Verify the predicates on icmp/fcmp. Suggested by Jeff Yasskin!
[llvm.git] / lib / VMCore / Verifier.cpp
blobb2eba7914445103befa36a148c39b42f0d7755ba
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/TypeSymbolTable.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <cstdarg>
69 using namespace llvm;
71 namespace { // Anonymous namespace for class
72 struct PreVerifier : public FunctionPass {
73 static char ID; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(ID) { }
77 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.setPreservesAll();
81 // Check that the prerequisites for successful DominatorTree construction
82 // are satisfied.
83 bool runOnFunction(Function &F) {
84 bool Broken = false;
86 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
87 if (I->empty() || !I->back().isTerminator()) {
88 dbgs() << "Basic Block in function '" << F.getName()
89 << "' does not have terminator!\n";
90 WriteAsOperand(dbgs(), I, true);
91 dbgs() << "\n";
92 Broken = true;
96 if (Broken)
97 report_fatal_error("Broken module, no Basic Block terminator!");
99 return false;
104 char PreVerifier::ID = 0;
105 static RegisterPass<PreVerifier>
106 PreVer("preverify", "Preliminary module verification");
107 char &PreVerifyID = PreVerifier::ID;
109 namespace {
110 class TypeSet : public AbstractTypeUser {
111 public:
112 TypeSet() {}
114 /// Insert a type into the set of types.
115 bool insert(const Type *Ty) {
116 if (!Types.insert(Ty))
117 return false;
118 if (Ty->isAbstract())
119 Ty->addAbstractTypeUser(this);
120 return true;
123 // Remove ourselves as abstract type listeners for any types that remain
124 // abstract when the TypeSet is destroyed.
125 ~TypeSet() {
126 for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
127 E = Types.end(); I != E; ++I) {
128 const Type *Ty = *I;
129 if (Ty->isAbstract())
130 Ty->removeAbstractTypeUser(this);
134 // Abstract type user interface.
136 /// Remove types from the set when refined. Do not insert the type it was
137 /// refined to because that type hasn't been verified yet.
138 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
139 Types.remove(OldTy);
140 OldTy->removeAbstractTypeUser(this);
143 /// Stop listening for changes to a type which is no longer abstract.
144 void typeBecameConcrete(const DerivedType *AbsTy) {
145 AbsTy->removeAbstractTypeUser(this);
148 void dump() const {}
150 private:
151 SmallSetVector<const Type *, 16> Types;
153 // Disallow copying.
154 TypeSet(const TypeSet &);
155 TypeSet &operator=(const TypeSet &);
158 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
159 static char ID; // Pass ID, replacement for typeid
160 bool Broken; // Is this module found to be broken?
161 bool RealPass; // Are we not being run by a PassManager?
162 VerifierFailureAction action;
163 // What to do if verification fails.
164 Module *Mod; // Module we are verifying right now
165 LLVMContext *Context; // Context within which we are verifying
166 DominatorTree *DT; // Dominator Tree, caution can be null!
168 std::string Messages;
169 raw_string_ostream MessagesStr;
171 /// InstInThisBlock - when verifying a basic block, keep track of all of the
172 /// instructions we have seen so far. This allows us to do efficient
173 /// dominance checks for the case when an instruction has an operand that is
174 /// an instruction in the same block.
175 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
177 /// Types - keep track of the types that have been checked already.
178 TypeSet Types;
180 /// MDNodes - keep track of the metadata nodes that have been checked
181 /// already.
182 SmallPtrSet<MDNode *, 32> MDNodes;
184 Verifier()
185 : FunctionPass(ID),
186 Broken(false), RealPass(true), action(AbortProcessAction),
187 Mod(0), Context(0), DT(0), MessagesStr(Messages) {}
188 explicit Verifier(VerifierFailureAction ctn)
189 : FunctionPass(ID),
190 Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
191 MessagesStr(Messages) {}
192 explicit Verifier(bool AB)
193 : FunctionPass(ID),
194 Broken(false), RealPass(true),
195 action( AB ? AbortProcessAction : PrintMessageAction), Mod(0),
196 Context(0), DT(0), MessagesStr(Messages) {}
197 explicit Verifier(DominatorTree &dt)
198 : FunctionPass(ID),
199 Broken(false), RealPass(false), action(PrintMessageAction), Mod(0),
200 Context(0), DT(&dt), MessagesStr(Messages) {}
203 bool doInitialization(Module &M) {
204 Mod = &M;
205 Context = &M.getContext();
206 verifyTypeSymbolTable(M.getTypeSymbolTable());
208 // If this is a real pass, in a pass manager, we must abort before
209 // returning back to the pass manager, or else the pass manager may try to
210 // run other passes on the broken module.
211 if (RealPass)
212 return abortIfBroken();
213 return false;
216 bool runOnFunction(Function &F) {
217 // Get dominator information if we are being run by PassManager
218 if (RealPass) DT = &getAnalysis<DominatorTree>();
220 Mod = F.getParent();
221 if (!Context) Context = &F.getContext();
223 visit(F);
224 InstsInThisBlock.clear();
226 // If this is a real pass, in a pass manager, we must abort before
227 // returning back to the pass manager, or else the pass manager may try to
228 // run other passes on the broken module.
229 if (RealPass)
230 return abortIfBroken();
232 return false;
235 bool doFinalization(Module &M) {
236 // Scan through, checking all of the external function's linkage now...
237 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
238 visitGlobalValue(*I);
240 // Check to make sure function prototypes are okay.
241 if (I->isDeclaration()) visitFunction(*I);
244 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
245 I != E; ++I)
246 visitGlobalVariable(*I);
248 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
249 I != E; ++I)
250 visitGlobalAlias(*I);
252 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
253 E = M.named_metadata_end(); I != E; ++I)
254 visitNamedMDNode(*I);
256 // If the module is broken, abort at this time.
257 return abortIfBroken();
260 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
261 AU.setPreservesAll();
262 AU.addRequiredID(PreVerifyID);
263 if (RealPass)
264 AU.addRequired<DominatorTree>();
267 /// abortIfBroken - If the module is broken and we are supposed to abort on
268 /// this condition, do so.
270 bool abortIfBroken() {
271 if (!Broken) return false;
272 MessagesStr << "Broken module found, ";
273 switch (action) {
274 default: llvm_unreachable("Unknown action");
275 case AbortProcessAction:
276 MessagesStr << "compilation aborted!\n";
277 dbgs() << MessagesStr.str();
278 // Client should choose different reaction if abort is not desired
279 abort();
280 case PrintMessageAction:
281 MessagesStr << "verification continues.\n";
282 dbgs() << MessagesStr.str();
283 return false;
284 case ReturnStatusAction:
285 MessagesStr << "compilation terminated.\n";
286 return true;
291 // Verification methods...
292 void verifyTypeSymbolTable(TypeSymbolTable &ST);
293 void visitGlobalValue(GlobalValue &GV);
294 void visitGlobalVariable(GlobalVariable &GV);
295 void visitGlobalAlias(GlobalAlias &GA);
296 void visitNamedMDNode(NamedMDNode &NMD);
297 void visitMDNode(MDNode &MD, Function *F);
298 void visitFunction(Function &F);
299 void visitBasicBlock(BasicBlock &BB);
300 using InstVisitor<Verifier>::visit;
302 void visit(Instruction &I);
304 void visitTruncInst(TruncInst &I);
305 void visitZExtInst(ZExtInst &I);
306 void visitSExtInst(SExtInst &I);
307 void visitFPTruncInst(FPTruncInst &I);
308 void visitFPExtInst(FPExtInst &I);
309 void visitFPToUIInst(FPToUIInst &I);
310 void visitFPToSIInst(FPToSIInst &I);
311 void visitUIToFPInst(UIToFPInst &I);
312 void visitSIToFPInst(SIToFPInst &I);
313 void visitIntToPtrInst(IntToPtrInst &I);
314 void visitPtrToIntInst(PtrToIntInst &I);
315 void visitBitCastInst(BitCastInst &I);
316 void visitPHINode(PHINode &PN);
317 void visitBinaryOperator(BinaryOperator &B);
318 void visitICmpInst(ICmpInst &IC);
319 void visitFCmpInst(FCmpInst &FC);
320 void visitExtractElementInst(ExtractElementInst &EI);
321 void visitInsertElementInst(InsertElementInst &EI);
322 void visitShuffleVectorInst(ShuffleVectorInst &EI);
323 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
324 void visitCallInst(CallInst &CI);
325 void visitInvokeInst(InvokeInst &II);
326 void visitGetElementPtrInst(GetElementPtrInst &GEP);
327 void visitLoadInst(LoadInst &LI);
328 void visitStoreInst(StoreInst &SI);
329 void visitInstruction(Instruction &I);
330 void visitTerminatorInst(TerminatorInst &I);
331 void visitBranchInst(BranchInst &BI);
332 void visitReturnInst(ReturnInst &RI);
333 void visitSwitchInst(SwitchInst &SI);
334 void visitIndirectBrInst(IndirectBrInst &BI);
335 void visitSelectInst(SelectInst &SI);
336 void visitUserOp1(Instruction &I);
337 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
338 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
339 void visitAllocaInst(AllocaInst &AI);
340 void visitExtractValueInst(ExtractValueInst &EVI);
341 void visitInsertValueInst(InsertValueInst &IVI);
343 void VerifyCallSite(CallSite CS);
344 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
345 int VT, unsigned ArgNo, std::string &Suffix);
346 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
347 unsigned RetNum, unsigned ParamNum, ...);
348 void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
349 bool isReturnValue, const Value *V);
350 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
351 const Value *V);
352 void VerifyType(const Type *Ty);
354 void WriteValue(const Value *V) {
355 if (!V) return;
356 if (isa<Instruction>(V)) {
357 MessagesStr << *V << '\n';
358 } else {
359 WriteAsOperand(MessagesStr, V, true, Mod);
360 MessagesStr << '\n';
364 void WriteType(const Type *T) {
365 if (!T) return;
366 MessagesStr << ' ';
367 WriteTypeSymbolic(MessagesStr, T, Mod);
371 // CheckFailed - A check failed, so print out the condition and the message
372 // that failed. This provides a nice place to put a breakpoint if you want
373 // to see why something is not correct.
374 void CheckFailed(const Twine &Message,
375 const Value *V1 = 0, const Value *V2 = 0,
376 const Value *V3 = 0, const Value *V4 = 0) {
377 MessagesStr << Message.str() << "\n";
378 WriteValue(V1);
379 WriteValue(V2);
380 WriteValue(V3);
381 WriteValue(V4);
382 Broken = true;
385 void CheckFailed(const Twine &Message, const Value *V1,
386 const Type *T2, const Value *V3 = 0) {
387 MessagesStr << Message.str() << "\n";
388 WriteValue(V1);
389 WriteType(T2);
390 WriteValue(V3);
391 Broken = true;
394 void CheckFailed(const Twine &Message, const Type *T1,
395 const Type *T2 = 0, const Type *T3 = 0) {
396 MessagesStr << Message.str() << "\n";
397 WriteType(T1);
398 WriteType(T2);
399 WriteType(T3);
400 Broken = true;
403 } // End anonymous namespace
405 char Verifier::ID = 0;
406 static RegisterPass<Verifier> X("verify", "Module Verifier");
408 // Assert - We know that cond should be true, if not print an error message.
409 #define Assert(C, M) \
410 do { if (!(C)) { CheckFailed(M); return; } } while (0)
411 #define Assert1(C, M, V1) \
412 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
413 #define Assert2(C, M, V1, V2) \
414 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
415 #define Assert3(C, M, V1, V2, V3) \
416 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
417 #define Assert4(C, M, V1, V2, V3, V4) \
418 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
420 void Verifier::visit(Instruction &I) {
421 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
422 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
423 InstVisitor<Verifier>::visit(I);
427 void Verifier::visitGlobalValue(GlobalValue &GV) {
428 Assert1(!GV.isDeclaration() ||
429 GV.isMaterializable() ||
430 GV.hasExternalLinkage() ||
431 GV.hasDLLImportLinkage() ||
432 GV.hasExternalWeakLinkage() ||
433 (isa<GlobalAlias>(GV) &&
434 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
435 "Global is external, but doesn't have external or dllimport or weak linkage!",
436 &GV);
438 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
439 "Global is marked as dllimport, but not external", &GV);
441 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
442 "Only global variables can have appending linkage!", &GV);
444 if (GV.hasAppendingLinkage()) {
445 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
446 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
447 "Only global arrays can have appending linkage!", GVar);
450 Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
451 "linker_private_weak_def_auto can only have default visibility!",
452 &GV);
455 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
456 if (GV.hasInitializer()) {
457 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
458 "Global variable initializer type does not match global "
459 "variable type!", &GV);
461 // If the global has common linkage, it must have a zero initializer and
462 // cannot be constant.
463 if (GV.hasCommonLinkage()) {
464 Assert1(GV.getInitializer()->isNullValue(),
465 "'common' global must have a zero initializer!", &GV);
466 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
467 &GV);
469 } else {
470 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
471 GV.hasExternalWeakLinkage(),
472 "invalid linkage type for global declaration", &GV);
475 visitGlobalValue(GV);
478 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
479 Assert1(!GA.getName().empty(),
480 "Alias name cannot be empty!", &GA);
481 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
482 GA.hasWeakLinkage(),
483 "Alias should have external or external weak linkage!", &GA);
484 Assert1(GA.getAliasee(),
485 "Aliasee cannot be NULL!", &GA);
486 Assert1(GA.getType() == GA.getAliasee()->getType(),
487 "Alias and aliasee types should match!", &GA);
489 if (!isa<GlobalValue>(GA.getAliasee())) {
490 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
491 Assert1(CE &&
492 (CE->getOpcode() == Instruction::BitCast ||
493 CE->getOpcode() == Instruction::GetElementPtr) &&
494 isa<GlobalValue>(CE->getOperand(0)),
495 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
496 &GA);
499 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
500 Assert1(Aliasee,
501 "Aliasing chain should end with function or global variable", &GA);
503 visitGlobalValue(GA);
506 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
507 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
508 MDNode *MD = NMD.getOperand(i);
509 if (!MD)
510 continue;
512 Assert1(!MD->isFunctionLocal(),
513 "Named metadata operand cannot be function local!", MD);
514 visitMDNode(*MD, 0);
518 void Verifier::visitMDNode(MDNode &MD, Function *F) {
519 // Only visit each node once. Metadata can be mutually recursive, so this
520 // avoids infinite recursion here, as well as being an optimization.
521 if (!MDNodes.insert(&MD))
522 return;
524 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
525 Value *Op = MD.getOperand(i);
526 if (!Op)
527 continue;
528 if (isa<Constant>(Op) || isa<MDString>(Op))
529 continue;
530 if (MDNode *N = dyn_cast<MDNode>(Op)) {
531 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
532 "Global metadata operand cannot be function local!", &MD, N);
533 visitMDNode(*N, F);
534 continue;
536 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
538 // If this was an instruction, bb, or argument, verify that it is in the
539 // function that we expect.
540 Function *ActualF = 0;
541 if (Instruction *I = dyn_cast<Instruction>(Op))
542 ActualF = I->getParent()->getParent();
543 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
544 ActualF = BB->getParent();
545 else if (Argument *A = dyn_cast<Argument>(Op))
546 ActualF = A->getParent();
547 assert(ActualF && "Unimplemented function local metadata case!");
549 Assert2(ActualF == F, "function-local metadata used in wrong function",
550 &MD, Op);
554 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
555 for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
556 VerifyType(I->second);
559 // VerifyParameterAttrs - Check the given attributes for an argument or return
560 // value of the specified type. The value V is printed in error messages.
561 void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
562 bool isReturnValue, const Value *V) {
563 if (Attrs == Attribute::None)
564 return;
566 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
567 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
568 " only applies to the function!", V);
570 if (isReturnValue) {
571 Attributes RetI = Attrs & Attribute::ParameterOnly;
572 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
573 " does not apply to return values!", V);
576 for (unsigned i = 0;
577 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
578 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
579 Assert1(!(MutI & (MutI - 1)), "Attributes " +
580 Attribute::getAsString(MutI) + " are incompatible!", V);
583 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
584 Assert1(!TypeI, "Wrong type for attribute " +
585 Attribute::getAsString(TypeI), V);
587 Attributes ByValI = Attrs & Attribute::ByVal;
588 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
589 Assert1(!ByValI || PTy->getElementType()->isSized(),
590 "Attribute " + Attribute::getAsString(ByValI) +
591 " does not support unsized types!", V);
592 } else {
593 Assert1(!ByValI,
594 "Attribute " + Attribute::getAsString(ByValI) +
595 " only applies to parameters with pointer type!", V);
599 // VerifyFunctionAttrs - Check parameter attributes against a function type.
600 // The value V is printed in error messages.
601 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
602 const AttrListPtr &Attrs,
603 const Value *V) {
604 if (Attrs.isEmpty())
605 return;
607 bool SawNest = false;
609 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
610 const AttributeWithIndex &Attr = Attrs.getSlot(i);
612 const Type *Ty;
613 if (Attr.Index == 0)
614 Ty = FT->getReturnType();
615 else if (Attr.Index-1 < FT->getNumParams())
616 Ty = FT->getParamType(Attr.Index-1);
617 else
618 break; // VarArgs attributes, verified elsewhere.
620 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
622 if (Attr.Attrs & Attribute::Nest) {
623 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
624 SawNest = true;
627 if (Attr.Attrs & Attribute::StructRet)
628 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
631 Attributes FAttrs = Attrs.getFnAttributes();
632 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
633 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
634 " does not apply to the function!", V);
636 for (unsigned i = 0;
637 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
638 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
639 Assert1(!(MutI & (MutI - 1)), "Attributes " +
640 Attribute::getAsString(MutI) + " are incompatible!", V);
644 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
645 if (Attrs.isEmpty())
646 return true;
648 unsigned LastSlot = Attrs.getNumSlots() - 1;
649 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
650 if (LastIndex <= Params
651 || (LastIndex == (unsigned)~0
652 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
653 return true;
655 return false;
658 // visitFunction - Verify that a function is ok.
660 void Verifier::visitFunction(Function &F) {
661 // Check function arguments.
662 const FunctionType *FT = F.getFunctionType();
663 unsigned NumArgs = F.arg_size();
665 Assert1(Context == &F.getContext(),
666 "Function context does not match Module context!", &F);
668 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
669 Assert2(FT->getNumParams() == NumArgs,
670 "# formal arguments must match # of arguments for function type!",
671 &F, FT);
672 Assert1(F.getReturnType()->isFirstClassType() ||
673 F.getReturnType()->isVoidTy() ||
674 F.getReturnType()->isStructTy(),
675 "Functions cannot return aggregate values!", &F);
677 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
678 "Invalid struct return type!", &F);
680 const AttrListPtr &Attrs = F.getAttributes();
682 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
683 "Attributes after last parameter!", &F);
685 // Check function attributes.
686 VerifyFunctionAttrs(FT, Attrs, &F);
688 // Check that this function meets the restrictions on this calling convention.
689 switch (F.getCallingConv()) {
690 default:
691 break;
692 case CallingConv::C:
693 break;
694 case CallingConv::Fast:
695 case CallingConv::Cold:
696 case CallingConv::X86_FastCall:
697 case CallingConv::X86_ThisCall:
698 Assert1(!F.isVarArg(),
699 "Varargs functions must have C calling conventions!", &F);
700 break;
703 bool isLLVMdotName = F.getName().size() >= 5 &&
704 F.getName().substr(0, 5) == "llvm.";
706 // Check that the argument values match the function type for this function...
707 unsigned i = 0;
708 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
709 I != E; ++I, ++i) {
710 Assert2(I->getType() == FT->getParamType(i),
711 "Argument value does not match function argument type!",
712 I, FT->getParamType(i));
713 Assert1(I->getType()->isFirstClassType(),
714 "Function arguments must have first-class types!", I);
715 if (!isLLVMdotName)
716 Assert2(!I->getType()->isMetadataTy(),
717 "Function takes metadata but isn't an intrinsic", I, &F);
720 if (F.isMaterializable()) {
721 // Function has a body somewhere we can't see.
722 } else if (F.isDeclaration()) {
723 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
724 F.hasExternalWeakLinkage(),
725 "invalid linkage type for function declaration", &F);
726 } else {
727 // Verify that this function (which has a body) is not named "llvm.*". It
728 // is not legal to define intrinsics.
729 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
731 // Check the entry node
732 BasicBlock *Entry = &F.getEntryBlock();
733 Assert1(pred_begin(Entry) == pred_end(Entry),
734 "Entry block to function must not have predecessors!", Entry);
736 // The address of the entry block cannot be taken, unless it is dead.
737 if (Entry->hasAddressTaken()) {
738 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
739 "blockaddress may not be used with the entry block!", Entry);
743 // If this function is actually an intrinsic, verify that it is only used in
744 // direct call/invokes, never having its "address taken".
745 if (F.getIntrinsicID()) {
746 const User *U;
747 if (F.hasAddressTaken(&U))
748 Assert1(0, "Invalid user of intrinsic instruction!", U);
752 // verifyBasicBlock - Verify that a basic block is well formed...
754 void Verifier::visitBasicBlock(BasicBlock &BB) {
755 InstsInThisBlock.clear();
757 // Ensure that basic blocks have terminators!
758 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
760 // Check constraints that this basic block imposes on all of the PHI nodes in
761 // it.
762 if (isa<PHINode>(BB.front())) {
763 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
764 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
765 std::sort(Preds.begin(), Preds.end());
766 PHINode *PN;
767 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
768 // Ensure that PHI nodes have at least one entry!
769 Assert1(PN->getNumIncomingValues() != 0,
770 "PHI nodes must have at least one entry. If the block is dead, "
771 "the PHI should be removed!", PN);
772 Assert1(PN->getNumIncomingValues() == Preds.size(),
773 "PHINode should have one entry for each predecessor of its "
774 "parent basic block!", PN);
776 // Get and sort all incoming values in the PHI node...
777 Values.clear();
778 Values.reserve(PN->getNumIncomingValues());
779 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
780 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
781 PN->getIncomingValue(i)));
782 std::sort(Values.begin(), Values.end());
784 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
785 // Check to make sure that if there is more than one entry for a
786 // particular basic block in this PHI node, that the incoming values are
787 // all identical.
789 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
790 Values[i].second == Values[i-1].second,
791 "PHI node has multiple entries for the same basic block with "
792 "different incoming values!", PN, Values[i].first,
793 Values[i].second, Values[i-1].second);
795 // Check to make sure that the predecessors and PHI node entries are
796 // matched up.
797 Assert3(Values[i].first == Preds[i],
798 "PHI node entries do not match predecessors!", PN,
799 Values[i].first, Preds[i]);
805 void Verifier::visitTerminatorInst(TerminatorInst &I) {
806 // Ensure that terminators only exist at the end of the basic block.
807 Assert1(&I == I.getParent()->getTerminator(),
808 "Terminator found in the middle of a basic block!", I.getParent());
809 visitInstruction(I);
812 void Verifier::visitBranchInst(BranchInst &BI) {
813 if (BI.isConditional()) {
814 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
815 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
817 visitTerminatorInst(BI);
820 void Verifier::visitReturnInst(ReturnInst &RI) {
821 Function *F = RI.getParent()->getParent();
822 unsigned N = RI.getNumOperands();
823 if (F->getReturnType()->isVoidTy())
824 Assert2(N == 0,
825 "Found return instr that returns non-void in Function of void "
826 "return type!", &RI, F->getReturnType());
827 else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
828 // Exactly one return value and it matches the return type. Good.
829 } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
830 // The return type is a struct; check for multiple return values.
831 Assert2(STy->getNumElements() == N,
832 "Incorrect number of return values in ret instruction!",
833 &RI, F->getReturnType());
834 for (unsigned i = 0; i != N; ++i)
835 Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
836 "Function return type does not match operand "
837 "type of return inst!", &RI, F->getReturnType());
838 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
839 // The return type is an array; check for multiple return values.
840 Assert2(ATy->getNumElements() == N,
841 "Incorrect number of return values in ret instruction!",
842 &RI, F->getReturnType());
843 for (unsigned i = 0; i != N; ++i)
844 Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
845 "Function return type does not match operand "
846 "type of return inst!", &RI, F->getReturnType());
847 } else {
848 CheckFailed("Function return type does not match operand "
849 "type of return inst!", &RI, F->getReturnType());
852 // Check to make sure that the return value has necessary properties for
853 // terminators...
854 visitTerminatorInst(RI);
857 void Verifier::visitSwitchInst(SwitchInst &SI) {
858 // Check to make sure that all of the constants in the switch instruction
859 // have the same type as the switched-on value.
860 const Type *SwitchTy = SI.getCondition()->getType();
861 SmallPtrSet<ConstantInt*, 32> Constants;
862 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
863 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
864 "Switch constants must all be same type as switch value!", &SI);
865 Assert2(Constants.insert(SI.getCaseValue(i)),
866 "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
869 visitTerminatorInst(SI);
872 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
873 Assert1(BI.getAddress()->getType()->isPointerTy(),
874 "Indirectbr operand must have pointer type!", &BI);
875 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
876 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
877 "Indirectbr destinations must all have pointer type!", &BI);
879 visitTerminatorInst(BI);
882 void Verifier::visitSelectInst(SelectInst &SI) {
883 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
884 SI.getOperand(2)),
885 "Invalid operands for select instruction!", &SI);
887 Assert1(SI.getTrueValue()->getType() == SI.getType(),
888 "Select values must have same type as select instruction!", &SI);
889 visitInstruction(SI);
892 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
893 /// a pass, if any exist, it's an error.
895 void Verifier::visitUserOp1(Instruction &I) {
896 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
899 void Verifier::visitTruncInst(TruncInst &I) {
900 // Get the source and destination types
901 const Type *SrcTy = I.getOperand(0)->getType();
902 const Type *DestTy = I.getType();
904 // Get the size of the types in bits, we'll need this later
905 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
906 unsigned DestBitSize = DestTy->getScalarSizeInBits();
908 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
909 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
910 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
911 "trunc source and destination must both be a vector or neither", &I);
912 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
914 visitInstruction(I);
917 void Verifier::visitZExtInst(ZExtInst &I) {
918 // Get the source and destination types
919 const Type *SrcTy = I.getOperand(0)->getType();
920 const Type *DestTy = I.getType();
922 // Get the size of the types in bits, we'll need this later
923 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
924 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
925 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
926 "zext source and destination must both be a vector or neither", &I);
927 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
928 unsigned DestBitSize = DestTy->getScalarSizeInBits();
930 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
932 visitInstruction(I);
935 void Verifier::visitSExtInst(SExtInst &I) {
936 // Get the source and destination types
937 const Type *SrcTy = I.getOperand(0)->getType();
938 const Type *DestTy = I.getType();
940 // Get the size of the types in bits, we'll need this later
941 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
942 unsigned DestBitSize = DestTy->getScalarSizeInBits();
944 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
945 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
946 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
947 "sext source and destination must both be a vector or neither", &I);
948 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
950 visitInstruction(I);
953 void Verifier::visitFPTruncInst(FPTruncInst &I) {
954 // Get the source and destination types
955 const Type *SrcTy = I.getOperand(0)->getType();
956 const Type *DestTy = I.getType();
957 // Get the size of the types in bits, we'll need this later
958 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
959 unsigned DestBitSize = DestTy->getScalarSizeInBits();
961 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
962 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
963 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
964 "fptrunc source and destination must both be a vector or neither",&I);
965 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
967 visitInstruction(I);
970 void Verifier::visitFPExtInst(FPExtInst &I) {
971 // Get the source and destination types
972 const Type *SrcTy = I.getOperand(0)->getType();
973 const Type *DestTy = I.getType();
975 // Get the size of the types in bits, we'll need this later
976 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
977 unsigned DestBitSize = DestTy->getScalarSizeInBits();
979 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
980 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
981 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
982 "fpext source and destination must both be a vector or neither", &I);
983 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
985 visitInstruction(I);
988 void Verifier::visitUIToFPInst(UIToFPInst &I) {
989 // Get the source and destination types
990 const Type *SrcTy = I.getOperand(0)->getType();
991 const Type *DestTy = I.getType();
993 bool SrcVec = SrcTy->isVectorTy();
994 bool DstVec = DestTy->isVectorTy();
996 Assert1(SrcVec == DstVec,
997 "UIToFP source and dest must both be vector or scalar", &I);
998 Assert1(SrcTy->isIntOrIntVectorTy(),
999 "UIToFP source must be integer or integer vector", &I);
1000 Assert1(DestTy->isFPOrFPVectorTy(),
1001 "UIToFP result must be FP or FP vector", &I);
1003 if (SrcVec && DstVec)
1004 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1005 cast<VectorType>(DestTy)->getNumElements(),
1006 "UIToFP source and dest vector length mismatch", &I);
1008 visitInstruction(I);
1011 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1012 // Get the source and destination types
1013 const Type *SrcTy = I.getOperand(0)->getType();
1014 const Type *DestTy = I.getType();
1016 bool SrcVec = SrcTy->isVectorTy();
1017 bool DstVec = DestTy->isVectorTy();
1019 Assert1(SrcVec == DstVec,
1020 "SIToFP source and dest must both be vector or scalar", &I);
1021 Assert1(SrcTy->isIntOrIntVectorTy(),
1022 "SIToFP source must be integer or integer vector", &I);
1023 Assert1(DestTy->isFPOrFPVectorTy(),
1024 "SIToFP result must be FP or FP vector", &I);
1026 if (SrcVec && DstVec)
1027 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1028 cast<VectorType>(DestTy)->getNumElements(),
1029 "SIToFP source and dest vector length mismatch", &I);
1031 visitInstruction(I);
1034 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1035 // Get the source and destination types
1036 const Type *SrcTy = I.getOperand(0)->getType();
1037 const Type *DestTy = I.getType();
1039 bool SrcVec = SrcTy->isVectorTy();
1040 bool DstVec = DestTy->isVectorTy();
1042 Assert1(SrcVec == DstVec,
1043 "FPToUI source and dest must both be vector or scalar", &I);
1044 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1045 &I);
1046 Assert1(DestTy->isIntOrIntVectorTy(),
1047 "FPToUI result must be integer or integer vector", &I);
1049 if (SrcVec && DstVec)
1050 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1051 cast<VectorType>(DestTy)->getNumElements(),
1052 "FPToUI source and dest vector length mismatch", &I);
1054 visitInstruction(I);
1057 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1058 // Get the source and destination types
1059 const Type *SrcTy = I.getOperand(0)->getType();
1060 const Type *DestTy = I.getType();
1062 bool SrcVec = SrcTy->isVectorTy();
1063 bool DstVec = DestTy->isVectorTy();
1065 Assert1(SrcVec == DstVec,
1066 "FPToSI source and dest must both be vector or scalar", &I);
1067 Assert1(SrcTy->isFPOrFPVectorTy(),
1068 "FPToSI source must be FP or FP vector", &I);
1069 Assert1(DestTy->isIntOrIntVectorTy(),
1070 "FPToSI result must be integer or integer vector", &I);
1072 if (SrcVec && DstVec)
1073 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1074 cast<VectorType>(DestTy)->getNumElements(),
1075 "FPToSI source and dest vector length mismatch", &I);
1077 visitInstruction(I);
1080 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1081 // Get the source and destination types
1082 const Type *SrcTy = I.getOperand(0)->getType();
1083 const Type *DestTy = I.getType();
1085 Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
1086 Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
1088 visitInstruction(I);
1091 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1092 // Get the source and destination types
1093 const Type *SrcTy = I.getOperand(0)->getType();
1094 const Type *DestTy = I.getType();
1096 Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
1097 Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
1099 visitInstruction(I);
1102 void Verifier::visitBitCastInst(BitCastInst &I) {
1103 // Get the source and destination types
1104 const Type *SrcTy = I.getOperand(0)->getType();
1105 const Type *DestTy = I.getType();
1107 // Get the size of the types in bits, we'll need this later
1108 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1109 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1111 // BitCast implies a no-op cast of type only. No bits change.
1112 // However, you can't cast pointers to anything but pointers.
1113 Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
1114 "Bitcast requires both operands to be pointer or neither", &I);
1115 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1117 // Disallow aggregates.
1118 Assert1(!SrcTy->isAggregateType(),
1119 "Bitcast operand must not be aggregate", &I);
1120 Assert1(!DestTy->isAggregateType(),
1121 "Bitcast type must not be aggregate", &I);
1123 visitInstruction(I);
1126 /// visitPHINode - Ensure that a PHI node is well formed.
1128 void Verifier::visitPHINode(PHINode &PN) {
1129 // Ensure that the PHI nodes are all grouped together at the top of the block.
1130 // This can be tested by checking whether the instruction before this is
1131 // either nonexistent (because this is begin()) or is a PHI node. If not,
1132 // then there is some other instruction before a PHI.
1133 Assert2(&PN == &PN.getParent()->front() ||
1134 isa<PHINode>(--BasicBlock::iterator(&PN)),
1135 "PHI nodes not grouped at top of basic block!",
1136 &PN, PN.getParent());
1138 // Check that all of the values of the PHI node have the same type as the
1139 // result, and that the incoming blocks are really basic blocks.
1140 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1141 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1142 "PHI node operands are not the same type as the result!", &PN);
1143 Assert1(isa<BasicBlock>(PN.getOperand(
1144 PHINode::getOperandNumForIncomingBlock(i))),
1145 "PHI node incoming block is not a BasicBlock!", &PN);
1148 // All other PHI node constraints are checked in the visitBasicBlock method.
1150 visitInstruction(PN);
1153 void Verifier::VerifyCallSite(CallSite CS) {
1154 Instruction *I = CS.getInstruction();
1156 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1157 "Called function must be a pointer!", I);
1158 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1160 Assert1(FPTy->getElementType()->isFunctionTy(),
1161 "Called function is not pointer to function type!", I);
1162 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1164 // Verify that the correct number of arguments are being passed
1165 if (FTy->isVarArg())
1166 Assert1(CS.arg_size() >= FTy->getNumParams(),
1167 "Called function requires more parameters than were provided!",I);
1168 else
1169 Assert1(CS.arg_size() == FTy->getNumParams(),
1170 "Incorrect number of arguments passed to called function!", I);
1172 // Verify that all arguments to the call match the function type.
1173 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1174 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1175 "Call parameter type does not match function signature!",
1176 CS.getArgument(i), FTy->getParamType(i), I);
1178 const AttrListPtr &Attrs = CS.getAttributes();
1180 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1181 "Attributes after last parameter!", I);
1183 // Verify call attributes.
1184 VerifyFunctionAttrs(FTy, Attrs, I);
1186 if (FTy->isVarArg())
1187 // Check attributes on the varargs part.
1188 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1189 Attributes Attr = Attrs.getParamAttributes(Idx);
1191 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1193 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1194 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1195 " cannot be used for vararg call arguments!", I);
1198 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1199 if (!CS.getCalledFunction() ||
1200 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1201 for (FunctionType::param_iterator PI = FTy->param_begin(),
1202 PE = FTy->param_end(); PI != PE; ++PI)
1203 Assert1(!PI->get()->isMetadataTy(),
1204 "Function has metadata parameter but isn't an intrinsic", I);
1207 visitInstruction(*I);
1210 void Verifier::visitCallInst(CallInst &CI) {
1211 VerifyCallSite(&CI);
1213 if (Function *F = CI.getCalledFunction())
1214 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1215 visitIntrinsicFunctionCall(ID, CI);
1218 void Verifier::visitInvokeInst(InvokeInst &II) {
1219 VerifyCallSite(&II);
1220 visitTerminatorInst(II);
1223 /// visitBinaryOperator - Check that both arguments to the binary operator are
1224 /// of the same type!
1226 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1227 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1228 "Both operands to a binary operator are not of the same type!", &B);
1230 switch (B.getOpcode()) {
1231 // Check that integer arithmetic operators are only used with
1232 // integral operands.
1233 case Instruction::Add:
1234 case Instruction::Sub:
1235 case Instruction::Mul:
1236 case Instruction::SDiv:
1237 case Instruction::UDiv:
1238 case Instruction::SRem:
1239 case Instruction::URem:
1240 Assert1(B.getType()->isIntOrIntVectorTy(),
1241 "Integer arithmetic operators only work with integral types!", &B);
1242 Assert1(B.getType() == B.getOperand(0)->getType(),
1243 "Integer arithmetic operators must have same type "
1244 "for operands and result!", &B);
1245 break;
1246 // Check that floating-point arithmetic operators are only used with
1247 // floating-point operands.
1248 case Instruction::FAdd:
1249 case Instruction::FSub:
1250 case Instruction::FMul:
1251 case Instruction::FDiv:
1252 case Instruction::FRem:
1253 Assert1(B.getType()->isFPOrFPVectorTy(),
1254 "Floating-point arithmetic operators only work with "
1255 "floating-point types!", &B);
1256 Assert1(B.getType() == B.getOperand(0)->getType(),
1257 "Floating-point arithmetic operators must have same type "
1258 "for operands and result!", &B);
1259 break;
1260 // Check that logical operators are only used with integral operands.
1261 case Instruction::And:
1262 case Instruction::Or:
1263 case Instruction::Xor:
1264 Assert1(B.getType()->isIntOrIntVectorTy(),
1265 "Logical operators only work with integral types!", &B);
1266 Assert1(B.getType() == B.getOperand(0)->getType(),
1267 "Logical operators must have same type for operands and result!",
1268 &B);
1269 break;
1270 case Instruction::Shl:
1271 case Instruction::LShr:
1272 case Instruction::AShr:
1273 Assert1(B.getType()->isIntOrIntVectorTy(),
1274 "Shifts only work with integral types!", &B);
1275 Assert1(B.getType() == B.getOperand(0)->getType(),
1276 "Shift return type must be same as operands!", &B);
1277 break;
1278 default:
1279 llvm_unreachable("Unknown BinaryOperator opcode!");
1282 visitInstruction(B);
1285 void Verifier::visitICmpInst(ICmpInst &IC) {
1286 // Check that the operands are the same type
1287 const Type *Op0Ty = IC.getOperand(0)->getType();
1288 const Type *Op1Ty = IC.getOperand(1)->getType();
1289 Assert1(Op0Ty == Op1Ty,
1290 "Both operands to ICmp instruction are not of the same type!", &IC);
1291 // Check that the operands are the right type
1292 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
1293 "Invalid operand types for ICmp instruction", &IC);
1294 // Check that the predicate is valid.
1295 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1296 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1297 "Invalid predicate in ICmp instruction!", &IC);
1299 visitInstruction(IC);
1302 void Verifier::visitFCmpInst(FCmpInst &FC) {
1303 // Check that the operands are the same type
1304 const Type *Op0Ty = FC.getOperand(0)->getType();
1305 const Type *Op1Ty = FC.getOperand(1)->getType();
1306 Assert1(Op0Ty == Op1Ty,
1307 "Both operands to FCmp instruction are not of the same type!", &FC);
1308 // Check that the operands are the right type
1309 Assert1(Op0Ty->isFPOrFPVectorTy(),
1310 "Invalid operand types for FCmp instruction", &FC);
1311 // Check that the predicate is valid.
1312 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1313 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1314 "Invalid predicate in FCmp instruction!", &FC);
1316 visitInstruction(FC);
1319 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1320 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1321 EI.getOperand(1)),
1322 "Invalid extractelement operands!", &EI);
1323 visitInstruction(EI);
1326 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1327 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1328 IE.getOperand(1),
1329 IE.getOperand(2)),
1330 "Invalid insertelement operands!", &IE);
1331 visitInstruction(IE);
1334 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1335 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1336 SV.getOperand(2)),
1337 "Invalid shufflevector operands!", &SV);
1338 visitInstruction(SV);
1341 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1342 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1343 const Type *ElTy =
1344 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1345 Idxs.begin(), Idxs.end());
1346 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1347 Assert2(GEP.getType()->isPointerTy() &&
1348 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1349 "GEP is not of right type for indices!", &GEP, ElTy);
1350 visitInstruction(GEP);
1353 void Verifier::visitLoadInst(LoadInst &LI) {
1354 const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1355 Assert1(PTy, "Load operand must be a pointer.", &LI);
1356 const Type *ElTy = PTy->getElementType();
1357 Assert2(ElTy == LI.getType(),
1358 "Load result type does not match pointer operand type!", &LI, ElTy);
1359 visitInstruction(LI);
1362 void Verifier::visitStoreInst(StoreInst &SI) {
1363 const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1364 Assert1(PTy, "Store operand must be a pointer.", &SI);
1365 const Type *ElTy = PTy->getElementType();
1366 Assert2(ElTy == SI.getOperand(0)->getType(),
1367 "Stored value type does not match pointer operand type!",
1368 &SI, ElTy);
1369 visitInstruction(SI);
1372 void Verifier::visitAllocaInst(AllocaInst &AI) {
1373 const PointerType *PTy = AI.getType();
1374 Assert1(PTy->getAddressSpace() == 0,
1375 "Allocation instruction pointer not in the generic address space!",
1376 &AI);
1377 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1378 &AI);
1379 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1380 "Alloca array size must have integer type", &AI);
1381 visitInstruction(AI);
1384 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1385 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1386 EVI.idx_begin(), EVI.idx_end()) ==
1387 EVI.getType(),
1388 "Invalid ExtractValueInst operands!", &EVI);
1390 visitInstruction(EVI);
1393 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1394 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1395 IVI.idx_begin(), IVI.idx_end()) ==
1396 IVI.getOperand(1)->getType(),
1397 "Invalid InsertValueInst operands!", &IVI);
1399 visitInstruction(IVI);
1402 /// verifyInstruction - Verify that an instruction is well formed.
1404 void Verifier::visitInstruction(Instruction &I) {
1405 BasicBlock *BB = I.getParent();
1406 Assert1(BB, "Instruction not embedded in basic block!", &I);
1408 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1409 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1410 UI != UE; ++UI)
1411 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1412 "Only PHI nodes may reference their own value!", &I);
1415 // Check that void typed values don't have names
1416 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1417 "Instruction has a name, but provides a void value!", &I);
1419 // Check that the return value of the instruction is either void or a legal
1420 // value type.
1421 Assert1(I.getType()->isVoidTy() ||
1422 I.getType()->isFirstClassType(),
1423 "Instruction returns a non-scalar type!", &I);
1425 // Check that the instruction doesn't produce metadata. Calls are already
1426 // checked against the callee type.
1427 Assert1(!I.getType()->isMetadataTy() ||
1428 isa<CallInst>(I) || isa<InvokeInst>(I),
1429 "Invalid use of metadata!", &I);
1431 // Check that all uses of the instruction, if they are instructions
1432 // themselves, actually have parent basic blocks. If the use is not an
1433 // instruction, it is an error!
1434 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1435 UI != UE; ++UI) {
1436 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1437 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1438 " embedded in a basic block!", &I, Used);
1439 else {
1440 CheckFailed("Use of instruction is not an instruction!", *UI);
1441 return;
1445 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1446 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1448 // Check to make sure that only first-class-values are operands to
1449 // instructions.
1450 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1451 Assert1(0, "Instruction operands must be first-class values!", &I);
1454 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1455 // Check to make sure that the "address of" an intrinsic function is never
1456 // taken.
1457 Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
1458 "Cannot take the address of an intrinsic!", &I);
1459 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1460 &I);
1461 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1462 Assert1(OpBB->getParent() == BB->getParent(),
1463 "Referring to a basic block in another function!", &I);
1464 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1465 Assert1(OpArg->getParent() == BB->getParent(),
1466 "Referring to an argument in another function!", &I);
1467 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1468 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1469 &I);
1470 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1471 BasicBlock *OpBlock = Op->getParent();
1473 // Check that a definition dominates all of its uses.
1474 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1475 // Invoke results are only usable in the normal destination, not in the
1476 // exceptional destination.
1477 BasicBlock *NormalDest = II->getNormalDest();
1479 Assert2(NormalDest != II->getUnwindDest(),
1480 "No uses of invoke possible due to dominance structure!",
1481 Op, &I);
1483 // PHI nodes differ from other nodes because they actually "use" the
1484 // value in the predecessor basic blocks they correspond to.
1485 BasicBlock *UseBlock = BB;
1486 if (isa<PHINode>(I))
1487 UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
1488 Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
1489 Op, &I);
1491 if (isa<PHINode>(I) && UseBlock == OpBlock) {
1492 // Special case of a phi node in the normal destination or the unwind
1493 // destination.
1494 Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
1495 "Invoke result not available in the unwind destination!",
1496 Op, &I);
1497 } else {
1498 Assert2(DT->dominates(NormalDest, UseBlock) ||
1499 !DT->isReachableFromEntry(UseBlock),
1500 "Invoke result does not dominate all uses!", Op, &I);
1502 // If the normal successor of an invoke instruction has multiple
1503 // predecessors, then the normal edge from the invoke is critical,
1504 // so the invoke value can only be live if the destination block
1505 // dominates all of it's predecessors (other than the invoke).
1506 if (!NormalDest->getSinglePredecessor() &&
1507 DT->isReachableFromEntry(UseBlock))
1508 // If it is used by something non-phi, then the other case is that
1509 // 'NormalDest' dominates all of its predecessors other than the
1510 // invoke. In this case, the invoke value can still be used.
1511 for (pred_iterator PI = pred_begin(NormalDest),
1512 E = pred_end(NormalDest); PI != E; ++PI)
1513 if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
1514 DT->isReachableFromEntry(*PI)) {
1515 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
1516 return;
1519 } else if (isa<PHINode>(I)) {
1520 // PHI nodes are more difficult than other nodes because they actually
1521 // "use" the value in the predecessor basic blocks they correspond to.
1522 BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
1523 Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
1524 !DT->isReachableFromEntry(PredBB)),
1525 "Instruction does not dominate all uses!", Op, &I);
1526 } else {
1527 if (OpBlock == BB) {
1528 // If they are in the same basic block, make sure that the definition
1529 // comes before the use.
1530 Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
1531 "Instruction does not dominate all uses!", Op, &I);
1534 // Definition must dominate use unless use is unreachable!
1535 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1536 !DT->isReachableFromEntry(BB),
1537 "Instruction does not dominate all uses!", Op, &I);
1539 } else if (isa<InlineAsm>(I.getOperand(i))) {
1540 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1541 (i + 3 == e && isa<InvokeInst>(I)),
1542 "Cannot take the address of an inline asm!", &I);
1545 InstsInThisBlock.insert(&I);
1547 VerifyType(I.getType());
1550 /// VerifyType - Verify that a type is well formed.
1552 void Verifier::VerifyType(const Type *Ty) {
1553 if (!Types.insert(Ty)) return;
1555 Assert1(Context == &Ty->getContext(),
1556 "Type context does not match Module context!", Ty);
1558 switch (Ty->getTypeID()) {
1559 case Type::FunctionTyID: {
1560 const FunctionType *FTy = cast<FunctionType>(Ty);
1562 const Type *RetTy = FTy->getReturnType();
1563 Assert2(FunctionType::isValidReturnType(RetTy),
1564 "Function type with invalid return type", RetTy, FTy);
1565 VerifyType(RetTy);
1567 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1568 const Type *ElTy = FTy->getParamType(i);
1569 Assert2(FunctionType::isValidArgumentType(ElTy),
1570 "Function type with invalid parameter type", ElTy, FTy);
1571 VerifyType(ElTy);
1573 } break;
1574 case Type::StructTyID: {
1575 const StructType *STy = cast<StructType>(Ty);
1576 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1577 const Type *ElTy = STy->getElementType(i);
1578 Assert2(StructType::isValidElementType(ElTy),
1579 "Structure type with invalid element type", ElTy, STy);
1580 VerifyType(ElTy);
1582 } break;
1583 case Type::UnionTyID: {
1584 const UnionType *UTy = cast<UnionType>(Ty);
1585 for (unsigned i = 0, e = UTy->getNumElements(); i != e; ++i) {
1586 const Type *ElTy = UTy->getElementType(i);
1587 Assert2(UnionType::isValidElementType(ElTy),
1588 "Union type with invalid element type", ElTy, UTy);
1589 VerifyType(ElTy);
1591 } break;
1592 case Type::ArrayTyID: {
1593 const ArrayType *ATy = cast<ArrayType>(Ty);
1594 Assert1(ArrayType::isValidElementType(ATy->getElementType()),
1595 "Array type with invalid element type", ATy);
1596 VerifyType(ATy->getElementType());
1597 } break;
1598 case Type::PointerTyID: {
1599 const PointerType *PTy = cast<PointerType>(Ty);
1600 Assert1(PointerType::isValidElementType(PTy->getElementType()),
1601 "Pointer type with invalid element type", PTy);
1602 VerifyType(PTy->getElementType());
1603 } break;
1604 case Type::VectorTyID: {
1605 const VectorType *VTy = cast<VectorType>(Ty);
1606 Assert1(VectorType::isValidElementType(VTy->getElementType()),
1607 "Vector type with invalid element type", VTy);
1608 VerifyType(VTy->getElementType());
1609 } break;
1610 default:
1611 break;
1615 // Flags used by TableGen to mark intrinsic parameters with the
1616 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1617 static const unsigned ExtendedElementVectorType = 0x40000000;
1618 static const unsigned TruncatedElementVectorType = 0x20000000;
1620 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1622 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1623 Function *IF = CI.getCalledFunction();
1624 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1625 IF);
1627 #define GET_INTRINSIC_VERIFIER
1628 #include "llvm/Intrinsics.gen"
1629 #undef GET_INTRINSIC_VERIFIER
1631 // If the intrinsic takes MDNode arguments, verify that they are either global
1632 // or are local to *this* function.
1633 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1634 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1635 visitMDNode(*MD, CI.getParent()->getParent());
1637 switch (ID) {
1638 default:
1639 break;
1640 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1641 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1642 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1643 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1644 Assert1(MD->getNumOperands() == 1,
1645 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1646 } break;
1647 case Intrinsic::memcpy:
1648 case Intrinsic::memmove:
1649 case Intrinsic::memset:
1650 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1651 "alignment argument of memory intrinsics must be a constant int",
1652 &CI);
1653 break;
1654 case Intrinsic::gcroot:
1655 case Intrinsic::gcwrite:
1656 case Intrinsic::gcread:
1657 if (ID == Intrinsic::gcroot) {
1658 AllocaInst *AI =
1659 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1660 Assert1(AI && AI->getType()->getElementType()->isPointerTy(),
1661 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
1662 Assert1(isa<Constant>(CI.getArgOperand(1)),
1663 "llvm.gcroot parameter #2 must be a constant.", &CI);
1666 Assert1(CI.getParent()->getParent()->hasGC(),
1667 "Enclosing function does not use GC.", &CI);
1668 break;
1669 case Intrinsic::init_trampoline:
1670 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1671 "llvm.init_trampoline parameter #2 must resolve to a function.",
1672 &CI);
1673 break;
1674 case Intrinsic::prefetch:
1675 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1676 isa<ConstantInt>(CI.getArgOperand(2)) &&
1677 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1678 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1679 "invalid arguments to llvm.prefetch",
1680 &CI);
1681 break;
1682 case Intrinsic::stackprotector:
1683 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1684 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1685 &CI);
1686 break;
1687 case Intrinsic::lifetime_start:
1688 case Intrinsic::lifetime_end:
1689 case Intrinsic::invariant_start:
1690 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1691 "size argument of memory use markers must be a constant integer",
1692 &CI);
1693 break;
1694 case Intrinsic::invariant_end:
1695 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1696 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1697 break;
1701 /// Produce a string to identify an intrinsic parameter or return value.
1702 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1703 /// parameters beginning with NumRets.
1705 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1706 if (ArgNo >= NumRets)
1707 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1708 if (NumRets == 1)
1709 return "Intrinsic result type";
1710 return "Intrinsic result type #" + utostr(ArgNo);
1713 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1714 int VT, unsigned ArgNo, std::string &Suffix) {
1715 const FunctionType *FTy = F->getFunctionType();
1717 unsigned NumElts = 0;
1718 const Type *EltTy = Ty;
1719 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1720 if (VTy) {
1721 EltTy = VTy->getElementType();
1722 NumElts = VTy->getNumElements();
1725 const Type *RetTy = FTy->getReturnType();
1726 const StructType *ST = dyn_cast<StructType>(RetTy);
1727 unsigned NumRetVals;
1728 if (RetTy->isVoidTy())
1729 NumRetVals = 0;
1730 else if (ST)
1731 NumRetVals = ST->getNumElements();
1732 else
1733 NumRetVals = 1;
1735 if (VT < 0) {
1736 int Match = ~VT;
1738 // Check flags that indicate a type that is an integral vector type with
1739 // elements that are larger or smaller than the elements of the matched
1740 // type.
1741 if ((Match & (ExtendedElementVectorType |
1742 TruncatedElementVectorType)) != 0) {
1743 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1744 if (!VTy || !IEltTy) {
1745 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1746 "an integral vector type.", F);
1747 return false;
1749 // Adjust the current Ty (in the opposite direction) rather than
1750 // the type being matched against.
1751 if ((Match & ExtendedElementVectorType) != 0) {
1752 if ((IEltTy->getBitWidth() & 1) != 0) {
1753 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
1754 "element bit-width is odd.", F);
1755 return false;
1757 Ty = VectorType::getTruncatedElementVectorType(VTy);
1758 } else
1759 Ty = VectorType::getExtendedElementVectorType(VTy);
1760 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1763 if (Match <= static_cast<int>(NumRetVals - 1)) {
1764 if (ST)
1765 RetTy = ST->getElementType(Match);
1767 if (Ty != RetTy) {
1768 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1769 "match return type.", F);
1770 return false;
1772 } else {
1773 if (Ty != FTy->getParamType(Match - NumRetVals)) {
1774 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1775 "match parameter %" + utostr(Match - NumRetVals) + ".", F);
1776 return false;
1779 } else if (VT == MVT::iAny) {
1780 if (!EltTy->isIntegerTy()) {
1781 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1782 "an integer type.", F);
1783 return false;
1786 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1787 Suffix += ".";
1789 if (EltTy != Ty)
1790 Suffix += "v" + utostr(NumElts);
1792 Suffix += "i" + utostr(GotBits);
1794 // Check some constraints on various intrinsics.
1795 switch (ID) {
1796 default: break; // Not everything needs to be checked.
1797 case Intrinsic::bswap:
1798 if (GotBits < 16 || GotBits % 16 != 0) {
1799 CheckFailed("Intrinsic requires even byte width argument", F);
1800 return false;
1802 break;
1804 } else if (VT == MVT::fAny) {
1805 if (!EltTy->isFloatingPointTy()) {
1806 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1807 "a floating-point type.", F);
1808 return false;
1811 Suffix += ".";
1813 if (EltTy != Ty)
1814 Suffix += "v" + utostr(NumElts);
1816 Suffix += EVT::getEVT(EltTy).getEVTString();
1817 } else if (VT == MVT::vAny) {
1818 if (!VTy) {
1819 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
1821 return false;
1823 Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
1824 } else if (VT == MVT::iPTR) {
1825 if (!Ty->isPointerTy()) {
1826 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1827 "pointer and a pointer is required.", F);
1828 return false;
1830 } else if (VT == MVT::iPTRAny) {
1831 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1832 // and iPTR. In the verifier, we can not distinguish which case we have so
1833 // allow either case to be legal.
1834 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1835 EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
1836 if (PointeeVT == MVT::Other) {
1837 CheckFailed("Intrinsic has pointer to complex type.");
1838 return false;
1840 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1841 PointeeVT.getEVTString();
1842 } else {
1843 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1844 "pointer and a pointer is required.", F);
1845 return false;
1847 } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
1848 EVT VVT = EVT((MVT::SimpleValueType)VT);
1850 // If this is a vector argument, verify the number and type of elements.
1851 if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
1852 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1853 return false;
1856 if (VVT.getVectorNumElements() != NumElts) {
1857 CheckFailed("Intrinsic prototype has incorrect number of "
1858 "vector elements!", F);
1859 return false;
1861 } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
1862 EltTy) {
1863 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
1864 return false;
1865 } else if (EltTy != Ty) {
1866 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
1867 "and a scalar is required.", F);
1868 return false;
1871 return true;
1874 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1875 /// Intrinsics.gen. This implements a little state machine that verifies the
1876 /// prototype of intrinsics.
1877 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1878 unsigned NumRetVals,
1879 unsigned NumParams, ...) {
1880 va_list VA;
1881 va_start(VA, NumParams);
1882 const FunctionType *FTy = F->getFunctionType();
1884 // For overloaded intrinsics, the Suffix of the function name must match the
1885 // types of the arguments. This variable keeps track of the expected
1886 // suffix, to be checked at the end.
1887 std::string Suffix;
1889 if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
1890 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1891 return;
1894 const Type *Ty = FTy->getReturnType();
1895 const StructType *ST = dyn_cast<StructType>(Ty);
1897 if (NumRetVals == 0 && !Ty->isVoidTy()) {
1898 CheckFailed("Intrinsic should return void", F);
1899 return;
1902 // Verify the return types.
1903 if (ST && ST->getNumElements() != NumRetVals) {
1904 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1905 return;
1908 for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
1909 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1911 if (ST) Ty = ST->getElementType(ArgNo);
1912 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1913 break;
1916 // Verify the parameter types.
1917 for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
1918 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1920 if (VT == MVT::isVoid && ArgNo > 0) {
1921 if (!FTy->isVarArg())
1922 CheckFailed("Intrinsic prototype has no '...'!", F);
1923 break;
1926 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
1927 ArgNo + NumRetVals, Suffix))
1928 break;
1931 va_end(VA);
1933 // For intrinsics without pointer arguments, if we computed a Suffix then the
1934 // intrinsic is overloaded and we need to make sure that the name of the
1935 // function is correct. We add the suffix to the name of the intrinsic and
1936 // compare against the given function name. If they are not the same, the
1937 // function name is invalid. This ensures that overloading of intrinsics
1938 // uses a sane and consistent naming convention. Note that intrinsics with
1939 // pointer argument may or may not be overloaded so we will check assuming it
1940 // has a suffix and not.
1941 if (!Suffix.empty()) {
1942 std::string Name(Intrinsic::getName(ID));
1943 if (Name + Suffix != F->getName()) {
1944 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1945 F->getName().substr(Name.length()) + "'. It should be '" +
1946 Suffix + "'", F);
1950 // Check parameter attributes.
1951 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1952 "Intrinsic has wrong parameter attributes!", F);
1956 //===----------------------------------------------------------------------===//
1957 // Implement the public interfaces to this file...
1958 //===----------------------------------------------------------------------===//
1960 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1961 return new Verifier(action);
1965 /// verifyFunction - Check a function for errors, printing messages on stderr.
1966 /// Return true if the function is corrupt.
1968 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1969 Function &F = const_cast<Function&>(f);
1970 assert(!F.isDeclaration() && "Cannot verify external functions");
1972 FunctionPassManager FPM(F.getParent());
1973 Verifier *V = new Verifier(action);
1974 FPM.add(V);
1975 FPM.run(F);
1976 return V->Broken;
1979 /// verifyModule - Check a module for errors, printing messages on stderr.
1980 /// Return true if the module is corrupt.
1982 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1983 std::string *ErrorInfo) {
1984 PassManager PM;
1985 Verifier *V = new Verifier(action);
1986 PM.add(V);
1987 PM.run(const_cast<Module&>(M));
1989 if (ErrorInfo && V->Broken)
1990 *ErrorInfo = V->MessagesStr.str();
1991 return V->Broken;