1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/InlineCost.h"
37 #include "llvm/Analysis/InstructionSimplify.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/Dominators.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
54 STATISTIC(NumBranches
, "Number of branches unswitched");
55 STATISTIC(NumSwitches
, "Number of switches unswitched");
56 STATISTIC(NumSelects
, "Number of selects unswitched");
57 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
58 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
60 // The specific value of 50 here was chosen based only on intuition and a
61 // few specific examples.
62 static cl::opt
<unsigned>
63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64 cl::init(50), cl::Hidden
);
67 class LoopUnswitch
: public LoopPass
{
68 LoopInfo
*LI
; // Loop information
71 // LoopProcessWorklist - Used to check if second loop needs processing
72 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73 std::vector
<Loop
*> LoopProcessWorklist
;
74 SmallPtrSet
<Value
*,8> UnswitchedVals
;
81 BasicBlock
*loopHeader
;
82 BasicBlock
*loopPreheader
;
84 // LoopBlocks contains all of the basic blocks of the loop, including the
85 // preheader of the loop, the body of the loop, and the exit blocks of the
86 // loop, in that order.
87 std::vector
<BasicBlock
*> LoopBlocks
;
88 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89 std::vector
<BasicBlock
*> NewBlocks
;
92 static char ID
; // Pass ID, replacement for typeid
93 explicit LoopUnswitch(bool Os
= false) :
94 LoopPass(ID
), OptimizeForSize(Os
), redoLoop(false),
95 currentLoop(NULL
), DT(NULL
), loopHeader(NULL
),
96 loopPreheader(NULL
) {}
98 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
99 bool processCurrentLoop();
101 /// This transformation requires natural loop information & requires that
102 /// loop preheaders be inserted into the CFG.
104 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
105 AU
.addRequiredID(LoopSimplifyID
);
106 AU
.addPreservedID(LoopSimplifyID
);
107 AU
.addRequired
<LoopInfo
>();
108 AU
.addPreserved
<LoopInfo
>();
109 AU
.addRequiredID(LCSSAID
);
110 AU
.addPreservedID(LCSSAID
);
111 AU
.addPreserved
<DominatorTree
>();
116 virtual void releaseMemory() {
117 UnswitchedVals
.clear();
120 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
122 void RemoveLoopFromWorklist(Loop
*L
) {
123 std::vector
<Loop
*>::iterator I
= std::find(LoopProcessWorklist
.begin(),
124 LoopProcessWorklist
.end(), L
);
125 if (I
!= LoopProcessWorklist
.end())
126 LoopProcessWorklist
.erase(I
);
129 void initLoopData() {
130 loopHeader
= currentLoop
->getHeader();
131 loopPreheader
= currentLoop
->getLoopPreheader();
134 /// Split all of the edges from inside the loop to their exit blocks.
135 /// Update the appropriate Phi nodes as we do so.
136 void SplitExitEdges(Loop
*L
, const SmallVector
<BasicBlock
*, 8> &ExitBlocks
);
138 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
);
139 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
140 BasicBlock
*ExitBlock
);
141 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
);
143 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
144 Constant
*Val
, bool isEqual
);
146 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
147 BasicBlock
*TrueDest
,
148 BasicBlock
*FalseDest
,
149 Instruction
*InsertPt
);
151 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
152 void RemoveBlockIfDead(BasicBlock
*BB
,
153 std::vector
<Instruction
*> &Worklist
, Loop
*l
);
154 void RemoveLoopFromHierarchy(Loop
*L
);
155 bool IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
= 0,
156 BasicBlock
**LoopExit
= 0);
160 char LoopUnswitch::ID
= 0;
161 INITIALIZE_PASS(LoopUnswitch
, "loop-unswitch", "Unswitch loops", false, false);
163 Pass
*llvm::createLoopUnswitchPass(bool Os
) {
164 return new LoopUnswitch(Os
);
167 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
168 /// invariant in the loop, or has an invariant piece, return the invariant.
169 /// Otherwise, return null.
170 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
) {
171 // We can never unswitch on vector conditions.
172 if (Cond
->getType()->isVectorTy())
175 // Constants should be folded, not unswitched on!
176 if (isa
<Constant
>(Cond
)) return 0;
178 // TODO: Handle: br (VARIANT|INVARIANT).
180 // Hoist simple values out.
181 if (L
->makeLoopInvariant(Cond
, Changed
))
184 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
185 if (BO
->getOpcode() == Instruction::And
||
186 BO
->getOpcode() == Instruction::Or
) {
187 // If either the left or right side is invariant, we can unswitch on this,
188 // which will cause the branch to go away in one loop and the condition to
189 // simplify in the other one.
190 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
))
192 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
))
199 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
200 LI
= &getAnalysis
<LoopInfo
>();
202 DT
= getAnalysisIfAvailable
<DominatorTree
>();
204 Function
*F
= currentLoop
->getHeader()->getParent();
205 bool Changed
= false;
207 assert(currentLoop
->isLCSSAForm(*DT
));
209 Changed
|= processCurrentLoop();
213 // FIXME: Reconstruct dom info, because it is not preserved properly.
215 DT
->runOnFunction(*F
);
220 /// processCurrentLoop - Do actual work and unswitch loop if possible
222 bool LoopUnswitch::processCurrentLoop() {
223 bool Changed
= false;
224 LLVMContext
&Context
= currentLoop
->getHeader()->getContext();
226 // Loop over all of the basic blocks in the loop. If we find an interior
227 // block that is branching on a loop-invariant condition, we can unswitch this
229 for (Loop::block_iterator I
= currentLoop
->block_begin(),
230 E
= currentLoop
->block_end(); I
!= E
; ++I
) {
231 TerminatorInst
*TI
= (*I
)->getTerminator();
232 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
233 // If this isn't branching on an invariant condition, we can't unswitch
235 if (BI
->isConditional()) {
236 // See if this, or some part of it, is loop invariant. If so, we can
237 // unswitch on it if we desire.
238 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
239 currentLoop
, Changed
);
240 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
241 ConstantInt::getTrue(Context
))) {
246 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
247 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
248 currentLoop
, Changed
);
249 if (LoopCond
&& SI
->getNumCases() > 1) {
250 // Find a value to unswitch on:
251 // FIXME: this should chose the most expensive case!
252 Constant
*UnswitchVal
= SI
->getCaseValue(1);
253 // Do not process same value again and again.
254 if (!UnswitchedVals
.insert(UnswitchVal
))
257 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
264 // Scan the instructions to check for unswitchable values.
265 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
267 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
268 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
269 currentLoop
, Changed
);
270 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
271 ConstantInt::getTrue(Context
))) {
280 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
281 /// loop with no side effects (including infinite loops).
283 /// If true, we return true and set ExitBB to the block we
286 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
288 std::set
<BasicBlock
*> &Visited
) {
289 if (!Visited
.insert(BB
).second
) {
290 // Already visited. Without more analysis, this could indicate an infinte loop.
292 } else if (!L
->contains(BB
)) {
293 // Otherwise, this is a loop exit, this is fine so long as this is the
295 if (ExitBB
!= 0) return false;
300 // Otherwise, this is an unvisited intra-loop node. Check all successors.
301 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
302 // Check to see if the successor is a trivial loop exit.
303 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
307 // Okay, everything after this looks good, check to make sure that this block
308 // doesn't include any side effects.
309 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
310 if (I
->mayHaveSideEffects())
316 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
317 /// leads to an exit from the specified loop, and has no side-effects in the
318 /// process. If so, return the block that is exited to, otherwise return null.
319 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
320 std::set
<BasicBlock
*> Visited
;
321 Visited
.insert(L
->getHeader()); // Branches to header make infinite loops.
322 BasicBlock
*ExitBB
= 0;
323 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
328 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
329 /// trivial: that is, that the condition controls whether or not the loop does
330 /// anything at all. If this is a trivial condition, unswitching produces no
331 /// code duplications (equivalently, it produces a simpler loop and a new empty
332 /// loop, which gets deleted).
334 /// If this is a trivial condition, return true, otherwise return false. When
335 /// returning true, this sets Cond and Val to the condition that controls the
336 /// trivial condition: when Cond dynamically equals Val, the loop is known to
337 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
340 bool LoopUnswitch::IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
,
341 BasicBlock
**LoopExit
) {
342 BasicBlock
*Header
= currentLoop
->getHeader();
343 TerminatorInst
*HeaderTerm
= Header
->getTerminator();
344 LLVMContext
&Context
= Header
->getContext();
346 BasicBlock
*LoopExitBB
= 0;
347 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(HeaderTerm
)) {
348 // If the header block doesn't end with a conditional branch on Cond, we
350 if (!BI
->isConditional() || BI
->getCondition() != Cond
)
353 // Check to see if a successor of the branch is guaranteed to
354 // exit through a unique exit block without having any
355 // side-effects. If so, determine the value of Cond that causes it to do
357 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
358 BI
->getSuccessor(0)))) {
359 if (Val
) *Val
= ConstantInt::getTrue(Context
);
360 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
361 BI
->getSuccessor(1)))) {
362 if (Val
) *Val
= ConstantInt::getFalse(Context
);
364 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(HeaderTerm
)) {
365 // If this isn't a switch on Cond, we can't handle it.
366 if (SI
->getCondition() != Cond
) return false;
368 // Check to see if a successor of the switch is guaranteed to go to the
369 // latch block or exit through a one exit block without having any
370 // side-effects. If so, determine the value of Cond that causes it to do
371 // this. Note that we can't trivially unswitch on the default case.
372 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
373 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
374 SI
->getSuccessor(i
)))) {
375 // Okay, we found a trivial case, remember the value that is trivial.
376 if (Val
) *Val
= SI
->getCaseValue(i
);
381 // If we didn't find a single unique LoopExit block, or if the loop exit block
382 // contains phi nodes, this isn't trivial.
383 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
384 return false; // Can't handle this.
386 if (LoopExit
) *LoopExit
= LoopExitBB
;
388 // We already know that nothing uses any scalar values defined inside of this
389 // loop. As such, we just have to check to see if this loop will execute any
390 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
391 // part of the loop that the code *would* execute. We already checked the
392 // tail, check the header now.
393 for (BasicBlock::iterator I
= Header
->begin(), E
= Header
->end(); I
!= E
; ++I
)
394 if (I
->mayHaveSideEffects())
399 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
400 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
401 /// unswitch the loop, reprocess the pieces, then return true.
402 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
) {
406 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
410 Function
*F
= loopHeader
->getParent();
412 Constant
*CondVal
= 0;
413 BasicBlock
*ExitBlock
= 0;
414 if (IsTrivialUnswitchCondition(LoopCond
, &CondVal
, &ExitBlock
)) {
415 // If the condition is trivial, always unswitch. There is no code growth
417 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, ExitBlock
);
421 // Check to see if it would be profitable to unswitch current loop.
423 // Do not do non-trivial unswitch while optimizing for size.
424 if (OptimizeForSize
|| F
->hasFnAttr(Attribute::OptimizeForSize
))
427 // FIXME: This is overly conservative because it does not take into
428 // consideration code simplification opportunities and code that can
429 // be shared by the resultant unswitched loops.
431 for (Loop::block_iterator I
= currentLoop
->block_begin(),
432 E
= currentLoop
->block_end();
434 Metrics
.analyzeBasicBlock(*I
);
436 // Limit the number of instructions to avoid causing significant code
437 // expansion, and the number of basic blocks, to avoid loops with
438 // large numbers of branches which cause loop unswitching to go crazy.
439 // This is a very ad-hoc heuristic.
440 if (Metrics
.NumInsts
> Threshold
||
441 Metrics
.NumBlocks
* 5 > Threshold
||
442 Metrics
.containsIndirectBr
|| Metrics
.isRecursive
) {
443 DEBUG(dbgs() << "NOT unswitching loop %"
444 << currentLoop
->getHeader()->getName() << ", cost too high: "
445 << currentLoop
->getBlocks().size() << "\n");
449 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
);
453 // RemapInstruction - Convert the instruction operands from referencing the
454 // current values into those specified by VMap.
456 static inline void RemapInstruction(Instruction
*I
,
457 ValueMap
<const Value
*, Value
*> &VMap
) {
458 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
459 Value
*Op
= I
->getOperand(op
);
460 ValueMap
<const Value
*, Value
*>::iterator It
= VMap
.find(Op
);
461 if (It
!= VMap
.end()) Op
= It
->second
;
462 I
->setOperand(op
, Op
);
466 /// CloneLoop - Recursively clone the specified loop and all of its children,
467 /// mapping the blocks with the specified map.
468 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, ValueMap
<const Value
*, Value
*> &VM
,
469 LoopInfo
*LI
, LPPassManager
*LPM
) {
470 Loop
*New
= new Loop();
471 LPM
->insertLoop(New
, PL
);
473 // Add all of the blocks in L to the new loop.
474 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
476 if (LI
->getLoopFor(*I
) == L
)
477 New
->addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), LI
->getBase());
479 // Add all of the subloops to the new loop.
480 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
481 CloneLoop(*I
, New
, VM
, LI
, LPM
);
486 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
487 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
488 /// code immediately before InsertPt.
489 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
490 BasicBlock
*TrueDest
,
491 BasicBlock
*FalseDest
,
492 Instruction
*InsertPt
) {
493 // Insert a conditional branch on LIC to the two preheaders. The original
494 // code is the true version and the new code is the false version.
495 Value
*BranchVal
= LIC
;
496 if (!isa
<ConstantInt
>(Val
) ||
497 Val
->getType() != Type::getInt1Ty(LIC
->getContext()))
498 BranchVal
= new ICmpInst(InsertPt
, ICmpInst::ICMP_EQ
, LIC
, Val
, "tmp");
499 else if (Val
!= ConstantInt::getTrue(Val
->getContext()))
500 // We want to enter the new loop when the condition is true.
501 std::swap(TrueDest
, FalseDest
);
503 // Insert the new branch.
504 BranchInst
*BI
= BranchInst::Create(TrueDest
, FalseDest
, BranchVal
, InsertPt
);
506 // If either edge is critical, split it. This helps preserve LoopSimplify
507 // form for enclosing loops.
508 SplitCriticalEdge(BI
, 0, this);
509 SplitCriticalEdge(BI
, 1, this);
512 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
513 /// condition in it (a cond branch from its header block to its latch block,
514 /// where the path through the loop that doesn't execute its body has no
515 /// side-effects), unswitch it. This doesn't involve any code duplication, just
516 /// moving the conditional branch outside of the loop and updating loop info.
517 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
,
519 BasicBlock
*ExitBlock
) {
520 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
521 << loopHeader
->getName() << " [" << L
->getBlocks().size()
522 << " blocks] in Function " << L
->getHeader()->getParent()->getName()
523 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
525 // First step, split the preheader, so that we know that there is a safe place
526 // to insert the conditional branch. We will change loopPreheader to have a
527 // conditional branch on Cond.
528 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, this);
530 // Now that we have a place to insert the conditional branch, create a place
531 // to branch to: this is the exit block out of the loop that we should
534 // Split this block now, so that the loop maintains its exit block, and so
535 // that the jump from the preheader can execute the contents of the exit block
536 // without actually branching to it (the exit block should be dominated by the
537 // loop header, not the preheader).
538 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
539 BasicBlock
*NewExit
= SplitBlock(ExitBlock
, ExitBlock
->begin(), this);
541 // Okay, now we have a position to branch from and a position to branch to,
542 // insert the new conditional branch.
543 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
,
544 loopPreheader
->getTerminator());
545 LPM
->deleteSimpleAnalysisValue(loopPreheader
->getTerminator(), L
);
546 loopPreheader
->getTerminator()->eraseFromParent();
548 // We need to reprocess this loop, it could be unswitched again.
551 // Now that we know that the loop is never entered when this condition is a
552 // particular value, rewrite the loop with this info. We know that this will
553 // at least eliminate the old branch.
554 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
558 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
559 /// blocks. Update the appropriate Phi nodes as we do so.
560 void LoopUnswitch::SplitExitEdges(Loop
*L
,
561 const SmallVector
<BasicBlock
*, 8> &ExitBlocks
){
563 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
564 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
565 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(ExitBlock
),
566 pred_end(ExitBlock
));
567 SplitBlockPredecessors(ExitBlock
, Preds
.data(), Preds
.size(),
572 /// UnswitchNontrivialCondition - We determined that the loop is profitable
573 /// to unswitch when LIC equal Val. Split it into loop versions and test the
574 /// condition outside of either loop. Return the loops created as Out1/Out2.
575 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
577 Function
*F
= loopHeader
->getParent();
578 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
579 << loopHeader
->getName() << " [" << L
->getBlocks().size()
580 << " blocks] in Function " << F
->getName()
581 << " when '" << *Val
<< "' == " << *LIC
<< "\n");
586 // First step, split the preheader and exit blocks, and add these blocks to
587 // the LoopBlocks list.
588 BasicBlock
*NewPreheader
= SplitEdge(loopPreheader
, loopHeader
, this);
589 LoopBlocks
.push_back(NewPreheader
);
591 // We want the loop to come after the preheader, but before the exit blocks.
592 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
594 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
595 L
->getUniqueExitBlocks(ExitBlocks
);
597 // Split all of the edges from inside the loop to their exit blocks. Update
598 // the appropriate Phi nodes as we do so.
599 SplitExitEdges(L
, ExitBlocks
);
601 // The exit blocks may have been changed due to edge splitting, recompute.
603 L
->getUniqueExitBlocks(ExitBlocks
);
605 // Add exit blocks to the loop blocks.
606 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
608 // Next step, clone all of the basic blocks that make up the loop (including
609 // the loop preheader and exit blocks), keeping track of the mapping between
610 // the instructions and blocks.
611 NewBlocks
.reserve(LoopBlocks
.size());
612 ValueMap
<const Value
*, Value
*> VMap
;
613 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
614 BasicBlock
*NewBB
= CloneBasicBlock(LoopBlocks
[i
], VMap
, ".us", F
);
615 NewBlocks
.push_back(NewBB
);
616 VMap
[LoopBlocks
[i
]] = NewBB
; // Keep the BB mapping.
617 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], NewBB
, L
);
620 // Splice the newly inserted blocks into the function right before the
621 // original preheader.
622 F
->getBasicBlockList().splice(NewPreheader
, F
->getBasicBlockList(),
623 NewBlocks
[0], F
->end());
625 // Now we create the new Loop object for the versioned loop.
626 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), VMap
, LI
, LPM
);
627 Loop
*ParentLoop
= L
->getParentLoop();
629 // Make sure to add the cloned preheader and exit blocks to the parent loop
631 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], LI
->getBase());
634 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
635 BasicBlock
*NewExit
= cast
<BasicBlock
>(VMap
[ExitBlocks
[i
]]);
636 // The new exit block should be in the same loop as the old one.
637 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
638 ExitBBLoop
->addBasicBlockToLoop(NewExit
, LI
->getBase());
640 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
641 "Exit block should have been split to have one successor!");
642 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
644 // If the successor of the exit block had PHI nodes, add an entry for
647 for (BasicBlock::iterator I
= ExitSucc
->begin(); isa
<PHINode
>(I
); ++I
) {
648 PN
= cast
<PHINode
>(I
);
649 Value
*V
= PN
->getIncomingValueForBlock(ExitBlocks
[i
]);
650 ValueMap
<const Value
*, Value
*>::iterator It
= VMap
.find(V
);
651 if (It
!= VMap
.end()) V
= It
->second
;
652 PN
->addIncoming(V
, NewExit
);
656 // Rewrite the code to refer to itself.
657 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
)
658 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
659 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
660 RemapInstruction(I
, VMap
);
662 // Rewrite the original preheader to select between versions of the loop.
663 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
664 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
665 "Preheader splitting did not work correctly!");
667 // Emit the new branch that selects between the two versions of this loop.
668 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
);
669 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
670 OldBR
->eraseFromParent();
672 LoopProcessWorklist
.push_back(NewLoop
);
675 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
676 // deletes the instruction (for example by simplifying a PHI that feeds into
677 // the condition that we're unswitching on), we don't rewrite the second
679 WeakVH
LICHandle(LIC
);
681 // Now we rewrite the original code to know that the condition is true and the
682 // new code to know that the condition is false.
683 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
685 // It's possible that simplifying one loop could cause the other to be
686 // changed to another value or a constant. If its a constant, don't simplify
688 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
&&
689 LICHandle
&& !isa
<Constant
>(LICHandle
))
690 RewriteLoopBodyWithConditionConstant(NewLoop
, LICHandle
, Val
, true);
693 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
695 static void RemoveFromWorklist(Instruction
*I
,
696 std::vector
<Instruction
*> &Worklist
) {
697 std::vector
<Instruction
*>::iterator WI
= std::find(Worklist
.begin(),
699 while (WI
!= Worklist
.end()) {
700 unsigned Offset
= WI
-Worklist
.begin();
702 WI
= std::find(Worklist
.begin()+Offset
, Worklist
.end(), I
);
706 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
707 /// program, replacing all uses with V and update the worklist.
708 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
709 std::vector
<Instruction
*> &Worklist
,
710 Loop
*L
, LPPassManager
*LPM
) {
711 DEBUG(dbgs() << "Replace with '" << *V
<< "': " << *I
);
713 // Add uses to the worklist, which may be dead now.
714 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
715 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
716 Worklist
.push_back(Use
);
718 // Add users to the worklist which may be simplified now.
719 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
721 Worklist
.push_back(cast
<Instruction
>(*UI
));
722 LPM
->deleteSimpleAnalysisValue(I
, L
);
723 RemoveFromWorklist(I
, Worklist
);
724 I
->replaceAllUsesWith(V
);
725 I
->eraseFromParent();
729 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
730 /// information, and remove any dead successors it has.
732 void LoopUnswitch::RemoveBlockIfDead(BasicBlock
*BB
,
733 std::vector
<Instruction
*> &Worklist
,
735 if (pred_begin(BB
) != pred_end(BB
)) {
736 // This block isn't dead, since an edge to BB was just removed, see if there
737 // are any easy simplifications we can do now.
738 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
739 // If it has one pred, fold phi nodes in BB.
740 while (isa
<PHINode
>(BB
->begin()))
741 ReplaceUsesOfWith(BB
->begin(),
742 cast
<PHINode
>(BB
->begin())->getIncomingValue(0),
745 // If this is the header of a loop and the only pred is the latch, we now
746 // have an unreachable loop.
747 if (Loop
*L
= LI
->getLoopFor(BB
))
748 if (loopHeader
== BB
&& L
->contains(Pred
)) {
749 // Remove the branch from the latch to the header block, this makes
750 // the header dead, which will make the latch dead (because the header
751 // dominates the latch).
752 LPM
->deleteSimpleAnalysisValue(Pred
->getTerminator(), L
);
753 Pred
->getTerminator()->eraseFromParent();
754 new UnreachableInst(BB
->getContext(), Pred
);
756 // The loop is now broken, remove it from LI.
757 RemoveLoopFromHierarchy(L
);
759 // Reprocess the header, which now IS dead.
760 RemoveBlockIfDead(BB
, Worklist
, L
);
764 // If pred ends in a uncond branch, add uncond branch to worklist so that
765 // the two blocks will get merged.
766 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
767 if (BI
->isUnconditional())
768 Worklist
.push_back(BI
);
773 DEBUG(dbgs() << "Nuking dead block: " << *BB
);
775 // Remove the instructions in the basic block from the worklist.
776 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
777 RemoveFromWorklist(I
, Worklist
);
779 // Anything that uses the instructions in this basic block should have their
780 // uses replaced with undefs.
781 // If I is not void type then replaceAllUsesWith undef.
782 // This allows ValueHandlers and custom metadata to adjust itself.
783 if (!I
->getType()->isVoidTy())
784 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
787 // If this is the edge to the header block for a loop, remove the loop and
788 // promote all subloops.
789 if (Loop
*BBLoop
= LI
->getLoopFor(BB
)) {
790 if (BBLoop
->getLoopLatch() == BB
)
791 RemoveLoopFromHierarchy(BBLoop
);
794 // Remove the block from the loop info, which removes it from any loops it
799 // Remove phi node entries in successors for this block.
800 TerminatorInst
*TI
= BB
->getTerminator();
801 SmallVector
<BasicBlock
*, 4> Succs
;
802 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
803 Succs
.push_back(TI
->getSuccessor(i
));
804 TI
->getSuccessor(i
)->removePredecessor(BB
);
807 // Unique the successors, remove anything with multiple uses.
808 array_pod_sort(Succs
.begin(), Succs
.end());
809 Succs
.erase(std::unique(Succs
.begin(), Succs
.end()), Succs
.end());
811 // Remove the basic block, including all of the instructions contained in it.
812 LPM
->deleteSimpleAnalysisValue(BB
, L
);
813 BB
->eraseFromParent();
814 // Remove successor blocks here that are not dead, so that we know we only
815 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
816 // then getting removed before we revisit them, which is badness.
818 for (unsigned i
= 0; i
!= Succs
.size(); ++i
)
819 if (pred_begin(Succs
[i
]) != pred_end(Succs
[i
])) {
820 // One exception is loop headers. If this block was the preheader for a
821 // loop, then we DO want to visit the loop so the loop gets deleted.
822 // We know that if the successor is a loop header, that this loop had to
823 // be the preheader: the case where this was the latch block was handled
824 // above and headers can only have two predecessors.
825 if (!LI
->isLoopHeader(Succs
[i
])) {
826 Succs
.erase(Succs
.begin()+i
);
831 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
832 RemoveBlockIfDead(Succs
[i
], Worklist
, L
);
835 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
836 /// become unwrapped, either because the backedge was deleted, or because the
837 /// edge into the header was removed. If the edge into the header from the
838 /// latch block was removed, the loop is unwrapped but subloops are still alive,
839 /// so they just reparent loops. If the loops are actually dead, they will be
841 void LoopUnswitch::RemoveLoopFromHierarchy(Loop
*L
) {
842 LPM
->deleteLoopFromQueue(L
);
843 RemoveLoopFromWorklist(L
);
846 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
847 // the value specified by Val in the specified loop, or we know it does NOT have
848 // that value. Rewrite any uses of LIC or of properties correlated to it.
849 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
852 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
854 // FIXME: Support correlated properties, like:
861 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
862 // selects, switches.
863 std::vector
<User
*> Users(LIC
->use_begin(), LIC
->use_end());
864 std::vector
<Instruction
*> Worklist
;
865 LLVMContext
&Context
= Val
->getContext();
868 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
869 // in the loop with the appropriate one directly.
870 if (IsEqual
|| (isa
<ConstantInt
>(Val
) &&
871 Val
->getType()->isIntegerTy(1))) {
876 Replacement
= ConstantInt::get(Type::getInt1Ty(Val
->getContext()),
877 !cast
<ConstantInt
>(Val
)->getZExtValue());
879 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
880 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
883 U
->replaceUsesOfWith(LIC
, Replacement
);
884 Worklist
.push_back(U
);
886 SimplifyCode(Worklist
, L
);
890 // Otherwise, we don't know the precise value of LIC, but we do know that it
891 // is certainly NOT "Val". As such, simplify any uses in the loop that we
892 // can. This case occurs when we unswitch switch statements.
893 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
894 Instruction
*U
= cast
<Instruction
>(Users
[i
]);
898 Worklist
.push_back(U
);
900 // TODO: We could do other simplifications, for example, turning
901 // 'icmp eq LIC, Val' -> false.
903 // If we know that LIC is not Val, use this info to simplify code.
904 SwitchInst
*SI
= dyn_cast
<SwitchInst
>(U
);
905 if (SI
== 0 || !isa
<ConstantInt
>(Val
)) continue;
907 unsigned DeadCase
= SI
->findCaseValue(cast
<ConstantInt
>(Val
));
908 if (DeadCase
== 0) continue; // Default case is live for multiple values.
910 // Found a dead case value. Don't remove PHI nodes in the
911 // successor if they become single-entry, those PHI nodes may
912 // be in the Users list.
914 // FIXME: This is a hack. We need to keep the successor around
915 // and hooked up so as to preserve the loop structure, because
916 // trying to update it is complicated. So instead we preserve the
917 // loop structure and put the block on a dead code path.
918 BasicBlock
*Switch
= SI
->getParent();
919 SplitEdge(Switch
, SI
->getSuccessor(DeadCase
), this);
920 // Compute the successors instead of relying on the return value
921 // of SplitEdge, since it may have split the switch successor
923 BasicBlock
*NewSISucc
= SI
->getSuccessor(DeadCase
);
924 BasicBlock
*OldSISucc
= *succ_begin(NewSISucc
);
925 // Create an "unreachable" destination.
926 BasicBlock
*Abort
= BasicBlock::Create(Context
, "us-unreachable",
929 new UnreachableInst(Context
, Abort
);
930 // Force the new case destination to branch to the "unreachable"
931 // block while maintaining a (dead) CFG edge to the old block.
932 NewSISucc
->getTerminator()->eraseFromParent();
933 BranchInst::Create(Abort
, OldSISucc
,
934 ConstantInt::getTrue(Context
), NewSISucc
);
935 // Release the PHI operands for this edge.
936 for (BasicBlock::iterator II
= NewSISucc
->begin();
937 PHINode
*PN
= dyn_cast
<PHINode
>(II
); ++II
)
938 PN
->setIncomingValue(PN
->getBasicBlockIndex(Switch
),
939 UndefValue::get(PN
->getType()));
940 // Tell the domtree about the new block. We don't fully update the
941 // domtree here -- instead we force it to do a full recomputation
942 // after the pass is complete -- but we do need to inform it of
945 DT
->addNewBlock(Abort
, NewSISucc
);
948 SimplifyCode(Worklist
, L
);
951 /// SimplifyCode - Okay, now that we have simplified some instructions in the
952 /// loop, walk over it and constant prop, dce, and fold control flow where
953 /// possible. Note that this is effectively a very simple loop-structure-aware
954 /// optimizer. During processing of this loop, L could very well be deleted, so
955 /// it must not be used.
957 /// FIXME: When the loop optimizer is more mature, separate this out to a new
960 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
961 while (!Worklist
.empty()) {
962 Instruction
*I
= Worklist
.back();
965 // Simple constant folding.
966 if (Constant
*C
= ConstantFoldInstruction(I
)) {
967 ReplaceUsesOfWith(I
, C
, Worklist
, L
, LPM
);
972 if (isInstructionTriviallyDead(I
)) {
973 DEBUG(dbgs() << "Remove dead instruction '" << *I
);
975 // Add uses to the worklist, which may be dead now.
976 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
977 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
978 Worklist
.push_back(Use
);
979 LPM
->deleteSimpleAnalysisValue(I
, L
);
980 RemoveFromWorklist(I
, Worklist
);
981 I
->eraseFromParent();
986 // See if instruction simplification can hack this up. This is common for
987 // things like "select false, X, Y" after unswitching made the condition be
989 if (Value
*V
= SimplifyInstruction(I
)) {
990 ReplaceUsesOfWith(I
, V
, Worklist
, L
, LPM
);
994 // Special case hacks that appear commonly in unswitched code.
995 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
996 if (BI
->isUnconditional()) {
997 // If BI's parent is the only pred of the successor, fold the two blocks
999 BasicBlock
*Pred
= BI
->getParent();
1000 BasicBlock
*Succ
= BI
->getSuccessor(0);
1001 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1002 if (!SinglePred
) continue; // Nothing to do.
1003 assert(SinglePred
== Pred
&& "CFG broken");
1005 DEBUG(dbgs() << "Merging blocks: " << Pred
->getName() << " <- "
1006 << Succ
->getName() << "\n");
1008 // Resolve any single entry PHI nodes in Succ.
1009 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1010 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1012 // Move all of the successor contents from Succ to Pred.
1013 Pred
->getInstList().splice(BI
, Succ
->getInstList(), Succ
->begin(),
1015 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1016 BI
->eraseFromParent();
1017 RemoveFromWorklist(BI
, Worklist
);
1019 // If Succ has any successors with PHI nodes, update them to have
1020 // entries coming from Pred instead of Succ.
1021 Succ
->replaceAllUsesWith(Pred
);
1023 // Remove Succ from the loop tree.
1024 LI
->removeBlock(Succ
);
1025 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1026 Succ
->eraseFromParent();
1031 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(BI
->getCondition())){
1032 // Conditional branch. Turn it into an unconditional branch, then
1033 // remove dead blocks.
1034 continue; // FIXME: Enable.
1036 DEBUG(dbgs() << "Folded branch: " << *BI
);
1037 BasicBlock
*DeadSucc
= BI
->getSuccessor(CB
->getZExtValue());
1038 BasicBlock
*LiveSucc
= BI
->getSuccessor(!CB
->getZExtValue());
1039 DeadSucc
->removePredecessor(BI
->getParent(), true);
1040 Worklist
.push_back(BranchInst::Create(LiveSucc
, BI
));
1041 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1042 BI
->eraseFromParent();
1043 RemoveFromWorklist(BI
, Worklist
);
1046 RemoveBlockIfDead(DeadSucc
, Worklist
, L
);