1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
16 // This pass uses alias analysis for two purposes:
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the SSAUpdater to construct the appropriate SSA form for the value.
31 //===----------------------------------------------------------------------===//
33 #define DEBUG_TYPE "licm"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Constants.h"
36 #include "llvm/DerivedTypes.h"
37 #include "llvm/IntrinsicInst.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/Analysis/AliasSetTracker.h"
41 #include "llvm/Analysis/ConstantFolding.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/LoopPass.h"
44 #include "llvm/Analysis/Dominators.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 #include "llvm/Support/CFG.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/ADT/Statistic.h"
56 STATISTIC(NumSunk
, "Number of instructions sunk out of loop");
57 STATISTIC(NumHoisted
, "Number of instructions hoisted out of loop");
58 STATISTIC(NumMovedLoads
, "Number of load insts hoisted or sunk");
59 STATISTIC(NumMovedCalls
, "Number of call insts hoisted or sunk");
60 STATISTIC(NumPromoted
, "Number of memory locations promoted to registers");
63 DisablePromotion("disable-licm-promotion", cl::Hidden
,
64 cl::desc("Disable memory promotion in LICM pass"));
67 struct LICM
: public LoopPass
{
68 static char ID
; // Pass identification, replacement for typeid
69 LICM() : LoopPass(ID
) {}
71 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
73 /// This transformation requires natural loop information & requires that
74 /// loop preheaders be inserted into the CFG...
76 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
78 AU
.addRequired
<DominatorTree
>();
79 AU
.addRequired
<LoopInfo
>();
80 AU
.addRequiredID(LoopSimplifyID
);
81 AU
.addRequired
<AliasAnalysis
>();
82 AU
.addPreserved
<AliasAnalysis
>();
83 AU
.addPreserved
<ScalarEvolution
>();
84 AU
.addPreservedID(LoopSimplifyID
);
87 bool doFinalization() {
88 assert(LoopToAliasSetMap
.empty() && "Didn't free loop alias sets");
93 AliasAnalysis
*AA
; // Current AliasAnalysis information
94 LoopInfo
*LI
; // Current LoopInfo
95 DominatorTree
*DT
; // Dominator Tree for the current Loop.
97 // State that is updated as we process loops.
98 bool Changed
; // Set to true when we change anything.
99 BasicBlock
*Preheader
; // The preheader block of the current loop...
100 Loop
*CurLoop
; // The current loop we are working on...
101 AliasSetTracker
*CurAST
; // AliasSet information for the current loop...
102 DenseMap
<Loop
*, AliasSetTracker
*> LoopToAliasSetMap
;
104 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
105 void cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
);
107 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
109 void deleteAnalysisValue(Value
*V
, Loop
*L
);
111 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
112 /// dominated by the specified block, and that are in the current loop) in
113 /// reverse depth first order w.r.t the DominatorTree. This allows us to
114 /// visit uses before definitions, allowing us to sink a loop body in one
115 /// pass without iteration.
117 void SinkRegion(DomTreeNode
*N
);
119 /// HoistRegion - Walk the specified region of the CFG (defined by all
120 /// blocks dominated by the specified block, and that are in the current
121 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
122 /// visit definitions before uses, allowing us to hoist a loop body in one
123 /// pass without iteration.
125 void HoistRegion(DomTreeNode
*N
);
127 /// inSubLoop - Little predicate that returns true if the specified basic
128 /// block is in a subloop of the current one, not the current one itself.
130 bool inSubLoop(BasicBlock
*BB
) {
131 assert(CurLoop
->contains(BB
) && "Only valid if BB is IN the loop");
132 for (Loop::iterator I
= CurLoop
->begin(), E
= CurLoop
->end(); I
!= E
; ++I
)
133 if ((*I
)->contains(BB
))
134 return true; // A subloop actually contains this block!
138 /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
139 /// specified exit block of the loop is dominated by the specified block
140 /// that is in the body of the loop. We use these constraints to
141 /// dramatically limit the amount of the dominator tree that needs to be
143 bool isExitBlockDominatedByBlockInLoop(BasicBlock
*ExitBlock
,
144 BasicBlock
*BlockInLoop
) const {
145 // If the block in the loop is the loop header, it must be dominated!
146 BasicBlock
*LoopHeader
= CurLoop
->getHeader();
147 if (BlockInLoop
== LoopHeader
)
150 DomTreeNode
*BlockInLoopNode
= DT
->getNode(BlockInLoop
);
151 DomTreeNode
*IDom
= DT
->getNode(ExitBlock
);
153 // Because the exit block is not in the loop, we know we have to get _at
154 // least_ its immediate dominator.
155 IDom
= IDom
->getIDom();
157 while (IDom
&& IDom
!= BlockInLoopNode
) {
158 // If we have got to the header of the loop, then the instructions block
159 // did not dominate the exit node, so we can't hoist it.
160 if (IDom
->getBlock() == LoopHeader
)
163 // Get next Immediate Dominator.
164 IDom
= IDom
->getIDom();
170 /// sink - When an instruction is found to only be used outside of the loop,
171 /// this function moves it to the exit blocks and patches up SSA form as
174 void sink(Instruction
&I
);
176 /// hoist - When an instruction is found to only use loop invariant operands
177 /// that is safe to hoist, this instruction is called to do the dirty work.
179 void hoist(Instruction
&I
);
181 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182 /// is not a trapping instruction or if it is a trapping instruction and is
183 /// guaranteed to execute.
185 bool isSafeToExecuteUnconditionally(Instruction
&I
);
187 /// pointerInvalidatedByLoop - Return true if the body of this loop may
188 /// store into the memory location pointed to by V.
190 bool pointerInvalidatedByLoop(Value
*V
, unsigned Size
) {
191 // Check to see if any of the basic blocks in CurLoop invalidate *V.
192 return CurAST
->getAliasSetForPointer(V
, Size
).isMod();
195 bool canSinkOrHoistInst(Instruction
&I
);
196 bool isLoopInvariantInst(Instruction
&I
);
197 bool isNotUsedInLoop(Instruction
&I
);
199 void PromoteAliasSet(AliasSet
&AS
);
204 INITIALIZE_PASS(LICM
, "licm", "Loop Invariant Code Motion", false, false);
206 Pass
*llvm::createLICMPass() { return new LICM(); }
208 /// Hoist expressions out of the specified loop. Note, alias info for inner
209 /// loop is not preserved so it is not a good idea to run LICM multiple
210 /// times on one loop.
212 bool LICM::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
215 // Get our Loop and Alias Analysis information...
216 LI
= &getAnalysis
<LoopInfo
>();
217 AA
= &getAnalysis
<AliasAnalysis
>();
218 DT
= &getAnalysis
<DominatorTree
>();
220 CurAST
= new AliasSetTracker(*AA
);
221 // Collect Alias info from subloops.
222 for (Loop::iterator LoopItr
= L
->begin(), LoopItrE
= L
->end();
223 LoopItr
!= LoopItrE
; ++LoopItr
) {
224 Loop
*InnerL
= *LoopItr
;
225 AliasSetTracker
*InnerAST
= LoopToAliasSetMap
[InnerL
];
226 assert(InnerAST
&& "Where is my AST?");
228 // What if InnerLoop was modified by other passes ?
229 CurAST
->add(*InnerAST
);
231 // Once we've incorporated the inner loop's AST into ours, we don't need the
232 // subloop's anymore.
234 LoopToAliasSetMap
.erase(InnerL
);
239 // Get the preheader block to move instructions into...
240 Preheader
= L
->getLoopPreheader();
242 // Loop over the body of this loop, looking for calls, invokes, and stores.
243 // Because subloops have already been incorporated into AST, we skip blocks in
246 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
249 if (LI
->getLoopFor(BB
) == L
) // Ignore blocks in subloops.
250 CurAST
->add(*BB
); // Incorporate the specified basic block
253 // We want to visit all of the instructions in this loop... that are not parts
254 // of our subloops (they have already had their invariants hoisted out of
255 // their loop, into this loop, so there is no need to process the BODIES of
258 // Traverse the body of the loop in depth first order on the dominator tree so
259 // that we are guaranteed to see definitions before we see uses. This allows
260 // us to sink instructions in one pass, without iteration. After sinking
261 // instructions, we perform another pass to hoist them out of the loop.
263 if (L
->hasDedicatedExits())
264 SinkRegion(DT
->getNode(L
->getHeader()));
266 HoistRegion(DT
->getNode(L
->getHeader()));
268 // Now that all loop invariants have been removed from the loop, promote any
269 // memory references to scalars that we can.
270 if (!DisablePromotion
&& Preheader
&& L
->hasDedicatedExits()) {
271 // Loop over all of the alias sets in the tracker object.
272 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
277 // Clear out loops state information for the next iteration
281 // If this loop is nested inside of another one, save the alias information
282 // for when we process the outer loop.
283 if (L
->getParentLoop())
284 LoopToAliasSetMap
[L
] = CurAST
;
290 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
291 /// dominated by the specified block, and that are in the current loop) in
292 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
293 /// uses before definitions, allowing us to sink a loop body in one pass without
296 void LICM::SinkRegion(DomTreeNode
*N
) {
297 assert(N
!= 0 && "Null dominator tree node?");
298 BasicBlock
*BB
= N
->getBlock();
300 // If this subregion is not in the top level loop at all, exit.
301 if (!CurLoop
->contains(BB
)) return;
303 // We are processing blocks in reverse dfo, so process children first.
304 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
305 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
306 SinkRegion(Children
[i
]);
308 // Only need to process the contents of this block if it is not part of a
309 // subloop (which would already have been processed).
310 if (inSubLoop(BB
)) return;
312 for (BasicBlock::iterator II
= BB
->end(); II
!= BB
->begin(); ) {
313 Instruction
&I
= *--II
;
315 // If the instruction is dead, we would try to sink it because it isn't used
316 // in the loop, instead, just delete it.
317 if (isInstructionTriviallyDead(&I
)) {
318 DEBUG(dbgs() << "LICM deleting dead inst: " << I
<< '\n');
320 CurAST
->deleteValue(&I
);
326 // Check to see if we can sink this instruction to the exit blocks
327 // of the loop. We can do this if the all users of the instruction are
328 // outside of the loop. In this case, it doesn't even matter if the
329 // operands of the instruction are loop invariant.
331 if (isNotUsedInLoop(I
) && canSinkOrHoistInst(I
)) {
338 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
339 /// dominated by the specified block, and that are in the current loop) in depth
340 /// first order w.r.t the DominatorTree. This allows us to visit definitions
341 /// before uses, allowing us to hoist a loop body in one pass without iteration.
343 void LICM::HoistRegion(DomTreeNode
*N
) {
344 assert(N
!= 0 && "Null dominator tree node?");
345 BasicBlock
*BB
= N
->getBlock();
347 // If this subregion is not in the top level loop at all, exit.
348 if (!CurLoop
->contains(BB
)) return;
350 // Only need to process the contents of this block if it is not part of a
351 // subloop (which would already have been processed).
353 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ) {
354 Instruction
&I
= *II
++;
356 // Try constant folding this instruction. If all the operands are
357 // constants, it is technically hoistable, but it would be better to just
359 if (Constant
*C
= ConstantFoldInstruction(&I
)) {
360 DEBUG(dbgs() << "LICM folding inst: " << I
<< " --> " << *C
<< '\n');
361 CurAST
->copyValue(&I
, C
);
362 CurAST
->deleteValue(&I
);
363 I
.replaceAllUsesWith(C
);
368 // Try hoisting the instruction out to the preheader. We can only do this
369 // if all of the operands of the instruction are loop invariant and if it
370 // is safe to hoist the instruction.
372 if (isLoopInvariantInst(I
) && canSinkOrHoistInst(I
) &&
373 isSafeToExecuteUnconditionally(I
))
377 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
378 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
379 HoistRegion(Children
[i
]);
382 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
385 bool LICM::canSinkOrHoistInst(Instruction
&I
) {
386 // Loads have extra constraints we have to verify before we can hoist them.
387 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
388 if (LI
->isVolatile())
389 return false; // Don't hoist volatile loads!
391 // Loads from constant memory are always safe to move, even if they end up
392 // in the same alias set as something that ends up being modified.
393 if (AA
->pointsToConstantMemory(LI
->getOperand(0)))
396 // Don't hoist loads which have may-aliased stores in loop.
398 if (LI
->getType()->isSized())
399 Size
= AA
->getTypeStoreSize(LI
->getType());
400 return !pointerInvalidatedByLoop(LI
->getOperand(0), Size
);
401 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
402 // Handle obvious cases efficiently.
403 AliasAnalysis::ModRefBehavior Behavior
= AA
->getModRefBehavior(CI
);
404 if (Behavior
== AliasAnalysis::DoesNotAccessMemory
)
406 else if (Behavior
== AliasAnalysis::OnlyReadsMemory
) {
407 // If this call only reads from memory and there are no writes to memory
408 // in the loop, we can hoist or sink the call as appropriate.
409 bool FoundMod
= false;
410 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
413 if (!AS
.isForwardingAliasSet() && AS
.isMod()) {
418 if (!FoundMod
) return true;
421 // FIXME: This should use mod/ref information to see if we can hoist or sink
427 // Otherwise these instructions are hoistable/sinkable
428 return isa
<BinaryOperator
>(I
) || isa
<CastInst
>(I
) ||
429 isa
<SelectInst
>(I
) || isa
<GetElementPtrInst
>(I
) || isa
<CmpInst
>(I
) ||
430 isa
<InsertElementInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
431 isa
<ShuffleVectorInst
>(I
);
434 /// isNotUsedInLoop - Return true if the only users of this instruction are
435 /// outside of the loop. If this is true, we can sink the instruction to the
436 /// exit blocks of the loop.
438 bool LICM::isNotUsedInLoop(Instruction
&I
) {
439 for (Value::use_iterator UI
= I
.use_begin(), E
= I
.use_end(); UI
!= E
; ++UI
) {
440 Instruction
*User
= cast
<Instruction
>(*UI
);
441 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
442 // PHI node uses occur in predecessor blocks!
443 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
444 if (PN
->getIncomingValue(i
) == &I
)
445 if (CurLoop
->contains(PN
->getIncomingBlock(i
)))
447 } else if (CurLoop
->contains(User
)) {
455 /// isLoopInvariantInst - Return true if all operands of this instruction are
456 /// loop invariant. We also filter out non-hoistable instructions here just for
459 bool LICM::isLoopInvariantInst(Instruction
&I
) {
460 // The instruction is loop invariant if all of its operands are loop-invariant
461 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
462 if (!CurLoop
->isLoopInvariant(I
.getOperand(i
)))
465 // If we got this far, the instruction is loop invariant!
469 /// sink - When an instruction is found to only be used outside of the loop,
470 /// this function moves it to the exit blocks and patches up SSA form as needed.
471 /// This method is guaranteed to remove the original instruction from its
472 /// position, and may either delete it or move it to outside of the loop.
474 void LICM::sink(Instruction
&I
) {
475 DEBUG(dbgs() << "LICM sinking instruction: " << I
<< "\n");
477 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
478 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
480 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
481 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
485 // The case where there is only a single exit node of this loop is common
486 // enough that we handle it as a special (more efficient) case. It is more
487 // efficient to handle because there are no PHI nodes that need to be placed.
488 if (ExitBlocks
.size() == 1) {
489 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[0], I
.getParent())) {
490 // Instruction is not used, just delete it.
491 CurAST
->deleteValue(&I
);
492 // If I has users in unreachable blocks, eliminate.
493 // If I is not void type then replaceAllUsesWith undef.
494 // This allows ValueHandlers and custom metadata to adjust itself.
496 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
499 // Move the instruction to the start of the exit block, after any PHI
501 I
.moveBefore(ExitBlocks
[0]->getFirstNonPHI());
503 // This instruction is no longer in the AST for the current loop, because
504 // we just sunk it out of the loop. If we just sunk it into an outer
505 // loop, we will rediscover the operation when we process it.
506 CurAST
->deleteValue(&I
);
511 if (ExitBlocks
.empty()) {
512 // The instruction is actually dead if there ARE NO exit blocks.
513 CurAST
->deleteValue(&I
);
514 // If I has users in unreachable blocks, eliminate.
515 // If I is not void type then replaceAllUsesWith undef.
516 // This allows ValueHandlers and custom metadata to adjust itself.
518 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
523 // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
524 // hard work of inserting PHI nodes as necessary.
525 SmallVector
<PHINode
*, 8> NewPHIs
;
526 SSAUpdater
SSA(&NewPHIs
);
529 SSA
.Initialize(I
.getType(), I
.getName());
531 // Insert a copy of the instruction in each exit block of the loop that is
532 // dominated by the instruction. Each exit block is known to only be in the
533 // ExitBlocks list once.
534 BasicBlock
*InstOrigBB
= I
.getParent();
535 unsigned NumInserted
= 0;
537 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
538 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
540 if (!isExitBlockDominatedByBlockInLoop(ExitBlock
, InstOrigBB
))
543 // Insert the code after the last PHI node.
544 BasicBlock::iterator InsertPt
= ExitBlock
->getFirstNonPHI();
546 // If this is the first exit block processed, just move the original
547 // instruction, otherwise clone the original instruction and insert
550 if (NumInserted
++ == 0) {
551 I
.moveBefore(InsertPt
);
555 if (!I
.getName().empty())
556 New
->setName(I
.getName()+".le");
557 ExitBlock
->getInstList().insert(InsertPt
, New
);
560 // Now that we have inserted the instruction, inform SSAUpdater.
562 SSA
.AddAvailableValue(ExitBlock
, New
);
565 // If the instruction doesn't dominate any exit blocks, it must be dead.
566 if (NumInserted
== 0) {
567 CurAST
->deleteValue(&I
);
569 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
574 // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
575 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end(); UI
!= UE
; ) {
576 // Grab the use before incrementing the iterator.
577 Use
&U
= UI
.getUse();
578 // Increment the iterator before removing the use from the list.
580 SSA
.RewriteUseAfterInsertions(U
);
583 // Update CurAST for NewPHIs if I had pointer type.
584 if (I
.getType()->isPointerTy())
585 for (unsigned i
= 0, e
= NewPHIs
.size(); i
!= e
; ++i
)
586 CurAST
->copyValue(&I
, NewPHIs
[i
]);
588 // Finally, remove the instruction from CurAST. It is no longer in the loop.
589 CurAST
->deleteValue(&I
);
592 /// hoist - When an instruction is found to only use loop invariant operands
593 /// that is safe to hoist, this instruction is called to do the dirty work.
595 void LICM::hoist(Instruction
&I
) {
596 DEBUG(dbgs() << "LICM hoisting to " << Preheader
->getName() << ": "
599 // Move the new node to the Preheader, before its terminator.
600 I
.moveBefore(Preheader
->getTerminator());
602 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
603 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
608 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
609 /// not a trapping instruction or if it is a trapping instruction and is
610 /// guaranteed to execute.
612 bool LICM::isSafeToExecuteUnconditionally(Instruction
&Inst
) {
613 // If it is not a trapping instruction, it is always safe to hoist.
614 if (Inst
.isSafeToSpeculativelyExecute())
617 // Otherwise we have to check to make sure that the instruction dominates all
618 // of the exit blocks. If it doesn't, then there is a path out of the loop
619 // which does not execute this instruction, so we can't hoist it.
621 // If the instruction is in the header block for the loop (which is very
622 // common), it is always guaranteed to dominate the exit blocks. Since this
623 // is a common case, and can save some work, check it now.
624 if (Inst
.getParent() == CurLoop
->getHeader())
627 // Get the exit blocks for the current loop.
628 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
629 CurLoop
->getExitBlocks(ExitBlocks
);
631 // For each exit block, get the DT node and walk up the DT until the
632 // instruction's basic block is found or we exit the loop.
633 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
634 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[i
], Inst
.getParent()))
640 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
641 /// stores out of the loop and moving loads to before the loop. We do this by
642 /// looping over the stores in the loop, looking for stores to Must pointers
643 /// which are loop invariant.
645 void LICM::PromoteAliasSet(AliasSet
&AS
) {
646 // We can promote this alias set if it has a store, if it is a "Must" alias
647 // set, if the pointer is loop invariant, and if we are not eliminating any
648 // volatile loads or stores.
649 if (AS
.isForwardingAliasSet() || !AS
.isMod() || !AS
.isMustAlias() ||
650 AS
.isVolatile() || !CurLoop
->isLoopInvariant(AS
.begin()->getValue()))
653 assert(!AS
.empty() &&
654 "Must alias set should have at least one pointer element in it!");
655 Value
*SomePtr
= AS
.begin()->getValue();
657 // It isn't safe to promote a load/store from the loop if the load/store is
658 // conditional. For example, turning:
660 // for () { if (c) *P += 1; }
664 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
666 // is not safe, because *P may only be valid to access if 'c' is true.
668 // It is safe to promote P if all uses are direct load/stores and if at
669 // least one is guaranteed to be executed.
670 bool GuaranteedToExecute
= false;
672 SmallVector
<Instruction
*, 64> LoopUses
;
673 SmallPtrSet
<Value
*, 4> PointerMustAliases
;
675 // Check that all of the pointers in the alias set have the same type. We
676 // cannot (yet) promote a memory location that is loaded and stored in
678 for (AliasSet::iterator ASI
= AS
.begin(), E
= AS
.end(); ASI
!= E
; ++ASI
) {
679 Value
*ASIV
= ASI
->getValue();
680 PointerMustAliases
.insert(ASIV
);
682 // Check that all of the pointers in the alias set have the same type. We
683 // cannot (yet) promote a memory location that is loaded and stored in
685 if (SomePtr
->getType() != ASIV
->getType())
688 for (Value::use_iterator UI
= ASIV
->use_begin(), UE
= ASIV
->use_end();
690 // Ignore instructions that are outside the loop.
691 Instruction
*Use
= dyn_cast
<Instruction
>(*UI
);
692 if (!Use
|| !CurLoop
->contains(Use
))
695 // If there is an non-load/store instruction in the loop, we can't promote
697 if (isa
<LoadInst
>(Use
))
698 assert(!cast
<LoadInst
>(Use
)->isVolatile() && "AST broken");
699 else if (isa
<StoreInst
>(Use
))
700 assert(!cast
<StoreInst
>(Use
)->isVolatile() &&
701 Use
->getOperand(0) != ASIV
&& "AST broken");
703 return; // Not a load or store.
705 if (!GuaranteedToExecute
)
706 GuaranteedToExecute
= isSafeToExecuteUnconditionally(*Use
);
708 LoopUses
.push_back(Use
);
712 // If there isn't a guaranteed-to-execute instruction, we can't promote.
713 if (!GuaranteedToExecute
)
716 // Otherwise, this is safe to promote, lets do it!
717 DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr
<<'\n');
721 // We use the SSAUpdater interface to insert phi nodes as required.
722 SmallVector
<PHINode
*, 16> NewPHIs
;
723 SSAUpdater
SSA(&NewPHIs
);
725 // It wants to know some value of the same type as what we'll be inserting.
727 if (isa
<LoadInst
>(LoopUses
[0]))
728 SomeValue
= LoopUses
[0];
730 SomeValue
= cast
<StoreInst
>(LoopUses
[0])->getOperand(0);
731 SSA
.Initialize(SomeValue
->getType(), SomeValue
->getName());
733 // First step: bucket up uses of the pointers by the block they occur in.
734 // This is important because we have to handle multiple defs/uses in a block
735 // ourselves: SSAUpdater is purely for cross-block references.
736 // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
737 DenseMap
<BasicBlock
*, std::vector
<Instruction
*> > UsesByBlock
;
738 for (unsigned i
= 0, e
= LoopUses
.size(); i
!= e
; ++i
) {
739 Instruction
*User
= LoopUses
[i
];
740 UsesByBlock
[User
->getParent()].push_back(User
);
743 // Okay, now we can iterate over all the blocks in the loop with uses,
744 // processing them. Keep track of which loads are loading a live-in value.
745 SmallVector
<LoadInst
*, 32> LiveInLoads
;
747 for (unsigned LoopUse
= 0, e
= LoopUses
.size(); LoopUse
!= e
; ++LoopUse
) {
748 Instruction
*User
= LoopUses
[LoopUse
];
749 std::vector
<Instruction
*> &BlockUses
= UsesByBlock
[User
->getParent()];
751 // If this block has already been processed, ignore this repeat use.
752 if (BlockUses
.empty()) continue;
754 // Okay, this is the first use in the block. If this block just has a
755 // single user in it, we can rewrite it trivially.
756 if (BlockUses
.size() == 1) {
757 // If it is a store, it is a trivial def of the value in the block.
758 if (isa
<StoreInst
>(User
)) {
759 SSA
.AddAvailableValue(User
->getParent(),
760 cast
<StoreInst
>(User
)->getOperand(0));
762 // Otherwise it is a load, queue it to rewrite as a live-in load.
763 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
769 // Otherwise, check to see if this block is all loads. If so, we can queue
770 // them all as live in loads.
771 bool HasStore
= false;
772 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
) {
773 if (isa
<StoreInst
>(BlockUses
[i
])) {
780 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
)
781 LiveInLoads
.push_back(cast
<LoadInst
>(BlockUses
[i
]));
786 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
787 // Since SSAUpdater is purely for cross-block values, we need to determine
788 // the order of these instructions in the block. If the first use in the
789 // block is a load, then it uses the live in value. The last store defines
790 // the live out value. We handle this by doing a linear scan of the block.
791 BasicBlock
*BB
= User
->getParent();
792 Value
*StoredValue
= 0;
793 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
794 if (LoadInst
*L
= dyn_cast
<LoadInst
>(II
)) {
795 // If this is a load to an unrelated pointer, ignore it.
796 if (!PointerMustAliases
.count(L
->getOperand(0))) continue;
798 // If we haven't seen a store yet, this is a live in use, otherwise
799 // use the stored value.
801 L
->replaceAllUsesWith(StoredValue
);
803 LiveInLoads
.push_back(L
);
807 if (StoreInst
*S
= dyn_cast
<StoreInst
>(II
)) {
808 // If this is a store to an unrelated pointer, ignore it.
809 if (!PointerMustAliases
.count(S
->getOperand(1))) continue;
811 // Remember that this is the active value in the block.
812 StoredValue
= S
->getOperand(0);
816 // The last stored value that happened is the live-out for the block.
817 assert(StoredValue
&& "Already checked that there is a store in block");
818 SSA
.AddAvailableValue(BB
, StoredValue
);
822 // Now that all the intra-loop values are classified, set up the preheader.
823 // It gets a load of the pointer we're promoting, and it is the live-out value
824 // from the preheader.
825 LoadInst
*PreheaderLoad
= new LoadInst(SomePtr
,SomePtr
->getName()+".promoted",
826 Preheader
->getTerminator());
827 SSA
.AddAvailableValue(Preheader
, PreheaderLoad
);
829 // Now that the preheader is good to go, set up the exit blocks. Each exit
830 // block gets a store of the live-out values that feed them. Since we've
831 // already told the SSA updater about the defs in the loop and the preheader
832 // definition, it is all set and we can start using it.
833 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
834 CurLoop
->getUniqueExitBlocks(ExitBlocks
);
835 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
836 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
837 Value
*LiveInValue
= SSA
.GetValueInMiddleOfBlock(ExitBlock
);
838 Instruction
*InsertPos
= ExitBlock
->getFirstNonPHI();
839 new StoreInst(LiveInValue
, SomePtr
, InsertPos
);
842 // Okay, now we rewrite all loads that use live-in values in the loop,
843 // inserting PHI nodes as necessary.
844 for (unsigned i
= 0, e
= LiveInLoads
.size(); i
!= e
; ++i
) {
845 LoadInst
*ALoad
= LiveInLoads
[i
];
846 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
847 ALoad
->replaceAllUsesWith(NewVal
);
848 CurAST
->copyValue(ALoad
, NewVal
);
851 // Now that everything is rewritten, delete the old instructions from the body
852 // of the loop. They should all be dead now.
853 for (unsigned i
= 0, e
= LoopUses
.size(); i
!= e
; ++i
) {
854 Instruction
*User
= LoopUses
[i
];
855 CurAST
->deleteValue(User
);
856 User
->eraseFromParent();
859 // If the preheader load is itself a pointer, we need to tell alias analysis
860 // about the new pointer we created in the preheader block and about any PHI
861 // nodes that just got inserted.
862 if (PreheaderLoad
->getType()->isPointerTy()) {
863 // Copy any value stored to or loaded from a must-alias of the pointer.
864 CurAST
->copyValue(SomeValue
, PreheaderLoad
);
866 for (unsigned i
= 0, e
= NewPHIs
.size(); i
!= e
; ++i
)
867 CurAST
->copyValue(SomeValue
, NewPHIs
[i
]);
874 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
875 void LICM::cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
) {
876 AliasSetTracker
*AST
= LoopToAliasSetMap
.lookup(L
);
880 AST
->copyValue(From
, To
);
883 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
885 void LICM::deleteAnalysisValue(Value
*V
, Loop
*L
) {
886 AliasSetTracker
*AST
= LoopToAliasSetMap
.lookup(L
);