be
3107 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3108 floating point values. Both arguments must have identical types.
</p>
3111 <p>The value produced is the floating point product of the two operands.
</p>
3115 <result
> = fmul float
4.0, %var
<i>; yields {float}:result =
4.0 * %var
</i>
3120 <!-- _______________________________________________________________________ -->
3121 <div class=
"doc_subsubsection"> <a name=
"i_udiv">'
<tt>udiv
</tt>' Instruction
3124 <div class=
"doc_text">
3128 <result
> = udiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3132 <p>The '
<tt>udiv
</tt>' instruction returns the quotient of its two operands.
</p>
3135 <p>The two arguments to the '
<tt>udiv
</tt>' instruction must be
3136 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3137 values. Both arguments must have identical types.
</p>
3140 <p>The value produced is the unsigned integer quotient of the two operands.
</p>
3142 <p>Note that unsigned integer division and signed integer division are distinct
3143 operations; for signed integer division, use '
<tt>sdiv
</tt>'.
</p>
3145 <p>Division by zero leads to undefined behavior.
</p>
3149 <result
> = udiv i32
4, %var
<i>; yields {i32}:result =
4 / %var
</i>
3154 <!-- _______________________________________________________________________ -->
3155 <div class=
"doc_subsubsection"> <a name=
"i_sdiv">'
<tt>sdiv
</tt>' Instruction
3158 <div class=
"doc_text">
3162 <result
> = sdiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3163 <result
> = sdiv exact
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3167 <p>The '
<tt>sdiv
</tt>' instruction returns the quotient of its two operands.
</p>
3170 <p>The two arguments to the '
<tt>sdiv
</tt>' instruction must be
3171 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3172 values. Both arguments must have identical types.
</p>
3175 <p>The value produced is the signed integer quotient of the two operands rounded
3178 <p>Note that signed integer division and unsigned integer division are distinct
3179 operations; for unsigned integer division, use '
<tt>udiv
</tt>'.
</p>
3181 <p>Division by zero leads to undefined behavior. Overflow also leads to
3182 undefined behavior; this is a rare case, but can occur, for example, by doing
3183 a
32-bit division of -
2147483648 by -
1.
</p>
3185 <p>If the
<tt>exact
</tt> keyword is present, the result value of the
3186 <tt>sdiv
</tt> is undefined if the result would be rounded or if overflow
3191 <result
> = sdiv i32
4, %var
<i>; yields {i32}:result =
4 / %var
</i>
3196 <!-- _______________________________________________________________________ -->
3197 <div class=
"doc_subsubsection"> <a name=
"i_fdiv">'
<tt>fdiv
</tt>'
3198 Instruction
</a> </div>
3200 <div class=
"doc_text">
3204 <result
> = fdiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3208 <p>The '
<tt>fdiv
</tt>' instruction returns the quotient of its two operands.
</p>
3211 <p>The two arguments to the '
<tt>fdiv
</tt>' instruction must be
3212 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3213 floating point values. Both arguments must have identical types.
</p>
3216 <p>The value produced is the floating point quotient of the two operands.
</p>
3220 <result
> = fdiv float
4.0, %var
<i>; yields {float}:result =
4.0 / %var
</i>
3225 <!-- _______________________________________________________________________ -->
3226 <div class=
"doc_subsubsection"> <a name=
"i_urem">'
<tt>urem
</tt>' Instruction
</a>
3229 <div class=
"doc_text">
3233 <result
> = urem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3237 <p>The '
<tt>urem
</tt>' instruction returns the remainder from the unsigned
3238 division of its two arguments.
</p>
3241 <p>The two arguments to the '
<tt>urem
</tt>' instruction must be
3242 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3243 values. Both arguments must have identical types.
</p>
3246 <p>This instruction returns the unsigned integer
<i>remainder
</i> of a division.
3247 This instruction always performs an unsigned division to get the
3250 <p>Note that unsigned integer remainder and signed integer remainder are
3251 distinct operations; for signed integer remainder, use '
<tt>srem
</tt>'.
</p>
3253 <p>Taking the remainder of a division by zero leads to undefined behavior.
</p>
3257 <result
> = urem i32
4, %var
<i>; yields {i32}:result =
4 % %var
</i>
3262 <!-- _______________________________________________________________________ -->
3263 <div class=
"doc_subsubsection">
3264 <a name=
"i_srem">'
<tt>srem
</tt>' Instruction
</a>
3267 <div class=
"doc_text">
3271 <result
> = srem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3275 <p>The '
<tt>srem
</tt>' instruction returns the remainder from the signed
3276 division of its two operands. This instruction can also take
3277 <a href=
"#t_vector">vector
</a> versions of the values in which case the
3278 elements must be integers.
</p>
3281 <p>The two arguments to the '
<tt>srem
</tt>' instruction must be
3282 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3283 values. Both arguments must have identical types.
</p>
3286 <p>This instruction returns the
<i>remainder
</i> of a division (where the result
3287 has the same sign as the dividend,
<tt>op1
</tt>), not the
<i>modulo
</i>
3288 operator (where the result has the same sign as the divisor,
<tt>op2
</tt>) of
3289 a value. For more information about the difference,
3290 see
<a href=
"http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3291 Math Forum
</a>. For a table of how this is implemented in various languages,
3292 please see
<a href=
"http://en.wikipedia.org/wiki/Modulo_operation">
3293 Wikipedia: modulo operation
</a>.
</p>
3295 <p>Note that signed integer remainder and unsigned integer remainder are
3296 distinct operations; for unsigned integer remainder, use '
<tt>urem
</tt>'.
</p>
3298 <p>Taking the remainder of a division by zero leads to undefined behavior.
3299 Overflow also leads to undefined behavior; this is a rare case, but can
3300 occur, for example, by taking the remainder of a
32-bit division of
3301 -
2147483648 by -
1. (The remainder doesn't actually overflow, but this rule
3302 lets srem be implemented using instructions that return both the result of
3303 the division and the remainder.)
</p>
3307 <result
> = srem i32
4, %var
<i>; yields {i32}:result =
4 % %var
</i>
3312 <!-- _______________________________________________________________________ -->
3313 <div class=
"doc_subsubsection">
3314 <a name=
"i_frem">'
<tt>frem
</tt>' Instruction
</a> </div>
3316 <div class=
"doc_text">
3320 <result
> = frem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3324 <p>The '
<tt>frem
</tt>' instruction returns the remainder from the division of
3325 its two operands.
</p>
3328 <p>The two arguments to the '
<tt>frem
</tt>' instruction must be
3329 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3330 floating point values. Both arguments must have identical types.
</p>
3333 <p>This instruction returns the
<i>remainder
</i> of a division. The remainder
3334 has the same sign as the dividend.
</p>
3338 <result
> = frem float
4.0, %var
<i>; yields {float}:result =
4.0 % %var
</i>
3343 <!-- ======================================================================= -->
3344 <div class=
"doc_subsection"> <a name=
"bitwiseops">Bitwise Binary
3345 Operations
</a> </div>
3347 <div class=
"doc_text">
3349 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3350 program. They are generally very efficient instructions and can commonly be
3351 strength reduced from other instructions. They require two operands of the
3352 same type, execute an operation on them, and produce a single value. The
3353 resulting value is the same type as its operands.
</p>
3357 <!-- _______________________________________________________________________ -->
3358 <div class=
"doc_subsubsection"> <a name=
"i_shl">'
<tt>shl
</tt>'
3359 Instruction
</a> </div>
3361 <div class=
"doc_text">
3365 <result
> = shl
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3369 <p>The '
<tt>shl
</tt>' instruction returns the first operand shifted to the left
3370 a specified number of bits.
</p>
3373 <p>Both arguments to the '
<tt>shl
</tt>' instruction must be the
3374 same
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3375 integer type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3378 <p>The value produced is
<tt>op1
</tt> *
2<sup><tt>op2
</tt></sup> mod
3379 2<sup>n
</sup>, where
<tt>n
</tt> is the width of the result. If
<tt>op2
</tt>
3380 is (statically or dynamically) negative or equal to or larger than the number
3381 of bits in
<tt>op1
</tt>, the result is undefined. If the arguments are
3382 vectors, each vector element of
<tt>op1
</tt> is shifted by the corresponding
3383 shift amount in
<tt>op2
</tt>.
</p>
3387 <result
> = shl i32
4, %var
<i>; yields {i32}:
4 << %var
</i>
3388 <result
> = shl i32
4,
2 <i>; yields {i32}:
16</i>
3389 <result
> = shl i32
1,
10 <i>; yields {i32}:
1024</i>
3390 <result
> = shl i32
1,
32 <i>; undefined
</i>
3391 <result
> = shl
<2 x i32
> < i32
1, i32
1>,
< i32
1, i32
2> <i>; yields: result=
<2 x i32
> < i32
2, i32
4></i>
3396 <!-- _______________________________________________________________________ -->
3397 <div class=
"doc_subsubsection"> <a name=
"i_lshr">'
<tt>lshr
</tt>'
3398 Instruction
</a> </div>
3400 <div class=
"doc_text">
3404 <result
> = lshr
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3408 <p>The '
<tt>lshr
</tt>' instruction (logical shift right) returns the first
3409 operand shifted to the right a specified number of bits with zero fill.
</p>
3412 <p>Both arguments to the '
<tt>lshr
</tt>' instruction must be the same
3413 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3414 type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3417 <p>This instruction always performs a logical shift right operation. The most
3418 significant bits of the result will be filled with zero bits after the shift.
3419 If
<tt>op2
</tt> is (statically or dynamically) equal to or larger than the
3420 number of bits in
<tt>op1
</tt>, the result is undefined. If the arguments are
3421 vectors, each vector element of
<tt>op1
</tt> is shifted by the corresponding
3422 shift amount in
<tt>op2
</tt>.
</p>
3426 <result
> = lshr i32
4,
1 <i>; yields {i32}:result =
2</i>
3427 <result
> = lshr i32
4,
2 <i>; yields {i32}:result =
1</i>
3428 <result
> = lshr i8
4,
3 <i>; yields {i8}:result =
0</i>
3429 <result
> = lshr i8 -
2,
1 <i>; yields {i8}:result =
0x7FFFFFFF </i>
3430 <result
> = lshr i32
1,
32 <i>; undefined
</i>
3431 <result
> = lshr
<2 x i32
> < i32 -
2, i32
4>,
< i32
1, i32
2> <i>; yields: result=
<2 x i32
> < i32
0x7FFFFFFF, i32
1></i>
3436 <!-- _______________________________________________________________________ -->
3437 <div class=
"doc_subsubsection"> <a name=
"i_ashr">'
<tt>ashr
</tt>'
3438 Instruction
</a> </div>
3439 <div class=
"doc_text">
3443 <result
> = ashr
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3447 <p>The '
<tt>ashr
</tt>' instruction (arithmetic shift right) returns the first
3448 operand shifted to the right a specified number of bits with sign
3452 <p>Both arguments to the '
<tt>ashr
</tt>' instruction must be the same
3453 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3454 type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3457 <p>This instruction always performs an arithmetic shift right operation, The
3458 most significant bits of the result will be filled with the sign bit
3459 of
<tt>op1
</tt>. If
<tt>op2
</tt> is (statically or dynamically) equal to or
3460 larger than the number of bits in
<tt>op1
</tt>, the result is undefined. If
3461 the arguments are vectors, each vector element of
<tt>op1
</tt> is shifted by
3462 the corresponding shift amount in
<tt>op2
</tt>.
</p>
3466 <result
> = ashr i32
4,
1 <i>; yields {i32}:result =
2</i>
3467 <result
> = ashr i32
4,
2 <i>; yields {i32}:result =
1</i>
3468 <result
> = ashr i8
4,
3 <i>; yields {i8}:result =
0</i>
3469 <result
> = ashr i8 -
2,
1 <i>; yields {i8}:result = -
1</i>
3470 <result
> = ashr i32
1,
32 <i>; undefined
</i>
3471 <result
> = ashr
<2 x i32
> < i32 -
2, i32
4>,
< i32
1, i32
3> <i>; yields: result=
<2 x i32
> < i32 -
1, i32
0></i>
3476 <!-- _______________________________________________________________________ -->
3477 <div class=
"doc_subsubsection"> <a name=
"i_and">'
<tt>and
</tt>'
3478 Instruction
</a> </div>
3480 <div class=
"doc_text">
3484 <result
> = and
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3488 <p>The '
<tt>and
</tt>' instruction returns the bitwise logical and of its two
3492 <p>The two arguments to the '
<tt>and
</tt>' instruction must be
3493 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3494 values. Both arguments must have identical types.
</p>
3497 <p>The truth table used for the '
<tt>and
</tt>' instruction is:
</p>
3499 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
3531 <result
> = and i32
4, %var
<i>; yields {i32}:result =
4 & %var
</i>
3532 <result
> = and i32
15,
40 <i>; yields {i32}:result =
8</i>
3533 <result
> = and i32
4,
8 <i>; yields {i32}:result =
0</i>
3536 <!-- _______________________________________________________________________ -->
3537 <div class=
"doc_subsubsection"> <a name=
"i_or">'
<tt>or
</tt>' Instruction
</a> </div>
3539 <div class=
"doc_text">
3543 <result
> = or
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3547 <p>The '
<tt>or
</tt>' instruction returns the bitwise logical inclusive or of its
3551 <p>The two arguments to the '
<tt>or
</tt>' instruction must be
3552 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3553 values. Both arguments must have identical types.
</p>
3556 <p>The truth table used for the '
<tt>or
</tt>' instruction is:
</p>
3558 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
3590 <result
> = or i32
4, %var
<i>; yields {i32}:result =
4 | %var
</i>
3591 <result
> = or i32
15,
40 <i>; yields {i32}:result =
47</i>
3592 <result
> = or i32
4,
8 <i>; yields {i32}:result =
12</i>
3597 <!-- _______________________________________________________________________ -->
3598 <div class=
"doc_subsubsection"> <a name=
"i_xor">'
<tt>xor
</tt>'
3599 Instruction
</a> </div>
3601 <div class=
"doc_text">
3605 <result
> = xor
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3609 <p>The '
<tt>xor
</tt>' instruction returns the bitwise logical exclusive or of
3610 its two operands. The
<tt>xor
</tt> is used to implement the
"one's
3611 complement" operation, which is the
"~" operator in C.
</p>
3614 <p>The two arguments to the '
<tt>xor
</tt>' instruction must be
3615 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3616 values. Both arguments must have identical types.
</p>
3619 <p>The truth table used for the '
<tt>xor
</tt>' instruction is:
</p>
3621 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
3653 <result
> = xor i32
4, %var
<i>; yields {i32}:result =
4 ^ %var
</i>
3654 <result
> = xor i32
15,
40 <i>; yields {i32}:result =
39</i>
3655 <result
> = xor i32
4,
8 <i>; yields {i32}:result =
12</i>
3656 <result
> = xor i32 %V, -
1 <i>; yields {i32}:result = ~%V
</i>
3661 <!-- ======================================================================= -->
3662 <div class=
"doc_subsection">
3663 <a name=
"vectorops">Vector Operations
</a>
3666 <div class=
"doc_text">
3668 <p>LLVM supports several instructions to represent vector operations in a
3669 target-independent manner. These instructions cover the element-access and
3670 vector-specific operations needed to process vectors effectively. While LLVM
3671 does directly support these vector operations, many sophisticated algorithms
3672 will want to use target-specific intrinsics to take full advantage of a
3673 specific target.
</p>
3677 <!-- _______________________________________________________________________ -->
3678 <div class=
"doc_subsubsection">
3679 <a name=
"i_extractelement">'
<tt>extractelement
</tt>' Instruction
</a>
3682 <div class=
"doc_text">
3686 <result
> = extractelement
<n x
<ty
>> <val
>, i32
<idx
> <i>; yields
<ty
></i>
3690 <p>The '
<tt>extractelement
</tt>' instruction extracts a single scalar element
3691 from a vector at a specified index.
</p>
3695 <p>The first operand of an '
<tt>extractelement
</tt>' instruction is a value
3696 of
<a href=
"#t_vector">vector
</a> type. The second operand is an index
3697 indicating the position from which to extract the element. The index may be
3701 <p>The result is a scalar of the same type as the element type of
3702 <tt>val
</tt>. Its value is the value at position
<tt>idx
</tt> of
3703 <tt>val
</tt>. If
<tt>idx
</tt> exceeds the length of
<tt>val
</tt>, the
3704 results are undefined.
</p>
3708 <result
> = extractelement
<4 x i32
> %vec, i32
0 <i>; yields i32
</i>
3713 <!-- _______________________________________________________________________ -->
3714 <div class=
"doc_subsubsection">
3715 <a name=
"i_insertelement">'
<tt>insertelement
</tt>' Instruction
</a>
3718 <div class=
"doc_text">
3722 <result
> = insertelement
<n x
<ty
>> <val
>,
<ty
> <elt
>, i32
<idx
> <i>; yields
<n x
<ty
>></i>
3726 <p>The '
<tt>insertelement
</tt>' instruction inserts a scalar element into a
3727 vector at a specified index.
</p>
3730 <p>The first operand of an '
<tt>insertelement
</tt>' instruction is a value
3731 of
<a href=
"#t_vector">vector
</a> type. The second operand is a scalar value
3732 whose type must equal the element type of the first operand. The third
3733 operand is an index indicating the position at which to insert the value.
3734 The index may be a variable.
</p>
3737 <p>The result is a vector of the same type as
<tt>val
</tt>. Its element values
3738 are those of
<tt>val
</tt> except at position
<tt>idx
</tt>, where it gets the
3739 value
<tt>elt
</tt>. If
<tt>idx
</tt> exceeds the length of
<tt>val
</tt>, the
3740 results are undefined.
</p>
3744 <result
> = insertelement
<4 x i32
> %vec, i32
1, i32
0 <i>; yields
<4 x i32
></i>
3749 <!-- _______________________________________________________________________ -->
3750 <div class=
"doc_subsubsection">
3751 <a name=
"i_shufflevector">'
<tt>shufflevector
</tt>' Instruction
</a>
3754 <div class=
"doc_text">
3758 <result
> = shufflevector
<n x
<ty
>> <v1
>,
<n x
<ty
>> <v2
>,
<m x i32
> <mask
> <i>; yields
<m x
<ty
>></i>
3762 <p>The '
<tt>shufflevector
</tt>' instruction constructs a permutation of elements
3763 from two input vectors, returning a vector with the same element type as the
3764 input and length that is the same as the shuffle mask.
</p>
3767 <p>The first two operands of a '
<tt>shufflevector
</tt>' instruction are vectors
3768 with types that match each other. The third argument is a shuffle mask whose
3769 element type is always 'i32'. The result of the instruction is a vector
3770 whose length is the same as the shuffle mask and whose element type is the
3771 same as the element type of the first two operands.
</p>
3773 <p>The shuffle mask operand is required to be a constant vector with either
3774 constant integer or undef values.
</p>
3777 <p>The elements of the two input vectors are numbered from left to right across
3778 both of the vectors. The shuffle mask operand specifies, for each element of
3779 the result vector, which element of the two input vectors the result element
3780 gets. The element selector may be undef (meaning
"don't care") and the
3781 second operand may be undef if performing a shuffle from only one vector.
</p>
3785 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> %v2,
3786 <4 x i32
> <i32
0, i32
4, i32
1, i32
5> <i>; yields
<4 x i32
></i>
3787 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> undef,
3788 <4 x i32
> <i32
0, i32
1, i32
2, i32
3> <i>; yields
<4 x i32
></i> - Identity shuffle.
3789 <result
> = shufflevector
<8 x i32
> %v1,
<8 x i32
> undef,
3790 <4 x i32
> <i32
0, i32
1, i32
2, i32
3> <i>; yields
<4 x i32
></i>
3791 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> %v2,
3792 <8 x i32
> <i32
0, i32
1, i32
2, i32
3, i32
4, i32
5, i32
6, i32
7 > <i>; yields
<8 x i32
></i>
3797 <!-- ======================================================================= -->
3798 <div class=
"doc_subsection">
3799 <a name=
"aggregateops">Aggregate Operations
</a>
3802 <div class=
"doc_text">
3804 <p>LLVM supports several instructions for working with aggregate values.
</p>
3808 <!-- _______________________________________________________________________ -->
3809 <div class=
"doc_subsubsection">
3810 <a name=
"i_extractvalue">'
<tt>extractvalue
</tt>' Instruction
</a>
3813 <div class=
"doc_text">
3817 <result
> = extractvalue
<aggregate type
> <val
>,
<idx
>{,
<idx
>}*
3821 <p>The '
<tt>extractvalue
</tt>' instruction extracts the value of a struct field
3822 or array element from an aggregate value.
</p>
3825 <p>The first operand of an '
<tt>extractvalue
</tt>' instruction is a value
3826 of
<a href=
"#t_struct">struct
</a> or
<a href=
"#t_array">array
</a> type. The
3827 operands are constant indices to specify which value to extract in a similar
3828 manner as indices in a
3829 '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
</p>
3832 <p>The result is the value at the position in the aggregate specified by the
3837 <result
> = extractvalue {i32, float} %agg,
0 <i>; yields i32
</i>
3842 <!-- _______________________________________________________________________ -->
3843 <div class=
"doc_subsubsection">
3844 <a name=
"i_insertvalue">'
<tt>insertvalue
</tt>' Instruction
</a>
3847 <div class=
"doc_text">
3851 <result
> = insertvalue
<aggregate type
> <val
>,
<ty
> <val
>,
<idx
> <i>; yields
<n x
<ty
>></i>
3855 <p>The '
<tt>insertvalue
</tt>' instruction inserts a value into a struct field or
3856 array element in an aggregate.
</p>
3860 <p>The first operand of an '
<tt>insertvalue
</tt>' instruction is a value
3861 of
<a href=
"#t_struct">struct
</a> or
<a href=
"#t_array">array
</a> type. The
3862 second operand is a first-class value to insert. The following operands are
3863 constant indices indicating the position at which to insert the value in a
3864 similar manner as indices in a
3865 '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction. The
3866 value to insert must have the same type as the value identified by the
3870 <p>The result is an aggregate of the same type as
<tt>val
</tt>. Its value is
3871 that of
<tt>val
</tt> except that the value at the position specified by the
3872 indices is that of
<tt>elt
</tt>.
</p>
3876 <result
> = insertvalue {i32, float} %agg, i32
1,
0 <i>; yields {i32, float}
</i>
3882 <!-- ======================================================================= -->
3883 <div class=
"doc_subsection">
3884 <a name=
"memoryops">Memory Access and Addressing Operations
</a>
3887 <div class=
"doc_text">
3889 <p>A key design point of an SSA-based representation is how it represents
3890 memory. In LLVM, no memory locations are in SSA form, which makes things
3891 very simple. This section describes how to read, write, and allocate
3896 <!-- _______________________________________________________________________ -->
3897 <div class=
"doc_subsubsection">
3898 <a name=
"i_alloca">'
<tt>alloca
</tt>' Instruction
</a>
3901 <div class=
"doc_text">
3905 <result
> = alloca
<type
>[, i32
<NumElements
>][, align
<alignment
>]
<i>; yields {type*}:result
</i>
3909 <p>The '
<tt>alloca
</tt>' instruction allocates memory on the stack frame of the
3910 currently executing function, to be automatically released when this function
3911 returns to its caller. The object is always allocated in the generic address
3912 space (address space zero).
</p>
3915 <p>The '
<tt>alloca
</tt>' instruction
3916 allocates
<tt>sizeof(
<type
>)*NumElements
</tt> bytes of memory on the
3917 runtime stack, returning a pointer of the appropriate type to the program.
3918 If
"NumElements" is specified, it is the number of elements allocated,
3919 otherwise
"NumElements" is defaulted to be one. If a constant alignment is
3920 specified, the value result of the allocation is guaranteed to be aligned to
3921 at least that boundary. If not specified, or if zero, the target can choose
3922 to align the allocation on any convenient boundary compatible with the
3925 <p>'
<tt>type
</tt>' may be any sized type.
</p>
3928 <p>Memory is allocated; a pointer is returned. The operation is undefined if
3929 there is insufficient stack space for the allocation. '
<tt>alloca
</tt>'d
3930 memory is automatically released when the function returns. The
3931 '
<tt>alloca
</tt>' instruction is commonly used to represent automatic
3932 variables that must have an address available. When the function returns
3933 (either with the
<tt><a href=
"#i_ret">ret
</a></tt>
3934 or
<tt><a href=
"#i_unwind">unwind
</a></tt> instructions), the memory is
3935 reclaimed. Allocating zero bytes is legal, but the result is undefined.
</p>
3939 %ptr = alloca i32
<i>; yields {i32*}:ptr
</i>
3940 %ptr = alloca i32, i32
4 <i>; yields {i32*}:ptr
</i>
3941 %ptr = alloca i32, i32
4, align
1024 <i>; yields {i32*}:ptr
</i>
3942 %ptr = alloca i32, align
1024 <i>; yields {i32*}:ptr
</i>
3947 <!-- _______________________________________________________________________ -->
3948 <div class=
"doc_subsubsection"> <a name=
"i_load">'
<tt>load
</tt>'
3949 Instruction
</a> </div>
3951 <div class=
"doc_text">
3955 <result
> = load
<ty
>*
<pointer
>[, align
<alignment
>]
3956 <result
> = volatile load
<ty
>*
<pointer
>[, align
<alignment
>]
3960 <p>The '
<tt>load
</tt>' instruction is used to read from memory.
</p>
3963 <p>The argument to the '
<tt>load
</tt>' instruction specifies the memory address
3964 from which to load. The pointer must point to
3965 a
<a href=
"#t_firstclass">first class
</a> type. If the
<tt>load
</tt> is
3966 marked as
<tt>volatile
</tt>, then the optimizer is not allowed to modify the
3967 number or order of execution of this
<tt>load
</tt> with other
3968 volatile
<tt>load
</tt> and
<tt><a href=
"#i_store">store
</a></tt>
3971 <p>The optional constant
"align" argument specifies the alignment of the
3972 operation (that is, the alignment of the memory address). A value of
0 or an
3973 omitted
"align" argument means that the operation has the preferential
3974 alignment for the target. It is the responsibility of the code emitter to
3975 ensure that the alignment information is correct. Overestimating the
3976 alignment results in an undefined behavior. Underestimating the alignment may
3977 produce less efficient code. An alignment of
1 is always safe.
</p>
3980 <p>The location of memory pointed to is loaded. If the value being loaded is of
3981 scalar type then the number of bytes read does not exceed the minimum number
3982 of bytes needed to hold all bits of the type. For example, loading an
3983 <tt>i24
</tt> reads at most three bytes. When loading a value of a type like
3984 <tt>i20
</tt> with a size that is not an integral number of bytes, the result
3985 is undefined if the value was not originally written using a store of the
3990 %ptr =
<a href=
"#i_alloca">alloca
</a> i32
<i>; yields {i32*}:ptr
</i>
3991 <a href=
"#i_store">store
</a> i32
3, i32* %ptr
<i>; yields {void}
</i>
3992 %val = load i32* %ptr
<i>; yields {i32}:val = i32
3</i>
3997 <!-- _______________________________________________________________________ -->
3998 <div class=
"doc_subsubsection"> <a name=
"i_store">'
<tt>store
</tt>'
3999 Instruction
</a> </div>
4001 <div class=
"doc_text">
4005 store
<ty
> <value
>,
<ty
>*
<pointer
>[, align
<alignment
>]
<i>; yields {void}
</i>
4006 volatile store
<ty
> <value
>,
<ty
>*
<pointer
>[, align
<alignment
>]
<i>; yields {void}
</i>
4010 <p>The '
<tt>store
</tt>' instruction is used to write to memory.
</p>
4013 <p>There are two arguments to the '
<tt>store
</tt>' instruction: a value to store
4014 and an address at which to store it. The type of the
4015 '
<tt><pointer
></tt>' operand must be a pointer to
4016 the
<a href=
"#t_firstclass">first class
</a> type of the
4017 '
<tt><value
></tt>' operand. If the
<tt>store
</tt> is marked
4018 as
<tt>volatile
</tt>, then the optimizer is not allowed to modify the number
4019 or order of execution of this
<tt>store
</tt> with other
4020 volatile
<tt>load
</tt> and
<tt><a href=
"#i_store">store
</a></tt>
4023 <p>The optional constant
"align" argument specifies the alignment of the
4024 operation (that is, the alignment of the memory address). A value of
0 or an
4025 omitted
"align" argument means that the operation has the preferential
4026 alignment for the target. It is the responsibility of the code emitter to
4027 ensure that the alignment information is correct. Overestimating the
4028 alignment results in an undefined behavior. Underestimating the alignment may
4029 produce less efficient code. An alignment of
1 is always safe.
</p>
4032 <p>The contents of memory are updated to contain '
<tt><value
></tt>' at the
4033 location specified by the '
<tt><pointer
></tt>' operand. If
4034 '
<tt><value
></tt>' is of scalar type then the number of bytes written
4035 does not exceed the minimum number of bytes needed to hold all bits of the
4036 type. For example, storing an
<tt>i24
</tt> writes at most three bytes. When
4037 writing a value of a type like
<tt>i20
</tt> with a size that is not an
4038 integral number of bytes, it is unspecified what happens to the extra bits
4039 that do not belong to the type, but they will typically be overwritten.
</p>
4043 %ptr =
<a href=
"#i_alloca">alloca
</a> i32
<i>; yields {i32*}:ptr
</i>
4044 store i32
3, i32* %ptr
<i>; yields {void}
</i>
4045 %val =
<a href=
"#i_load">load
</a> i32* %ptr
<i>; yields {i32}:val = i32
3</i>
4050 <!-- _______________________________________________________________________ -->
4051 <div class=
"doc_subsubsection">
4052 <a name=
"i_getelementptr">'
<tt>getelementptr
</tt>' Instruction
</a>
4055 <div class=
"doc_text">
4059 <result
> = getelementptr
<pty
>*
<ptrval
>{,
<ty
> <idx
>}*
4060 <result
> = getelementptr inbounds
<pty
>*
<ptrval
>{,
<ty
> <idx
>}*
4064 <p>The '
<tt>getelementptr
</tt>' instruction is used to get the address of a
4065 subelement of an aggregate data structure. It performs address calculation
4066 only and does not access memory.
</p>
4069 <p>The first argument is always a pointer, and forms the basis of the
4070 calculation. The remaining arguments are indices that indicate which of the
4071 elements of the aggregate object are indexed. The interpretation of each
4072 index is dependent on the type being indexed into. The first index always
4073 indexes the pointer value given as the first argument, the second index
4074 indexes a value of the type pointed to (not necessarily the value directly
4075 pointed to, since the first index can be non-zero), etc. The first type
4076 indexed into must be a pointer value, subsequent types can be arrays, vectors
4077 and structs. Note that subsequent types being indexed into can never be
4078 pointers, since that would require loading the pointer before continuing
4081 <p>The type of each index argument depends on the type it is indexing into.
4082 When indexing into a (optionally packed) structure, only
<tt>i32
</tt> integer
4083 <b>constants
</b> are allowed. When indexing into an array, pointer or
4084 vector, integers of any width are allowed, and they are not required to be
4087 <p>For example, let's consider a C code fragment and how it gets compiled to
4090 <div class=
"doc_code">
4103 int *foo(struct ST *s) {
4104 return
&s[
1].Z.B[
5][
13];
4109 <p>The LLVM code generated by the GCC frontend is:
</p>
4111 <div class=
"doc_code">
4113 %RT =
<a href=
"#namedtypes">type
</a> { i8 , [
10 x [
20 x i32]], i8 }
4114 %ST =
<a href=
"#namedtypes">type
</a> { i32, double, %RT }
4116 define i32* @foo(%ST* %s) {
4118 %reg = getelementptr %ST* %s, i32
1, i32
2, i32
1, i32
5, i32
13
4125 <p>In the example above, the first index is indexing into the '
<tt>%ST*
</tt>'
4126 type, which is a pointer, yielding a '
<tt>%ST
</tt>' = '
<tt>{ i32, double, %RT
4127 }
</tt>' type, a structure. The second index indexes into the third element
4128 of the structure, yielding a '
<tt>%RT
</tt>' = '
<tt>{ i8 , [
10 x [
20 x i32]],
4129 i8 }
</tt>' type, another structure. The third index indexes into the second
4130 element of the structure, yielding a '
<tt>[
10 x [
20 x i32]]
</tt>' type, an
4131 array. The two dimensions of the array are subscripted into, yielding an
4132 '
<tt>i32
</tt>' type. The '
<tt>getelementptr
</tt>' instruction returns a
4133 pointer to this element, thus computing a value of '
<tt>i32*
</tt>' type.
</p>
4135 <p>Note that it is perfectly legal to index partially through a structure,
4136 returning a pointer to an inner element. Because of this, the LLVM code for
4137 the given testcase is equivalent to:
</p>
4140 define i32* @foo(%ST* %s) {
4141 %t1 = getelementptr %ST* %s, i32
1 <i>; yields %ST*:%t1
</i>
4142 %t2 = getelementptr %ST* %t1, i32
0, i32
2 <i>; yields %RT*:%t2
</i>
4143 %t3 = getelementptr %RT* %t2, i32
0, i32
1 <i>; yields [
10 x [
20 x i32]]*:%t3
</i>
4144 %t4 = getelementptr [
10 x [
20 x i32]]* %t3, i32
0, i32
5 <i>; yields [
20 x i32]*:%t4
</i>
4145 %t5 = getelementptr [
20 x i32]* %t4, i32
0, i32
13 <i>; yields i32*:%t5
</i>
4150 <p>If the
<tt>inbounds
</tt> keyword is present, the result value of the
4151 <tt>getelementptr
</tt> is undefined if the base pointer is not an
4152 <i>in bounds
</i> address of an allocated object, or if any of the addresses
4153 that would be formed by successive addition of the offsets implied by the
4154 indices to the base address with infinitely precise arithmetic are not an
4155 <i>in bounds
</i> address of that allocated object.
4156 The
<i>in bounds
</i> addresses for an allocated object are all the addresses
4157 that point into the object, plus the address one byte past the end.
</p>
4159 <p>If the
<tt>inbounds
</tt> keyword is not present, the offsets are added to
4160 the base address with silently-wrapping two's complement arithmetic, and
4161 the result value of the
<tt>getelementptr
</tt> may be outside the object
4162 pointed to by the base pointer. The result value may not necessarily be
4163 used to access memory though, even if it happens to point into allocated
4164 storage. See the
<a href=
"#pointeraliasing">Pointer Aliasing Rules
</a>
4165 section for more information.
</p>
4167 <p>The getelementptr instruction is often confusing. For some more insight into
4168 how it works, see
<a href=
"GetElementPtr.html">the getelementptr FAQ
</a>.
</p>
4172 <i>; yields [
12 x i8]*:aptr
</i>
4173 %aptr = getelementptr {i32, [
12 x i8]}* %saptr, i64
0, i32
1
4174 <i>; yields i8*:vptr
</i>
4175 %vptr = getelementptr {i32,
<2 x i8
>}* %svptr, i64
0, i32
1, i32
1
4176 <i>; yields i8*:eptr
</i>
4177 %eptr = getelementptr [
12 x i8]* %aptr, i64
0, i32
1
4178 <i>; yields i32*:iptr
</i>
4179 %iptr = getelementptr [
10 x i32]* @arr, i16
0, i16
0
4184 <!-- ======================================================================= -->
4185 <div class=
"doc_subsection"> <a name=
"convertops">Conversion Operations
</a>
4188 <div class=
"doc_text">
4190 <p>The instructions in this category are the conversion instructions (casting)
4191 which all take a single operand and a type. They perform various bit
4192 conversions on the operand.
</p>
4196 <!-- _______________________________________________________________________ -->
4197 <div class=
"doc_subsubsection">
4198 <a name=
"i_trunc">'
<tt>trunc .. to
</tt>' Instruction
</a>
4200 <div class=
"doc_text">
4204 <result
> = trunc
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4208 <p>The '
<tt>trunc
</tt>' instruction truncates its operand to the
4209 type
<tt>ty2
</tt>.
</p>
4212 <p>The '
<tt>trunc
</tt>' instruction takes a
<tt>value
</tt> to trunc, which must
4213 be an
<a href=
"#t_integer">integer
</a> type, and a type that specifies the
4214 size and type of the result, which must be
4215 an
<a href=
"#t_integer">integer
</a> type. The bit size of
<tt>value
</tt> must
4216 be larger than the bit size of
<tt>ty2
</tt>. Equal sized types are not
4220 <p>The '
<tt>trunc
</tt>' instruction truncates the high order bits
4221 in
<tt>value
</tt> and converts the remaining bits to
<tt>ty2
</tt>. Since the
4222 source size must be larger than the destination size,
<tt>trunc
</tt> cannot
4223 be a
<i>no-op cast
</i>. It will always truncate bits.
</p>
4227 %X = trunc i32
257 to i8
<i>; yields i8:
1</i>
4228 %Y = trunc i32
123 to i1
<i>; yields i1:true
</i>
4229 %Z = trunc i32
122 to i1
<i>; yields i1:false
</i>
4234 <!-- _______________________________________________________________________ -->
4235 <div class=
"doc_subsubsection">
4236 <a name=
"i_zext">'
<tt>zext .. to
</tt>' Instruction
</a>
4238 <div class=
"doc_text">
4242 <result
> = zext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4246 <p>The '
<tt>zext
</tt>' instruction zero extends its operand to type
4251 <p>The '
<tt>zext
</tt>' instruction takes a value to cast, which must be of
4252 <a href=
"#t_integer">integer
</a> type, and a type to cast it to, which must
4253 also be of
<a href=
"#t_integer">integer
</a> type. The bit size of the
4254 <tt>value
</tt> must be smaller than the bit size of the destination type,
4258 <p>The
<tt>zext
</tt> fills the high order bits of the
<tt>value
</tt> with zero
4259 bits until it reaches the size of the destination type,
<tt>ty2
</tt>.
</p>
4261 <p>When zero extending from i1, the result will always be either
0 or
1.
</p>
4265 %X = zext i32
257 to i64
<i>; yields i64:
257</i>
4266 %Y = zext i1 true to i32
<i>; yields i32:
1</i>
4271 <!-- _______________________________________________________________________ -->
4272 <div class=
"doc_subsubsection">
4273 <a name=
"i_sext">'
<tt>sext .. to
</tt>' Instruction
</a>
4275 <div class=
"doc_text">
4279 <result
> = sext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4283 <p>The '
<tt>sext
</tt>' sign extends
<tt>value
</tt> to the type
<tt>ty2
</tt>.
</p>
4286 <p>The '
<tt>sext
</tt>' instruction takes a value to cast, which must be of
4287 <a href=
"#t_integer">integer
</a> type, and a type to cast it to, which must
4288 also be of
<a href=
"#t_integer">integer
</a> type. The bit size of the
4289 <tt>value
</tt> must be smaller than the bit size of the destination type,
4293 <p>The '
<tt>sext
</tt>' instruction performs a sign extension by copying the sign
4294 bit (highest order bit) of the
<tt>value
</tt> until it reaches the bit size
4295 of the type
<tt>ty2
</tt>.
</p>
4297 <p>When sign extending from i1, the extension always results in -
1 or
0.
</p>
4301 %X = sext i8 -
1 to i16
<i>; yields i16 :
65535</i>
4302 %Y = sext i1 true to i32
<i>; yields i32:-
1</i>
4307 <!-- _______________________________________________________________________ -->
4308 <div class=
"doc_subsubsection">
4309 <a name=
"i_fptrunc">'
<tt>fptrunc .. to
</tt>' Instruction
</a>
4312 <div class=
"doc_text">
4316 <result
> = fptrunc
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4320 <p>The '
<tt>fptrunc
</tt>' instruction truncates
<tt>value
</tt> to type
4324 <p>The '
<tt>fptrunc
</tt>' instruction takes a
<a href=
"#t_floating">floating
4325 point
</a> value to cast and a
<a href=
"#t_floating">floating point
</a> type
4326 to cast it to. The size of
<tt>value
</tt> must be larger than the size of
4327 <tt>ty2
</tt>. This implies that
<tt>fptrunc
</tt> cannot be used to make a
4328 <i>no-op cast
</i>.
</p>
4331 <p>The '
<tt>fptrunc
</tt>' instruction truncates a
<tt>value
</tt> from a larger
4332 <a href=
"#t_floating">floating point
</a> type to a smaller
4333 <a href=
"#t_floating">floating point
</a> type. If the value cannot fit
4334 within the destination type,
<tt>ty2
</tt>, then the results are
4339 %X = fptrunc double
123.0 to float
<i>; yields float:
123.0</i>
4340 %Y = fptrunc double
1.0E+300 to float
<i>; yields undefined
</i>
4345 <!-- _______________________________________________________________________ -->
4346 <div class=
"doc_subsubsection">
4347 <a name=
"i_fpext">'
<tt>fpext .. to
</tt>' Instruction
</a>
4349 <div class=
"doc_text">
4353 <result
> = fpext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4357 <p>The '
<tt>fpext
</tt>' extends a floating point
<tt>value
</tt> to a larger
4358 floating point value.
</p>
4361 <p>The '
<tt>fpext
</tt>' instruction takes a
4362 <a href=
"#t_floating">floating point
</a> <tt>value
</tt> to cast, and
4363 a
<a href=
"#t_floating">floating point
</a> type to cast it to. The source
4364 type must be smaller than the destination type.
</p>
4367 <p>The '
<tt>fpext
</tt>' instruction extends the
<tt>value
</tt> from a smaller
4368 <a href=
"#t_floating">floating point
</a> type to a larger
4369 <a href=
"#t_floating">floating point
</a> type. The
<tt>fpext
</tt> cannot be
4370 used to make a
<i>no-op cast
</i> because it always changes bits. Use
4371 <tt>bitcast
</tt> to make a
<i>no-op cast
</i> for a floating point cast.
</p>
4375 %X = fpext float
3.1415 to double
<i>; yields double:
3.1415</i>
4376 %Y = fpext float
1.0 to float
<i>; yields float:
1.0 (no-op)
</i>
4381 <!-- _______________________________________________________________________ -->
4382 <div class=
"doc_subsubsection">
4383 <a name=
"i_fptoui">'
<tt>fptoui .. to
</tt>' Instruction
</a>
4385 <div class=
"doc_text">
4389 <result
> = fptoui
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4393 <p>The '
<tt>fptoui
</tt>' converts a floating point
<tt>value
</tt> to its
4394 unsigned integer equivalent of type
<tt>ty2
</tt>.
</p>
4397 <p>The '
<tt>fptoui
</tt>' instruction takes a value to cast, which must be a
4398 scalar or vector
<a href=
"#t_floating">floating point
</a> value, and a type
4399 to cast it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a>
4400 type. If
<tt>ty
</tt> is a vector floating point type,
<tt>ty2
</tt> must be a
4401 vector integer type with the same number of elements as
<tt>ty
</tt></p>
4404 <p>The '
<tt>fptoui
</tt>' instruction converts its
4405 <a href=
"#t_floating">floating point
</a> operand into the nearest (rounding
4406 towards zero) unsigned integer value. If the value cannot fit
4407 in
<tt>ty2
</tt>, the results are undefined.
</p>
4411 %X = fptoui double
123.0 to i32
<i>; yields i32:
123</i>
4412 %Y = fptoui float
1.0E+300 to i1
<i>; yields undefined:
1</i>
4413 %Z = fptoui float
1.04E+17 to i8
<i>; yields undefined:
1</i>
4418 <!-- _______________________________________________________________________ -->
4419 <div class=
"doc_subsubsection">
4420 <a name=
"i_fptosi">'
<tt>fptosi .. to
</tt>' Instruction
</a>
4422 <div class=
"doc_text">
4426 <result
> = fptosi
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4430 <p>The '
<tt>fptosi
</tt>' instruction converts
4431 <a href=
"#t_floating">floating point
</a> <tt>value
</tt> to
4432 type
<tt>ty2
</tt>.
</p>
4435 <p>The '
<tt>fptosi
</tt>' instruction takes a value to cast, which must be a
4436 scalar or vector
<a href=
"#t_floating">floating point
</a> value, and a type
4437 to cast it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a>
4438 type. If
<tt>ty
</tt> is a vector floating point type,
<tt>ty2
</tt> must be a
4439 vector integer type with the same number of elements as
<tt>ty
</tt></p>
4442 <p>The '
<tt>fptosi
</tt>' instruction converts its
4443 <a href=
"#t_floating">floating point
</a> operand into the nearest (rounding
4444 towards zero) signed integer value. If the value cannot fit in
<tt>ty2
</tt>,
4445 the results are undefined.
</p>
4449 %X = fptosi double -
123.0 to i32
<i>; yields i32:-
123</i>
4450 %Y = fptosi float
1.0E-247 to i1
<i>; yields undefined:
1</i>
4451 %Z = fptosi float
1.04E+17 to i8
<i>; yields undefined:
1</i>
4456 <!-- _______________________________________________________________________ -->
4457 <div class=
"doc_subsubsection">
4458 <a name=
"i_uitofp">'
<tt>uitofp .. to
</tt>' Instruction
</a>
4460 <div class=
"doc_text">
4464 <result
> = uitofp
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4468 <p>The '
<tt>uitofp
</tt>' instruction regards
<tt>value
</tt> as an unsigned
4469 integer and converts that value to the
<tt>ty2
</tt> type.
</p>
4472 <p>The '
<tt>uitofp
</tt>' instruction takes a value to cast, which must be a
4473 scalar or vector
<a href=
"#t_integer">integer
</a> value, and a type to cast
4474 it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_floating">floating point
</a>
4475 type. If
<tt>ty
</tt> is a vector integer type,
<tt>ty2
</tt> must be a vector
4476 floating point type with the same number of elements as
<tt>ty
</tt></p>
4479 <p>The '
<tt>uitofp
</tt>' instruction interprets its operand as an unsigned
4480 integer quantity and converts it to the corresponding floating point
4481 value. If the value cannot fit in the floating point value, the results are
4486 %X = uitofp i32
257 to float
<i>; yields float:
257.0</i>
4487 %Y = uitofp i8 -
1 to double
<i>; yields double:
255.0</i>
4492 <!-- _______________________________________________________________________ -->
4493 <div class=
"doc_subsubsection">
4494 <a name=
"i_sitofp">'
<tt>sitofp .. to
</tt>' Instruction
</a>
4496 <div class=
"doc_text">
4500 <result
> = sitofp
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4504 <p>The '
<tt>sitofp
</tt>' instruction regards
<tt>value
</tt> as a signed integer
4505 and converts that value to the
<tt>ty2
</tt> type.
</p>
4508 <p>The '
<tt>sitofp
</tt>' instruction takes a value to cast, which must be a
4509 scalar or vector
<a href=
"#t_integer">integer
</a> value, and a type to cast
4510 it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_floating">floating point
</a>
4511 type. If
<tt>ty
</tt> is a vector integer type,
<tt>ty2
</tt> must be a vector
4512 floating point type with the same number of elements as
<tt>ty
</tt></p>
4515 <p>The '
<tt>sitofp
</tt>' instruction interprets its operand as a signed integer
4516 quantity and converts it to the corresponding floating point value. If the
4517 value cannot fit in the floating point value, the results are undefined.
</p>
4521 %X = sitofp i32
257 to float
<i>; yields float:
257.0</i>
4522 %Y = sitofp i8 -
1 to double
<i>; yields double:-
1.0</i>
4527 <!-- _______________________________________________________________________ -->
4528 <div class=
"doc_subsubsection">
4529 <a name=
"i_ptrtoint">'
<tt>ptrtoint .. to
</tt>' Instruction
</a>
4531 <div class=
"doc_text">
4535 <result
> = ptrtoint
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4539 <p>The '
<tt>ptrtoint
</tt>' instruction converts the pointer
<tt>value
</tt> to
4540 the integer type
<tt>ty2
</tt>.
</p>
4543 <p>The '
<tt>ptrtoint
</tt>' instruction takes a
<tt>value
</tt> to cast, which
4544 must be a
<a href=
"#t_pointer">pointer
</a> value, and a type to cast it to
4545 <tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a> type.
</p>
4548 <p>The '
<tt>ptrtoint
</tt>' instruction converts
<tt>value
</tt> to integer type
4549 <tt>ty2
</tt> by interpreting the pointer value as an integer and either
4550 truncating or zero extending that value to the size of the integer type. If
4551 <tt>value
</tt> is smaller than
<tt>ty2
</tt> then a zero extension is done. If
4552 <tt>value
</tt> is larger than
<tt>ty2
</tt> then a truncation is done. If they
4553 are the same size, then nothing is done (
<i>no-op cast
</i>) other than a type
4558 %X = ptrtoint i32* %X to i8
<i>; yields truncation on
32-bit architecture
</i>
4559 %Y = ptrtoint i32* %x to i64
<i>; yields zero extension on
32-bit architecture
</i>
4564 <!-- _______________________________________________________________________ -->
4565 <div class=
"doc_subsubsection">
4566 <a name=
"i_inttoptr">'
<tt>inttoptr .. to
</tt>' Instruction
</a>
4568 <div class=
"doc_text">
4572 <result
> = inttoptr
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4576 <p>The '
<tt>inttoptr
</tt>' instruction converts an integer
<tt>value
</tt> to a
4577 pointer type,
<tt>ty2
</tt>.
</p>
4580 <p>The '
<tt>inttoptr
</tt>' instruction takes an
<a href=
"#t_integer">integer
</a>
4581 value to cast, and a type to cast it to, which must be a
4582 <a href=
"#t_pointer">pointer
</a> type.
</p>
4585 <p>The '
<tt>inttoptr
</tt>' instruction converts
<tt>value
</tt> to type
4586 <tt>ty2
</tt> by applying either a zero extension or a truncation depending on
4587 the size of the integer
<tt>value
</tt>. If
<tt>value
</tt> is larger than the
4588 size of a pointer then a truncation is done. If
<tt>value
</tt> is smaller
4589 than the size of a pointer then a zero extension is done. If they are the
4590 same size, nothing is done (
<i>no-op cast
</i>).
</p>
4594 %X = inttoptr i32
255 to i32*
<i>; yields zero extension on
64-bit architecture
</i>
4595 %Y = inttoptr i32
255 to i32*
<i>; yields no-op on
32-bit architecture
</i>
4596 %Z = inttoptr i64
0 to i32*
<i>; yields truncation on
32-bit architecture
</i>
4601 <!-- _______________________________________________________________________ -->
4602 <div class=
"doc_subsubsection">
4603 <a name=
"i_bitcast">'
<tt>bitcast .. to
</tt>' Instruction
</a>
4605 <div class=
"doc_text">
4609 <result
> = bitcast
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4613 <p>The '
<tt>bitcast
</tt>' instruction converts
<tt>value
</tt> to type
4614 <tt>ty2
</tt> without changing any bits.
</p>
4617 <p>The '
<tt>bitcast
</tt>' instruction takes a value to cast, which must be a
4618 non-aggregate first class value, and a type to cast it to, which must also be
4619 a non-aggregate
<a href=
"#t_firstclass">first class
</a> type. The bit sizes
4620 of
<tt>value
</tt> and the destination type,
<tt>ty2
</tt>, must be
4621 identical. If the source type is a pointer, the destination type must also be
4622 a pointer. This instruction supports bitwise conversion of vectors to
4623 integers and to vectors of other types (as long as they have the same
4627 <p>The '
<tt>bitcast
</tt>' instruction converts
<tt>value
</tt> to type
4628 <tt>ty2
</tt>. It is always a
<i>no-op cast
</i> because no bits change with
4629 this conversion. The conversion is done as if the
<tt>value
</tt> had been
4630 stored to memory and read back as type
<tt>ty2
</tt>. Pointer types may only
4631 be converted to other pointer types with this instruction. To convert
4632 pointers to other types, use the
<a href=
"#i_inttoptr">inttoptr
</a> or
4633 <a href=
"#i_ptrtoint">ptrtoint
</a> instructions first.
</p>
4637 %X = bitcast i8
255 to i8
<i>; yields i8 :-
1</i>
4638 %Y = bitcast i32* %x to sint*
<i>; yields sint*:%x
</i>
4639 %Z = bitcast
<2 x int
> %V to i64;
<i>; yields i64: %V
</i>
4644 <!-- ======================================================================= -->
4645 <div class=
"doc_subsection"> <a name=
"otherops">Other Operations
</a> </div>
4647 <div class=
"doc_text">
4649 <p>The instructions in this category are the
"miscellaneous" instructions, which
4650 defy better classification.
</p>
4654 <!-- _______________________________________________________________________ -->
4655 <div class=
"doc_subsubsection"><a name=
"i_icmp">'
<tt>icmp
</tt>' Instruction
</a>
4658 <div class=
"doc_text">
4662 <result
> = icmp
<cond
> <ty
> <op1
>,
<op2
> <i>; yields {i1} or {
<N x i1
>}:result
</i>
4666 <p>The '
<tt>icmp
</tt>' instruction returns a boolean value or a vector of
4667 boolean values based on comparison of its two integer, integer vector, or
4668 pointer operands.
</p>
4671 <p>The '
<tt>icmp
</tt>' instruction takes three operands. The first operand is
4672 the condition code indicating the kind of comparison to perform. It is not a
4673 value, just a keyword. The possible condition code are:
</p>
4676 <li><tt>eq
</tt>: equal
</li>
4677 <li><tt>ne
</tt>: not equal
</li>
4678 <li><tt>ugt
</tt>: unsigned greater than
</li>
4679 <li><tt>uge
</tt>: unsigned greater or equal
</li>
4680 <li><tt>ult
</tt>: unsigned less than
</li>
4681 <li><tt>ule
</tt>: unsigned less or equal
</li>
4682 <li><tt>sgt
</tt>: signed greater than
</li>
4683 <li><tt>sge
</tt>: signed greater or equal
</li>
4684 <li><tt>slt
</tt>: signed less than
</li>
4685 <li><tt>sle
</tt>: signed less or equal
</li>
4688 <p>The remaining two arguments must be
<a href=
"#t_integer">integer
</a> or
4689 <a href=
"#t_pointer">pointer
</a> or integer
<a href=
"#t_vector">vector
</a>
4690 typed. They must also be identical types.
</p>
4693 <p>The '
<tt>icmp
</tt>' compares
<tt>op1
</tt> and
<tt>op2
</tt> according to the
4694 condition code given as
<tt>cond
</tt>. The comparison performed always yields
4695 either an
<a href=
"#t_integer"><tt>i1
</tt></a> or vector of
<tt>i1
</tt>
4696 result, as follows:
</p>
4699 <li><tt>eq
</tt>: yields
<tt>true
</tt> if the operands are equal,
4700 <tt>false
</tt> otherwise. No sign interpretation is necessary or
4703 <li><tt>ne
</tt>: yields
<tt>true
</tt> if the operands are unequal,
4704 <tt>false
</tt> otherwise. No sign interpretation is necessary or
4707 <li><tt>ugt
</tt>: interprets the operands as unsigned values and yields
4708 <tt>true
</tt> if
<tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
4710 <li><tt>uge
</tt>: interprets the operands as unsigned values and yields
4711 <tt>true
</tt> if
<tt>op1
</tt> is greater than or equal
4712 to
<tt>op2
</tt>.
</li>
4714 <li><tt>ult
</tt>: interprets the operands as unsigned values and yields
4715 <tt>true
</tt> if
<tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
4717 <li><tt>ule
</tt>: interprets the operands as unsigned values and yields
4718 <tt>true
</tt> if
<tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
4720 <li><tt>sgt
</tt>: interprets the operands as signed values and yields
4721 <tt>true
</tt> if
<tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
4723 <li><tt>sge
</tt>: interprets the operands as signed values and yields
4724 <tt>true
</tt> if
<tt>op1
</tt> is greater than or equal
4725 to
<tt>op2
</tt>.
</li>
4727 <li><tt>slt
</tt>: interprets the operands as signed values and yields
4728 <tt>true
</tt> if
<tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
4730 <li><tt>sle
</tt>: interprets the operands as signed values and yields
4731 <tt>true
</tt> if
<tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
4734 <p>If the operands are
<a href=
"#t_pointer">pointer
</a> typed, the pointer
4735 values are compared as if they were integers.
</p>
4737 <p>If the operands are integer vectors, then they are compared element by
4738 element. The result is an
<tt>i1
</tt> vector with the same number of elements
4739 as the values being compared. Otherwise, the result is an
<tt>i1
</tt>.
</p>
4743 <result
> = icmp eq i32
4,
5 <i>; yields: result=false
</i>
4744 <result
> = icmp ne float* %X, %X
<i>; yields: result=false
</i>
4745 <result
> = icmp ult i16
4,
5 <i>; yields: result=true
</i>
4746 <result
> = icmp sgt i16
4,
5 <i>; yields: result=false
</i>
4747 <result
> = icmp ule i16 -
4,
5 <i>; yields: result=false
</i>
4748 <result
> = icmp sge i16
4,
5 <i>; yields: result=false
</i>
4751 <p>Note that the code generator does not yet support vector types with
4752 the
<tt>icmp
</tt> instruction.
</p>
4756 <!-- _______________________________________________________________________ -->
4757 <div class=
"doc_subsubsection"><a name=
"i_fcmp">'
<tt>fcmp
</tt>' Instruction
</a>
4760 <div class=
"doc_text">
4764 <result
> = fcmp
<cond
> <ty
> <op1
>,
<op2
> <i>; yields {i1} or {
<N x i1
>}:result
</i>
4768 <p>The '
<tt>fcmp
</tt>' instruction returns a boolean value or vector of boolean
4769 values based on comparison of its operands.
</p>
4771 <p>If the operands are floating point scalars, then the result type is a boolean
4772 (
<a href=
"#t_integer"><tt>i1
</tt></a>).
</p>
4774 <p>If the operands are floating point vectors, then the result type is a vector
4775 of boolean with the same number of elements as the operands being
4779 <p>The '
<tt>fcmp
</tt>' instruction takes three operands. The first operand is
4780 the condition code indicating the kind of comparison to perform. It is not a
4781 value, just a keyword. The possible condition code are:
</p>
4784 <li><tt>false
</tt>: no comparison, always returns false
</li>
4785 <li><tt>oeq
</tt>: ordered and equal
</li>
4786 <li><tt>ogt
</tt>: ordered and greater than
</li>
4787 <li><tt>oge
</tt>: ordered and greater than or equal
</li>
4788 <li><tt>olt
</tt>: ordered and less than
</li>
4789 <li><tt>ole
</tt>: ordered and less than or equal
</li>
4790 <li><tt>one
</tt>: ordered and not equal
</li>
4791 <li><tt>ord
</tt>: ordered (no nans)
</li>
4792 <li><tt>ueq
</tt>: unordered or equal
</li>
4793 <li><tt>ugt
</tt>: unordered or greater than
</li>
4794 <li><tt>uge
</tt>: unordered or greater than or equal
</li>
4795 <li><tt>ult
</tt>: unordered or less than
</li>
4796 <li><tt>ule
</tt>: unordered or less than or equal
</li>
4797 <li><tt>une
</tt>: unordered or not equal
</li>
4798 <li><tt>uno
</tt>: unordered (either nans)
</li>
4799 <li><tt>true
</tt>: no comparison, always returns true
</li>
4802 <p><i>Ordered
</i> means that neither operand is a QNAN while
4803 <i>unordered
</i> means that either operand may be a QNAN.
</p>
4805 <p>Each of
<tt>val1
</tt> and
<tt>val2
</tt> arguments must be either
4806 a
<a href=
"#t_floating">floating point
</a> type or
4807 a
<a href=
"#t_vector">vector
</a> of floating point type. They must have
4808 identical types.
</p>
4811 <p>The '
<tt>fcmp
</tt>' instruction compares
<tt>op1
</tt> and
<tt>op2
</tt>
4812 according to the condition code given as
<tt>cond
</tt>. If the operands are
4813 vectors, then the vectors are compared element by element. Each comparison
4814 performed always yields an
<a href=
"#t_integer">i1
</a> result, as
4818 <li><tt>false
</tt>: always yields
<tt>false
</tt>, regardless of operands.
</li>
4820 <li><tt>oeq
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4821 <tt>op1
</tt> is equal to
<tt>op2
</tt>.
</li>
4823 <li><tt>ogt
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4824 <tt>op1
</tt> is greather than
<tt>op2
</tt>.
</li>
4826 <li><tt>oge
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4827 <tt>op1
</tt> is greater than or equal to
<tt>op2
</tt>.
</li>
4829 <li><tt>olt
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4830 <tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
4832 <li><tt>ole
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4833 <tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
4835 <li><tt>one
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
4836 <tt>op1
</tt> is not equal to
<tt>op2
</tt>.
</li>
4838 <li><tt>ord
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN.
</li>
4840 <li><tt>ueq
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4841 <tt>op1
</tt> is equal to
<tt>op2
</tt>.
</li>
4843 <li><tt>ugt
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4844 <tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
4846 <li><tt>uge
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4847 <tt>op1
</tt> is greater than or equal to
<tt>op2
</tt>.
</li>
4849 <li><tt>ult
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4850 <tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
4852 <li><tt>ule
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4853 <tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
4855 <li><tt>une
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
4856 <tt>op1
</tt> is not equal to
<tt>op2
</tt>.
</li>
4858 <li><tt>uno
</tt>: yields
<tt>true
</tt> if either operand is a QNAN.
</li>
4860 <li><tt>true
</tt>: always yields
<tt>true
</tt>, regardless of operands.
</li>
4865 <result
> = fcmp oeq float
4.0,
5.0 <i>; yields: result=false
</i>
4866 <result
> = fcmp one float
4.0,
5.0 <i>; yields: result=true
</i>
4867 <result
> = fcmp olt float
4.0,
5.0 <i>; yields: result=true
</i>
4868 <result
> = fcmp ueq double
1.0,
2.0 <i>; yields: result=false
</i>
4871 <p>Note that the code generator does not yet support vector types with
4872 the
<tt>fcmp
</tt> instruction.
</p>
4876 <!-- _______________________________________________________________________ -->
4877 <div class=
"doc_subsubsection">
4878 <a name=
"i_phi">'
<tt>phi
</tt>' Instruction
</a>
4881 <div class=
"doc_text">
4885 <result
> = phi
<ty
> [
<val0
>,
<label0
>], ...
4889 <p>The '
<tt>phi
</tt>' instruction is used to implement the
φ node in the
4890 SSA graph representing the function.
</p>
4893 <p>The type of the incoming values is specified with the first type field. After
4894 this, the '
<tt>phi
</tt>' instruction takes a list of pairs as arguments, with
4895 one pair for each predecessor basic block of the current block. Only values
4896 of
<a href=
"#t_firstclass">first class
</a> type may be used as the value
4897 arguments to the PHI node. Only labels may be used as the label
4900 <p>There must be no non-phi instructions between the start of a basic block and
4901 the PHI instructions: i.e. PHI instructions must be first in a basic
4904 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
4905 occur on the edge from the corresponding predecessor block to the current
4906 block (but after any definition of an '
<tt>invoke
</tt>' instruction's return
4907 value on the same edge).
</p>
4910 <p>At runtime, the '
<tt>phi
</tt>' instruction logically takes on the value
4911 specified by the pair corresponding to the predecessor basic block that
4912 executed just prior to the current block.
</p>
4916 Loop: ; Infinite loop that counts from
0 on up...
4917 %indvar = phi i32 [
0, %LoopHeader ], [ %nextindvar, %Loop ]
4918 %nextindvar = add i32 %indvar,
1
4924 <!-- _______________________________________________________________________ -->
4925 <div class=
"doc_subsubsection">
4926 <a name=
"i_select">'
<tt>select
</tt>' Instruction
</a>
4929 <div class=
"doc_text">
4933 <result
> = select
<i>selty
</i> <cond
>,
<ty
> <val1
>,
<ty
> <val2
> <i>; yields ty
</i>
4935 <i>selty
</i> is either i1 or {
<N x i1
>}
4939 <p>The '
<tt>select
</tt>' instruction is used to choose one value based on a
4940 condition, without branching.
</p>
4944 <p>The '
<tt>select
</tt>' instruction requires an 'i1' value or a vector of 'i1'
4945 values indicating the condition, and two values of the
4946 same
<a href=
"#t_firstclass">first class
</a> type. If the val1/val2 are
4947 vectors and the condition is a scalar, then entire vectors are selected, not
4948 individual elements.
</p>
4951 <p>If the condition is an i1 and it evaluates to
1, the instruction returns the
4952 first value argument; otherwise, it returns the second value argument.
</p>
4954 <p>If the condition is a vector of i1, then the value arguments must be vectors
4955 of the same size, and the selection is done element by element.
</p>
4959 %X = select i1 true, i8
17, i8
42 <i>; yields i8:
17</i>
4962 <p>Note that the code generator does not yet support conditions
4963 with vector type.
</p>
4967 <!-- _______________________________________________________________________ -->
4968 <div class=
"doc_subsubsection">
4969 <a name=
"i_call">'
<tt>call
</tt>' Instruction
</a>
4972 <div class=
"doc_text">
4976 <result
> = [tail] call [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
<ty
> [
<fnty
>*]
<fnptrval
>(
<function args
>) [
<a href=
"#fnattrs">fn attrs
</a>]
4980 <p>The '
<tt>call
</tt>' instruction represents a simple function call.
</p>
4983 <p>This instruction requires several arguments:
</p>
4986 <li>The optional
"tail" marker indicates whether the callee function accesses
4987 any allocas or varargs in the caller. If the
"tail" marker is present,
4988 the function call is eligible for tail call optimization. Note that calls
4989 may be marked
"tail" even if they do not occur before
4990 a
<a href=
"#i_ret"><tt>ret
</tt></a> instruction.
</li>
4992 <li>The optional
"cconv" marker indicates which
<a href=
"#callingconv">calling
4993 convention
</a> the call should use. If none is specified, the call
4994 defaults to using C calling conventions.
</li>
4996 <li>The optional
<a href=
"#paramattrs">Parameter Attributes
</a> list for
4997 return values. Only '
<tt>zeroext
</tt>', '
<tt>signext
</tt>', and
4998 '
<tt>inreg
</tt>' attributes are valid here.
</li>
5000 <li>'
<tt>ty
</tt>': the type of the call instruction itself which is also the
5001 type of the return value. Functions that return no value are marked
5002 <tt><a href=
"#t_void">void
</a></tt>.
</li>
5004 <li>'
<tt>fnty
</tt>': shall be the signature of the pointer to function value
5005 being invoked. The argument types must match the types implied by this
5006 signature. This type can be omitted if the function is not varargs and if
5007 the function type does not return a pointer to a function.
</li>
5009 <li>'
<tt>fnptrval
</tt>': An LLVM value containing a pointer to a function to
5010 be invoked. In most cases, this is a direct function invocation, but
5011 indirect
<tt>call
</tt>s are just as possible, calling an arbitrary pointer
5012 to function value.
</li>
5014 <li>'
<tt>function args
</tt>': argument list whose types match the function
5015 signature argument types. All arguments must be of
5016 <a href=
"#t_firstclass">first class
</a> type. If the function signature
5017 indicates the function accepts a variable number of arguments, the extra
5018 arguments can be specified.
</li>
5020 <li>The optional
<a href=
"#fnattrs">function attributes
</a> list. Only
5021 '
<tt>noreturn
</tt>', '
<tt>nounwind
</tt>', '
<tt>readonly
</tt>' and
5022 '
<tt>readnone
</tt>' attributes are valid here.
</li>
5026 <p>The '
<tt>call
</tt>' instruction is used to cause control flow to transfer to
5027 a specified function, with its incoming arguments bound to the specified
5028 values. Upon a '
<tt><a href=
"#i_ret">ret
</a></tt>' instruction in the called
5029 function, control flow continues with the instruction after the function
5030 call, and the return value of the function is bound to the result
5035 %retval = call i32 @test(i32 %argc)
5036 call i32 (i8 *, ...)* @printf(i8 * %msg, i32
12, i8
42)
<i>; yields i32
</i>
5037 %X = tail call i32 @foo()
<i>; yields i32
</i>
5038 %Y = tail call
<a href=
"#callingconv">fastcc
</a> i32 @foo()
<i>; yields i32
</i>
5039 call void %foo(i8
97 signext)
5041 %struct.A = type { i32, i8 }
5042 %r = call %struct.A @foo()
<i>; yields {
32, i8 }
</i>
5043 %gr = extractvalue %struct.A %r,
0 <i>; yields i32
</i>
5044 %gr1 = extractvalue %struct.A %r,
1 <i>; yields i8
</i>
5045 %Z = call void @foo() noreturn
<i>; indicates that %foo never returns normally
</i>
5046 %ZZ = call zeroext i32 @bar()
<i>; Return value is %zero extended
</i>
5049 <p>llvm treats calls to some functions with names and arguments that match the
5050 standard C99 library as being the C99 library functions, and may perform
5051 optimizations or generate code for them under that assumption. This is
5052 something we'd like to change in the future to provide better support for
5053 freestanding environments and non-C-based langauges.
</p>
5057 <!-- _______________________________________________________________________ -->
5058 <div class=
"doc_subsubsection">
5059 <a name=
"i_va_arg">'
<tt>va_arg
</tt>' Instruction
</a>
5062 <div class=
"doc_text">
5066 <resultval
> = va_arg
<va_list*
> <arglist
>,
<argty
>
5070 <p>The '
<tt>va_arg
</tt>' instruction is used to access arguments passed through
5071 the
"variable argument" area of a function call. It is used to implement the
5072 <tt>va_arg
</tt> macro in C.
</p>
5075 <p>This instruction takes a
<tt>va_list*
</tt> value and the type of the
5076 argument. It returns a value of the specified argument type and increments
5077 the
<tt>va_list
</tt> to point to the next argument. The actual type
5078 of
<tt>va_list
</tt> is target specific.
</p>
5081 <p>The '
<tt>va_arg
</tt>' instruction loads an argument of the specified type
5082 from the specified
<tt>va_list
</tt> and causes the
<tt>va_list
</tt> to point
5083 to the next argument. For more information, see the variable argument
5084 handling
<a href=
"#int_varargs">Intrinsic Functions
</a>.
</p>
5086 <p>It is legal for this instruction to be called in a function which does not
5087 take a variable number of arguments, for example, the
<tt>vfprintf
</tt>
5090 <p><tt>va_arg
</tt> is an LLVM instruction instead of
5091 an
<a href=
"#intrinsics">intrinsic function
</a> because it takes a type as an
5095 <p>See the
<a href=
"#int_varargs">variable argument processing
</a> section.
</p>
5097 <p>Note that the code generator does not yet fully support va_arg on many
5098 targets. Also, it does not currently support va_arg with aggregate types on
5103 <!-- *********************************************************************** -->
5104 <div class=
"doc_section"> <a name=
"intrinsics">Intrinsic Functions
</a> </div>
5105 <!-- *********************************************************************** -->
5107 <div class=
"doc_text">
5109 <p>LLVM supports the notion of an
"intrinsic function". These functions have
5110 well known names and semantics and are required to follow certain
5111 restrictions. Overall, these intrinsics represent an extension mechanism for
5112 the LLVM language that does not require changing all of the transformations
5113 in LLVM when adding to the language (or the bitcode reader/writer, the
5114 parser, etc...).
</p>
5116 <p>Intrinsic function names must all start with an
"<tt>llvm.</tt>" prefix. This
5117 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5118 begin with this prefix. Intrinsic functions must always be external
5119 functions: you cannot define the body of intrinsic functions. Intrinsic
5120 functions may only be used in call or invoke instructions: it is illegal to
5121 take the address of an intrinsic function. Additionally, because intrinsic
5122 functions are part of the LLVM language, it is required if any are added that
5123 they be documented here.
</p>
5125 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5126 family of functions that perform the same operation but on different data
5127 types. Because LLVM can represent over
8 million different integer types,
5128 overloading is used commonly to allow an intrinsic function to operate on any
5129 integer type. One or more of the argument types or the result type can be
5130 overloaded to accept any integer type. Argument types may also be defined as
5131 exactly matching a previous argument's type or the result type. This allows
5132 an intrinsic function which accepts multiple arguments, but needs all of them
5133 to be of the same type, to only be overloaded with respect to a single
5134 argument or the result.
</p>
5136 <p>Overloaded intrinsics will have the names of its overloaded argument types
5137 encoded into its function name, each preceded by a period. Only those types
5138 which are overloaded result in a name suffix. Arguments whose type is matched
5139 against another type do not. For example, the
<tt>llvm.ctpop
</tt> function
5140 can take an integer of any width and returns an integer of exactly the same
5141 integer width. This leads to a family of functions such as
5142 <tt>i8 @llvm.ctpop.i8(i8 %val)
</tt> and
<tt>i29 @llvm.ctpop.i29(i29
5143 %val)
</tt>. Only one type, the return type, is overloaded, and only one type
5144 suffix is required. Because the argument's type is matched against the return
5145 type, it does not require its own name suffix.
</p>
5147 <p>To learn how to add an intrinsic function, please see the
5148 <a href=
"ExtendingLLVM.html">Extending LLVM Guide
</a>.
</p>
5152 <!-- ======================================================================= -->
5153 <div class=
"doc_subsection">
5154 <a name=
"int_varargs">Variable Argument Handling Intrinsics
</a>
5157 <div class=
"doc_text">
5159 <p>Variable argument support is defined in LLVM with
5160 the
<a href=
"#i_va_arg"><tt>va_arg
</tt></a> instruction and these three
5161 intrinsic functions. These functions are related to the similarly named
5162 macros defined in the
<tt><stdarg.h
></tt> header file.
</p>
5164 <p>All of these functions operate on arguments that use a target-specific value
5165 type
"<tt>va_list</tt>". The LLVM assembly language reference manual does
5166 not define what this type is, so all transformations should be prepared to
5167 handle these functions regardless of the type used.
</p>
5169 <p>This example shows how the
<a href=
"#i_va_arg"><tt>va_arg
</tt></a>
5170 instruction and the variable argument handling intrinsic functions are
5173 <div class=
"doc_code">
5175 define i32 @test(i32 %X, ...) {
5176 ; Initialize variable argument processing
5178 %ap2 = bitcast i8** %ap to i8*
5179 call void @llvm.va_start(i8* %ap2)
5181 ; Read a single integer argument
5182 %tmp = va_arg i8** %ap, i32
5184 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5186 %aq2 = bitcast i8** %aq to i8*
5187 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5188 call void @llvm.va_end(i8* %aq2)
5190 ; Stop processing of arguments.
5191 call void @llvm.va_end(i8* %ap2)
5195 declare void @llvm.va_start(i8*)
5196 declare void @llvm.va_copy(i8*, i8*)
5197 declare void @llvm.va_end(i8*)
5203 <!-- _______________________________________________________________________ -->
5204 <div class=
"doc_subsubsection">
5205 <a name=
"int_va_start">'
<tt>llvm.va_start
</tt>' Intrinsic
</a>
5209 <div class=
"doc_text">
5213 declare void %llvm.va_start(i8*
<arglist
>)
5217 <p>The '
<tt>llvm.va_start
</tt>' intrinsic initializes
<tt>*
<arglist
></tt>
5218 for subsequent use by
<tt><a href=
"#i_va_arg">va_arg
</a></tt>.
</p>
5221 <p>The argument is a pointer to a
<tt>va_list
</tt> element to initialize.
</p>
5224 <p>The '
<tt>llvm.va_start
</tt>' intrinsic works just like the
<tt>va_start
</tt>
5225 macro available in C. In a target-dependent way, it initializes
5226 the
<tt>va_list
</tt> element to which the argument points, so that the next
5227 call to
<tt>va_arg
</tt> will produce the first variable argument passed to
5228 the function. Unlike the C
<tt>va_start
</tt> macro, this intrinsic does not
5229 need to know the last argument of the function as the compiler can figure
5234 <!-- _______________________________________________________________________ -->
5235 <div class=
"doc_subsubsection">
5236 <a name=
"int_va_end">'
<tt>llvm.va_end
</tt>' Intrinsic
</a>
5239 <div class=
"doc_text">
5243 declare void @llvm.va_end(i8*
<arglist
>)
5247 <p>The '
<tt>llvm.va_end
</tt>' intrinsic destroys
<tt>*
<arglist
></tt>,
5248 which has been initialized previously
5249 with
<tt><a href=
"#int_va_start">llvm.va_start
</a></tt>
5250 or
<tt><a href=
"#i_va_copy">llvm.va_copy
</a></tt>.
</p>
5253 <p>The argument is a pointer to a
<tt>va_list
</tt> to destroy.
</p>
5256 <p>The '
<tt>llvm.va_end
</tt>' intrinsic works just like the
<tt>va_end
</tt>
5257 macro available in C. In a target-dependent way, it destroys
5258 the
<tt>va_list
</tt> element to which the argument points. Calls
5259 to
<a href=
"#int_va_start"><tt>llvm.va_start
</tt></a>
5260 and
<a href=
"#int_va_copy"> <tt>llvm.va_copy
</tt></a> must be matched exactly
5261 with calls to
<tt>llvm.va_end
</tt>.
</p>
5265 <!-- _______________________________________________________________________ -->
5266 <div class=
"doc_subsubsection">
5267 <a name=
"int_va_copy">'
<tt>llvm.va_copy
</tt>' Intrinsic
</a>
5270 <div class=
"doc_text">
5274 declare void @llvm.va_copy(i8*
<destarglist
>, i8*
<srcarglist
>)
5278 <p>The '
<tt>llvm.va_copy
</tt>' intrinsic copies the current argument position
5279 from the source argument list to the destination argument list.
</p>
5282 <p>The first argument is a pointer to a
<tt>va_list
</tt> element to initialize.
5283 The second argument is a pointer to a
<tt>va_list
</tt> element to copy
5287 <p>The '
<tt>llvm.va_copy
</tt>' intrinsic works just like the
<tt>va_copy
</tt>
5288 macro available in C. In a target-dependent way, it copies the
5289 source
<tt>va_list
</tt> element into the destination
<tt>va_list
</tt>
5290 element. This intrinsic is necessary because
5291 the
<tt><a href=
"#int_va_start"> llvm.va_start
</a></tt> intrinsic may be
5292 arbitrarily complex and require, for example, memory allocation.
</p>
5296 <!-- ======================================================================= -->
5297 <div class=
"doc_subsection">
5298 <a name=
"int_gc">Accurate Garbage Collection Intrinsics
</a>
5301 <div class=
"doc_text">
5303 <p>LLVM support for
<a href=
"GarbageCollection.html">Accurate Garbage
5304 Collection
</a> (GC) requires the implementation and generation of these
5305 intrinsics. These intrinsics allow identification of
<a href=
"#int_gcroot">GC
5306 roots on the stack
</a>, as well as garbage collector implementations that
5307 require
<a href=
"#int_gcread">read
</a> and
<a href=
"#int_gcwrite">write
</a>
5308 barriers. Front-ends for type-safe garbage collected languages should generate
5309 these intrinsics to make use of the LLVM garbage collectors. For more details,
5310 see
<a href=
"GarbageCollection.html">Accurate Garbage Collection with
5313 <p>The garbage collection intrinsics only operate on objects in the generic
5314 address space (address space zero).
</p>
5318 <!-- _______________________________________________________________________ -->
5319 <div class=
"doc_subsubsection">
5320 <a name=
"int_gcroot">'
<tt>llvm.gcroot
</tt>' Intrinsic
</a>
5323 <div class=
"doc_text">
5327 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5331 <p>The '
<tt>llvm.gcroot
</tt>' intrinsic declares the existence of a GC root to
5332 the code generator, and allows some metadata to be associated with it.
</p>
5335 <p>The first argument specifies the address of a stack object that contains the
5336 root pointer. The second pointer (which must be either a constant or a
5337 global value address) contains the meta-data to be associated with the
5341 <p>At runtime, a call to this intrinsic stores a null pointer into the
"ptrloc"
5342 location. At compile-time, the code generator generates information to allow
5343 the runtime to find the pointer at GC safe points. The '
<tt>llvm.gcroot
</tt>'
5344 intrinsic may only be used in a function which
<a href=
"#gc">specifies a GC
5349 <!-- _______________________________________________________________________ -->
5350 <div class=
"doc_subsubsection">
5351 <a name=
"int_gcread">'
<tt>llvm.gcread
</tt>' Intrinsic
</a>
5354 <div class=
"doc_text">
5358 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5362 <p>The '
<tt>llvm.gcread
</tt>' intrinsic identifies reads of references from heap
5363 locations, allowing garbage collector implementations that require read
5367 <p>The second argument is the address to read from, which should be an address
5368 allocated from the garbage collector. The first object is a pointer to the
5369 start of the referenced object, if needed by the language runtime (otherwise
5373 <p>The '
<tt>llvm.gcread
</tt>' intrinsic has the same semantics as a load
5374 instruction, but may be replaced with substantially more complex code by the
5375 garbage collector runtime, as needed. The '
<tt>llvm.gcread
</tt>' intrinsic
5376 may only be used in a function which
<a href=
"#gc">specifies a GC
5381 <!-- _______________________________________________________________________ -->
5382 <div class=
"doc_subsubsection">
5383 <a name=
"int_gcwrite">'
<tt>llvm.gcwrite
</tt>' Intrinsic
</a>
5386 <div class=
"doc_text">
5390 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5394 <p>The '
<tt>llvm.gcwrite
</tt>' intrinsic identifies writes of references to heap
5395 locations, allowing garbage collector implementations that require write
5396 barriers (such as generational or reference counting collectors).
</p>
5399 <p>The first argument is the reference to store, the second is the start of the
5400 object to store it to, and the third is the address of the field of Obj to
5401 store to. If the runtime does not require a pointer to the object, Obj may
5405 <p>The '
<tt>llvm.gcwrite
</tt>' intrinsic has the same semantics as a store
5406 instruction, but may be replaced with substantially more complex code by the
5407 garbage collector runtime, as needed. The '
<tt>llvm.gcwrite
</tt>' intrinsic
5408 may only be used in a function which
<a href=
"#gc">specifies a GC
5413 <!-- ======================================================================= -->
5414 <div class=
"doc_subsection">
5415 <a name=
"int_codegen">Code Generator Intrinsics
</a>
5418 <div class=
"doc_text">
5420 <p>These intrinsics are provided by LLVM to expose special features that may
5421 only be implemented with code generator support.
</p>
5425 <!-- _______________________________________________________________________ -->
5426 <div class=
"doc_subsubsection">
5427 <a name=
"int_returnaddress">'
<tt>llvm.returnaddress
</tt>' Intrinsic
</a>
5430 <div class=
"doc_text">
5434 declare i8 *@llvm.returnaddress(i32
<level
>)
5438 <p>The '
<tt>llvm.returnaddress
</tt>' intrinsic attempts to compute a
5439 target-specific value indicating the return address of the current function
5440 or one of its callers.
</p>
5443 <p>The argument to this intrinsic indicates which function to return the address
5444 for. Zero indicates the calling function, one indicates its caller, etc.
5445 The argument is
<b>required
</b> to be a constant integer value.
</p>
5448 <p>The '
<tt>llvm.returnaddress
</tt>' intrinsic either returns a pointer
5449 indicating the return address of the specified call frame, or zero if it
5450 cannot be identified. The value returned by this intrinsic is likely to be
5451 incorrect or
0 for arguments other than zero, so it should only be used for
5452 debugging purposes.
</p>
5454 <p>Note that calling this intrinsic does not prevent function inlining or other
5455 aggressive transformations, so the value returned may not be that of the
5456 obvious source-language caller.
</p>
5460 <!-- _______________________________________________________________________ -->
5461 <div class=
"doc_subsubsection">
5462 <a name=
"int_frameaddress">'
<tt>llvm.frameaddress
</tt>' Intrinsic
</a>
5465 <div class=
"doc_text">
5469 declare i8 *@llvm.frameaddress(i32
<level
>)
5473 <p>The '
<tt>llvm.frameaddress
</tt>' intrinsic attempts to return the
5474 target-specific frame pointer value for the specified stack frame.
</p>
5477 <p>The argument to this intrinsic indicates which function to return the frame
5478 pointer for. Zero indicates the calling function, one indicates its caller,
5479 etc. The argument is
<b>required
</b> to be a constant integer value.
</p>
5482 <p>The '
<tt>llvm.frameaddress
</tt>' intrinsic either returns a pointer
5483 indicating the frame address of the specified call frame, or zero if it
5484 cannot be identified. The value returned by this intrinsic is likely to be
5485 incorrect or
0 for arguments other than zero, so it should only be used for
5486 debugging purposes.
</p>
5488 <p>Note that calling this intrinsic does not prevent function inlining or other
5489 aggressive transformations, so the value returned may not be that of the
5490 obvious source-language caller.
</p>
5494 <!-- _______________________________________________________________________ -->
5495 <div class=
"doc_subsubsection">
5496 <a name=
"int_stacksave">'
<tt>llvm.stacksave
</tt>' Intrinsic
</a>
5499 <div class=
"doc_text">
5503 declare i8 *@llvm.stacksave()
5507 <p>The '
<tt>llvm.stacksave
</tt>' intrinsic is used to remember the current state
5508 of the function stack, for use
5509 with
<a href=
"#int_stackrestore"> <tt>llvm.stackrestore
</tt></a>. This is
5510 useful for implementing language features like scoped automatic variable
5511 sized arrays in C99.
</p>
5514 <p>This intrinsic returns a opaque pointer value that can be passed
5515 to
<a href=
"#int_stackrestore"><tt>llvm.stackrestore
</tt></a>. When
5516 an
<tt>llvm.stackrestore
</tt> intrinsic is executed with a value saved
5517 from
<tt>llvm.stacksave
</tt>, it effectively restores the state of the stack
5518 to the state it was in when the
<tt>llvm.stacksave
</tt> intrinsic executed.
5519 In practice, this pops any
<a href=
"#i_alloca">alloca
</a> blocks from the
5520 stack that were allocated after the
<tt>llvm.stacksave
</tt> was executed.
</p>
5524 <!-- _______________________________________________________________________ -->
5525 <div class=
"doc_subsubsection">
5526 <a name=
"int_stackrestore">'
<tt>llvm.stackrestore
</tt>' Intrinsic
</a>
5529 <div class=
"doc_text">
5533 declare void @llvm.stackrestore(i8 * %ptr)
5537 <p>The '
<tt>llvm.stackrestore
</tt>' intrinsic is used to restore the state of
5538 the function stack to the state it was in when the
5539 corresponding
<a href=
"#int_stacksave"><tt>llvm.stacksave
</tt></a> intrinsic
5540 executed. This is useful for implementing language features like scoped
5541 automatic variable sized arrays in C99.
</p>
5544 <p>See the description
5545 for
<a href=
"#int_stacksave"><tt>llvm.stacksave
</tt></a>.
</p>
5549 <!-- _______________________________________________________________________ -->
5550 <div class=
"doc_subsubsection">
5551 <a name=
"int_prefetch">'
<tt>llvm.prefetch
</tt>' Intrinsic
</a>
5554 <div class=
"doc_text">
5558 declare void @llvm.prefetch(i8*
<address
>, i32
<rw
>, i32
<locality
>)
5562 <p>The '
<tt>llvm.prefetch
</tt>' intrinsic is a hint to the code generator to
5563 insert a prefetch instruction if supported; otherwise, it is a noop.
5564 Prefetches have no effect on the behavior of the program but can change its
5565 performance characteristics.
</p>
5568 <p><tt>address
</tt> is the address to be prefetched,
<tt>rw
</tt> is the
5569 specifier determining if the fetch should be for a read (
0) or write (
1),
5570 and
<tt>locality
</tt> is a temporal locality specifier ranging from (
0) - no
5571 locality, to (
3) - extremely local keep in cache. The
<tt>rw
</tt>
5572 and
<tt>locality
</tt> arguments must be constant integers.
</p>
5575 <p>This intrinsic does not modify the behavior of the program. In particular,
5576 prefetches cannot trap and do not produce a value. On targets that support
5577 this intrinsic, the prefetch can provide hints to the processor cache for
5578 better performance.
</p>
5582 <!-- _______________________________________________________________________ -->
5583 <div class=
"doc_subsubsection">
5584 <a name=
"int_pcmarker">'
<tt>llvm.pcmarker
</tt>' Intrinsic
</a>
5587 <div class=
"doc_text">
5591 declare void @llvm.pcmarker(i32
<id
>)
5595 <p>The '
<tt>llvm.pcmarker
</tt>' intrinsic is a method to export a Program
5596 Counter (PC) in a region of code to simulators and other tools. The method
5597 is target specific, but it is expected that the marker will use exported
5598 symbols to transmit the PC of the marker. The marker makes no guarantees
5599 that it will remain with any specific instruction after optimizations. It is
5600 possible that the presence of a marker will inhibit optimizations. The
5601 intended use is to be inserted after optimizations to allow correlations of
5602 simulation runs.
</p>
5605 <p><tt>id
</tt> is a numerical id identifying the marker.
</p>
5608 <p>This intrinsic does not modify the behavior of the program. Backends that do
5609 not support this intrinisic may ignore it.
</p>
5613 <!-- _______________________________________________________________________ -->
5614 <div class=
"doc_subsubsection">
5615 <a name=
"int_readcyclecounter">'
<tt>llvm.readcyclecounter
</tt>' Intrinsic
</a>
5618 <div class=
"doc_text">
5622 declare i64 @llvm.readcyclecounter( )
5626 <p>The '
<tt>llvm.readcyclecounter
</tt>' intrinsic provides access to the cycle
5627 counter register (or similar low latency, high accuracy clocks) on those
5628 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5629 should map to RPCC. As the backing counters overflow quickly (on the order
5630 of
9 seconds on alpha), this should only be used for small timings.
</p>
5633 <p>When directly supported, reading the cycle counter should not modify any
5634 memory. Implementations are allowed to either return a application specific
5635 value or a system wide value. On backends without support, this is lowered
5636 to a constant
0.
</p>
5640 <!-- ======================================================================= -->
5641 <div class=
"doc_subsection">
5642 <a name=
"int_libc">Standard C Library Intrinsics
</a>
5645 <div class=
"doc_text">
5647 <p>LLVM provides intrinsics for a few important standard C library functions.
5648 These intrinsics allow source-language front-ends to pass information about
5649 the alignment of the pointer arguments to the code generator, providing
5650 opportunity for more efficient code generation.
</p>
5654 <!-- _______________________________________________________________________ -->
5655 <div class=
"doc_subsubsection">
5656 <a name=
"int_memcpy">'
<tt>llvm.memcpy
</tt>' Intrinsic
</a>
5659 <div class=
"doc_text">
5662 <p>This is an overloaded intrinsic. You can use
<tt>llvm.memcpy
</tt> on any
5663 integer bit width. Not all targets support all bit widths however.
</p>
5666 declare void @llvm.memcpy.i8(i8 *
<dest
>, i8 *
<src
>,
5667 i8
<len
>, i32
<align
>)
5668 declare void @llvm.memcpy.i16(i8 *
<dest
>, i8 *
<src
>,
5669 i16
<len
>, i32
<align
>)
5670 declare void @llvm.memcpy.i32(i8 *
<dest
>, i8 *
<src
>,
5671 i32
<len
>, i32
<align
>)
5672 declare void @llvm.memcpy.i64(i8 *
<dest
>, i8 *
<src
>,
5673 i64
<len
>, i32
<align
>)
5677 <p>The '
<tt>llvm.memcpy.*
</tt>' intrinsics copy a block of memory from the
5678 source location to the destination location.
</p>
5680 <p>Note that, unlike the standard libc function, the
<tt>llvm.memcpy.*
</tt>
5681 intrinsics do not return a value, and takes an extra alignment argument.
</p>
5684 <p>The first argument is a pointer to the destination, the second is a pointer
5685 to the source. The third argument is an integer argument specifying the
5686 number of bytes to copy, and the fourth argument is the alignment of the
5687 source and destination locations.
</p>
5689 <p>If the call to this intrinisic has an alignment value that is not
0 or
1,
5690 then the caller guarantees that both the source and destination pointers are
5691 aligned to that boundary.
</p>
5694 <p>The '
<tt>llvm.memcpy.*
</tt>' intrinsics copy a block of memory from the
5695 source location to the destination location, which are not allowed to
5696 overlap. It copies
"len" bytes of memory over. If the argument is known to
5697 be aligned to some boundary, this can be specified as the fourth argument,
5698 otherwise it should be set to
0 or
1.
</p>
5702 <!-- _______________________________________________________________________ -->
5703 <div class=
"doc_subsubsection">
5704 <a name=
"int_memmove">'
<tt>llvm.memmove
</tt>' Intrinsic
</a>
5707 <div class=
"doc_text">
5710 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5711 width. Not all targets support all bit widths however.
</p>
5714 declare void @llvm.memmove.i8(i8 *
<dest
>, i8 *
<src
>,
5715 i8
<len
>, i32
<align
>)
5716 declare void @llvm.memmove.i16(i8 *
<dest
>, i8 *
<src
>,
5717 i16
<len
>, i32
<align
>)
5718 declare void @llvm.memmove.i32(i8 *
<dest
>, i8 *
<src
>,
5719 i32
<len
>, i32
<align
>)
5720 declare void @llvm.memmove.i64(i8 *
<dest
>, i8 *
<src
>,
5721 i64
<len
>, i32
<align
>)
5725 <p>The '
<tt>llvm.memmove.*
</tt>' intrinsics move a block of memory from the
5726 source location to the destination location. It is similar to the
5727 '
<tt>llvm.memcpy
</tt>' intrinsic but allows the two memory locations to
5730 <p>Note that, unlike the standard libc function, the
<tt>llvm.memmove.*
</tt>
5731 intrinsics do not return a value, and takes an extra alignment argument.
</p>
5734 <p>The first argument is a pointer to the destination, the second is a pointer
5735 to the source. The third argument is an integer argument specifying the
5736 number of bytes to copy, and the fourth argument is the alignment of the
5737 source and destination locations.
</p>
5739 <p>If the call to this intrinisic has an alignment value that is not
0 or
1,
5740 then the caller guarantees that the source and destination pointers are
5741 aligned to that boundary.
</p>
5744 <p>The '
<tt>llvm.memmove.*
</tt>' intrinsics copy a block of memory from the
5745 source location to the destination location, which may overlap. It copies
5746 "len" bytes of memory over. If the argument is known to be aligned to some
5747 boundary, this can be specified as the fourth argument, otherwise it should
5748 be set to
0 or
1.
</p>
5752 <!-- _______________________________________________________________________ -->
5753 <div class=
"doc_subsubsection">
5754 <a name=
"int_memset">'
<tt>llvm.memset.*
</tt>' Intrinsics
</a>
5757 <div class=
"doc_text">
5760 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5761 width. Not all targets support all bit widths however.
</p>
5764 declare void @llvm.memset.i8(i8 *
<dest
>, i8
<val
>,
5765 i8
<len
>, i32
<align
>)
5766 declare void @llvm.memset.i16(i8 *
<dest
>, i8
<val
>,
5767 i16
<len
>, i32
<align
>)
5768 declare void @llvm.memset.i32(i8 *
<dest
>, i8
<val
>,
5769 i32
<len
>, i32
<align
>)
5770 declare void @llvm.memset.i64(i8 *
<dest
>, i8
<val
>,
5771 i64
<len
>, i32
<align
>)
5775 <p>The '
<tt>llvm.memset.*
</tt>' intrinsics fill a block of memory with a
5776 particular byte value.
</p>
5778 <p>Note that, unlike the standard libc function, the
<tt>llvm.memset
</tt>
5779 intrinsic does not return a value, and takes an extra alignment argument.
</p>
5782 <p>The first argument is a pointer to the destination to fill, the second is the
5783 byte value to fill it with, the third argument is an integer argument
5784 specifying the number of bytes to fill, and the fourth argument is the known
5785 alignment of destination location.
</p>
5787 <p>If the call to this intrinisic has an alignment value that is not
0 or
1,
5788 then the caller guarantees that the destination pointer is aligned to that
5792 <p>The '
<tt>llvm.memset.*
</tt>' intrinsics fill
"len" bytes of memory starting
5793 at the destination location. If the argument is known to be aligned to some
5794 boundary, this can be specified as the fourth argument, otherwise it should
5795 be set to
0 or
1.
</p>
5799 <!-- _______________________________________________________________________ -->
5800 <div class=
"doc_subsubsection">
5801 <a name=
"int_sqrt">'
<tt>llvm.sqrt.*
</tt>' Intrinsic
</a>
5804 <div class=
"doc_text">
5807 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sqrt
</tt> on any
5808 floating point or vector of floating point type. Not all targets support all
5812 declare float @llvm.sqrt.f32(float %Val)
5813 declare double @llvm.sqrt.f64(double %Val)
5814 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5815 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5816 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
5820 <p>The '
<tt>llvm.sqrt
</tt>' intrinsics return the sqrt of the specified operand,
5821 returning the same value as the libm '
<tt>sqrt
</tt>' functions would.
5822 Unlike
<tt>sqrt
</tt> in libm, however,
<tt>llvm.sqrt
</tt> has undefined
5823 behavior for negative numbers other than -
0.0 (which allows for better
5824 optimization, because there is no need to worry about errno being
5825 set).
<tt>llvm.sqrt(-
0.0)
</tt> is defined to return -
0.0 like IEEE sqrt.
</p>
5828 <p>The argument and return value are floating point numbers of the same
5832 <p>This function returns the sqrt of the specified operand if it is a
5833 nonnegative floating point number.
</p>
5837 <!-- _______________________________________________________________________ -->
5838 <div class=
"doc_subsubsection">
5839 <a name=
"int_powi">'
<tt>llvm.powi.*
</tt>' Intrinsic
</a>
5842 <div class=
"doc_text">
5845 <p>This is an overloaded intrinsic. You can use
<tt>llvm.powi
</tt> on any
5846 floating point or vector of floating point type. Not all targets support all
5850 declare float @llvm.powi.f32(float %Val, i32 %power)
5851 declare double @llvm.powi.f64(double %Val, i32 %power)
5852 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5853 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5854 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
5858 <p>The '
<tt>llvm.powi.*
</tt>' intrinsics return the first operand raised to the
5859 specified (positive or negative) power. The order of evaluation of
5860 multiplications is not defined. When a vector of floating point type is
5861 used, the second argument remains a scalar integer value.
</p>
5864 <p>The second argument is an integer power, and the first is a value to raise to
5868 <p>This function returns the first value raised to the second power with an
5869 unspecified sequence of rounding operations.
</p>
5873 <!-- _______________________________________________________________________ -->
5874 <div class=
"doc_subsubsection">
5875 <a name=
"int_sin">'
<tt>llvm.sin.*
</tt>' Intrinsic
</a>
5878 <div class=
"doc_text">
5881 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sin
</tt> on any
5882 floating point or vector of floating point type. Not all targets support all
5886 declare float @llvm.sin.f32(float %Val)
5887 declare double @llvm.sin.f64(double %Val)
5888 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5889 declare fp128 @llvm.sin.f128(fp128 %Val)
5890 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5894 <p>The '
<tt>llvm.sin.*
</tt>' intrinsics return the sine of the operand.
</p>
5897 <p>The argument and return value are floating point numbers of the same
5901 <p>This function returns the sine of the specified operand, returning the same
5902 values as the libm
<tt>sin
</tt> functions would, and handles error conditions
5903 in the same way.
</p>
5907 <!-- _______________________________________________________________________ -->
5908 <div class=
"doc_subsubsection">
5909 <a name=
"int_cos">'
<tt>llvm.cos.*
</tt>' Intrinsic
</a>
5912 <div class=
"doc_text">
5915 <p>This is an overloaded intrinsic. You can use
<tt>llvm.cos
</tt> on any
5916 floating point or vector of floating point type. Not all targets support all
5920 declare float @llvm.cos.f32(float %Val)
5921 declare double @llvm.cos.f64(double %Val)
5922 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5923 declare fp128 @llvm.cos.f128(fp128 %Val)
5924 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5928 <p>The '
<tt>llvm.cos.*
</tt>' intrinsics return the cosine of the operand.
</p>
5931 <p>The argument and return value are floating point numbers of the same
5935 <p>This function returns the cosine of the specified operand, returning the same
5936 values as the libm
<tt>cos
</tt> functions would, and handles error conditions
5937 in the same way.
</p>
5941 <!-- _______________________________________________________________________ -->
5942 <div class=
"doc_subsubsection">
5943 <a name=
"int_pow">'
<tt>llvm.pow.*
</tt>' Intrinsic
</a>
5946 <div class=
"doc_text">
5949 <p>This is an overloaded intrinsic. You can use
<tt>llvm.pow
</tt> on any
5950 floating point or vector of floating point type. Not all targets support all
5954 declare float @llvm.pow.f32(float %Val, float %Power)
5955 declare double @llvm.pow.f64(double %Val, double %Power)
5956 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5957 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5958 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5962 <p>The '
<tt>llvm.pow.*
</tt>' intrinsics return the first operand raised to the
5963 specified (positive or negative) power.
</p>
5966 <p>The second argument is a floating point power, and the first is a value to
5967 raise to that power.
</p>
5970 <p>This function returns the first value raised to the second power, returning
5971 the same values as the libm
<tt>pow
</tt> functions would, and handles error
5972 conditions in the same way.
</p>
5976 <!-- ======================================================================= -->
5977 <div class=
"doc_subsection">
5978 <a name=
"int_manip">Bit Manipulation Intrinsics
</a>
5981 <div class=
"doc_text">
5983 <p>LLVM provides intrinsics for a few important bit manipulation operations.
5984 These allow efficient code generation for some algorithms.
</p>
5988 <!-- _______________________________________________________________________ -->
5989 <div class=
"doc_subsubsection">
5990 <a name=
"int_bswap">'
<tt>llvm.bswap.*
</tt>' Intrinsics
</a>
5993 <div class=
"doc_text">
5996 <p>This is an overloaded intrinsic function. You can use bswap on any integer
5997 type that is an even number of bytes (i.e. BitWidth %
16 ==
0).
</p>
6000 declare i16 @llvm.bswap.i16(i16
<id
>)
6001 declare i32 @llvm.bswap.i32(i32
<id
>)
6002 declare i64 @llvm.bswap.i64(i64
<id
>)
6006 <p>The '
<tt>llvm.bswap
</tt>' family of intrinsics is used to byte swap integer
6007 values with an even number of bytes (positive multiple of
16 bits). These
6008 are useful for performing operations on data that is not in the target's
6009 native byte order.
</p>
6012 <p>The
<tt>llvm.bswap.i16
</tt> intrinsic returns an i16 value that has the high
6013 and low byte of the input i16 swapped. Similarly,
6014 the
<tt>llvm.bswap.i32
</tt> intrinsic returns an i32 value that has the four
6015 bytes of the input i32 swapped, so that if the input bytes are numbered
0,
1,
6016 2,
3 then the returned i32 will have its bytes in
3,
2,
1,
0 order.
6017 The
<tt>llvm.bswap.i48
</tt>,
<tt>llvm.bswap.i64
</tt> and other intrinsics
6018 extend this concept to additional even-byte lengths (
6 bytes,
8 bytes and
6019 more, respectively).
</p>
6023 <!-- _______________________________________________________________________ -->
6024 <div class=
"doc_subsubsection">
6025 <a name=
"int_ctpop">'
<tt>llvm.ctpop.*
</tt>' Intrinsic
</a>
6028 <div class=
"doc_text">
6031 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6032 width. Not all targets support all bit widths however.
</p>
6035 declare i8 @llvm.ctpop.i8(i8
<src
>)
6036 declare i16 @llvm.ctpop.i16(i16
<src
>)
6037 declare i32 @llvm.ctpop.i32(i32
<src
>)
6038 declare i64 @llvm.ctpop.i64(i64
<src
>)
6039 declare i256 @llvm.ctpop.i256(i256
<src
>)
6043 <p>The '
<tt>llvm.ctpop
</tt>' family of intrinsics counts the number of bits set
6047 <p>The only argument is the value to be counted. The argument may be of any
6048 integer type. The return type must match the argument type.
</p>
6051 <p>The '
<tt>llvm.ctpop
</tt>' intrinsic counts the
1's in a variable.
</p>
6055 <!-- _______________________________________________________________________ -->
6056 <div class=
"doc_subsubsection">
6057 <a name=
"int_ctlz">'
<tt>llvm.ctlz.*
</tt>' Intrinsic
</a>
6060 <div class=
"doc_text">
6063 <p>This is an overloaded intrinsic. You can use
<tt>llvm.ctlz
</tt> on any
6064 integer bit width. Not all targets support all bit widths however.
</p>
6067 declare i8 @llvm.ctlz.i8 (i8
<src
>)
6068 declare i16 @llvm.ctlz.i16(i16
<src
>)
6069 declare i32 @llvm.ctlz.i32(i32
<src
>)
6070 declare i64 @llvm.ctlz.i64(i64
<src
>)
6071 declare i256 @llvm.ctlz.i256(i256
<src
>)
6075 <p>The '
<tt>llvm.ctlz
</tt>' family of intrinsic functions counts the number of
6076 leading zeros in a variable.
</p>
6079 <p>The only argument is the value to be counted. The argument may be of any
6080 integer type. The return type must match the argument type.
</p>
6083 <p>The '
<tt>llvm.ctlz
</tt>' intrinsic counts the leading (most significant)
6084 zeros in a variable. If the src ==
0 then the result is the size in bits of
6085 the type of src. For example,
<tt>llvm.ctlz(i32
2) =
30</tt>.
</p>
6089 <!-- _______________________________________________________________________ -->
6090 <div class=
"doc_subsubsection">
6091 <a name=
"int_cttz">'
<tt>llvm.cttz.*
</tt>' Intrinsic
</a>
6094 <div class=
"doc_text">
6097 <p>This is an overloaded intrinsic. You can use
<tt>llvm.cttz
</tt> on any
6098 integer bit width. Not all targets support all bit widths however.
</p>
6101 declare i8 @llvm.cttz.i8 (i8
<src
>)
6102 declare i16 @llvm.cttz.i16(i16
<src
>)
6103 declare i32 @llvm.cttz.i32(i32
<src
>)
6104 declare i64 @llvm.cttz.i64(i64
<src
>)
6105 declare i256 @llvm.cttz.i256(i256
<src
>)
6109 <p>The '
<tt>llvm.cttz
</tt>' family of intrinsic functions counts the number of
6113 <p>The only argument is the value to be counted. The argument may be of any
6114 integer type. The return type must match the argument type.
</p>
6117 <p>The '
<tt>llvm.cttz
</tt>' intrinsic counts the trailing (least significant)
6118 zeros in a variable. If the src ==
0 then the result is the size in bits of
6119 the type of src. For example,
<tt>llvm.cttz(
2) =
1</tt>.
</p>
6123 <!-- ======================================================================= -->
6124 <div class=
"doc_subsection">
6125 <a name=
"int_overflow">Arithmetic with Overflow Intrinsics
</a>
6128 <div class=
"doc_text">
6130 <p>LLVM provides intrinsics for some arithmetic with overflow operations.
</p>
6134 <!-- _______________________________________________________________________ -->
6135 <div class=
"doc_subsubsection">
6136 <a name=
"int_sadd_overflow">'
<tt>llvm.sadd.with.overflow.*
</tt>' Intrinsics
</a>
6139 <div class=
"doc_text">
6142 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sadd.with.overflow
</tt>
6143 on any integer bit width.
</p>
6146 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6147 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6148 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6152 <p>The '
<tt>llvm.sadd.with.overflow
</tt>' family of intrinsic functions perform
6153 a signed addition of the two arguments, and indicate whether an overflow
6154 occurred during the signed summation.
</p>
6157 <p>The arguments (%a and %b) and the first element of the result structure may
6158 be of integer types of any bit width, but they must have the same bit
6159 width. The second element of the result structure must be of
6160 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6161 undergo signed addition.
</p>
6164 <p>The '
<tt>llvm.sadd.with.overflow
</tt>' family of intrinsic functions perform
6165 a signed addition of the two variables. They return a structure
— the
6166 first element of which is the signed summation, and the second element of
6167 which is a bit specifying if the signed summation resulted in an
6172 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6173 %sum = extractvalue {i32, i1} %res,
0
6174 %obit = extractvalue {i32, i1} %res,
1
6175 br i1 %obit, label %overflow, label %normal
6180 <!-- _______________________________________________________________________ -->
6181 <div class=
"doc_subsubsection">
6182 <a name=
"int_uadd_overflow">'
<tt>llvm.uadd.with.overflow.*
</tt>' Intrinsics
</a>
6185 <div class=
"doc_text">
6188 <p>This is an overloaded intrinsic. You can use
<tt>llvm.uadd.with.overflow
</tt>
6189 on any integer bit width.
</p>
6192 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6193 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6194 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6198 <p>The '
<tt>llvm.uadd.with.overflow
</tt>' family of intrinsic functions perform
6199 an unsigned addition of the two arguments, and indicate whether a carry
6200 occurred during the unsigned summation.
</p>
6203 <p>The arguments (%a and %b) and the first element of the result structure may
6204 be of integer types of any bit width, but they must have the same bit
6205 width. The second element of the result structure must be of
6206 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6207 undergo unsigned addition.
</p>
6210 <p>The '
<tt>llvm.uadd.with.overflow
</tt>' family of intrinsic functions perform
6211 an unsigned addition of the two arguments. They return a structure
—
6212 the first element of which is the sum, and the second element of which is a
6213 bit specifying if the unsigned summation resulted in a carry.
</p>
6217 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6218 %sum = extractvalue {i32, i1} %res,
0
6219 %obit = extractvalue {i32, i1} %res,
1
6220 br i1 %obit, label %carry, label %normal
6225 <!-- _______________________________________________________________________ -->
6226 <div class=
"doc_subsubsection">
6227 <a name=
"int_ssub_overflow">'
<tt>llvm.ssub.with.overflow.*
</tt>' Intrinsics
</a>
6230 <div class=
"doc_text">
6233 <p>This is an overloaded intrinsic. You can use
<tt>llvm.ssub.with.overflow
</tt>
6234 on any integer bit width.
</p>
6237 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6238 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6239 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6243 <p>The '
<tt>llvm.ssub.with.overflow
</tt>' family of intrinsic functions perform
6244 a signed subtraction of the two arguments, and indicate whether an overflow
6245 occurred during the signed subtraction.
</p>
6248 <p>The arguments (%a and %b) and the first element of the result structure may
6249 be of integer types of any bit width, but they must have the same bit
6250 width. The second element of the result structure must be of
6251 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6252 undergo signed subtraction.
</p>
6255 <p>The '
<tt>llvm.ssub.with.overflow
</tt>' family of intrinsic functions perform
6256 a signed subtraction of the two arguments. They return a structure
—
6257 the first element of which is the subtraction, and the second element of
6258 which is a bit specifying if the signed subtraction resulted in an
6263 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6264 %sum = extractvalue {i32, i1} %res,
0
6265 %obit = extractvalue {i32, i1} %res,
1
6266 br i1 %obit, label %overflow, label %normal
6271 <!-- _______________________________________________________________________ -->
6272 <div class=
"doc_subsubsection">
6273 <a name=
"int_usub_overflow">'
<tt>llvm.usub.with.overflow.*
</tt>' Intrinsics
</a>
6276 <div class=
"doc_text">
6279 <p>This is an overloaded intrinsic. You can use
<tt>llvm.usub.with.overflow
</tt>
6280 on any integer bit width.
</p>
6283 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6284 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6285 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6289 <p>The '
<tt>llvm.usub.with.overflow
</tt>' family of intrinsic functions perform
6290 an unsigned subtraction of the two arguments, and indicate whether an
6291 overflow occurred during the unsigned subtraction.
</p>
6294 <p>The arguments (%a and %b) and the first element of the result structure may
6295 be of integer types of any bit width, but they must have the same bit
6296 width. The second element of the result structure must be of
6297 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6298 undergo unsigned subtraction.
</p>
6301 <p>The '
<tt>llvm.usub.with.overflow
</tt>' family of intrinsic functions perform
6302 an unsigned subtraction of the two arguments. They return a structure
—
6303 the first element of which is the subtraction, and the second element of
6304 which is a bit specifying if the unsigned subtraction resulted in an
6309 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6310 %sum = extractvalue {i32, i1} %res,
0
6311 %obit = extractvalue {i32, i1} %res,
1
6312 br i1 %obit, label %overflow, label %normal
6317 <!-- _______________________________________________________________________ -->
6318 <div class=
"doc_subsubsection">
6319 <a name=
"int_smul_overflow">'
<tt>llvm.smul.with.overflow.*
</tt>' Intrinsics
</a>
6322 <div class=
"doc_text">
6325 <p>This is an overloaded intrinsic. You can use
<tt>llvm.smul.with.overflow
</tt>
6326 on any integer bit width.
</p>
6329 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6330 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6331 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6336 <p>The '
<tt>llvm.smul.with.overflow
</tt>' family of intrinsic functions perform
6337 a signed multiplication of the two arguments, and indicate whether an
6338 overflow occurred during the signed multiplication.
</p>
6341 <p>The arguments (%a and %b) and the first element of the result structure may
6342 be of integer types of any bit width, but they must have the same bit
6343 width. The second element of the result structure must be of
6344 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6345 undergo signed multiplication.
</p>
6348 <p>The '
<tt>llvm.smul.with.overflow
</tt>' family of intrinsic functions perform
6349 a signed multiplication of the two arguments. They return a structure
—
6350 the first element of which is the multiplication, and the second element of
6351 which is a bit specifying if the signed multiplication resulted in an
6356 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6357 %sum = extractvalue {i32, i1} %res,
0
6358 %obit = extractvalue {i32, i1} %res,
1
6359 br i1 %obit, label %overflow, label %normal
6364 <!-- _______________________________________________________________________ -->
6365 <div class=
"doc_subsubsection">
6366 <a name=
"int_umul_overflow">'
<tt>llvm.umul.with.overflow.*
</tt>' Intrinsics
</a>
6369 <div class=
"doc_text">
6372 <p>This is an overloaded intrinsic. You can use
<tt>llvm.umul.with.overflow
</tt>
6373 on any integer bit width.
</p>
6376 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6377 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6378 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6382 <p>The '
<tt>llvm.umul.with.overflow
</tt>' family of intrinsic functions perform
6383 a unsigned multiplication of the two arguments, and indicate whether an
6384 overflow occurred during the unsigned multiplication.
</p>
6387 <p>The arguments (%a and %b) and the first element of the result structure may
6388 be of integer types of any bit width, but they must have the same bit
6389 width. The second element of the result structure must be of
6390 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6391 undergo unsigned multiplication.
</p>
6394 <p>The '
<tt>llvm.umul.with.overflow
</tt>' family of intrinsic functions perform
6395 an unsigned multiplication of the two arguments. They return a structure
6396 — the first element of which is the multiplication, and the second
6397 element of which is a bit specifying if the unsigned multiplication resulted
6402 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6403 %sum = extractvalue {i32, i1} %res,
0
6404 %obit = extractvalue {i32, i1} %res,
1
6405 br i1 %obit, label %overflow, label %normal
6410 <!-- ======================================================================= -->
6411 <div class=
"doc_subsection">
6412 <a name=
"int_debugger">Debugger Intrinsics
</a>
6415 <div class=
"doc_text">
6417 <p>The LLVM debugger intrinsics (which all start with
<tt>llvm.dbg.
</tt>
6418 prefix), are described in
6419 the
<a href=
"SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6420 Level Debugging
</a> document.
</p>
6424 <!-- ======================================================================= -->
6425 <div class=
"doc_subsection">
6426 <a name=
"int_eh">Exception Handling Intrinsics
</a>
6429 <div class=
"doc_text">
6431 <p>The LLVM exception handling intrinsics (which all start with
6432 <tt>llvm.eh.
</tt> prefix), are described in
6433 the
<a href=
"ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6434 Handling
</a> document.
</p>
6438 <!-- ======================================================================= -->
6439 <div class=
"doc_subsection">
6440 <a name=
"int_trampoline">Trampoline Intrinsic
</a>
6443 <div class=
"doc_text">
6445 <p>This intrinsic makes it possible to excise one parameter, marked with
6446 the
<tt>nest
</tt> attribute, from a function. The result is a callable
6447 function pointer lacking the nest parameter - the caller does not need to
6448 provide a value for it. Instead, the value to use is stored in advance in a
6449 "trampoline", a block of memory usually allocated on the stack, which also
6450 contains code to splice the nest value into the argument list. This is used
6451 to implement the GCC nested function address extension.
</p>
6453 <p>For example, if the function is
6454 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)
</tt> then the resulting function
6455 pointer has signature
<tt>i32 (i32, i32)*
</tt>. It can be created as
6458 <div class=
"doc_code">
6460 %tramp = alloca [
10 x i8], align
4 ; size and alignment only correct for X86
6461 %tramp1 = getelementptr [
10 x i8]* %tramp, i32
0, i32
0
6462 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6463 %fp = bitcast i8* %p to i32 (i32, i32)*
6467 <p>The call
<tt>%val = call i32 %fp( i32 %x, i32 %y )
</tt> is then equivalent
6468 to
<tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )
</tt>.
</p>
6472 <!-- _______________________________________________________________________ -->
6473 <div class=
"doc_subsubsection">
6474 <a name=
"int_it">'
<tt>llvm.init.trampoline
</tt>' Intrinsic
</a>
6477 <div class=
"doc_text">
6481 declare i8* @llvm.init.trampoline(i8*
<tramp
>, i8*
<func
>, i8*
<nval
>)
6485 <p>This fills the memory pointed to by
<tt>tramp
</tt> with code and returns a
6486 function pointer suitable for executing it.
</p>
6489 <p>The
<tt>llvm.init.trampoline
</tt> intrinsic takes three arguments, all
6490 pointers. The
<tt>tramp
</tt> argument must point to a sufficiently large and
6491 sufficiently aligned block of memory; this memory is written to by the
6492 intrinsic. Note that the size and the alignment are target-specific - LLVM
6493 currently provides no portable way of determining them, so a front-end that
6494 generates this intrinsic needs to have some target-specific knowledge.
6495 The
<tt>func
</tt> argument must hold a function bitcast to
6496 an
<tt>i8*
</tt>.
</p>
6499 <p>The block of memory pointed to by
<tt>tramp
</tt> is filled with target
6500 dependent code, turning it into a function. A pointer to this function is
6501 returned, but needs to be bitcast to an
<a href=
"#int_trampoline">appropriate
6502 function pointer type
</a> before being called. The new function's signature
6503 is the same as that of
<tt>func
</tt> with any arguments marked with
6504 the
<tt>nest
</tt> attribute removed. At most one such
<tt>nest
</tt> argument
6505 is allowed, and it must be of pointer type. Calling the new function is
6506 equivalent to calling
<tt>func
</tt> with the same argument list, but
6507 with
<tt>nval
</tt> used for the missing
<tt>nest
</tt> argument. If, after
6508 calling
<tt>llvm.init.trampoline
</tt>, the memory pointed to
6509 by
<tt>tramp
</tt> is modified, then the effect of any later call to the
6510 returned function pointer is undefined.
</p>
6514 <!-- ======================================================================= -->
6515 <div class=
"doc_subsection">
6516 <a name=
"int_atomics">Atomic Operations and Synchronization Intrinsics
</a>
6519 <div class=
"doc_text">
6521 <p>These intrinsic functions expand the
"universal IR" of LLVM to represent
6522 hardware constructs for atomic operations and memory synchronization. This
6523 provides an interface to the hardware, not an interface to the programmer. It
6524 is aimed at a low enough level to allow any programming models or APIs
6525 (Application Programming Interfaces) which need atomic behaviors to map
6526 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6527 hardware provides a
"universal IR" for source languages, it also provides a
6528 starting point for developing a
"universal" atomic operation and
6529 synchronization IR.
</p>
6531 <p>These do
<em>not
</em> form an API such as high-level threading libraries,
6532 software transaction memory systems, atomic primitives, and intrinsic
6533 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6534 application libraries. The hardware interface provided by LLVM should allow
6535 a clean implementation of all of these APIs and parallel programming models.
6536 No one model or paradigm should be selected above others unless the hardware
6537 itself ubiquitously does so.
</p>
6541 <!-- _______________________________________________________________________ -->
6542 <div class=
"doc_subsubsection">
6543 <a name=
"int_memory_barrier">'
<tt>llvm.memory.barrier
</tt>' Intrinsic
</a>
6545 <div class=
"doc_text">
6548 declare void @llvm.memory.barrier( i1
<ll
>, i1
<ls
>, i1
<sl
>, i1
<ss
>, i1
<device
> )
6552 <p>The
<tt>llvm.memory.barrier
</tt> intrinsic guarantees ordering between
6553 specific pairs of memory access types.
</p>
6556 <p>The
<tt>llvm.memory.barrier
</tt> intrinsic requires five boolean arguments.
6557 The first four arguments enables a specific barrier as listed below. The
6558 fith argument specifies that the barrier applies to io or device or uncached
6562 <li><tt>ll
</tt>: load-load barrier
</li>
6563 <li><tt>ls
</tt>: load-store barrier
</li>
6564 <li><tt>sl
</tt>: store-load barrier
</li>
6565 <li><tt>ss
</tt>: store-store barrier
</li>
6566 <li><tt>device
</tt>: barrier applies to device and uncached memory also.
</li>
6570 <p>This intrinsic causes the system to enforce some ordering constraints upon
6571 the loads and stores of the program. This barrier does not
6572 indicate
<em>when
</em> any events will occur, it only enforces
6573 an
<em>order
</em> in which they occur. For any of the specified pairs of load
6574 and store operations (f.ex. load-load, or store-load), all of the first
6575 operations preceding the barrier will complete before any of the second
6576 operations succeeding the barrier begin. Specifically the semantics for each
6577 pairing is as follows:
</p>
6580 <li><tt>ll
</tt>: All loads before the barrier must complete before any load
6581 after the barrier begins.
</li>
6582 <li><tt>ls
</tt>: All loads before the barrier must complete before any
6583 store after the barrier begins.
</li>
6584 <li><tt>ss
</tt>: All stores before the barrier must complete before any
6585 store after the barrier begins.
</li>
6586 <li><tt>sl
</tt>: All stores before the barrier must complete before any
6587 load after the barrier begins.
</li>
6590 <p>These semantics are applied with a logical
"and" behavior when more than one
6591 is enabled in a single memory barrier intrinsic.
</p>
6593 <p>Backends may implement stronger barriers than those requested when they do
6594 not support as fine grained a barrier as requested. Some architectures do
6595 not need all types of barriers and on such architectures, these become
6600 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6601 %ptr = bitcast i8* %mallocP to i32*
6604 %result1 = load i32* %ptr
<i>; yields {i32}:result1 =
4</i>
6605 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6606 <i>; guarantee the above finishes
</i>
6607 store i32
8, %ptr
<i>; before this begins
</i>
6612 <!-- _______________________________________________________________________ -->
6613 <div class=
"doc_subsubsection">
6614 <a name=
"int_atomic_cmp_swap">'
<tt>llvm.atomic.cmp.swap.*
</tt>' Intrinsic
</a>
6617 <div class=
"doc_text">
6620 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.cmp.swap
</tt> on
6621 any integer bit width and for different address spaces. Not all targets
6622 support all bit widths however.
</p>
6625 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8*
<ptr
>, i8
<cmp
>, i8
<val
> )
6626 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16*
<ptr
>, i16
<cmp
>, i16
<val
> )
6627 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32*
<ptr
>, i32
<cmp
>, i32
<val
> )
6628 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64*
<ptr
>, i64
<cmp
>, i64
<val
> )
6632 <p>This loads a value in memory and compares it to a given value. If they are
6633 equal, it stores a new value into the memory.
</p>
6636 <p>The
<tt>llvm.atomic.cmp.swap
</tt> intrinsic takes three arguments. The result
6637 as well as both
<tt>cmp
</tt> and
<tt>val
</tt> must be integer values with the
6638 same bit width. The
<tt>ptr
</tt> argument must be a pointer to a value of
6639 this integer type. While any bit width integer may be used, targets may only
6640 lower representations they support in hardware.
</p>
6643 <p>This entire intrinsic must be executed atomically. It first loads the value
6644 in memory pointed to by
<tt>ptr
</tt> and compares it with the
6645 value
<tt>cmp
</tt>. If they are equal,
<tt>val
</tt> is stored into the
6646 memory. The loaded value is yielded in all cases. This provides the
6647 equivalent of an atomic compare-and-swap operation within the SSA
6652 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6653 %ptr = bitcast i8* %mallocP to i32*
6656 %val1 = add i32
4,
4
6657 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32
4, %val1 )
6658 <i>; yields {i32}:result1 =
4</i>
6659 %stored1 = icmp eq i32 %result1,
4 <i>; yields {i1}:stored1 = true
</i>
6660 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
8</i>
6662 %val2 = add i32
1,
1
6663 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32
5, %val2 )
6664 <i>; yields {i32}:result2 =
8</i>
6665 %stored2 = icmp eq i32 %result2,
5 <i>; yields {i1}:stored2 = false
</i>
6667 %memval2 = load i32* %ptr
<i>; yields {i32}:memval2 =
8</i>
6672 <!-- _______________________________________________________________________ -->
6673 <div class=
"doc_subsubsection">
6674 <a name=
"int_atomic_swap">'
<tt>llvm.atomic.swap.*
</tt>' Intrinsic
</a>
6676 <div class=
"doc_text">
6679 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.swap
</tt> on any
6680 integer bit width. Not all targets support all bit widths however.
</p>
6683 declare i8 @llvm.atomic.swap.i8.p0i8( i8*
<ptr
>, i8
<val
> )
6684 declare i16 @llvm.atomic.swap.i16.p0i16( i16*
<ptr
>, i16
<val
> )
6685 declare i32 @llvm.atomic.swap.i32.p0i32( i32*
<ptr
>, i32
<val
> )
6686 declare i64 @llvm.atomic.swap.i64.p0i64( i64*
<ptr
>, i64
<val
> )
6690 <p>This intrinsic loads the value stored in memory at
<tt>ptr
</tt> and yields
6691 the value from memory. It then stores the value in
<tt>val
</tt> in the memory
6692 at
<tt>ptr
</tt>.
</p>
6695 <p>The
<tt>llvm.atomic.swap
</tt> intrinsic takes two arguments. Both
6696 the
<tt>val
</tt> argument and the result must be integers of the same bit
6697 width. The first argument,
<tt>ptr
</tt>, must be a pointer to a value of this
6698 integer type. The targets may only lower integer representations they
6702 <p>This intrinsic loads the value pointed to by
<tt>ptr
</tt>, yields it, and
6703 stores
<tt>val
</tt> back into
<tt>ptr
</tt> atomically. This provides the
6704 equivalent of an atomic swap operation within the SSA framework.
</p>
6708 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6709 %ptr = bitcast i8* %mallocP to i32*
6712 %val1 = add i32
4,
4
6713 %result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
6714 <i>; yields {i32}:result1 =
4</i>
6715 %stored1 = icmp eq i32 %result1,
4 <i>; yields {i1}:stored1 = true
</i>
6716 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
8</i>
6718 %val2 = add i32
1,
1
6719 %result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
6720 <i>; yields {i32}:result2 =
8</i>
6722 %stored2 = icmp eq i32 %result2,
8 <i>; yields {i1}:stored2 = true
</i>
6723 %memval2 = load i32* %ptr
<i>; yields {i32}:memval2 =
2</i>
6728 <!-- _______________________________________________________________________ -->
6729 <div class=
"doc_subsubsection">
6730 <a name=
"int_atomic_load_add">'
<tt>llvm.atomic.load.add.*
</tt>' Intrinsic
</a>
6734 <div class=
"doc_text">
6737 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.load.add
</tt> on
6738 any integer bit width. Not all targets support all bit widths however.
</p>
6741 declare i8 @llvm.atomic.load.add.i8..p0i8( i8*
<ptr
>, i8
<delta
> )
6742 declare i16 @llvm.atomic.load.add.i16..p0i16( i16*
<ptr
>, i16
<delta
> )
6743 declare i32 @llvm.atomic.load.add.i32..p0i32( i32*
<ptr
>, i32
<delta
> )
6744 declare i64 @llvm.atomic.load.add.i64..p0i64( i64*
<ptr
>, i64
<delta
> )
6748 <p>This intrinsic adds
<tt>delta
</tt> to the value stored in memory
6749 at
<tt>ptr
</tt>. It yields the original value at
<tt>ptr
</tt>.
</p>
6752 <p>The intrinsic takes two arguments, the first a pointer to an integer value
6753 and the second an integer value. The result is also an integer value. These
6754 integer types can have any bit width, but they must all have the same bit
6755 width. The targets may only lower integer representations they support.
</p>
6758 <p>This intrinsic does a series of operations atomically. It first loads the
6759 value stored at
<tt>ptr
</tt>. It then adds
<tt>delta
</tt>, stores the result
6760 to
<tt>ptr
</tt>. It yields the original value stored at
<tt>ptr
</tt>.
</p>
6764 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6765 %ptr = bitcast i8* %mallocP to i32*
6767 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32
4 )
6768 <i>; yields {i32}:result1 =
4</i>
6769 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32
2 )
6770 <i>; yields {i32}:result2 =
8</i>
6771 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32
5 )
6772 <i>; yields {i32}:result3 =
10</i>
6773 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
15</i>
6778 <!-- _______________________________________________________________________ -->
6779 <div class=
"doc_subsubsection">
6780 <a name=
"int_atomic_load_sub">'
<tt>llvm.atomic.load.sub.*
</tt>' Intrinsic
</a>
6784 <div class=
"doc_text">
6787 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.load.sub
</tt> on
6788 any integer bit width and for different address spaces. Not all targets
6789 support all bit widths however.
</p>
6792 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8*
<ptr
>, i8
<delta
> )
6793 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16*
<ptr
>, i16
<delta
> )
6794 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6795 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64*
<ptr
>, i64
<delta
> )
6799 <p>This intrinsic subtracts
<tt>delta
</tt> to the value stored in memory at
6800 <tt>ptr
</tt>. It yields the original value at
<tt>ptr
</tt>.
</p>
6803 <p>The intrinsic takes two arguments, the first a pointer to an integer value
6804 and the second an integer value. The result is also an integer value. These
6805 integer types can have any bit width, but they must all have the same bit
6806 width. The targets may only lower integer representations they support.
</p>
6809 <p>This intrinsic does a series of operations atomically. It first loads the
6810 value stored at
<tt>ptr
</tt>. It then subtracts
<tt>delta
</tt>, stores the
6811 result to
<tt>ptr
</tt>. It yields the original value stored
6812 at
<tt>ptr
</tt>.
</p>
6816 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6817 %ptr = bitcast i8* %mallocP to i32*
6819 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32
4 )
6820 <i>; yields {i32}:result1 =
8</i>
6821 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32
2 )
6822 <i>; yields {i32}:result2 =
4</i>
6823 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32
5 )
6824 <i>; yields {i32}:result3 =
2</i>
6825 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 = -
3</i>
6830 <!-- _______________________________________________________________________ -->
6831 <div class=
"doc_subsubsection">
6832 <a name=
"int_atomic_load_and">'
<tt>llvm.atomic.load.and.*
</tt>' Intrinsic
</a><br>
6833 <a name=
"int_atomic_load_nand">'
<tt>llvm.atomic.load.nand.*
</tt>' Intrinsic
</a><br>
6834 <a name=
"int_atomic_load_or">'
<tt>llvm.atomic.load.or.*
</tt>' Intrinsic
</a><br>
6835 <a name=
"int_atomic_load_xor">'
<tt>llvm.atomic.load.xor.*
</tt>' Intrinsic
</a><br>
6838 <div class=
"doc_text">
6841 <p>These are overloaded intrinsics. You can
6842 use
<tt>llvm.atomic.load_and
</tt>,
<tt>llvm.atomic.load_nand
</tt>,
6843 <tt>llvm.atomic.load_or
</tt>, and
<tt>llvm.atomic.load_xor
</tt> on any integer
6844 bit width and for different address spaces. Not all targets support all bit
6848 declare i8 @llvm.atomic.load.and.i8.p0i8( i8*
<ptr
>, i8
<delta
> )
6849 declare i16 @llvm.atomic.load.and.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6850 declare i32 @llvm.atomic.load.and.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6851 declare i64 @llvm.atomic.load.and.i64.p0i64( i64*
<ptr
>, i64
<delta
> )
6855 declare i8 @llvm.atomic.load.or.i8.p0i8( i8*
<ptr
>, i8
<delta
> )
6856 declare i16 @llvm.atomic.load.or.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6857 declare i32 @llvm.atomic.load.or.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6858 declare i64 @llvm.atomic.load.or.i64.p0i64( i64*
<ptr
>, i64
<delta
> )
6862 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8*
<ptr
>, i8
<delta
> )
6863 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16*
<ptr
>, i16
<delta
> )
6864 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6865 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64*
<ptr
>, i64
<delta
> )
6869 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8*
<ptr
>, i8
<delta
> )
6870 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16*
<ptr
>, i16
<delta
> )
6871 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6872 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64*
<ptr
>, i64
<delta
> )
6876 <p>These intrinsics bitwise the operation (and, nand, or, xor)
<tt>delta
</tt> to
6877 the value stored in memory at
<tt>ptr
</tt>. It yields the original value
6878 at
<tt>ptr
</tt>.
</p>
6881 <p>These intrinsics take two arguments, the first a pointer to an integer value
6882 and the second an integer value. The result is also an integer value. These
6883 integer types can have any bit width, but they must all have the same bit
6884 width. The targets may only lower integer representations they support.
</p>
6887 <p>These intrinsics does a series of operations atomically. They first load the
6888 value stored at
<tt>ptr
</tt>. They then do the bitwise
6889 operation
<tt>delta
</tt>, store the result to
<tt>ptr
</tt>. They yield the
6890 original value stored at
<tt>ptr
</tt>.
</p>
6894 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6895 %ptr = bitcast i8* %mallocP to i32*
6896 store i32
0x0F0F, %ptr
6897 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32
0xFF )
6898 <i>; yields {i32}:result0 =
0x0F0F</i>
6899 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32
0xFF )
6900 <i>; yields {i32}:result1 =
0xFFFFFFF0</i>
6901 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32
0F )
6902 <i>; yields {i32}:result2 =
0xF0</i>
6903 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32
0F )
6904 <i>; yields {i32}:result3 = FF
</i>
6905 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 = F0
</i>
6910 <!-- _______________________________________________________________________ -->
6911 <div class=
"doc_subsubsection">
6912 <a name=
"int_atomic_load_max">'
<tt>llvm.atomic.load.max.*
</tt>' Intrinsic
</a><br>
6913 <a name=
"int_atomic_load_min">'
<tt>llvm.atomic.load.min.*
</tt>' Intrinsic
</a><br>
6914 <a name=
"int_atomic_load_umax">'
<tt>llvm.atomic.load.umax.*
</tt>' Intrinsic
</a><br>
6915 <a name=
"int_atomic_load_umin">'
<tt>llvm.atomic.load.umin.*
</tt>' Intrinsic
</a><br>
6918 <div class=
"doc_text">
6921 <p>These are overloaded intrinsics. You can use
<tt>llvm.atomic.load_max
</tt>,
6922 <tt>llvm.atomic.load_min
</tt>,
<tt>llvm.atomic.load_umax
</tt>, and
6923 <tt>llvm.atomic.load_umin
</tt> on any integer bit width and for different
6924 address spaces. Not all targets support all bit widths however.
</p>
6927 declare i8 @llvm.atomic.load.max.i8.p0i8( i8*
<ptr
>, i8
<delta
> )
6928 declare i16 @llvm.atomic.load.max.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6929 declare i32 @llvm.atomic.load.max.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6930 declare i64 @llvm.atomic.load.max.i64.p0i64( i64*
<ptr
>, i64
<delta
> )
6934 declare i8 @llvm.atomic.load.min.i8.p0i8( i8*
<ptr
>, i8
<delta
> )
6935 declare i16 @llvm.atomic.load.min.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6936 declare i32 @llvm.atomic.load.min.i32..p0i32( i32*
<ptr
>, i32
<delta
> )
6937 declare i64 @llvm.atomic.load.min.i64..p0i64( i64*
<ptr
>, i64
<delta
> )
6941 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8*
<ptr
>, i8
<delta
> )
6942 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6943 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32*
<ptr
>, i32
<delta
> )
6944 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64*
<ptr
>, i64
<delta
> )
6948 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8*
<ptr
>, i8
<delta
> )
6949 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16*
<ptr
>, i16
<delta
> )
6950 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32*
<ptr
>, i32
<delta
> )
6951 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64*
<ptr
>, i64
<delta
> )
6955 <p>These intrinsics takes the signed or unsigned minimum or maximum of
6956 <tt>delta
</tt> and the value stored in memory at
<tt>ptr
</tt>. It yields the
6957 original value at
<tt>ptr
</tt>.
</p>
6960 <p>These intrinsics take two arguments, the first a pointer to an integer value
6961 and the second an integer value. The result is also an integer value. These
6962 integer types can have any bit width, but they must all have the same bit
6963 width. The targets may only lower integer representations they support.
</p>
6966 <p>These intrinsics does a series of operations atomically. They first load the
6967 value stored at
<tt>ptr
</tt>. They then do the signed or unsigned min or
6968 max
<tt>delta
</tt> and the value, store the result to
<tt>ptr
</tt>. They
6969 yield the original value stored at
<tt>ptr
</tt>.
</p>
6973 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
6974 %ptr = bitcast i8* %mallocP to i32*
6976 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -
2 )
6977 <i>; yields {i32}:result0 =
7</i>
6978 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32
8 )
6979 <i>; yields {i32}:result1 = -
2</i>
6980 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32
10 )
6981 <i>; yields {i32}:result2 =
8</i>
6982 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32
30 )
6983 <i>; yields {i32}:result3 =
8</i>
6984 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
30</i>
6990 <!-- ======================================================================= -->
6991 <div class=
"doc_subsection">
6992 <a name=
"int_memorymarkers">Memory Use Markers
</a>
6995 <div class=
"doc_text">
6997 <p>This class of intrinsics exists to information about the lifetime of memory
6998 objects and ranges where variables are immutable.
</p>
7002 <!-- _______________________________________________________________________ -->
7003 <div class=
"doc_subsubsection">
7004 <a name=
"int_lifetime_start">'
<tt>llvm.lifetime.start
</tt>' Intrinsic
</a>
7007 <div class=
"doc_text">
7011 declare void @llvm.lifetime.start(i64
<size
>, i8* nocapture
<ptr
>)
7015 <p>The '
<tt>llvm.lifetime.start
</tt>' intrinsic specifies the start of a memory
7016 object's lifetime.
</p>
7019 <p>The first argument is a constant integer representing the size of the
7020 object, or -
1 if it is variable sized. The second argument is a pointer to
7024 <p>This intrinsic indicates that before this point in the code, the value of the
7025 memory pointed to by
<tt>ptr
</tt> is dead. This means that it is known to
7026 never be used and has an undefined value. A load from the pointer that
7027 precedes this intrinsic can be replaced with
7028 <tt>'
<a href=
"#undefvalues">undef
</a>'
</tt>.
</p>
7032 <!-- _______________________________________________________________________ -->
7033 <div class=
"doc_subsubsection">
7034 <a name=
"int_lifetime_end">'
<tt>llvm.lifetime.end
</tt>' Intrinsic
</a>
7037 <div class=
"doc_text">
7041 declare void @llvm.lifetime.end(i64
<size
>, i8* nocapture
<ptr
>)
7045 <p>The '
<tt>llvm.lifetime.end
</tt>' intrinsic specifies the end of a memory
7046 object's lifetime.
</p>
7049 <p>The first argument is a constant integer representing the size of the
7050 object, or -
1 if it is variable sized. The second argument is a pointer to
7054 <p>This intrinsic indicates that after this point in the code, the value of the
7055 memory pointed to by
<tt>ptr
</tt> is dead. This means that it is known to
7056 never be used and has an undefined value. Any stores into the memory object
7057 following this intrinsic may be removed as dead.
7061 <!-- _______________________________________________________________________ -->
7062 <div class=
"doc_subsubsection">
7063 <a name=
"int_invariant_start">'
<tt>llvm.invariant.start
</tt>' Intrinsic
</a>
7066 <div class=
"doc_text">
7070 declare {}* @llvm.invariant.start(i64
<size
>, i8* nocapture
<ptr
>) readonly
7074 <p>The '
<tt>llvm.invariant.start
</tt>' intrinsic specifies that the contents of
7075 a memory object will not change.
</p>
7078 <p>The first argument is a constant integer representing the size of the
7079 object, or -
1 if it is variable sized. The second argument is a pointer to
7083 <p>This intrinsic indicates that until an
<tt>llvm.invariant.end
</tt> that uses
7084 the return value, the referenced memory location is constant and
7089 <!-- _______________________________________________________________________ -->
7090 <div class=
"doc_subsubsection">
7091 <a name=
"int_invariant_end">'
<tt>llvm.invariant.end
</tt>' Intrinsic
</a>
7094 <div class=
"doc_text">
7098 declare void @llvm.invariant.end({}*
<start
>, i64
<size
>, i8* nocapture
<ptr
>)
7102 <p>The '
<tt>llvm.invariant.end
</tt>' intrinsic specifies that the contents of
7103 a memory object are mutable.
</p>
7106 <p>The first argument is the matching
<tt>llvm.invariant.start
</tt> intrinsic.
7107 The second argument is a constant integer representing the size of the
7108 object, or -
1 if it is variable sized and the third argument is a pointer
7112 <p>This intrinsic indicates that the memory is mutable again.
</p>
7116 <!-- ======================================================================= -->
7117 <div class=
"doc_subsection">
7118 <a name=
"int_general">General Intrinsics
</a>
7121 <div class=
"doc_text">
7123 <p>This class of intrinsics is designed to be generic and has no specific
7128 <!-- _______________________________________________________________________ -->
7129 <div class=
"doc_subsubsection">
7130 <a name=
"int_var_annotation">'
<tt>llvm.var.annotation
</tt>' Intrinsic
</a>
7133 <div class=
"doc_text">
7137 declare void @llvm.var.annotation(i8*
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7141 <p>The '
<tt>llvm.var.annotation
</tt>' intrinsic.
</p>
7144 <p>The first argument is a pointer to a value, the second is a pointer to a
7145 global string, the third is a pointer to a global string which is the source
7146 file name, and the last argument is the line number.
</p>
7149 <p>This intrinsic allows annotation of local variables with arbitrary strings.
7150 This can be useful for special purpose optimizations that want to look for
7151 these annotations. These have no other defined use, they are ignored by code
7152 generation and optimization.
</p>
7156 <!-- _______________________________________________________________________ -->
7157 <div class=
"doc_subsubsection">
7158 <a name=
"int_annotation">'
<tt>llvm.annotation.*
</tt>' Intrinsic
</a>
7161 <div class=
"doc_text">
7164 <p>This is an overloaded intrinsic. You can use '
<tt>llvm.annotation
</tt>' on
7165 any integer bit width.
</p>
7168 declare i8 @llvm.annotation.i8(i8
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7169 declare i16 @llvm.annotation.i16(i16
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7170 declare i32 @llvm.annotation.i32(i32
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7171 declare i64 @llvm.annotation.i64(i64
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7172 declare i256 @llvm.annotation.i256(i256
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
> )
7176 <p>The '
<tt>llvm.annotation
</tt>' intrinsic.
</p>
7179 <p>The first argument is an integer value (result of some expression), the
7180 second is a pointer to a global string, the third is a pointer to a global
7181 string which is the source file name, and the last argument is the line
7182 number. It returns the value of the first argument.
</p>
7185 <p>This intrinsic allows annotations to be put on arbitrary expressions with
7186 arbitrary strings. This can be useful for special purpose optimizations that
7187 want to look for these annotations. These have no other defined use, they
7188 are ignored by code generation and optimization.
</p>
7192 <!-- _______________________________________________________________________ -->
7193 <div class=
"doc_subsubsection">
7194 <a name=
"int_trap">'
<tt>llvm.trap
</tt>' Intrinsic
</a>
7197 <div class=
"doc_text">
7201 declare void @llvm.trap()
7205 <p>The '
<tt>llvm.trap
</tt>' intrinsic.
</p>
7211 <p>This intrinsics is lowered to the target dependent trap instruction. If the
7212 target does not have a trap instruction, this intrinsic will be lowered to
7213 the call of the
<tt>abort()
</tt> function.
</p>
7217 <!-- _______________________________________________________________________ -->
7218 <div class=
"doc_subsubsection">
7219 <a name=
"int_stackprotector">'
<tt>llvm.stackprotector
</tt>' Intrinsic
</a>
7222 <div class=
"doc_text">
7226 declare void @llvm.stackprotector( i8*
<guard
>, i8**
<slot
> )
7230 <p>The
<tt>llvm.stackprotector
</tt> intrinsic takes the
<tt>guard
</tt> and
7231 stores it onto the stack at
<tt>slot
</tt>. The stack slot is adjusted to
7232 ensure that it is placed on the stack before local variables.
</p>
7235 <p>The
<tt>llvm.stackprotector
</tt> intrinsic requires two pointer
7236 arguments. The first argument is the value loaded from the stack
7237 guard
<tt>@__stack_chk_guard
</tt>. The second variable is an
<tt>alloca
</tt>
7238 that has enough space to hold the value of the guard.
</p>
7241 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
7242 the
<tt>AllocaInst
</tt> stack slot to be before local variables on the
7243 stack. This is to ensure that if a local variable on the stack is
7244 overwritten, it will destroy the value of the guard. When the function exits,
7245 the guard on the stack is checked against the original guard. If they're
7246 different, then the program aborts by calling the
<tt>__stack_chk_fail()
</tt>
7251 <!-- _______________________________________________________________________ -->
7252 <div class=
"doc_subsubsection">
7253 <a name=
"int_objectsize">'
<tt>llvm.objectsize
</tt>' Intrinsic
</a>
7256 <div class=
"doc_text">
7260 declare i32 @llvm.objectsize.i32( i8*
<ptr
>, i32
<type
> )
7261 declare i64 @llvm.objectsize.i64( i8*
<ptr
>, i32
<type
> )
7265 <p>The
<tt>llvm.objectsize
</tt> intrinsic is designed to provide information
7266 to the optimizers to either discover at compile time either a) when an
7267 operation like memcpy will either overflow a buffer that corresponds to
7268 an object, or b) to determine that a runtime check for overflow isn't
7269 necessary. An object in this context means an allocation of a
7270 specific
<a href=
"#typesystem">type
</a>.
</p>
7273 <p>The
<tt>llvm.objectsize
</tt> intrinsic takes two arguments. The first
7274 argument is a pointer to the object
<tt>ptr
</tt>. The second argument
7275 is an integer
<tt>type
</tt> which ranges from
0 to
3. The first bit in
7276 the type corresponds to a return value based on whole objects,
7277 and the second bit whether or not we return the maximum or minimum
7278 remaining bytes computed.
</p>
7279 <table class=
"layout">
7281 <td class=
"left"><tt>00</tt></td>
7282 <td class=
"left">whole object, maximum number of bytes
</td>
7285 <td class=
"left"><tt>01</tt></td>
7286 <td class=
"left">partial object, maximum number of bytes
</td>
7289 <td class=
"left"><tt>10</tt></td>
7290 <td class=
"left">whole object, minimum number of bytes
</td>
7293 <td class=
"left"><tt>11</tt></td>
7294 <td class=
"left">partial object, minimum number of bytes
</td>
7299 <p>The
<tt>llvm.objectsize
</tt> intrinsic is lowered to either a constant
7300 representing the size of the object concerned or
<tt>i32/i64 -
1 or
0</tt>
7301 (depending on the
<tt>type
</tt> argument if the size cannot be determined
7302 at compile time.
</p>
7306 <!-- *********************************************************************** -->
7309 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
7310 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
7311 <a href=
"http://validator.w3.org/check/referer"><img
7312 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
7314 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
7315 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a><br>
7316 Last modified: $Date$