1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/TypeSymbolTable.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
71 namespace { // Anonymous namespace for class
72 struct PreVerifier
: public FunctionPass
{
73 static char ID
; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(ID
) { }
77 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
81 // Check that the prerequisites for successful DominatorTree construction
83 bool runOnFunction(Function
&F
) {
86 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
87 if (I
->empty() || !I
->back().isTerminator()) {
88 dbgs() << "Basic Block in function '" << F
.getName()
89 << "' does not have terminator!\n";
90 WriteAsOperand(dbgs(), I
, true);
97 report_fatal_error("Broken module, no Basic Block terminator!");
104 char PreVerifier::ID
= 0;
105 static RegisterPass
<PreVerifier
>
106 PreVer("preverify", "Preliminary module verification");
107 char &PreVerifyID
= PreVerifier::ID
;
110 class TypeSet
: public AbstractTypeUser
{
114 /// Insert a type into the set of types.
115 bool insert(const Type
*Ty
) {
116 if (!Types
.insert(Ty
))
118 if (Ty
->isAbstract())
119 Ty
->addAbstractTypeUser(this);
123 // Remove ourselves as abstract type listeners for any types that remain
124 // abstract when the TypeSet is destroyed.
126 for (SmallSetVector
<const Type
*, 16>::iterator I
= Types
.begin(),
127 E
= Types
.end(); I
!= E
; ++I
) {
129 if (Ty
->isAbstract())
130 Ty
->removeAbstractTypeUser(this);
134 // Abstract type user interface.
136 /// Remove types from the set when refined. Do not insert the type it was
137 /// refined to because that type hasn't been verified yet.
138 void refineAbstractType(const DerivedType
*OldTy
, const Type
*NewTy
) {
140 OldTy
->removeAbstractTypeUser(this);
143 /// Stop listening for changes to a type which is no longer abstract.
144 void typeBecameConcrete(const DerivedType
*AbsTy
) {
145 AbsTy
->removeAbstractTypeUser(this);
151 SmallSetVector
<const Type
*, 16> Types
;
154 TypeSet(const TypeSet
&);
155 TypeSet
&operator=(const TypeSet
&);
158 struct Verifier
: public FunctionPass
, public InstVisitor
<Verifier
> {
159 static char ID
; // Pass ID, replacement for typeid
160 bool Broken
; // Is this module found to be broken?
161 bool RealPass
; // Are we not being run by a PassManager?
162 VerifierFailureAction action
;
163 // What to do if verification fails.
164 Module
*Mod
; // Module we are verifying right now
165 LLVMContext
*Context
; // Context within which we are verifying
166 DominatorTree
*DT
; // Dominator Tree, caution can be null!
168 std::string Messages
;
169 raw_string_ostream MessagesStr
;
171 /// InstInThisBlock - when verifying a basic block, keep track of all of the
172 /// instructions we have seen so far. This allows us to do efficient
173 /// dominance checks for the case when an instruction has an operand that is
174 /// an instruction in the same block.
175 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
177 /// Types - keep track of the types that have been checked already.
180 /// MDNodes - keep track of the metadata nodes that have been checked
182 SmallPtrSet
<MDNode
*, 32> MDNodes
;
186 Broken(false), RealPass(true), action(AbortProcessAction
),
187 Mod(0), Context(0), DT(0), MessagesStr(Messages
) {}
188 explicit Verifier(VerifierFailureAction ctn
)
190 Broken(false), RealPass(true), action(ctn
), Mod(0), Context(0), DT(0),
191 MessagesStr(Messages
) {}
192 explicit Verifier(bool AB
)
194 Broken(false), RealPass(true),
195 action( AB
? AbortProcessAction
: PrintMessageAction
), Mod(0),
196 Context(0), DT(0), MessagesStr(Messages
) {}
197 explicit Verifier(DominatorTree
&dt
)
199 Broken(false), RealPass(false), action(PrintMessageAction
), Mod(0),
200 Context(0), DT(&dt
), MessagesStr(Messages
) {}
203 bool doInitialization(Module
&M
) {
205 Context
= &M
.getContext();
206 verifyTypeSymbolTable(M
.getTypeSymbolTable());
208 // If this is a real pass, in a pass manager, we must abort before
209 // returning back to the pass manager, or else the pass manager may try to
210 // run other passes on the broken module.
212 return abortIfBroken();
216 bool runOnFunction(Function
&F
) {
217 // Get dominator information if we are being run by PassManager
218 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
221 if (!Context
) Context
= &F
.getContext();
224 InstsInThisBlock
.clear();
226 // If this is a real pass, in a pass manager, we must abort before
227 // returning back to the pass manager, or else the pass manager may try to
228 // run other passes on the broken module.
230 return abortIfBroken();
235 bool doFinalization(Module
&M
) {
236 // Scan through, checking all of the external function's linkage now...
237 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
238 visitGlobalValue(*I
);
240 // Check to make sure function prototypes are okay.
241 if (I
->isDeclaration()) visitFunction(*I
);
244 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
246 visitGlobalVariable(*I
);
248 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
250 visitGlobalAlias(*I
);
252 for (Module::named_metadata_iterator I
= M
.named_metadata_begin(),
253 E
= M
.named_metadata_end(); I
!= E
; ++I
)
254 visitNamedMDNode(*I
);
256 // If the module is broken, abort at this time.
257 return abortIfBroken();
260 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
261 AU
.setPreservesAll();
262 AU
.addRequiredID(PreVerifyID
);
264 AU
.addRequired
<DominatorTree
>();
267 /// abortIfBroken - If the module is broken and we are supposed to abort on
268 /// this condition, do so.
270 bool abortIfBroken() {
271 if (!Broken
) return false;
272 MessagesStr
<< "Broken module found, ";
274 default: llvm_unreachable("Unknown action");
275 case AbortProcessAction
:
276 MessagesStr
<< "compilation aborted!\n";
277 dbgs() << MessagesStr
.str();
278 // Client should choose different reaction if abort is not desired
280 case PrintMessageAction
:
281 MessagesStr
<< "verification continues.\n";
282 dbgs() << MessagesStr
.str();
284 case ReturnStatusAction
:
285 MessagesStr
<< "compilation terminated.\n";
291 // Verification methods...
292 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
293 void visitGlobalValue(GlobalValue
&GV
);
294 void visitGlobalVariable(GlobalVariable
&GV
);
295 void visitGlobalAlias(GlobalAlias
&GA
);
296 void visitNamedMDNode(NamedMDNode
&NMD
);
297 void visitMDNode(MDNode
&MD
, Function
*F
);
298 void visitFunction(Function
&F
);
299 void visitBasicBlock(BasicBlock
&BB
);
300 using InstVisitor
<Verifier
>::visit
;
302 void visit(Instruction
&I
);
304 void visitTruncInst(TruncInst
&I
);
305 void visitZExtInst(ZExtInst
&I
);
306 void visitSExtInst(SExtInst
&I
);
307 void visitFPTruncInst(FPTruncInst
&I
);
308 void visitFPExtInst(FPExtInst
&I
);
309 void visitFPToUIInst(FPToUIInst
&I
);
310 void visitFPToSIInst(FPToSIInst
&I
);
311 void visitUIToFPInst(UIToFPInst
&I
);
312 void visitSIToFPInst(SIToFPInst
&I
);
313 void visitIntToPtrInst(IntToPtrInst
&I
);
314 void visitPtrToIntInst(PtrToIntInst
&I
);
315 void visitBitCastInst(BitCastInst
&I
);
316 void visitPHINode(PHINode
&PN
);
317 void visitBinaryOperator(BinaryOperator
&B
);
318 void visitICmpInst(ICmpInst
&IC
);
319 void visitFCmpInst(FCmpInst
&FC
);
320 void visitExtractElementInst(ExtractElementInst
&EI
);
321 void visitInsertElementInst(InsertElementInst
&EI
);
322 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
323 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
324 void visitCallInst(CallInst
&CI
);
325 void visitInvokeInst(InvokeInst
&II
);
326 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
327 void visitLoadInst(LoadInst
&LI
);
328 void visitStoreInst(StoreInst
&SI
);
329 void visitInstruction(Instruction
&I
);
330 void visitTerminatorInst(TerminatorInst
&I
);
331 void visitBranchInst(BranchInst
&BI
);
332 void visitReturnInst(ReturnInst
&RI
);
333 void visitSwitchInst(SwitchInst
&SI
);
334 void visitIndirectBrInst(IndirectBrInst
&BI
);
335 void visitSelectInst(SelectInst
&SI
);
336 void visitUserOp1(Instruction
&I
);
337 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
338 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
339 void visitAllocaInst(AllocaInst
&AI
);
340 void visitExtractValueInst(ExtractValueInst
&EVI
);
341 void visitInsertValueInst(InsertValueInst
&IVI
);
343 void VerifyCallSite(CallSite CS
);
344 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
345 int VT
, unsigned ArgNo
, std::string
&Suffix
);
346 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
347 unsigned RetNum
, unsigned ParamNum
, ...);
348 void VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
349 bool isReturnValue
, const Value
*V
);
350 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
352 void VerifyType(const Type
*Ty
);
354 void WriteValue(const Value
*V
) {
356 if (isa
<Instruction
>(V
)) {
357 MessagesStr
<< *V
<< '\n';
359 WriteAsOperand(MessagesStr
, V
, true, Mod
);
364 void WriteType(const Type
*T
) {
367 WriteTypeSymbolic(MessagesStr
, T
, Mod
);
371 // CheckFailed - A check failed, so print out the condition and the message
372 // that failed. This provides a nice place to put a breakpoint if you want
373 // to see why something is not correct.
374 void CheckFailed(const Twine
&Message
,
375 const Value
*V1
= 0, const Value
*V2
= 0,
376 const Value
*V3
= 0, const Value
*V4
= 0) {
377 MessagesStr
<< Message
.str() << "\n";
385 void CheckFailed(const Twine
&Message
, const Value
*V1
,
386 const Type
*T2
, const Value
*V3
= 0) {
387 MessagesStr
<< Message
.str() << "\n";
394 void CheckFailed(const Twine
&Message
, const Type
*T1
,
395 const Type
*T2
= 0, const Type
*T3
= 0) {
396 MessagesStr
<< Message
.str() << "\n";
403 } // End anonymous namespace
405 char Verifier::ID
= 0;
406 static RegisterPass
<Verifier
> X("verify", "Module Verifier");
408 // Assert - We know that cond should be true, if not print an error message.
409 #define Assert(C, M) \
410 do { if (!(C)) { CheckFailed(M); return; } } while (0)
411 #define Assert1(C, M, V1) \
412 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
413 #define Assert2(C, M, V1, V2) \
414 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
415 #define Assert3(C, M, V1, V2, V3) \
416 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
417 #define Assert4(C, M, V1, V2, V3, V4) \
418 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
420 void Verifier::visit(Instruction
&I
) {
421 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
422 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
423 InstVisitor
<Verifier
>::visit(I
);
427 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
428 Assert1(!GV
.isDeclaration() ||
429 GV
.isMaterializable() ||
430 GV
.hasExternalLinkage() ||
431 GV
.hasDLLImportLinkage() ||
432 GV
.hasExternalWeakLinkage() ||
433 (isa
<GlobalAlias
>(GV
) &&
434 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
435 "Global is external, but doesn't have external or dllimport or weak linkage!",
438 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
439 "Global is marked as dllimport, but not external", &GV
);
441 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
442 "Only global variables can have appending linkage!", &GV
);
444 if (GV
.hasAppendingLinkage()) {
445 GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
446 Assert1(GVar
&& GVar
->getType()->getElementType()->isArrayTy(),
447 "Only global arrays can have appending linkage!", GVar
);
450 Assert1(!GV
.hasLinkerPrivateWeakDefAutoLinkage() || GV
.hasDefaultVisibility(),
451 "linker_private_weak_def_auto can only have default visibility!",
455 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
456 if (GV
.hasInitializer()) {
457 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
458 "Global variable initializer type does not match global "
459 "variable type!", &GV
);
461 // If the global has common linkage, it must have a zero initializer and
462 // cannot be constant.
463 if (GV
.hasCommonLinkage()) {
464 Assert1(GV
.getInitializer()->isNullValue(),
465 "'common' global must have a zero initializer!", &GV
);
466 Assert1(!GV
.isConstant(), "'common' global may not be marked constant!",
470 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
471 GV
.hasExternalWeakLinkage(),
472 "invalid linkage type for global declaration", &GV
);
475 visitGlobalValue(GV
);
478 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
479 Assert1(!GA
.getName().empty(),
480 "Alias name cannot be empty!", &GA
);
481 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
483 "Alias should have external or external weak linkage!", &GA
);
484 Assert1(GA
.getAliasee(),
485 "Aliasee cannot be NULL!", &GA
);
486 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
487 "Alias and aliasee types should match!", &GA
);
489 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
490 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
492 (CE
->getOpcode() == Instruction::BitCast
||
493 CE
->getOpcode() == Instruction::GetElementPtr
) &&
494 isa
<GlobalValue
>(CE
->getOperand(0)),
495 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
499 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
501 "Aliasing chain should end with function or global variable", &GA
);
503 visitGlobalValue(GA
);
506 void Verifier::visitNamedMDNode(NamedMDNode
&NMD
) {
507 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
) {
508 MDNode
*MD
= NMD
.getOperand(i
);
512 Assert1(!MD
->isFunctionLocal(),
513 "Named metadata operand cannot be function local!", MD
);
518 void Verifier::visitMDNode(MDNode
&MD
, Function
*F
) {
519 // Only visit each node once. Metadata can be mutually recursive, so this
520 // avoids infinite recursion here, as well as being an optimization.
521 if (!MDNodes
.insert(&MD
))
524 for (unsigned i
= 0, e
= MD
.getNumOperands(); i
!= e
; ++i
) {
525 Value
*Op
= MD
.getOperand(i
);
528 if (isa
<Constant
>(Op
) || isa
<MDString
>(Op
))
530 if (MDNode
*N
= dyn_cast
<MDNode
>(Op
)) {
531 Assert2(MD
.isFunctionLocal() || !N
->isFunctionLocal(),
532 "Global metadata operand cannot be function local!", &MD
, N
);
536 Assert2(MD
.isFunctionLocal(), "Invalid operand for global metadata!", &MD
, Op
);
538 // If this was an instruction, bb, or argument, verify that it is in the
539 // function that we expect.
540 Function
*ActualF
= 0;
541 if (Instruction
*I
= dyn_cast
<Instruction
>(Op
))
542 ActualF
= I
->getParent()->getParent();
543 else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op
))
544 ActualF
= BB
->getParent();
545 else if (Argument
*A
= dyn_cast
<Argument
>(Op
))
546 ActualF
= A
->getParent();
547 assert(ActualF
&& "Unimplemented function local metadata case!");
549 Assert2(ActualF
== F
, "function-local metadata used in wrong function",
554 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
555 for (TypeSymbolTable::iterator I
= ST
.begin(), E
= ST
.end(); I
!= E
; ++I
)
556 VerifyType(I
->second
);
559 // VerifyParameterAttrs - Check the given attributes for an argument or return
560 // value of the specified type. The value V is printed in error messages.
561 void Verifier::VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
562 bool isReturnValue
, const Value
*V
) {
563 if (Attrs
== Attribute::None
)
566 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
567 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
568 " only applies to the function!", V
);
571 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
572 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
573 " does not apply to return values!", V
);
577 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
578 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
579 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
580 Attribute::getAsString(MutI
) + " are incompatible!", V
);
583 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
584 Assert1(!TypeI
, "Wrong type for attribute " +
585 Attribute::getAsString(TypeI
), V
);
587 Attributes ByValI
= Attrs
& Attribute::ByVal
;
588 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
589 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
590 "Attribute " + Attribute::getAsString(ByValI
) +
591 " does not support unsized types!", V
);
594 "Attribute " + Attribute::getAsString(ByValI
) +
595 " only applies to parameters with pointer type!", V
);
599 // VerifyFunctionAttrs - Check parameter attributes against a function type.
600 // The value V is printed in error messages.
601 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
602 const AttrListPtr
&Attrs
,
607 bool SawNest
= false;
609 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
610 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
614 Ty
= FT
->getReturnType();
615 else if (Attr
.Index
-1 < FT
->getNumParams())
616 Ty
= FT
->getParamType(Attr
.Index
-1);
618 break; // VarArgs attributes, verified elsewhere.
620 VerifyParameterAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
622 if (Attr
.Attrs
& Attribute::Nest
) {
623 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
627 if (Attr
.Attrs
& Attribute::StructRet
)
628 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
631 Attributes FAttrs
= Attrs
.getFnAttributes();
632 Attributes NotFn
= FAttrs
& (~Attribute::FunctionOnly
);
633 Assert1(!NotFn
, "Attribute " + Attribute::getAsString(NotFn
) +
634 " does not apply to the function!", V
);
637 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
638 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
639 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
640 Attribute::getAsString(MutI
) + " are incompatible!", V
);
644 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
648 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
649 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
650 if (LastIndex
<= Params
651 || (LastIndex
== (unsigned)~0
652 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
658 // visitFunction - Verify that a function is ok.
660 void Verifier::visitFunction(Function
&F
) {
661 // Check function arguments.
662 const FunctionType
*FT
= F
.getFunctionType();
663 unsigned NumArgs
= F
.arg_size();
665 Assert1(Context
== &F
.getContext(),
666 "Function context does not match Module context!", &F
);
668 Assert1(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
669 Assert2(FT
->getNumParams() == NumArgs
,
670 "# formal arguments must match # of arguments for function type!",
672 Assert1(F
.getReturnType()->isFirstClassType() ||
673 F
.getReturnType()->isVoidTy() ||
674 F
.getReturnType()->isStructTy(),
675 "Functions cannot return aggregate values!", &F
);
677 Assert1(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
678 "Invalid struct return type!", &F
);
680 const AttrListPtr
&Attrs
= F
.getAttributes();
682 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
683 "Attributes after last parameter!", &F
);
685 // Check function attributes.
686 VerifyFunctionAttrs(FT
, Attrs
, &F
);
688 // Check that this function meets the restrictions on this calling convention.
689 switch (F
.getCallingConv()) {
694 case CallingConv::Fast
:
695 case CallingConv::Cold
:
696 case CallingConv::X86_FastCall
:
697 case CallingConv::X86_ThisCall
:
698 Assert1(!F
.isVarArg(),
699 "Varargs functions must have C calling conventions!", &F
);
703 bool isLLVMdotName
= F
.getName().size() >= 5 &&
704 F
.getName().substr(0, 5) == "llvm.";
706 // Check that the argument values match the function type for this function...
708 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
710 Assert2(I
->getType() == FT
->getParamType(i
),
711 "Argument value does not match function argument type!",
712 I
, FT
->getParamType(i
));
713 Assert1(I
->getType()->isFirstClassType(),
714 "Function arguments must have first-class types!", I
);
716 Assert2(!I
->getType()->isMetadataTy(),
717 "Function takes metadata but isn't an intrinsic", I
, &F
);
720 if (F
.isMaterializable()) {
721 // Function has a body somewhere we can't see.
722 } else if (F
.isDeclaration()) {
723 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
724 F
.hasExternalWeakLinkage(),
725 "invalid linkage type for function declaration", &F
);
727 // Verify that this function (which has a body) is not named "llvm.*". It
728 // is not legal to define intrinsics.
729 Assert1(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
731 // Check the entry node
732 BasicBlock
*Entry
= &F
.getEntryBlock();
733 Assert1(pred_begin(Entry
) == pred_end(Entry
),
734 "Entry block to function must not have predecessors!", Entry
);
736 // The address of the entry block cannot be taken, unless it is dead.
737 if (Entry
->hasAddressTaken()) {
738 Assert1(!BlockAddress::get(Entry
)->isConstantUsed(),
739 "blockaddress may not be used with the entry block!", Entry
);
743 // If this function is actually an intrinsic, verify that it is only used in
744 // direct call/invokes, never having its "address taken".
745 if (F
.getIntrinsicID()) {
747 if (F
.hasAddressTaken(&U
))
748 Assert1(0, "Invalid user of intrinsic instruction!", U
);
752 // verifyBasicBlock - Verify that a basic block is well formed...
754 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
755 InstsInThisBlock
.clear();
757 // Ensure that basic blocks have terminators!
758 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
760 // Check constraints that this basic block imposes on all of the PHI nodes in
762 if (isa
<PHINode
>(BB
.front())) {
763 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
764 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
765 std::sort(Preds
.begin(), Preds
.end());
767 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
768 // Ensure that PHI nodes have at least one entry!
769 Assert1(PN
->getNumIncomingValues() != 0,
770 "PHI nodes must have at least one entry. If the block is dead, "
771 "the PHI should be removed!", PN
);
772 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
773 "PHINode should have one entry for each predecessor of its "
774 "parent basic block!", PN
);
776 // Get and sort all incoming values in the PHI node...
778 Values
.reserve(PN
->getNumIncomingValues());
779 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
780 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
781 PN
->getIncomingValue(i
)));
782 std::sort(Values
.begin(), Values
.end());
784 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
785 // Check to make sure that if there is more than one entry for a
786 // particular basic block in this PHI node, that the incoming values are
789 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
790 Values
[i
].second
== Values
[i
-1].second
,
791 "PHI node has multiple entries for the same basic block with "
792 "different incoming values!", PN
, Values
[i
].first
,
793 Values
[i
].second
, Values
[i
-1].second
);
795 // Check to make sure that the predecessors and PHI node entries are
797 Assert3(Values
[i
].first
== Preds
[i
],
798 "PHI node entries do not match predecessors!", PN
,
799 Values
[i
].first
, Preds
[i
]);
805 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
806 // Ensure that terminators only exist at the end of the basic block.
807 Assert1(&I
== I
.getParent()->getTerminator(),
808 "Terminator found in the middle of a basic block!", I
.getParent());
812 void Verifier::visitBranchInst(BranchInst
&BI
) {
813 if (BI
.isConditional()) {
814 Assert2(BI
.getCondition()->getType()->isIntegerTy(1),
815 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
817 visitTerminatorInst(BI
);
820 void Verifier::visitReturnInst(ReturnInst
&RI
) {
821 Function
*F
= RI
.getParent()->getParent();
822 unsigned N
= RI
.getNumOperands();
823 if (F
->getReturnType()->isVoidTy())
825 "Found return instr that returns non-void in Function of void "
826 "return type!", &RI
, F
->getReturnType());
827 else if (N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType()) {
828 // Exactly one return value and it matches the return type. Good.
829 } else if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
830 // The return type is a struct; check for multiple return values.
831 Assert2(STy
->getNumElements() == N
,
832 "Incorrect number of return values in ret instruction!",
833 &RI
, F
->getReturnType());
834 for (unsigned i
= 0; i
!= N
; ++i
)
835 Assert2(STy
->getElementType(i
) == RI
.getOperand(i
)->getType(),
836 "Function return type does not match operand "
837 "type of return inst!", &RI
, F
->getReturnType());
838 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(F
->getReturnType())) {
839 // The return type is an array; check for multiple return values.
840 Assert2(ATy
->getNumElements() == N
,
841 "Incorrect number of return values in ret instruction!",
842 &RI
, F
->getReturnType());
843 for (unsigned i
= 0; i
!= N
; ++i
)
844 Assert2(ATy
->getElementType() == RI
.getOperand(i
)->getType(),
845 "Function return type does not match operand "
846 "type of return inst!", &RI
, F
->getReturnType());
848 CheckFailed("Function return type does not match operand "
849 "type of return inst!", &RI
, F
->getReturnType());
852 // Check to make sure that the return value has necessary properties for
854 visitTerminatorInst(RI
);
857 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
858 // Check to make sure that all of the constants in the switch instruction
859 // have the same type as the switched-on value.
860 const Type
*SwitchTy
= SI
.getCondition()->getType();
861 SmallPtrSet
<ConstantInt
*, 32> Constants
;
862 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
) {
863 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
864 "Switch constants must all be same type as switch value!", &SI
);
865 Assert2(Constants
.insert(SI
.getCaseValue(i
)),
866 "Duplicate integer as switch case", &SI
, SI
.getCaseValue(i
));
869 visitTerminatorInst(SI
);
872 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
873 Assert1(BI
.getAddress()->getType()->isPointerTy(),
874 "Indirectbr operand must have pointer type!", &BI
);
875 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
876 Assert1(BI
.getDestination(i
)->getType()->isLabelTy(),
877 "Indirectbr destinations must all have pointer type!", &BI
);
879 visitTerminatorInst(BI
);
882 void Verifier::visitSelectInst(SelectInst
&SI
) {
883 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
885 "Invalid operands for select instruction!", &SI
);
887 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
888 "Select values must have same type as select instruction!", &SI
);
889 visitInstruction(SI
);
892 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
893 /// a pass, if any exist, it's an error.
895 void Verifier::visitUserOp1(Instruction
&I
) {
896 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
899 void Verifier::visitTruncInst(TruncInst
&I
) {
900 // Get the source and destination types
901 const Type
*SrcTy
= I
.getOperand(0)->getType();
902 const Type
*DestTy
= I
.getType();
904 // Get the size of the types in bits, we'll need this later
905 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
906 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
908 Assert1(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
909 Assert1(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
910 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
911 "trunc source and destination must both be a vector or neither", &I
);
912 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
917 void Verifier::visitZExtInst(ZExtInst
&I
) {
918 // Get the source and destination types
919 const Type
*SrcTy
= I
.getOperand(0)->getType();
920 const Type
*DestTy
= I
.getType();
922 // Get the size of the types in bits, we'll need this later
923 Assert1(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
924 Assert1(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
925 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
926 "zext source and destination must both be a vector or neither", &I
);
927 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
928 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
930 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
935 void Verifier::visitSExtInst(SExtInst
&I
) {
936 // Get the source and destination types
937 const Type
*SrcTy
= I
.getOperand(0)->getType();
938 const Type
*DestTy
= I
.getType();
940 // Get the size of the types in bits, we'll need this later
941 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
942 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
944 Assert1(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
945 Assert1(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
946 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
947 "sext source and destination must both be a vector or neither", &I
);
948 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
953 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
954 // Get the source and destination types
955 const Type
*SrcTy
= I
.getOperand(0)->getType();
956 const Type
*DestTy
= I
.getType();
957 // Get the size of the types in bits, we'll need this later
958 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
959 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
961 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I
);
962 Assert1(DestTy
->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I
);
963 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
964 "fptrunc source and destination must both be a vector or neither",&I
);
965 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
970 void Verifier::visitFPExtInst(FPExtInst
&I
) {
971 // Get the source and destination types
972 const Type
*SrcTy
= I
.getOperand(0)->getType();
973 const Type
*DestTy
= I
.getType();
975 // Get the size of the types in bits, we'll need this later
976 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
977 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
979 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPExt only operates on FP", &I
);
980 Assert1(DestTy
->isFPOrFPVectorTy(),"FPExt only produces an FP", &I
);
981 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
982 "fpext source and destination must both be a vector or neither", &I
);
983 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
988 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
989 // Get the source and destination types
990 const Type
*SrcTy
= I
.getOperand(0)->getType();
991 const Type
*DestTy
= I
.getType();
993 bool SrcVec
= SrcTy
->isVectorTy();
994 bool DstVec
= DestTy
->isVectorTy();
996 Assert1(SrcVec
== DstVec
,
997 "UIToFP source and dest must both be vector or scalar", &I
);
998 Assert1(SrcTy
->isIntOrIntVectorTy(),
999 "UIToFP source must be integer or integer vector", &I
);
1000 Assert1(DestTy
->isFPOrFPVectorTy(),
1001 "UIToFP result must be FP or FP vector", &I
);
1003 if (SrcVec
&& DstVec
)
1004 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1005 cast
<VectorType
>(DestTy
)->getNumElements(),
1006 "UIToFP source and dest vector length mismatch", &I
);
1008 visitInstruction(I
);
1011 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
1012 // Get the source and destination types
1013 const Type
*SrcTy
= I
.getOperand(0)->getType();
1014 const Type
*DestTy
= I
.getType();
1016 bool SrcVec
= SrcTy
->isVectorTy();
1017 bool DstVec
= DestTy
->isVectorTy();
1019 Assert1(SrcVec
== DstVec
,
1020 "SIToFP source and dest must both be vector or scalar", &I
);
1021 Assert1(SrcTy
->isIntOrIntVectorTy(),
1022 "SIToFP source must be integer or integer vector", &I
);
1023 Assert1(DestTy
->isFPOrFPVectorTy(),
1024 "SIToFP result must be FP or FP vector", &I
);
1026 if (SrcVec
&& DstVec
)
1027 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1028 cast
<VectorType
>(DestTy
)->getNumElements(),
1029 "SIToFP source and dest vector length mismatch", &I
);
1031 visitInstruction(I
);
1034 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
1035 // Get the source and destination types
1036 const Type
*SrcTy
= I
.getOperand(0)->getType();
1037 const Type
*DestTy
= I
.getType();
1039 bool SrcVec
= SrcTy
->isVectorTy();
1040 bool DstVec
= DestTy
->isVectorTy();
1042 Assert1(SrcVec
== DstVec
,
1043 "FPToUI source and dest must both be vector or scalar", &I
);
1044 Assert1(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1046 Assert1(DestTy
->isIntOrIntVectorTy(),
1047 "FPToUI result must be integer or integer vector", &I
);
1049 if (SrcVec
&& DstVec
)
1050 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1051 cast
<VectorType
>(DestTy
)->getNumElements(),
1052 "FPToUI source and dest vector length mismatch", &I
);
1054 visitInstruction(I
);
1057 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
1058 // Get the source and destination types
1059 const Type
*SrcTy
= I
.getOperand(0)->getType();
1060 const Type
*DestTy
= I
.getType();
1062 bool SrcVec
= SrcTy
->isVectorTy();
1063 bool DstVec
= DestTy
->isVectorTy();
1065 Assert1(SrcVec
== DstVec
,
1066 "FPToSI source and dest must both be vector or scalar", &I
);
1067 Assert1(SrcTy
->isFPOrFPVectorTy(),
1068 "FPToSI source must be FP or FP vector", &I
);
1069 Assert1(DestTy
->isIntOrIntVectorTy(),
1070 "FPToSI result must be integer or integer vector", &I
);
1072 if (SrcVec
&& DstVec
)
1073 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1074 cast
<VectorType
>(DestTy
)->getNumElements(),
1075 "FPToSI source and dest vector length mismatch", &I
);
1077 visitInstruction(I
);
1080 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
1081 // Get the source and destination types
1082 const Type
*SrcTy
= I
.getOperand(0)->getType();
1083 const Type
*DestTy
= I
.getType();
1085 Assert1(SrcTy
->isPointerTy(), "PtrToInt source must be pointer", &I
);
1086 Assert1(DestTy
->isIntegerTy(), "PtrToInt result must be integral", &I
);
1088 visitInstruction(I
);
1091 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
1092 // Get the source and destination types
1093 const Type
*SrcTy
= I
.getOperand(0)->getType();
1094 const Type
*DestTy
= I
.getType();
1096 Assert1(SrcTy
->isIntegerTy(), "IntToPtr source must be an integral", &I
);
1097 Assert1(DestTy
->isPointerTy(), "IntToPtr result must be a pointer",&I
);
1099 visitInstruction(I
);
1102 void Verifier::visitBitCastInst(BitCastInst
&I
) {
1103 // Get the source and destination types
1104 const Type
*SrcTy
= I
.getOperand(0)->getType();
1105 const Type
*DestTy
= I
.getType();
1107 // Get the size of the types in bits, we'll need this later
1108 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1109 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
1111 // BitCast implies a no-op cast of type only. No bits change.
1112 // However, you can't cast pointers to anything but pointers.
1113 Assert1(DestTy
->isPointerTy() == DestTy
->isPointerTy(),
1114 "Bitcast requires both operands to be pointer or neither", &I
);
1115 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requires types of same width",&I
);
1117 // Disallow aggregates.
1118 Assert1(!SrcTy
->isAggregateType(),
1119 "Bitcast operand must not be aggregate", &I
);
1120 Assert1(!DestTy
->isAggregateType(),
1121 "Bitcast type must not be aggregate", &I
);
1123 visitInstruction(I
);
1126 /// visitPHINode - Ensure that a PHI node is well formed.
1128 void Verifier::visitPHINode(PHINode
&PN
) {
1129 // Ensure that the PHI nodes are all grouped together at the top of the block.
1130 // This can be tested by checking whether the instruction before this is
1131 // either nonexistent (because this is begin()) or is a PHI node. If not,
1132 // then there is some other instruction before a PHI.
1133 Assert2(&PN
== &PN
.getParent()->front() ||
1134 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
1135 "PHI nodes not grouped at top of basic block!",
1136 &PN
, PN
.getParent());
1138 // Check that all of the values of the PHI node have the same type as the
1139 // result, and that the incoming blocks are really basic blocks.
1140 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
1141 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
1142 "PHI node operands are not the same type as the result!", &PN
);
1143 Assert1(isa
<BasicBlock
>(PN
.getOperand(
1144 PHINode::getOperandNumForIncomingBlock(i
))),
1145 "PHI node incoming block is not a BasicBlock!", &PN
);
1148 // All other PHI node constraints are checked in the visitBasicBlock method.
1150 visitInstruction(PN
);
1153 void Verifier::VerifyCallSite(CallSite CS
) {
1154 Instruction
*I
= CS
.getInstruction();
1156 Assert1(CS
.getCalledValue()->getType()->isPointerTy(),
1157 "Called function must be a pointer!", I
);
1158 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1160 Assert1(FPTy
->getElementType()->isFunctionTy(),
1161 "Called function is not pointer to function type!", I
);
1162 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1164 // Verify that the correct number of arguments are being passed
1165 if (FTy
->isVarArg())
1166 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1167 "Called function requires more parameters than were provided!",I
);
1169 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1170 "Incorrect number of arguments passed to called function!", I
);
1172 // Verify that all arguments to the call match the function type.
1173 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1174 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1175 "Call parameter type does not match function signature!",
1176 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1178 const AttrListPtr
&Attrs
= CS
.getAttributes();
1180 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1181 "Attributes after last parameter!", I
);
1183 // Verify call attributes.
1184 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1186 if (FTy
->isVarArg())
1187 // Check attributes on the varargs part.
1188 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1189 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1191 VerifyParameterAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1193 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1194 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1195 " cannot be used for vararg call arguments!", I
);
1198 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1199 if (!CS
.getCalledFunction() ||
1200 !CS
.getCalledFunction()->getName().startswith("llvm.")) {
1201 for (FunctionType::param_iterator PI
= FTy
->param_begin(),
1202 PE
= FTy
->param_end(); PI
!= PE
; ++PI
)
1203 Assert1(!PI
->get()->isMetadataTy(),
1204 "Function has metadata parameter but isn't an intrinsic", I
);
1207 visitInstruction(*I
);
1210 void Verifier::visitCallInst(CallInst
&CI
) {
1211 VerifyCallSite(&CI
);
1213 if (Function
*F
= CI
.getCalledFunction())
1214 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1215 visitIntrinsicFunctionCall(ID
, CI
);
1218 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1219 VerifyCallSite(&II
);
1220 visitTerminatorInst(II
);
1223 /// visitBinaryOperator - Check that both arguments to the binary operator are
1224 /// of the same type!
1226 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1227 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1228 "Both operands to a binary operator are not of the same type!", &B
);
1230 switch (B
.getOpcode()) {
1231 // Check that integer arithmetic operators are only used with
1232 // integral operands.
1233 case Instruction::Add
:
1234 case Instruction::Sub
:
1235 case Instruction::Mul
:
1236 case Instruction::SDiv
:
1237 case Instruction::UDiv
:
1238 case Instruction::SRem
:
1239 case Instruction::URem
:
1240 Assert1(B
.getType()->isIntOrIntVectorTy(),
1241 "Integer arithmetic operators only work with integral types!", &B
);
1242 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1243 "Integer arithmetic operators must have same type "
1244 "for operands and result!", &B
);
1246 // Check that floating-point arithmetic operators are only used with
1247 // floating-point operands.
1248 case Instruction::FAdd
:
1249 case Instruction::FSub
:
1250 case Instruction::FMul
:
1251 case Instruction::FDiv
:
1252 case Instruction::FRem
:
1253 Assert1(B
.getType()->isFPOrFPVectorTy(),
1254 "Floating-point arithmetic operators only work with "
1255 "floating-point types!", &B
);
1256 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1257 "Floating-point arithmetic operators must have same type "
1258 "for operands and result!", &B
);
1260 // Check that logical operators are only used with integral operands.
1261 case Instruction::And
:
1262 case Instruction::Or
:
1263 case Instruction::Xor
:
1264 Assert1(B
.getType()->isIntOrIntVectorTy(),
1265 "Logical operators only work with integral types!", &B
);
1266 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1267 "Logical operators must have same type for operands and result!",
1270 case Instruction::Shl
:
1271 case Instruction::LShr
:
1272 case Instruction::AShr
:
1273 Assert1(B
.getType()->isIntOrIntVectorTy(),
1274 "Shifts only work with integral types!", &B
);
1275 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1276 "Shift return type must be same as operands!", &B
);
1279 llvm_unreachable("Unknown BinaryOperator opcode!");
1282 visitInstruction(B
);
1285 void Verifier::visitICmpInst(ICmpInst
&IC
) {
1286 // Check that the operands are the same type
1287 const Type
*Op0Ty
= IC
.getOperand(0)->getType();
1288 const Type
*Op1Ty
= IC
.getOperand(1)->getType();
1289 Assert1(Op0Ty
== Op1Ty
,
1290 "Both operands to ICmp instruction are not of the same type!", &IC
);
1291 // Check that the operands are the right type
1292 Assert1(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPointerTy(),
1293 "Invalid operand types for ICmp instruction", &IC
);
1294 // Check that the predicate is valid.
1295 Assert1(IC
.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&&
1296 IC
.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
,
1297 "Invalid predicate in ICmp instruction!", &IC
);
1299 visitInstruction(IC
);
1302 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
1303 // Check that the operands are the same type
1304 const Type
*Op0Ty
= FC
.getOperand(0)->getType();
1305 const Type
*Op1Ty
= FC
.getOperand(1)->getType();
1306 Assert1(Op0Ty
== Op1Ty
,
1307 "Both operands to FCmp instruction are not of the same type!", &FC
);
1308 // Check that the operands are the right type
1309 Assert1(Op0Ty
->isFPOrFPVectorTy(),
1310 "Invalid operand types for FCmp instruction", &FC
);
1311 // Check that the predicate is valid.
1312 Assert1(FC
.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&&
1313 FC
.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
,
1314 "Invalid predicate in FCmp instruction!", &FC
);
1316 visitInstruction(FC
);
1319 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1320 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1322 "Invalid extractelement operands!", &EI
);
1323 visitInstruction(EI
);
1326 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1327 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1330 "Invalid insertelement operands!", &IE
);
1331 visitInstruction(IE
);
1334 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1335 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1337 "Invalid shufflevector operands!", &SV
);
1338 visitInstruction(SV
);
1341 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1342 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1344 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1345 Idxs
.begin(), Idxs
.end());
1346 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1347 Assert2(GEP
.getType()->isPointerTy() &&
1348 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1349 "GEP is not of right type for indices!", &GEP
, ElTy
);
1350 visitInstruction(GEP
);
1353 void Verifier::visitLoadInst(LoadInst
&LI
) {
1354 const PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
1355 Assert1(PTy
, "Load operand must be a pointer.", &LI
);
1356 const Type
*ElTy
= PTy
->getElementType();
1357 Assert2(ElTy
== LI
.getType(),
1358 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1359 visitInstruction(LI
);
1362 void Verifier::visitStoreInst(StoreInst
&SI
) {
1363 const PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
1364 Assert1(PTy
, "Store operand must be a pointer.", &SI
);
1365 const Type
*ElTy
= PTy
->getElementType();
1366 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1367 "Stored value type does not match pointer operand type!",
1369 visitInstruction(SI
);
1372 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
1373 const PointerType
*PTy
= AI
.getType();
1374 Assert1(PTy
->getAddressSpace() == 0,
1375 "Allocation instruction pointer not in the generic address space!",
1377 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1379 Assert1(AI
.getArraySize()->getType()->isIntegerTy(),
1380 "Alloca array size must have integer type", &AI
);
1381 visitInstruction(AI
);
1384 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1385 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1386 EVI
.idx_begin(), EVI
.idx_end()) ==
1388 "Invalid ExtractValueInst operands!", &EVI
);
1390 visitInstruction(EVI
);
1393 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1394 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1395 IVI
.idx_begin(), IVI
.idx_end()) ==
1396 IVI
.getOperand(1)->getType(),
1397 "Invalid InsertValueInst operands!", &IVI
);
1399 visitInstruction(IVI
);
1402 /// verifyInstruction - Verify that an instruction is well formed.
1404 void Verifier::visitInstruction(Instruction
&I
) {
1405 BasicBlock
*BB
= I
.getParent();
1406 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1408 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1409 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1411 Assert1(*UI
!= (User
*)&I
|| !DT
->isReachableFromEntry(BB
),
1412 "Only PHI nodes may reference their own value!", &I
);
1415 // Check that void typed values don't have names
1416 Assert1(!I
.getType()->isVoidTy() || !I
.hasName(),
1417 "Instruction has a name, but provides a void value!", &I
);
1419 // Check that the return value of the instruction is either void or a legal
1421 Assert1(I
.getType()->isVoidTy() ||
1422 I
.getType()->isFirstClassType(),
1423 "Instruction returns a non-scalar type!", &I
);
1425 // Check that the instruction doesn't produce metadata. Calls are already
1426 // checked against the callee type.
1427 Assert1(!I
.getType()->isMetadataTy() ||
1428 isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
1429 "Invalid use of metadata!", &I
);
1431 // Check that all uses of the instruction, if they are instructions
1432 // themselves, actually have parent basic blocks. If the use is not an
1433 // instruction, it is an error!
1434 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1436 if (Instruction
*Used
= dyn_cast
<Instruction
>(*UI
))
1437 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1438 " embedded in a basic block!", &I
, Used
);
1440 CheckFailed("Use of instruction is not an instruction!", *UI
);
1445 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1446 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1448 // Check to make sure that only first-class-values are operands to
1450 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1451 Assert1(0, "Instruction operands must be first-class values!", &I
);
1454 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1455 // Check to make sure that the "address of" an intrinsic function is never
1457 Assert1(!F
->isIntrinsic() || (i
+ 1 == e
&& isa
<CallInst
>(I
)),
1458 "Cannot take the address of an intrinsic!", &I
);
1459 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1461 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1462 Assert1(OpBB
->getParent() == BB
->getParent(),
1463 "Referring to a basic block in another function!", &I
);
1464 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1465 Assert1(OpArg
->getParent() == BB
->getParent(),
1466 "Referring to an argument in another function!", &I
);
1467 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1468 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1470 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1471 BasicBlock
*OpBlock
= Op
->getParent();
1473 // Check that a definition dominates all of its uses.
1474 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1475 // Invoke results are only usable in the normal destination, not in the
1476 // exceptional destination.
1477 BasicBlock
*NormalDest
= II
->getNormalDest();
1479 Assert2(NormalDest
!= II
->getUnwindDest(),
1480 "No uses of invoke possible due to dominance structure!",
1483 // PHI nodes differ from other nodes because they actually "use" the
1484 // value in the predecessor basic blocks they correspond to.
1485 BasicBlock
*UseBlock
= BB
;
1486 if (isa
<PHINode
>(I
))
1487 UseBlock
= dyn_cast
<BasicBlock
>(I
.getOperand(i
+1));
1488 Assert2(UseBlock
, "Invoke operand is PHI node with bad incoming-BB",
1491 if (isa
<PHINode
>(I
) && UseBlock
== OpBlock
) {
1492 // Special case of a phi node in the normal destination or the unwind
1494 Assert2(BB
== NormalDest
|| !DT
->isReachableFromEntry(UseBlock
),
1495 "Invoke result not available in the unwind destination!",
1498 Assert2(DT
->dominates(NormalDest
, UseBlock
) ||
1499 !DT
->isReachableFromEntry(UseBlock
),
1500 "Invoke result does not dominate all uses!", Op
, &I
);
1502 // If the normal successor of an invoke instruction has multiple
1503 // predecessors, then the normal edge from the invoke is critical,
1504 // so the invoke value can only be live if the destination block
1505 // dominates all of it's predecessors (other than the invoke).
1506 if (!NormalDest
->getSinglePredecessor() &&
1507 DT
->isReachableFromEntry(UseBlock
))
1508 // If it is used by something non-phi, then the other case is that
1509 // 'NormalDest' dominates all of its predecessors other than the
1510 // invoke. In this case, the invoke value can still be used.
1511 for (pred_iterator PI
= pred_begin(NormalDest
),
1512 E
= pred_end(NormalDest
); PI
!= E
; ++PI
)
1513 if (*PI
!= II
->getParent() && !DT
->dominates(NormalDest
, *PI
) &&
1514 DT
->isReachableFromEntry(*PI
)) {
1515 CheckFailed("Invoke result does not dominate all uses!", Op
,&I
);
1519 } else if (isa
<PHINode
>(I
)) {
1520 // PHI nodes are more difficult than other nodes because they actually
1521 // "use" the value in the predecessor basic blocks they correspond to.
1522 BasicBlock
*PredBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
+1));
1523 Assert2(PredBB
&& (DT
->dominates(OpBlock
, PredBB
) ||
1524 !DT
->isReachableFromEntry(PredBB
)),
1525 "Instruction does not dominate all uses!", Op
, &I
);
1527 if (OpBlock
== BB
) {
1528 // If they are in the same basic block, make sure that the definition
1529 // comes before the use.
1530 Assert2(InstsInThisBlock
.count(Op
) || !DT
->isReachableFromEntry(BB
),
1531 "Instruction does not dominate all uses!", Op
, &I
);
1534 // Definition must dominate use unless use is unreachable!
1535 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1536 !DT
->isReachableFromEntry(BB
),
1537 "Instruction does not dominate all uses!", Op
, &I
);
1539 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1540 Assert1((i
+ 1 == e
&& isa
<CallInst
>(I
)) ||
1541 (i
+ 3 == e
&& isa
<InvokeInst
>(I
)),
1542 "Cannot take the address of an inline asm!", &I
);
1545 InstsInThisBlock
.insert(&I
);
1547 VerifyType(I
.getType());
1550 /// VerifyType - Verify that a type is well formed.
1552 void Verifier::VerifyType(const Type
*Ty
) {
1553 if (!Types
.insert(Ty
)) return;
1555 Assert1(Context
== &Ty
->getContext(),
1556 "Type context does not match Module context!", Ty
);
1558 switch (Ty
->getTypeID()) {
1559 case Type::FunctionTyID
: {
1560 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
1562 const Type
*RetTy
= FTy
->getReturnType();
1563 Assert2(FunctionType::isValidReturnType(RetTy
),
1564 "Function type with invalid return type", RetTy
, FTy
);
1567 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
1568 const Type
*ElTy
= FTy
->getParamType(i
);
1569 Assert2(FunctionType::isValidArgumentType(ElTy
),
1570 "Function type with invalid parameter type", ElTy
, FTy
);
1574 case Type::StructTyID
: {
1575 const StructType
*STy
= cast
<StructType
>(Ty
);
1576 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1577 const Type
*ElTy
= STy
->getElementType(i
);
1578 Assert2(StructType::isValidElementType(ElTy
),
1579 "Structure type with invalid element type", ElTy
, STy
);
1583 case Type::UnionTyID
: {
1584 const UnionType
*UTy
= cast
<UnionType
>(Ty
);
1585 for (unsigned i
= 0, e
= UTy
->getNumElements(); i
!= e
; ++i
) {
1586 const Type
*ElTy
= UTy
->getElementType(i
);
1587 Assert2(UnionType::isValidElementType(ElTy
),
1588 "Union type with invalid element type", ElTy
, UTy
);
1592 case Type::ArrayTyID
: {
1593 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
1594 Assert1(ArrayType::isValidElementType(ATy
->getElementType()),
1595 "Array type with invalid element type", ATy
);
1596 VerifyType(ATy
->getElementType());
1598 case Type::PointerTyID
: {
1599 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
1600 Assert1(PointerType::isValidElementType(PTy
->getElementType()),
1601 "Pointer type with invalid element type", PTy
);
1602 VerifyType(PTy
->getElementType());
1604 case Type::VectorTyID
: {
1605 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
1606 Assert1(VectorType::isValidElementType(VTy
->getElementType()),
1607 "Vector type with invalid element type", VTy
);
1608 VerifyType(VTy
->getElementType());
1615 // Flags used by TableGen to mark intrinsic parameters with the
1616 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1617 static const unsigned ExtendedElementVectorType
= 0x40000000;
1618 static const unsigned TruncatedElementVectorType
= 0x20000000;
1620 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1622 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1623 Function
*IF
= CI
.getCalledFunction();
1624 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1627 #define GET_INTRINSIC_VERIFIER
1628 #include "llvm/Intrinsics.gen"
1629 #undef GET_INTRINSIC_VERIFIER
1631 // If the intrinsic takes MDNode arguments, verify that they are either global
1632 // or are local to *this* function.
1633 for (unsigned i
= 0, e
= CI
.getNumArgOperands(); i
!= e
; ++i
)
1634 if (MDNode
*MD
= dyn_cast
<MDNode
>(CI
.getArgOperand(i
)))
1635 visitMDNode(*MD
, CI
.getParent()->getParent());
1640 case Intrinsic::dbg_declare
: { // llvm.dbg.declare
1641 Assert1(CI
.getArgOperand(0) && isa
<MDNode
>(CI
.getArgOperand(0)),
1642 "invalid llvm.dbg.declare intrinsic call 1", &CI
);
1643 MDNode
*MD
= cast
<MDNode
>(CI
.getArgOperand(0));
1644 Assert1(MD
->getNumOperands() == 1,
1645 "invalid llvm.dbg.declare intrinsic call 2", &CI
);
1647 case Intrinsic::memcpy
:
1648 case Intrinsic::memmove
:
1649 case Intrinsic::memset
:
1650 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(3)),
1651 "alignment argument of memory intrinsics must be a constant int",
1654 case Intrinsic::gcroot
:
1655 case Intrinsic::gcwrite
:
1656 case Intrinsic::gcread
:
1657 if (ID
== Intrinsic::gcroot
) {
1659 dyn_cast
<AllocaInst
>(CI
.getArgOperand(0)->stripPointerCasts());
1660 Assert1(AI
&& AI
->getType()->getElementType()->isPointerTy(),
1661 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI
);
1662 Assert1(isa
<Constant
>(CI
.getArgOperand(1)),
1663 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1666 Assert1(CI
.getParent()->getParent()->hasGC(),
1667 "Enclosing function does not use GC.", &CI
);
1669 case Intrinsic::init_trampoline
:
1670 Assert1(isa
<Function
>(CI
.getArgOperand(1)->stripPointerCasts()),
1671 "llvm.init_trampoline parameter #2 must resolve to a function.",
1674 case Intrinsic::prefetch
:
1675 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)) &&
1676 isa
<ConstantInt
>(CI
.getArgOperand(2)) &&
1677 cast
<ConstantInt
>(CI
.getArgOperand(1))->getZExtValue() < 2 &&
1678 cast
<ConstantInt
>(CI
.getArgOperand(2))->getZExtValue() < 4,
1679 "invalid arguments to llvm.prefetch",
1682 case Intrinsic::stackprotector
:
1683 Assert1(isa
<AllocaInst
>(CI
.getArgOperand(1)->stripPointerCasts()),
1684 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1687 case Intrinsic::lifetime_start
:
1688 case Intrinsic::lifetime_end
:
1689 case Intrinsic::invariant_start
:
1690 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(0)),
1691 "size argument of memory use markers must be a constant integer",
1694 case Intrinsic::invariant_end
:
1695 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)),
1696 "llvm.invariant.end parameter #2 must be a constant integer", &CI
);
1701 /// Produce a string to identify an intrinsic parameter or return value.
1702 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1703 /// parameters beginning with NumRets.
1705 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1706 if (ArgNo
>= NumRets
)
1707 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1709 return "Intrinsic result type";
1710 return "Intrinsic result type #" + utostr(ArgNo
);
1713 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1714 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1715 const FunctionType
*FTy
= F
->getFunctionType();
1717 unsigned NumElts
= 0;
1718 const Type
*EltTy
= Ty
;
1719 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1721 EltTy
= VTy
->getElementType();
1722 NumElts
= VTy
->getNumElements();
1725 const Type
*RetTy
= FTy
->getReturnType();
1726 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1727 unsigned NumRetVals
;
1728 if (RetTy
->isVoidTy())
1731 NumRetVals
= ST
->getNumElements();
1738 // Check flags that indicate a type that is an integral vector type with
1739 // elements that are larger or smaller than the elements of the matched
1741 if ((Match
& (ExtendedElementVectorType
|
1742 TruncatedElementVectorType
)) != 0) {
1743 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1744 if (!VTy
|| !IEltTy
) {
1745 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1746 "an integral vector type.", F
);
1749 // Adjust the current Ty (in the opposite direction) rather than
1750 // the type being matched against.
1751 if ((Match
& ExtendedElementVectorType
) != 0) {
1752 if ((IEltTy
->getBitWidth() & 1) != 0) {
1753 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " vector "
1754 "element bit-width is odd.", F
);
1757 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1759 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1760 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1763 if (Match
<= static_cast<int>(NumRetVals
- 1)) {
1765 RetTy
= ST
->getElementType(Match
);
1768 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1769 "match return type.", F
);
1773 if (Ty
!= FTy
->getParamType(Match
- NumRetVals
)) {
1774 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1775 "match parameter %" + utostr(Match
- NumRetVals
) + ".", F
);
1779 } else if (VT
== MVT::iAny
) {
1780 if (!EltTy
->isIntegerTy()) {
1781 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1782 "an integer type.", F
);
1786 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1790 Suffix
+= "v" + utostr(NumElts
);
1792 Suffix
+= "i" + utostr(GotBits
);
1794 // Check some constraints on various intrinsics.
1796 default: break; // Not everything needs to be checked.
1797 case Intrinsic::bswap
:
1798 if (GotBits
< 16 || GotBits
% 16 != 0) {
1799 CheckFailed("Intrinsic requires even byte width argument", F
);
1804 } else if (VT
== MVT::fAny
) {
1805 if (!EltTy
->isFloatingPointTy()) {
1806 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1807 "a floating-point type.", F
);
1814 Suffix
+= "v" + utostr(NumElts
);
1816 Suffix
+= EVT::getEVT(EltTy
).getEVTString();
1817 } else if (VT
== MVT::vAny
) {
1819 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a vector type.",
1823 Suffix
+= ".v" + utostr(NumElts
) + EVT::getEVT(EltTy
).getEVTString();
1824 } else if (VT
== MVT::iPTR
) {
1825 if (!Ty
->isPointerTy()) {
1826 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1827 "pointer and a pointer is required.", F
);
1830 } else if (VT
== MVT::iPTRAny
) {
1831 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1832 // and iPTR. In the verifier, we can not distinguish which case we have so
1833 // allow either case to be legal.
1834 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1835 EVT PointeeVT
= EVT::getEVT(PTyp
->getElementType(), true);
1836 if (PointeeVT
== MVT::Other
) {
1837 CheckFailed("Intrinsic has pointer to complex type.");
1840 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1841 PointeeVT
.getEVTString();
1843 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1844 "pointer and a pointer is required.", F
);
1847 } else if (EVT((MVT::SimpleValueType
)VT
).isVector()) {
1848 EVT VVT
= EVT((MVT::SimpleValueType
)VT
);
1850 // If this is a vector argument, verify the number and type of elements.
1851 if (VVT
.getVectorElementType() != EVT::getEVT(EltTy
)) {
1852 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1856 if (VVT
.getVectorNumElements() != NumElts
) {
1857 CheckFailed("Intrinsic prototype has incorrect number of "
1858 "vector elements!", F
);
1861 } else if (EVT((MVT::SimpleValueType
)VT
).getTypeForEVT(Ty
->getContext()) !=
1863 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is wrong!", F
);
1865 } else if (EltTy
!= Ty
) {
1866 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is a vector "
1867 "and a scalar is required.", F
);
1874 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1875 /// Intrinsics.gen. This implements a little state machine that verifies the
1876 /// prototype of intrinsics.
1877 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1878 unsigned NumRetVals
,
1879 unsigned NumParams
, ...) {
1881 va_start(VA
, NumParams
);
1882 const FunctionType
*FTy
= F
->getFunctionType();
1884 // For overloaded intrinsics, the Suffix of the function name must match the
1885 // types of the arguments. This variable keeps track of the expected
1886 // suffix, to be checked at the end.
1889 if (FTy
->getNumParams() + FTy
->isVarArg() != NumParams
) {
1890 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1894 const Type
*Ty
= FTy
->getReturnType();
1895 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1897 if (NumRetVals
== 0 && !Ty
->isVoidTy()) {
1898 CheckFailed("Intrinsic should return void", F
);
1902 // Verify the return types.
1903 if (ST
&& ST
->getNumElements() != NumRetVals
) {
1904 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1908 for (unsigned ArgNo
= 0; ArgNo
!= NumRetVals
; ++ArgNo
) {
1909 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1911 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1912 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1916 // Verify the parameter types.
1917 for (unsigned ArgNo
= 0; ArgNo
!= NumParams
; ++ArgNo
) {
1918 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1920 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1921 if (!FTy
->isVarArg())
1922 CheckFailed("Intrinsic prototype has no '...'!", F
);
1926 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
,
1927 ArgNo
+ NumRetVals
, Suffix
))
1933 // For intrinsics without pointer arguments, if we computed a Suffix then the
1934 // intrinsic is overloaded and we need to make sure that the name of the
1935 // function is correct. We add the suffix to the name of the intrinsic and
1936 // compare against the given function name. If they are not the same, the
1937 // function name is invalid. This ensures that overloading of intrinsics
1938 // uses a sane and consistent naming convention. Note that intrinsics with
1939 // pointer argument may or may not be overloaded so we will check assuming it
1940 // has a suffix and not.
1941 if (!Suffix
.empty()) {
1942 std::string
Name(Intrinsic::getName(ID
));
1943 if (Name
+ Suffix
!= F
->getName()) {
1944 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1945 F
->getName().substr(Name
.length()) + "'. It should be '" +
1950 // Check parameter attributes.
1951 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1952 "Intrinsic has wrong parameter attributes!", F
);
1956 //===----------------------------------------------------------------------===//
1957 // Implement the public interfaces to this file...
1958 //===----------------------------------------------------------------------===//
1960 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1961 return new Verifier(action
);
1965 /// verifyFunction - Check a function for errors, printing messages on stderr.
1966 /// Return true if the function is corrupt.
1968 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1969 Function
&F
= const_cast<Function
&>(f
);
1970 assert(!F
.isDeclaration() && "Cannot verify external functions");
1972 FunctionPassManager
FPM(F
.getParent());
1973 Verifier
*V
= new Verifier(action
);
1979 /// verifyModule - Check a module for errors, printing messages on stderr.
1980 /// Return true if the module is corrupt.
1982 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1983 std::string
*ErrorInfo
) {
1985 Verifier
*V
= new Verifier(action
);
1987 PM
.run(const_cast<Module
&>(M
));
1989 if (ErrorInfo
&& V
->Broken
)
1990 *ErrorInfo
= V
->MessagesStr
.str();