fix more AST updating bugs, correcting miscompilation in PR8041
[llvm.git] / lib / Transforms / Scalar / SimplifyLibCalls.cpp
blobd7ce53f3671530bbea4ec5f3429f14bcce1b4c41
1 //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple pass that applies a variety of small
11 // optimizations for calls to specific well-known function calls (e.g. runtime
12 // library functions). Any optimization that takes the very simple form
13 // "replace call to library function with simpler code that provides the same
14 // result" belongs in this file.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "simplify-libcalls"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BuildLibCalls.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/IRBuilder.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Config/config.h"
35 using namespace llvm;
37 STATISTIC(NumSimplified, "Number of library calls simplified");
38 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
40 //===----------------------------------------------------------------------===//
41 // Optimizer Base Class
42 //===----------------------------------------------------------------------===//
44 /// This class is the abstract base class for the set of optimizations that
45 /// corresponds to one library call.
46 namespace {
47 class LibCallOptimization {
48 protected:
49 Function *Caller;
50 const TargetData *TD;
51 LLVMContext* Context;
52 public:
53 LibCallOptimization() { }
54 virtual ~LibCallOptimization() {}
56 /// CallOptimizer - This pure virtual method is implemented by base classes to
57 /// do various optimizations. If this returns null then no transformation was
58 /// performed. If it returns CI, then it transformed the call and CI is to be
59 /// deleted. If it returns something else, replace CI with the new value and
60 /// delete CI.
61 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
62 =0;
64 Value *OptimizeCall(CallInst *CI, const TargetData *TD, IRBuilder<> &B) {
65 Caller = CI->getParent()->getParent();
66 this->TD = TD;
67 if (CI->getCalledFunction())
68 Context = &CI->getCalledFunction()->getContext();
70 // We never change the calling convention.
71 if (CI->getCallingConv() != llvm::CallingConv::C)
72 return NULL;
74 return CallOptimizer(CI->getCalledFunction(), CI, B);
77 } // End anonymous namespace.
80 //===----------------------------------------------------------------------===//
81 // Helper Functions
82 //===----------------------------------------------------------------------===//
84 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
85 /// value is equal or not-equal to zero.
86 static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
87 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
88 UI != E; ++UI) {
89 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
90 if (IC->isEquality())
91 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
92 if (C->isNullValue())
93 continue;
94 // Unknown instruction.
95 return false;
97 return true;
100 /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality
101 /// comparisons with With.
102 static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) {
103 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
104 UI != E; ++UI) {
105 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
106 if (IC->isEquality() && IC->getOperand(1) == With)
107 continue;
108 // Unknown instruction.
109 return false;
111 return true;
114 //===----------------------------------------------------------------------===//
115 // String and Memory LibCall Optimizations
116 //===----------------------------------------------------------------------===//
118 //===---------------------------------------===//
119 // 'strcat' Optimizations
120 namespace {
121 struct StrCatOpt : public LibCallOptimization {
122 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
123 // Verify the "strcat" function prototype.
124 const FunctionType *FT = Callee->getFunctionType();
125 if (FT->getNumParams() != 2 ||
126 FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
127 FT->getParamType(0) != FT->getReturnType() ||
128 FT->getParamType(1) != FT->getReturnType())
129 return 0;
131 // Extract some information from the instruction
132 Value *Dst = CI->getArgOperand(0);
133 Value *Src = CI->getArgOperand(1);
135 // See if we can get the length of the input string.
136 uint64_t Len = GetStringLength(Src);
137 if (Len == 0) return 0;
138 --Len; // Unbias length.
140 // Handle the simple, do-nothing case: strcat(x, "") -> x
141 if (Len == 0)
142 return Dst;
144 // These optimizations require TargetData.
145 if (!TD) return 0;
147 EmitStrLenMemCpy(Src, Dst, Len, B);
148 return Dst;
151 void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) {
152 // We need to find the end of the destination string. That's where the
153 // memory is to be moved to. We just generate a call to strlen.
154 Value *DstLen = EmitStrLen(Dst, B, TD);
156 // Now that we have the destination's length, we must index into the
157 // destination's pointer to get the actual memcpy destination (end of
158 // the string .. we're concatenating).
159 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
161 // We have enough information to now generate the memcpy call to do the
162 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
163 EmitMemCpy(CpyDst, Src,
164 ConstantInt::get(TD->getIntPtrType(*Context), Len+1),
165 1, false, B, TD);
169 //===---------------------------------------===//
170 // 'strncat' Optimizations
172 struct StrNCatOpt : public StrCatOpt {
173 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
174 // Verify the "strncat" function prototype.
175 const FunctionType *FT = Callee->getFunctionType();
176 if (FT->getNumParams() != 3 ||
177 FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
178 FT->getParamType(0) != FT->getReturnType() ||
179 FT->getParamType(1) != FT->getReturnType() ||
180 !FT->getParamType(2)->isIntegerTy())
181 return 0;
183 // Extract some information from the instruction
184 Value *Dst = CI->getArgOperand(0);
185 Value *Src = CI->getArgOperand(1);
186 uint64_t Len;
188 // We don't do anything if length is not constant
189 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
190 Len = LengthArg->getZExtValue();
191 else
192 return 0;
194 // See if we can get the length of the input string.
195 uint64_t SrcLen = GetStringLength(Src);
196 if (SrcLen == 0) return 0;
197 --SrcLen; // Unbias length.
199 // Handle the simple, do-nothing cases:
200 // strncat(x, "", c) -> x
201 // strncat(x, c, 0) -> x
202 if (SrcLen == 0 || Len == 0) return Dst;
204 // These optimizations require TargetData.
205 if (!TD) return 0;
207 // We don't optimize this case
208 if (Len < SrcLen) return 0;
210 // strncat(x, s, c) -> strcat(x, s)
211 // s is constant so the strcat can be optimized further
212 EmitStrLenMemCpy(Src, Dst, SrcLen, B);
213 return Dst;
217 //===---------------------------------------===//
218 // 'strchr' Optimizations
220 struct StrChrOpt : public LibCallOptimization {
221 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
222 // Verify the "strchr" function prototype.
223 const FunctionType *FT = Callee->getFunctionType();
224 if (FT->getNumParams() != 2 ||
225 FT->getReturnType() != Type::getInt8PtrTy(*Context) ||
226 FT->getParamType(0) != FT->getReturnType())
227 return 0;
229 Value *SrcStr = CI->getArgOperand(0);
231 // If the second operand is non-constant, see if we can compute the length
232 // of the input string and turn this into memchr.
233 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
234 if (CharC == 0) {
235 // These optimizations require TargetData.
236 if (!TD) return 0;
238 uint64_t Len = GetStringLength(SrcStr);
239 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
240 return 0;
242 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
243 ConstantInt::get(TD->getIntPtrType(*Context), Len),
244 B, TD);
247 // Otherwise, the character is a constant, see if the first argument is
248 // a string literal. If so, we can constant fold.
249 std::string Str;
250 if (!GetConstantStringInfo(SrcStr, Str))
251 return 0;
253 // strchr can find the nul character.
254 Str += '\0';
255 char CharValue = CharC->getSExtValue();
257 // Compute the offset.
258 uint64_t i = 0;
259 while (1) {
260 if (i == Str.size()) // Didn't find the char. strchr returns null.
261 return Constant::getNullValue(CI->getType());
262 // Did we find our match?
263 if (Str[i] == CharValue)
264 break;
265 ++i;
268 // strchr(s+n,c) -> gep(s+n+i,c)
269 Value *Idx = ConstantInt::get(Type::getInt64Ty(*Context), i);
270 return B.CreateGEP(SrcStr, Idx, "strchr");
274 //===---------------------------------------===//
275 // 'strcmp' Optimizations
277 struct StrCmpOpt : public LibCallOptimization {
278 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
279 // Verify the "strcmp" function prototype.
280 const FunctionType *FT = Callee->getFunctionType();
281 if (FT->getNumParams() != 2 ||
282 !FT->getReturnType()->isIntegerTy(32) ||
283 FT->getParamType(0) != FT->getParamType(1) ||
284 FT->getParamType(0) != Type::getInt8PtrTy(*Context))
285 return 0;
287 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
288 if (Str1P == Str2P) // strcmp(x,x) -> 0
289 return ConstantInt::get(CI->getType(), 0);
291 std::string Str1, Str2;
292 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
293 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
295 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
296 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
298 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
299 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
301 // strcmp(x, y) -> cnst (if both x and y are constant strings)
302 if (HasStr1 && HasStr2)
303 return ConstantInt::get(CI->getType(),
304 strcmp(Str1.c_str(),Str2.c_str()));
306 // strcmp(P, "x") -> memcmp(P, "x", 2)
307 uint64_t Len1 = GetStringLength(Str1P);
308 uint64_t Len2 = GetStringLength(Str2P);
309 if (Len1 && Len2) {
310 // These optimizations require TargetData.
311 if (!TD) return 0;
313 return EmitMemCmp(Str1P, Str2P,
314 ConstantInt::get(TD->getIntPtrType(*Context),
315 std::min(Len1, Len2)), B, TD);
318 return 0;
322 //===---------------------------------------===//
323 // 'strncmp' Optimizations
325 struct StrNCmpOpt : public LibCallOptimization {
326 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
327 // Verify the "strncmp" function prototype.
328 const FunctionType *FT = Callee->getFunctionType();
329 if (FT->getNumParams() != 3 ||
330 !FT->getReturnType()->isIntegerTy(32) ||
331 FT->getParamType(0) != FT->getParamType(1) ||
332 FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
333 !FT->getParamType(2)->isIntegerTy())
334 return 0;
336 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
337 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
338 return ConstantInt::get(CI->getType(), 0);
340 // Get the length argument if it is constant.
341 uint64_t Length;
342 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
343 Length = LengthArg->getZExtValue();
344 else
345 return 0;
347 if (Length == 0) // strncmp(x,y,0) -> 0
348 return ConstantInt::get(CI->getType(), 0);
350 if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
351 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD);
353 std::string Str1, Str2;
354 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
355 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
357 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
358 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
360 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
361 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
363 // strncmp(x, y) -> cnst (if both x and y are constant strings)
364 if (HasStr1 && HasStr2)
365 return ConstantInt::get(CI->getType(),
366 strncmp(Str1.c_str(), Str2.c_str(), Length));
367 return 0;
372 //===---------------------------------------===//
373 // 'strcpy' Optimizations
375 struct StrCpyOpt : public LibCallOptimization {
376 bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall.
378 StrCpyOpt(bool c) : OptChkCall(c) {}
380 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
381 // Verify the "strcpy" function prototype.
382 unsigned NumParams = OptChkCall ? 3 : 2;
383 const FunctionType *FT = Callee->getFunctionType();
384 if (FT->getNumParams() != NumParams ||
385 FT->getReturnType() != FT->getParamType(0) ||
386 FT->getParamType(0) != FT->getParamType(1) ||
387 FT->getParamType(0) != Type::getInt8PtrTy(*Context))
388 return 0;
390 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
391 if (Dst == Src) // strcpy(x,x) -> x
392 return Src;
394 // These optimizations require TargetData.
395 if (!TD) return 0;
397 // See if we can get the length of the input string.
398 uint64_t Len = GetStringLength(Src);
399 if (Len == 0) return 0;
401 // We have enough information to now generate the memcpy call to do the
402 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
403 if (OptChkCall)
404 EmitMemCpyChk(Dst, Src,
405 ConstantInt::get(TD->getIntPtrType(*Context), Len),
406 CI->getArgOperand(2), B, TD);
407 else
408 EmitMemCpy(Dst, Src,
409 ConstantInt::get(TD->getIntPtrType(*Context), Len),
410 1, false, B, TD);
411 return Dst;
415 //===---------------------------------------===//
416 // 'strncpy' Optimizations
418 struct StrNCpyOpt : public LibCallOptimization {
419 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
420 const FunctionType *FT = Callee->getFunctionType();
421 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
422 FT->getParamType(0) != FT->getParamType(1) ||
423 FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
424 !FT->getParamType(2)->isIntegerTy())
425 return 0;
427 Value *Dst = CI->getArgOperand(0);
428 Value *Src = CI->getArgOperand(1);
429 Value *LenOp = CI->getArgOperand(2);
431 // See if we can get the length of the input string.
432 uint64_t SrcLen = GetStringLength(Src);
433 if (SrcLen == 0) return 0;
434 --SrcLen;
436 if (SrcLen == 0) {
437 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
438 EmitMemSet(Dst, ConstantInt::get(Type::getInt8Ty(*Context), '\0'),
439 LenOp, false, B, TD);
440 return Dst;
443 uint64_t Len;
444 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
445 Len = LengthArg->getZExtValue();
446 else
447 return 0;
449 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
451 // These optimizations require TargetData.
452 if (!TD) return 0;
454 // Let strncpy handle the zero padding
455 if (Len > SrcLen+1) return 0;
457 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
458 EmitMemCpy(Dst, Src,
459 ConstantInt::get(TD->getIntPtrType(*Context), Len),
460 1, false, B, TD);
462 return Dst;
466 //===---------------------------------------===//
467 // 'strlen' Optimizations
469 struct StrLenOpt : public LibCallOptimization {
470 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
471 const FunctionType *FT = Callee->getFunctionType();
472 if (FT->getNumParams() != 1 ||
473 FT->getParamType(0) != Type::getInt8PtrTy(*Context) ||
474 !FT->getReturnType()->isIntegerTy())
475 return 0;
477 Value *Src = CI->getArgOperand(0);
479 // Constant folding: strlen("xyz") -> 3
480 if (uint64_t Len = GetStringLength(Src))
481 return ConstantInt::get(CI->getType(), Len-1);
483 // strlen(x) != 0 --> *x != 0
484 // strlen(x) == 0 --> *x == 0
485 if (IsOnlyUsedInZeroEqualityComparison(CI))
486 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
487 return 0;
491 //===---------------------------------------===//
492 // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc.
494 struct StrToOpt : public LibCallOptimization {
495 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
496 const FunctionType *FT = Callee->getFunctionType();
497 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
498 !FT->getParamType(0)->isPointerTy() ||
499 !FT->getParamType(1)->isPointerTy())
500 return 0;
502 Value *EndPtr = CI->getArgOperand(1);
503 if (isa<ConstantPointerNull>(EndPtr)) {
504 CI->setOnlyReadsMemory();
505 CI->addAttribute(1, Attribute::NoCapture);
508 return 0;
512 //===---------------------------------------===//
513 // 'strstr' Optimizations
515 struct StrStrOpt : public LibCallOptimization {
516 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
517 const FunctionType *FT = Callee->getFunctionType();
518 if (FT->getNumParams() != 2 ||
519 !FT->getParamType(0)->isPointerTy() ||
520 !FT->getParamType(1)->isPointerTy() ||
521 !FT->getReturnType()->isPointerTy())
522 return 0;
524 // fold strstr(x, x) -> x.
525 if (CI->getArgOperand(0) == CI->getArgOperand(1))
526 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
528 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
529 if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
530 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD);
531 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
532 StrLen, B, TD);
533 for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
534 UI != UE; ) {
535 ICmpInst *Old = cast<ICmpInst>(*UI++);
536 Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
537 ConstantInt::getNullValue(StrNCmp->getType()),
538 "cmp");
539 Old->replaceAllUsesWith(Cmp);
540 Old->eraseFromParent();
542 return CI;
545 // See if either input string is a constant string.
546 std::string SearchStr, ToFindStr;
547 bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr);
548 bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr);
550 // fold strstr(x, "") -> x.
551 if (HasStr2 && ToFindStr.empty())
552 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
554 // If both strings are known, constant fold it.
555 if (HasStr1 && HasStr2) {
556 std::string::size_type Offset = SearchStr.find(ToFindStr);
558 if (Offset == std::string::npos) // strstr("foo", "bar") -> null
559 return Constant::getNullValue(CI->getType());
561 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
562 Value *Result = CastToCStr(CI->getArgOperand(0), B);
563 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
564 return B.CreateBitCast(Result, CI->getType());
567 // fold strstr(x, "y") -> strchr(x, 'y').
568 if (HasStr2 && ToFindStr.size() == 1)
569 return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0),
570 ToFindStr[0], B, TD), CI->getType());
571 return 0;
576 //===---------------------------------------===//
577 // 'memcmp' Optimizations
579 struct MemCmpOpt : public LibCallOptimization {
580 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
581 const FunctionType *FT = Callee->getFunctionType();
582 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
583 !FT->getParamType(1)->isPointerTy() ||
584 !FT->getReturnType()->isIntegerTy(32))
585 return 0;
587 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
589 if (LHS == RHS) // memcmp(s,s,x) -> 0
590 return Constant::getNullValue(CI->getType());
592 // Make sure we have a constant length.
593 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
594 if (!LenC) return 0;
595 uint64_t Len = LenC->getZExtValue();
597 if (Len == 0) // memcmp(s1,s2,0) -> 0
598 return Constant::getNullValue(CI->getType());
600 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
601 if (Len == 1) {
602 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
603 CI->getType(), "lhsv");
604 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
605 CI->getType(), "rhsv");
606 return B.CreateSub(LHSV, RHSV, "chardiff");
609 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
610 std::string LHSStr, RHSStr;
611 if (GetConstantStringInfo(LHS, LHSStr) &&
612 GetConstantStringInfo(RHS, RHSStr)) {
613 // Make sure we're not reading out-of-bounds memory.
614 if (Len > LHSStr.length() || Len > RHSStr.length())
615 return 0;
616 uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len);
617 return ConstantInt::get(CI->getType(), Ret);
620 return 0;
624 //===---------------------------------------===//
625 // 'memcpy' Optimizations
627 struct MemCpyOpt : public LibCallOptimization {
628 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
629 // These optimizations require TargetData.
630 if (!TD) return 0;
632 const FunctionType *FT = Callee->getFunctionType();
633 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
634 !FT->getParamType(0)->isPointerTy() ||
635 !FT->getParamType(1)->isPointerTy() ||
636 FT->getParamType(2) != TD->getIntPtrType(*Context))
637 return 0;
639 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
640 EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
641 CI->getArgOperand(2), 1, false, B, TD);
642 return CI->getArgOperand(0);
646 //===---------------------------------------===//
647 // 'memmove' Optimizations
649 struct MemMoveOpt : public LibCallOptimization {
650 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
651 // These optimizations require TargetData.
652 if (!TD) return 0;
654 const FunctionType *FT = Callee->getFunctionType();
655 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
656 !FT->getParamType(0)->isPointerTy() ||
657 !FT->getParamType(1)->isPointerTy() ||
658 FT->getParamType(2) != TD->getIntPtrType(*Context))
659 return 0;
661 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
662 EmitMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
663 CI->getArgOperand(2), 1, false, B, TD);
664 return CI->getArgOperand(0);
668 //===---------------------------------------===//
669 // 'memset' Optimizations
671 struct MemSetOpt : public LibCallOptimization {
672 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
673 // These optimizations require TargetData.
674 if (!TD) return 0;
676 const FunctionType *FT = Callee->getFunctionType();
677 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
678 !FT->getParamType(0)->isPointerTy() ||
679 !FT->getParamType(1)->isIntegerTy() ||
680 FT->getParamType(2) != TD->getIntPtrType(*Context))
681 return 0;
683 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
684 Value *Val = B.CreateIntCast(CI->getArgOperand(1),
685 Type::getInt8Ty(*Context), false);
686 EmitMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), false, B, TD);
687 return CI->getArgOperand(0);
691 //===----------------------------------------------------------------------===//
692 // Math Library Optimizations
693 //===----------------------------------------------------------------------===//
695 //===---------------------------------------===//
696 // 'pow*' Optimizations
698 struct PowOpt : public LibCallOptimization {
699 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
700 const FunctionType *FT = Callee->getFunctionType();
701 // Just make sure this has 2 arguments of the same FP type, which match the
702 // result type.
703 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
704 FT->getParamType(0) != FT->getParamType(1) ||
705 !FT->getParamType(0)->isFloatingPointTy())
706 return 0;
708 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
709 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
710 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
711 return Op1C;
712 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
713 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
716 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
717 if (Op2C == 0) return 0;
719 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
720 return ConstantFP::get(CI->getType(), 1.0);
722 if (Op2C->isExactlyValue(0.5)) {
723 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
724 // This is faster than calling pow, and still handles negative zero
725 // and negative infinite correctly.
726 // TODO: In fast-math mode, this could be just sqrt(x).
727 // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
728 Value *Inf = ConstantFP::getInfinity(CI->getType());
729 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
730 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
731 Callee->getAttributes());
732 Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
733 Callee->getAttributes());
734 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf, "tmp");
735 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs, "tmp");
736 return Sel;
739 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
740 return Op1;
741 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
742 return B.CreateFMul(Op1, Op1, "pow2");
743 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
744 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
745 Op1, "powrecip");
746 return 0;
750 //===---------------------------------------===//
751 // 'exp2' Optimizations
753 struct Exp2Opt : public LibCallOptimization {
754 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
755 const FunctionType *FT = Callee->getFunctionType();
756 // Just make sure this has 1 argument of FP type, which matches the
757 // result type.
758 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
759 !FT->getParamType(0)->isFloatingPointTy())
760 return 0;
762 Value *Op = CI->getArgOperand(0);
763 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
764 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
765 Value *LdExpArg = 0;
766 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
767 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
768 LdExpArg = B.CreateSExt(OpC->getOperand(0),
769 Type::getInt32Ty(*Context), "tmp");
770 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
771 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
772 LdExpArg = B.CreateZExt(OpC->getOperand(0),
773 Type::getInt32Ty(*Context), "tmp");
776 if (LdExpArg) {
777 const char *Name;
778 if (Op->getType()->isFloatTy())
779 Name = "ldexpf";
780 else if (Op->getType()->isDoubleTy())
781 Name = "ldexp";
782 else
783 Name = "ldexpl";
785 Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
786 if (!Op->getType()->isFloatTy())
787 One = ConstantExpr::getFPExtend(One, Op->getType());
789 Module *M = Caller->getParent();
790 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
791 Op->getType(),
792 Type::getInt32Ty(*Context),NULL);
793 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
794 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
795 CI->setCallingConv(F->getCallingConv());
797 return CI;
799 return 0;
803 //===---------------------------------------===//
804 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
806 struct UnaryDoubleFPOpt : public LibCallOptimization {
807 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
808 const FunctionType *FT = Callee->getFunctionType();
809 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
810 !FT->getParamType(0)->isDoubleTy())
811 return 0;
813 // If this is something like 'floor((double)floatval)', convert to floorf.
814 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
815 if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
816 return 0;
818 // floor((double)floatval) -> (double)floorf(floatval)
819 Value *V = Cast->getOperand(0);
820 V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B,
821 Callee->getAttributes());
822 return B.CreateFPExt(V, Type::getDoubleTy(*Context));
826 //===----------------------------------------------------------------------===//
827 // Integer Optimizations
828 //===----------------------------------------------------------------------===//
830 //===---------------------------------------===//
831 // 'ffs*' Optimizations
833 struct FFSOpt : public LibCallOptimization {
834 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
835 const FunctionType *FT = Callee->getFunctionType();
836 // Just make sure this has 2 arguments of the same FP type, which match the
837 // result type.
838 if (FT->getNumParams() != 1 ||
839 !FT->getReturnType()->isIntegerTy(32) ||
840 !FT->getParamType(0)->isIntegerTy())
841 return 0;
843 Value *Op = CI->getArgOperand(0);
845 // Constant fold.
846 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
847 if (CI->getValue() == 0) // ffs(0) -> 0.
848 return Constant::getNullValue(CI->getType());
849 return ConstantInt::get(Type::getInt32Ty(*Context), // ffs(c) -> cttz(c)+1
850 CI->getValue().countTrailingZeros()+1);
853 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
854 const Type *ArgType = Op->getType();
855 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
856 Intrinsic::cttz, &ArgType, 1);
857 Value *V = B.CreateCall(F, Op, "cttz");
858 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1), "tmp");
859 V = B.CreateIntCast(V, Type::getInt32Ty(*Context), false, "tmp");
861 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
862 return B.CreateSelect(Cond, V,
863 ConstantInt::get(Type::getInt32Ty(*Context), 0));
867 //===---------------------------------------===//
868 // 'isdigit' Optimizations
870 struct IsDigitOpt : public LibCallOptimization {
871 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
872 const FunctionType *FT = Callee->getFunctionType();
873 // We require integer(i32)
874 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
875 !FT->getParamType(0)->isIntegerTy(32))
876 return 0;
878 // isdigit(c) -> (c-'0') <u 10
879 Value *Op = CI->getArgOperand(0);
880 Op = B.CreateSub(Op, ConstantInt::get(Type::getInt32Ty(*Context), '0'),
881 "isdigittmp");
882 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 10),
883 "isdigit");
884 return B.CreateZExt(Op, CI->getType());
888 //===---------------------------------------===//
889 // 'isascii' Optimizations
891 struct IsAsciiOpt : public LibCallOptimization {
892 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
893 const FunctionType *FT = Callee->getFunctionType();
894 // We require integer(i32)
895 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
896 !FT->getParamType(0)->isIntegerTy(32))
897 return 0;
899 // isascii(c) -> c <u 128
900 Value *Op = CI->getArgOperand(0);
901 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::getInt32Ty(*Context), 128),
902 "isascii");
903 return B.CreateZExt(Op, CI->getType());
907 //===---------------------------------------===//
908 // 'abs', 'labs', 'llabs' Optimizations
910 struct AbsOpt : public LibCallOptimization {
911 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
912 const FunctionType *FT = Callee->getFunctionType();
913 // We require integer(integer) where the types agree.
914 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
915 FT->getParamType(0) != FT->getReturnType())
916 return 0;
918 // abs(x) -> x >s -1 ? x : -x
919 Value *Op = CI->getArgOperand(0);
920 Value *Pos = B.CreateICmpSGT(Op,
921 Constant::getAllOnesValue(Op->getType()),
922 "ispos");
923 Value *Neg = B.CreateNeg(Op, "neg");
924 return B.CreateSelect(Pos, Op, Neg);
929 //===---------------------------------------===//
930 // 'toascii' Optimizations
932 struct ToAsciiOpt : public LibCallOptimization {
933 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
934 const FunctionType *FT = Callee->getFunctionType();
935 // We require i32(i32)
936 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
937 !FT->getParamType(0)->isIntegerTy(32))
938 return 0;
940 // isascii(c) -> c & 0x7f
941 return B.CreateAnd(CI->getArgOperand(0),
942 ConstantInt::get(CI->getType(),0x7F));
946 //===----------------------------------------------------------------------===//
947 // Formatting and IO Optimizations
948 //===----------------------------------------------------------------------===//
950 //===---------------------------------------===//
951 // 'printf' Optimizations
953 struct PrintFOpt : public LibCallOptimization {
954 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
955 // Require one fixed pointer argument and an integer/void result.
956 const FunctionType *FT = Callee->getFunctionType();
957 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
958 !(FT->getReturnType()->isIntegerTy() ||
959 FT->getReturnType()->isVoidTy()))
960 return 0;
962 // Check for a fixed format string.
963 std::string FormatStr;
964 if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr))
965 return 0;
967 // Empty format string -> noop.
968 if (FormatStr.empty()) // Tolerate printf's declared void.
969 return CI->use_empty() ? (Value*)CI :
970 ConstantInt::get(CI->getType(), 0);
972 // printf("x") -> putchar('x'), even for '%'. Return the result of putchar
973 // in case there is an error writing to stdout.
974 if (FormatStr.size() == 1) {
975 Value *Res = EmitPutChar(ConstantInt::get(Type::getInt32Ty(*Context),
976 FormatStr[0]), B, TD);
977 if (CI->use_empty()) return CI;
978 return B.CreateIntCast(Res, CI->getType(), true);
981 // printf("foo\n") --> puts("foo")
982 if (FormatStr[FormatStr.size()-1] == '\n' &&
983 FormatStr.find('%') == std::string::npos) { // no format characters.
984 // Create a string literal with no \n on it. We expect the constant merge
985 // pass to be run after this pass, to merge duplicate strings.
986 FormatStr.erase(FormatStr.end()-1);
987 Constant *C = ConstantArray::get(*Context, FormatStr, true);
988 C = new GlobalVariable(*Callee->getParent(), C->getType(), true,
989 GlobalVariable::InternalLinkage, C, "str");
990 EmitPutS(C, B, TD);
991 return CI->use_empty() ? (Value*)CI :
992 ConstantInt::get(CI->getType(), FormatStr.size()+1);
995 // Optimize specific format strings.
996 // printf("%c", chr) --> putchar(chr)
997 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
998 CI->getArgOperand(1)->getType()->isIntegerTy()) {
999 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD);
1001 if (CI->use_empty()) return CI;
1002 return B.CreateIntCast(Res, CI->getType(), true);
1005 // printf("%s\n", str) --> puts(str)
1006 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1007 CI->getArgOperand(1)->getType()->isPointerTy() &&
1008 CI->use_empty()) {
1009 EmitPutS(CI->getArgOperand(1), B, TD);
1010 return CI;
1012 return 0;
1016 //===---------------------------------------===//
1017 // 'sprintf' Optimizations
1019 struct SPrintFOpt : public LibCallOptimization {
1020 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1021 // Require two fixed pointer arguments and an integer result.
1022 const FunctionType *FT = Callee->getFunctionType();
1023 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1024 !FT->getParamType(1)->isPointerTy() ||
1025 !FT->getReturnType()->isIntegerTy())
1026 return 0;
1028 // Check for a fixed format string.
1029 std::string FormatStr;
1030 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
1031 return 0;
1033 // If we just have a format string (nothing else crazy) transform it.
1034 if (CI->getNumArgOperands() == 2) {
1035 // Make sure there's no % in the constant array. We could try to handle
1036 // %% -> % in the future if we cared.
1037 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1038 if (FormatStr[i] == '%')
1039 return 0; // we found a format specifier, bail out.
1041 // These optimizations require TargetData.
1042 if (!TD) return 0;
1044 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1045 EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), // Copy the
1046 ConstantInt::get(TD->getIntPtrType(*Context), // nul byte.
1047 FormatStr.size() + 1), 1, false, B, TD);
1048 return ConstantInt::get(CI->getType(), FormatStr.size());
1051 // The remaining optimizations require the format string to be "%s" or "%c"
1052 // and have an extra operand.
1053 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1054 CI->getNumArgOperands() < 3)
1055 return 0;
1057 // Decode the second character of the format string.
1058 if (FormatStr[1] == 'c') {
1059 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1060 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1061 Value *V = B.CreateTrunc(CI->getArgOperand(2),
1062 Type::getInt8Ty(*Context), "char");
1063 Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1064 B.CreateStore(V, Ptr);
1065 Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::getInt32Ty(*Context), 1),
1066 "nul");
1067 B.CreateStore(Constant::getNullValue(Type::getInt8Ty(*Context)), Ptr);
1069 return ConstantInt::get(CI->getType(), 1);
1072 if (FormatStr[1] == 's') {
1073 // These optimizations require TargetData.
1074 if (!TD) return 0;
1076 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1077 if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
1079 Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD);
1080 Value *IncLen = B.CreateAdd(Len,
1081 ConstantInt::get(Len->getType(), 1),
1082 "leninc");
1083 EmitMemCpy(CI->getArgOperand(0), CI->getArgOperand(2),
1084 IncLen, 1, false, B, TD);
1086 // The sprintf result is the unincremented number of bytes in the string.
1087 return B.CreateIntCast(Len, CI->getType(), false);
1089 return 0;
1093 //===---------------------------------------===//
1094 // 'fwrite' Optimizations
1096 struct FWriteOpt : public LibCallOptimization {
1097 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1098 // Require a pointer, an integer, an integer, a pointer, returning integer.
1099 const FunctionType *FT = Callee->getFunctionType();
1100 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1101 !FT->getParamType(1)->isIntegerTy() ||
1102 !FT->getParamType(2)->isIntegerTy() ||
1103 !FT->getParamType(3)->isPointerTy() ||
1104 !FT->getReturnType()->isIntegerTy())
1105 return 0;
1107 // Get the element size and count.
1108 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1109 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1110 if (!SizeC || !CountC) return 0;
1111 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1113 // If this is writing zero records, remove the call (it's a noop).
1114 if (Bytes == 0)
1115 return ConstantInt::get(CI->getType(), 0);
1117 // If this is writing one byte, turn it into fputc.
1118 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1119 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1120 EmitFPutC(Char, CI->getArgOperand(3), B, TD);
1121 return ConstantInt::get(CI->getType(), 1);
1124 return 0;
1128 //===---------------------------------------===//
1129 // 'fputs' Optimizations
1131 struct FPutsOpt : public LibCallOptimization {
1132 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1133 // These optimizations require TargetData.
1134 if (!TD) return 0;
1136 // Require two pointers. Also, we can't optimize if return value is used.
1137 const FunctionType *FT = Callee->getFunctionType();
1138 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1139 !FT->getParamType(1)->isPointerTy() ||
1140 !CI->use_empty())
1141 return 0;
1143 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1144 uint64_t Len = GetStringLength(CI->getArgOperand(0));
1145 if (!Len) return 0;
1146 EmitFWrite(CI->getArgOperand(0),
1147 ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
1148 CI->getArgOperand(1), B, TD);
1149 return CI; // Known to have no uses (see above).
1153 //===---------------------------------------===//
1154 // 'fprintf' Optimizations
1156 struct FPrintFOpt : public LibCallOptimization {
1157 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
1158 // Require two fixed paramters as pointers and integer result.
1159 const FunctionType *FT = Callee->getFunctionType();
1160 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1161 !FT->getParamType(1)->isPointerTy() ||
1162 !FT->getReturnType()->isIntegerTy())
1163 return 0;
1165 // All the optimizations depend on the format string.
1166 std::string FormatStr;
1167 if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr))
1168 return 0;
1170 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1171 if (CI->getNumArgOperands() == 2) {
1172 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1173 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1174 return 0; // We found a format specifier.
1176 // These optimizations require TargetData.
1177 if (!TD) return 0;
1179 EmitFWrite(CI->getArgOperand(1),
1180 ConstantInt::get(TD->getIntPtrType(*Context),
1181 FormatStr.size()),
1182 CI->getArgOperand(0), B, TD);
1183 return ConstantInt::get(CI->getType(), FormatStr.size());
1186 // The remaining optimizations require the format string to be "%s" or "%c"
1187 // and have an extra operand.
1188 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1189 CI->getNumArgOperands() < 3)
1190 return 0;
1192 // Decode the second character of the format string.
1193 if (FormatStr[1] == 'c') {
1194 // fprintf(F, "%c", chr) --> fputc(chr, F)
1195 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
1196 EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
1197 return ConstantInt::get(CI->getType(), 1);
1200 if (FormatStr[1] == 's') {
1201 // fprintf(F, "%s", str) --> fputs(str, F)
1202 if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
1203 return 0;
1204 EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD);
1205 return CI;
1207 return 0;
1211 } // end anonymous namespace.
1213 //===----------------------------------------------------------------------===//
1214 // SimplifyLibCalls Pass Implementation
1215 //===----------------------------------------------------------------------===//
1217 namespace {
1218 /// This pass optimizes well known library functions from libc and libm.
1220 class SimplifyLibCalls : public FunctionPass {
1221 StringMap<LibCallOptimization*> Optimizations;
1222 // String and Memory LibCall Optimizations
1223 StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrCmpOpt StrCmp;
1224 StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk;
1225 StrNCpyOpt StrNCpy; StrLenOpt StrLen;
1226 StrToOpt StrTo; StrStrOpt StrStr;
1227 MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet;
1228 // Math Library Optimizations
1229 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
1230 // Integer Optimizations
1231 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1232 ToAsciiOpt ToAscii;
1233 // Formatting and IO Optimizations
1234 SPrintFOpt SPrintF; PrintFOpt PrintF;
1235 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1237 bool Modified; // This is only used by doInitialization.
1238 public:
1239 static char ID; // Pass identification
1240 SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) {}
1241 void InitOptimizations();
1242 bool runOnFunction(Function &F);
1244 void setDoesNotAccessMemory(Function &F);
1245 void setOnlyReadsMemory(Function &F);
1246 void setDoesNotThrow(Function &F);
1247 void setDoesNotCapture(Function &F, unsigned n);
1248 void setDoesNotAlias(Function &F, unsigned n);
1249 bool doInitialization(Module &M);
1251 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1254 char SimplifyLibCalls::ID = 0;
1255 } // end anonymous namespace.
1257 INITIALIZE_PASS(SimplifyLibCalls, "simplify-libcalls",
1258 "Simplify well-known library calls", false, false);
1260 // Public interface to the Simplify LibCalls pass.
1261 FunctionPass *llvm::createSimplifyLibCallsPass() {
1262 return new SimplifyLibCalls();
1265 /// Optimizations - Populate the Optimizations map with all the optimizations
1266 /// we know.
1267 void SimplifyLibCalls::InitOptimizations() {
1268 // String and Memory LibCall Optimizations
1269 Optimizations["strcat"] = &StrCat;
1270 Optimizations["strncat"] = &StrNCat;
1271 Optimizations["strchr"] = &StrChr;
1272 Optimizations["strcmp"] = &StrCmp;
1273 Optimizations["strncmp"] = &StrNCmp;
1274 Optimizations["strcpy"] = &StrCpy;
1275 Optimizations["strncpy"] = &StrNCpy;
1276 Optimizations["strlen"] = &StrLen;
1277 Optimizations["strtol"] = &StrTo;
1278 Optimizations["strtod"] = &StrTo;
1279 Optimizations["strtof"] = &StrTo;
1280 Optimizations["strtoul"] = &StrTo;
1281 Optimizations["strtoll"] = &StrTo;
1282 Optimizations["strtold"] = &StrTo;
1283 Optimizations["strtoull"] = &StrTo;
1284 Optimizations["strstr"] = &StrStr;
1285 Optimizations["memcmp"] = &MemCmp;
1286 Optimizations["memcpy"] = &MemCpy;
1287 Optimizations["memmove"] = &MemMove;
1288 Optimizations["memset"] = &MemSet;
1290 // _chk variants of String and Memory LibCall Optimizations.
1291 Optimizations["__strcpy_chk"] = &StrCpyChk;
1293 // Math Library Optimizations
1294 Optimizations["powf"] = &Pow;
1295 Optimizations["pow"] = &Pow;
1296 Optimizations["powl"] = &Pow;
1297 Optimizations["llvm.pow.f32"] = &Pow;
1298 Optimizations["llvm.pow.f64"] = &Pow;
1299 Optimizations["llvm.pow.f80"] = &Pow;
1300 Optimizations["llvm.pow.f128"] = &Pow;
1301 Optimizations["llvm.pow.ppcf128"] = &Pow;
1302 Optimizations["exp2l"] = &Exp2;
1303 Optimizations["exp2"] = &Exp2;
1304 Optimizations["exp2f"] = &Exp2;
1305 Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1306 Optimizations["llvm.exp2.f128"] = &Exp2;
1307 Optimizations["llvm.exp2.f80"] = &Exp2;
1308 Optimizations["llvm.exp2.f64"] = &Exp2;
1309 Optimizations["llvm.exp2.f32"] = &Exp2;
1311 #ifdef HAVE_FLOORF
1312 Optimizations["floor"] = &UnaryDoubleFP;
1313 #endif
1314 #ifdef HAVE_CEILF
1315 Optimizations["ceil"] = &UnaryDoubleFP;
1316 #endif
1317 #ifdef HAVE_ROUNDF
1318 Optimizations["round"] = &UnaryDoubleFP;
1319 #endif
1320 #ifdef HAVE_RINTF
1321 Optimizations["rint"] = &UnaryDoubleFP;
1322 #endif
1323 #ifdef HAVE_NEARBYINTF
1324 Optimizations["nearbyint"] = &UnaryDoubleFP;
1325 #endif
1327 // Integer Optimizations
1328 Optimizations["ffs"] = &FFS;
1329 Optimizations["ffsl"] = &FFS;
1330 Optimizations["ffsll"] = &FFS;
1331 Optimizations["abs"] = &Abs;
1332 Optimizations["labs"] = &Abs;
1333 Optimizations["llabs"] = &Abs;
1334 Optimizations["isdigit"] = &IsDigit;
1335 Optimizations["isascii"] = &IsAscii;
1336 Optimizations["toascii"] = &ToAscii;
1338 // Formatting and IO Optimizations
1339 Optimizations["sprintf"] = &SPrintF;
1340 Optimizations["printf"] = &PrintF;
1341 Optimizations["fwrite"] = &FWrite;
1342 Optimizations["fputs"] = &FPuts;
1343 Optimizations["fprintf"] = &FPrintF;
1347 /// runOnFunction - Top level algorithm.
1349 bool SimplifyLibCalls::runOnFunction(Function &F) {
1350 if (Optimizations.empty())
1351 InitOptimizations();
1353 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
1355 IRBuilder<> Builder(F.getContext());
1357 bool Changed = false;
1358 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1359 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1360 // Ignore non-calls.
1361 CallInst *CI = dyn_cast<CallInst>(I++);
1362 if (!CI) continue;
1364 // Ignore indirect calls and calls to non-external functions.
1365 Function *Callee = CI->getCalledFunction();
1366 if (Callee == 0 || !Callee->isDeclaration() ||
1367 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1368 continue;
1370 // Ignore unknown calls.
1371 LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
1372 if (!LCO) continue;
1374 // Set the builder to the instruction after the call.
1375 Builder.SetInsertPoint(BB, I);
1377 // Try to optimize this call.
1378 Value *Result = LCO->OptimizeCall(CI, TD, Builder);
1379 if (Result == 0) continue;
1381 DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI;
1382 dbgs() << " into: " << *Result << "\n");
1384 // Something changed!
1385 Changed = true;
1386 ++NumSimplified;
1388 // Inspect the instruction after the call (which was potentially just
1389 // added) next.
1390 I = CI; ++I;
1392 if (CI != Result && !CI->use_empty()) {
1393 CI->replaceAllUsesWith(Result);
1394 if (!Result->hasName())
1395 Result->takeName(CI);
1397 CI->eraseFromParent();
1400 return Changed;
1403 // Utility methods for doInitialization.
1405 void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) {
1406 if (!F.doesNotAccessMemory()) {
1407 F.setDoesNotAccessMemory();
1408 ++NumAnnotated;
1409 Modified = true;
1412 void SimplifyLibCalls::setOnlyReadsMemory(Function &F) {
1413 if (!F.onlyReadsMemory()) {
1414 F.setOnlyReadsMemory();
1415 ++NumAnnotated;
1416 Modified = true;
1419 void SimplifyLibCalls::setDoesNotThrow(Function &F) {
1420 if (!F.doesNotThrow()) {
1421 F.setDoesNotThrow();
1422 ++NumAnnotated;
1423 Modified = true;
1426 void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) {
1427 if (!F.doesNotCapture(n)) {
1428 F.setDoesNotCapture(n);
1429 ++NumAnnotated;
1430 Modified = true;
1433 void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) {
1434 if (!F.doesNotAlias(n)) {
1435 F.setDoesNotAlias(n);
1436 ++NumAnnotated;
1437 Modified = true;
1441 /// doInitialization - Add attributes to well-known functions.
1443 bool SimplifyLibCalls::doInitialization(Module &M) {
1444 Modified = false;
1445 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1446 Function &F = *I;
1447 if (!F.isDeclaration())
1448 continue;
1450 if (!F.hasName())
1451 continue;
1453 const FunctionType *FTy = F.getFunctionType();
1455 StringRef Name = F.getName();
1456 switch (Name[0]) {
1457 case 's':
1458 if (Name == "strlen") {
1459 if (FTy->getNumParams() != 1 ||
1460 !FTy->getParamType(0)->isPointerTy())
1461 continue;
1462 setOnlyReadsMemory(F);
1463 setDoesNotThrow(F);
1464 setDoesNotCapture(F, 1);
1465 } else if (Name == "strchr" ||
1466 Name == "strrchr") {
1467 if (FTy->getNumParams() != 2 ||
1468 !FTy->getParamType(0)->isPointerTy() ||
1469 !FTy->getParamType(1)->isIntegerTy())
1470 continue;
1471 setOnlyReadsMemory(F);
1472 setDoesNotThrow(F);
1473 } else if (Name == "strcpy" ||
1474 Name == "stpcpy" ||
1475 Name == "strcat" ||
1476 Name == "strtol" ||
1477 Name == "strtod" ||
1478 Name == "strtof" ||
1479 Name == "strtoul" ||
1480 Name == "strtoll" ||
1481 Name == "strtold" ||
1482 Name == "strncat" ||
1483 Name == "strncpy" ||
1484 Name == "strtoull") {
1485 if (FTy->getNumParams() < 2 ||
1486 !FTy->getParamType(1)->isPointerTy())
1487 continue;
1488 setDoesNotThrow(F);
1489 setDoesNotCapture(F, 2);
1490 } else if (Name == "strxfrm") {
1491 if (FTy->getNumParams() != 3 ||
1492 !FTy->getParamType(0)->isPointerTy() ||
1493 !FTy->getParamType(1)->isPointerTy())
1494 continue;
1495 setDoesNotThrow(F);
1496 setDoesNotCapture(F, 1);
1497 setDoesNotCapture(F, 2);
1498 } else if (Name == "strcmp" ||
1499 Name == "strspn" ||
1500 Name == "strncmp" ||
1501 Name == "strcspn" ||
1502 Name == "strcoll" ||
1503 Name == "strcasecmp" ||
1504 Name == "strncasecmp") {
1505 if (FTy->getNumParams() < 2 ||
1506 !FTy->getParamType(0)->isPointerTy() ||
1507 !FTy->getParamType(1)->isPointerTy())
1508 continue;
1509 setOnlyReadsMemory(F);
1510 setDoesNotThrow(F);
1511 setDoesNotCapture(F, 1);
1512 setDoesNotCapture(F, 2);
1513 } else if (Name == "strstr" ||
1514 Name == "strpbrk") {
1515 if (FTy->getNumParams() != 2 ||
1516 !FTy->getParamType(1)->isPointerTy())
1517 continue;
1518 setOnlyReadsMemory(F);
1519 setDoesNotThrow(F);
1520 setDoesNotCapture(F, 2);
1521 } else if (Name == "strtok" ||
1522 Name == "strtok_r") {
1523 if (FTy->getNumParams() < 2 ||
1524 !FTy->getParamType(1)->isPointerTy())
1525 continue;
1526 setDoesNotThrow(F);
1527 setDoesNotCapture(F, 2);
1528 } else if (Name == "scanf" ||
1529 Name == "setbuf" ||
1530 Name == "setvbuf") {
1531 if (FTy->getNumParams() < 1 ||
1532 !FTy->getParamType(0)->isPointerTy())
1533 continue;
1534 setDoesNotThrow(F);
1535 setDoesNotCapture(F, 1);
1536 } else if (Name == "strdup" ||
1537 Name == "strndup") {
1538 if (FTy->getNumParams() < 1 ||
1539 !FTy->getReturnType()->isPointerTy() ||
1540 !FTy->getParamType(0)->isPointerTy())
1541 continue;
1542 setDoesNotThrow(F);
1543 setDoesNotAlias(F, 0);
1544 setDoesNotCapture(F, 1);
1545 } else if (Name == "stat" ||
1546 Name == "sscanf" ||
1547 Name == "sprintf" ||
1548 Name == "statvfs") {
1549 if (FTy->getNumParams() < 2 ||
1550 !FTy->getParamType(0)->isPointerTy() ||
1551 !FTy->getParamType(1)->isPointerTy())
1552 continue;
1553 setDoesNotThrow(F);
1554 setDoesNotCapture(F, 1);
1555 setDoesNotCapture(F, 2);
1556 } else if (Name == "snprintf") {
1557 if (FTy->getNumParams() != 3 ||
1558 !FTy->getParamType(0)->isPointerTy() ||
1559 !FTy->getParamType(2)->isPointerTy())
1560 continue;
1561 setDoesNotThrow(F);
1562 setDoesNotCapture(F, 1);
1563 setDoesNotCapture(F, 3);
1564 } else if (Name == "setitimer") {
1565 if (FTy->getNumParams() != 3 ||
1566 !FTy->getParamType(1)->isPointerTy() ||
1567 !FTy->getParamType(2)->isPointerTy())
1568 continue;
1569 setDoesNotThrow(F);
1570 setDoesNotCapture(F, 2);
1571 setDoesNotCapture(F, 3);
1572 } else if (Name == "system") {
1573 if (FTy->getNumParams() != 1 ||
1574 !FTy->getParamType(0)->isPointerTy())
1575 continue;
1576 // May throw; "system" is a valid pthread cancellation point.
1577 setDoesNotCapture(F, 1);
1579 break;
1580 case 'm':
1581 if (Name == "malloc") {
1582 if (FTy->getNumParams() != 1 ||
1583 !FTy->getReturnType()->isPointerTy())
1584 continue;
1585 setDoesNotThrow(F);
1586 setDoesNotAlias(F, 0);
1587 } else if (Name == "memcmp") {
1588 if (FTy->getNumParams() != 3 ||
1589 !FTy->getParamType(0)->isPointerTy() ||
1590 !FTy->getParamType(1)->isPointerTy())
1591 continue;
1592 setOnlyReadsMemory(F);
1593 setDoesNotThrow(F);
1594 setDoesNotCapture(F, 1);
1595 setDoesNotCapture(F, 2);
1596 } else if (Name == "memchr" ||
1597 Name == "memrchr") {
1598 if (FTy->getNumParams() != 3)
1599 continue;
1600 setOnlyReadsMemory(F);
1601 setDoesNotThrow(F);
1602 } else if (Name == "modf" ||
1603 Name == "modff" ||
1604 Name == "modfl" ||
1605 Name == "memcpy" ||
1606 Name == "memccpy" ||
1607 Name == "memmove") {
1608 if (FTy->getNumParams() < 2 ||
1609 !FTy->getParamType(1)->isPointerTy())
1610 continue;
1611 setDoesNotThrow(F);
1612 setDoesNotCapture(F, 2);
1613 } else if (Name == "memalign") {
1614 if (!FTy->getReturnType()->isPointerTy())
1615 continue;
1616 setDoesNotAlias(F, 0);
1617 } else if (Name == "mkdir" ||
1618 Name == "mktime") {
1619 if (FTy->getNumParams() == 0 ||
1620 !FTy->getParamType(0)->isPointerTy())
1621 continue;
1622 setDoesNotThrow(F);
1623 setDoesNotCapture(F, 1);
1625 break;
1626 case 'r':
1627 if (Name == "realloc") {
1628 if (FTy->getNumParams() != 2 ||
1629 !FTy->getParamType(0)->isPointerTy() ||
1630 !FTy->getReturnType()->isPointerTy())
1631 continue;
1632 setDoesNotThrow(F);
1633 setDoesNotAlias(F, 0);
1634 setDoesNotCapture(F, 1);
1635 } else if (Name == "read") {
1636 if (FTy->getNumParams() != 3 ||
1637 !FTy->getParamType(1)->isPointerTy())
1638 continue;
1639 // May throw; "read" is a valid pthread cancellation point.
1640 setDoesNotCapture(F, 2);
1641 } else if (Name == "rmdir" ||
1642 Name == "rewind" ||
1643 Name == "remove" ||
1644 Name == "realpath") {
1645 if (FTy->getNumParams() < 1 ||
1646 !FTy->getParamType(0)->isPointerTy())
1647 continue;
1648 setDoesNotThrow(F);
1649 setDoesNotCapture(F, 1);
1650 } else if (Name == "rename" ||
1651 Name == "readlink") {
1652 if (FTy->getNumParams() < 2 ||
1653 !FTy->getParamType(0)->isPointerTy() ||
1654 !FTy->getParamType(1)->isPointerTy())
1655 continue;
1656 setDoesNotThrow(F);
1657 setDoesNotCapture(F, 1);
1658 setDoesNotCapture(F, 2);
1660 break;
1661 case 'w':
1662 if (Name == "write") {
1663 if (FTy->getNumParams() != 3 ||
1664 !FTy->getParamType(1)->isPointerTy())
1665 continue;
1666 // May throw; "write" is a valid pthread cancellation point.
1667 setDoesNotCapture(F, 2);
1669 break;
1670 case 'b':
1671 if (Name == "bcopy") {
1672 if (FTy->getNumParams() != 3 ||
1673 !FTy->getParamType(0)->isPointerTy() ||
1674 !FTy->getParamType(1)->isPointerTy())
1675 continue;
1676 setDoesNotThrow(F);
1677 setDoesNotCapture(F, 1);
1678 setDoesNotCapture(F, 2);
1679 } else if (Name == "bcmp") {
1680 if (FTy->getNumParams() != 3 ||
1681 !FTy->getParamType(0)->isPointerTy() ||
1682 !FTy->getParamType(1)->isPointerTy())
1683 continue;
1684 setDoesNotThrow(F);
1685 setOnlyReadsMemory(F);
1686 setDoesNotCapture(F, 1);
1687 setDoesNotCapture(F, 2);
1688 } else if (Name == "bzero") {
1689 if (FTy->getNumParams() != 2 ||
1690 !FTy->getParamType(0)->isPointerTy())
1691 continue;
1692 setDoesNotThrow(F);
1693 setDoesNotCapture(F, 1);
1695 break;
1696 case 'c':
1697 if (Name == "calloc") {
1698 if (FTy->getNumParams() != 2 ||
1699 !FTy->getReturnType()->isPointerTy())
1700 continue;
1701 setDoesNotThrow(F);
1702 setDoesNotAlias(F, 0);
1703 } else if (Name == "chmod" ||
1704 Name == "chown" ||
1705 Name == "ctermid" ||
1706 Name == "clearerr" ||
1707 Name == "closedir") {
1708 if (FTy->getNumParams() == 0 ||
1709 !FTy->getParamType(0)->isPointerTy())
1710 continue;
1711 setDoesNotThrow(F);
1712 setDoesNotCapture(F, 1);
1714 break;
1715 case 'a':
1716 if (Name == "atoi" ||
1717 Name == "atol" ||
1718 Name == "atof" ||
1719 Name == "atoll") {
1720 if (FTy->getNumParams() != 1 ||
1721 !FTy->getParamType(0)->isPointerTy())
1722 continue;
1723 setDoesNotThrow(F);
1724 setOnlyReadsMemory(F);
1725 setDoesNotCapture(F, 1);
1726 } else if (Name == "access") {
1727 if (FTy->getNumParams() != 2 ||
1728 !FTy->getParamType(0)->isPointerTy())
1729 continue;
1730 setDoesNotThrow(F);
1731 setDoesNotCapture(F, 1);
1733 break;
1734 case 'f':
1735 if (Name == "fopen") {
1736 if (FTy->getNumParams() != 2 ||
1737 !FTy->getReturnType()->isPointerTy() ||
1738 !FTy->getParamType(0)->isPointerTy() ||
1739 !FTy->getParamType(1)->isPointerTy())
1740 continue;
1741 setDoesNotThrow(F);
1742 setDoesNotAlias(F, 0);
1743 setDoesNotCapture(F, 1);
1744 setDoesNotCapture(F, 2);
1745 } else if (Name == "fdopen") {
1746 if (FTy->getNumParams() != 2 ||
1747 !FTy->getReturnType()->isPointerTy() ||
1748 !FTy->getParamType(1)->isPointerTy())
1749 continue;
1750 setDoesNotThrow(F);
1751 setDoesNotAlias(F, 0);
1752 setDoesNotCapture(F, 2);
1753 } else if (Name == "feof" ||
1754 Name == "free" ||
1755 Name == "fseek" ||
1756 Name == "ftell" ||
1757 Name == "fgetc" ||
1758 Name == "fseeko" ||
1759 Name == "ftello" ||
1760 Name == "fileno" ||
1761 Name == "fflush" ||
1762 Name == "fclose" ||
1763 Name == "fsetpos" ||
1764 Name == "flockfile" ||
1765 Name == "funlockfile" ||
1766 Name == "ftrylockfile") {
1767 if (FTy->getNumParams() == 0 ||
1768 !FTy->getParamType(0)->isPointerTy())
1769 continue;
1770 setDoesNotThrow(F);
1771 setDoesNotCapture(F, 1);
1772 } else if (Name == "ferror") {
1773 if (FTy->getNumParams() != 1 ||
1774 !FTy->getParamType(0)->isPointerTy())
1775 continue;
1776 setDoesNotThrow(F);
1777 setDoesNotCapture(F, 1);
1778 setOnlyReadsMemory(F);
1779 } else if (Name == "fputc" ||
1780 Name == "fstat" ||
1781 Name == "frexp" ||
1782 Name == "frexpf" ||
1783 Name == "frexpl" ||
1784 Name == "fstatvfs") {
1785 if (FTy->getNumParams() != 2 ||
1786 !FTy->getParamType(1)->isPointerTy())
1787 continue;
1788 setDoesNotThrow(F);
1789 setDoesNotCapture(F, 2);
1790 } else if (Name == "fgets") {
1791 if (FTy->getNumParams() != 3 ||
1792 !FTy->getParamType(0)->isPointerTy() ||
1793 !FTy->getParamType(2)->isPointerTy())
1794 continue;
1795 setDoesNotThrow(F);
1796 setDoesNotCapture(F, 3);
1797 } else if (Name == "fread" ||
1798 Name == "fwrite") {
1799 if (FTy->getNumParams() != 4 ||
1800 !FTy->getParamType(0)->isPointerTy() ||
1801 !FTy->getParamType(3)->isPointerTy())
1802 continue;
1803 setDoesNotThrow(F);
1804 setDoesNotCapture(F, 1);
1805 setDoesNotCapture(F, 4);
1806 } else if (Name == "fputs" ||
1807 Name == "fscanf" ||
1808 Name == "fprintf" ||
1809 Name == "fgetpos") {
1810 if (FTy->getNumParams() < 2 ||
1811 !FTy->getParamType(0)->isPointerTy() ||
1812 !FTy->getParamType(1)->isPointerTy())
1813 continue;
1814 setDoesNotThrow(F);
1815 setDoesNotCapture(F, 1);
1816 setDoesNotCapture(F, 2);
1818 break;
1819 case 'g':
1820 if (Name == "getc" ||
1821 Name == "getlogin_r" ||
1822 Name == "getc_unlocked") {
1823 if (FTy->getNumParams() == 0 ||
1824 !FTy->getParamType(0)->isPointerTy())
1825 continue;
1826 setDoesNotThrow(F);
1827 setDoesNotCapture(F, 1);
1828 } else if (Name == "getenv") {
1829 if (FTy->getNumParams() != 1 ||
1830 !FTy->getParamType(0)->isPointerTy())
1831 continue;
1832 setDoesNotThrow(F);
1833 setOnlyReadsMemory(F);
1834 setDoesNotCapture(F, 1);
1835 } else if (Name == "gets" ||
1836 Name == "getchar") {
1837 setDoesNotThrow(F);
1838 } else if (Name == "getitimer") {
1839 if (FTy->getNumParams() != 2 ||
1840 !FTy->getParamType(1)->isPointerTy())
1841 continue;
1842 setDoesNotThrow(F);
1843 setDoesNotCapture(F, 2);
1844 } else if (Name == "getpwnam") {
1845 if (FTy->getNumParams() != 1 ||
1846 !FTy->getParamType(0)->isPointerTy())
1847 continue;
1848 setDoesNotThrow(F);
1849 setDoesNotCapture(F, 1);
1851 break;
1852 case 'u':
1853 if (Name == "ungetc") {
1854 if (FTy->getNumParams() != 2 ||
1855 !FTy->getParamType(1)->isPointerTy())
1856 continue;
1857 setDoesNotThrow(F);
1858 setDoesNotCapture(F, 2);
1859 } else if (Name == "uname" ||
1860 Name == "unlink" ||
1861 Name == "unsetenv") {
1862 if (FTy->getNumParams() != 1 ||
1863 !FTy->getParamType(0)->isPointerTy())
1864 continue;
1865 setDoesNotThrow(F);
1866 setDoesNotCapture(F, 1);
1867 } else if (Name == "utime" ||
1868 Name == "utimes") {
1869 if (FTy->getNumParams() != 2 ||
1870 !FTy->getParamType(0)->isPointerTy() ||
1871 !FTy->getParamType(1)->isPointerTy())
1872 continue;
1873 setDoesNotThrow(F);
1874 setDoesNotCapture(F, 1);
1875 setDoesNotCapture(F, 2);
1877 break;
1878 case 'p':
1879 if (Name == "putc") {
1880 if (FTy->getNumParams() != 2 ||
1881 !FTy->getParamType(1)->isPointerTy())
1882 continue;
1883 setDoesNotThrow(F);
1884 setDoesNotCapture(F, 2);
1885 } else if (Name == "puts" ||
1886 Name == "printf" ||
1887 Name == "perror") {
1888 if (FTy->getNumParams() != 1 ||
1889 !FTy->getParamType(0)->isPointerTy())
1890 continue;
1891 setDoesNotThrow(F);
1892 setDoesNotCapture(F, 1);
1893 } else if (Name == "pread" ||
1894 Name == "pwrite") {
1895 if (FTy->getNumParams() != 4 ||
1896 !FTy->getParamType(1)->isPointerTy())
1897 continue;
1898 // May throw; these are valid pthread cancellation points.
1899 setDoesNotCapture(F, 2);
1900 } else if (Name == "putchar") {
1901 setDoesNotThrow(F);
1902 } else if (Name == "popen") {
1903 if (FTy->getNumParams() != 2 ||
1904 !FTy->getReturnType()->isPointerTy() ||
1905 !FTy->getParamType(0)->isPointerTy() ||
1906 !FTy->getParamType(1)->isPointerTy())
1907 continue;
1908 setDoesNotThrow(F);
1909 setDoesNotAlias(F, 0);
1910 setDoesNotCapture(F, 1);
1911 setDoesNotCapture(F, 2);
1912 } else if (Name == "pclose") {
1913 if (FTy->getNumParams() != 1 ||
1914 !FTy->getParamType(0)->isPointerTy())
1915 continue;
1916 setDoesNotThrow(F);
1917 setDoesNotCapture(F, 1);
1919 break;
1920 case 'v':
1921 if (Name == "vscanf") {
1922 if (FTy->getNumParams() != 2 ||
1923 !FTy->getParamType(1)->isPointerTy())
1924 continue;
1925 setDoesNotThrow(F);
1926 setDoesNotCapture(F, 1);
1927 } else if (Name == "vsscanf" ||
1928 Name == "vfscanf") {
1929 if (FTy->getNumParams() != 3 ||
1930 !FTy->getParamType(1)->isPointerTy() ||
1931 !FTy->getParamType(2)->isPointerTy())
1932 continue;
1933 setDoesNotThrow(F);
1934 setDoesNotCapture(F, 1);
1935 setDoesNotCapture(F, 2);
1936 } else if (Name == "valloc") {
1937 if (!FTy->getReturnType()->isPointerTy())
1938 continue;
1939 setDoesNotThrow(F);
1940 setDoesNotAlias(F, 0);
1941 } else if (Name == "vprintf") {
1942 if (FTy->getNumParams() != 2 ||
1943 !FTy->getParamType(0)->isPointerTy())
1944 continue;
1945 setDoesNotThrow(F);
1946 setDoesNotCapture(F, 1);
1947 } else if (Name == "vfprintf" ||
1948 Name == "vsprintf") {
1949 if (FTy->getNumParams() != 3 ||
1950 !FTy->getParamType(0)->isPointerTy() ||
1951 !FTy->getParamType(1)->isPointerTy())
1952 continue;
1953 setDoesNotThrow(F);
1954 setDoesNotCapture(F, 1);
1955 setDoesNotCapture(F, 2);
1956 } else if (Name == "vsnprintf") {
1957 if (FTy->getNumParams() != 4 ||
1958 !FTy->getParamType(0)->isPointerTy() ||
1959 !FTy->getParamType(2)->isPointerTy())
1960 continue;
1961 setDoesNotThrow(F);
1962 setDoesNotCapture(F, 1);
1963 setDoesNotCapture(F, 3);
1965 break;
1966 case 'o':
1967 if (Name == "open") {
1968 if (FTy->getNumParams() < 2 ||
1969 !FTy->getParamType(0)->isPointerTy())
1970 continue;
1971 // May throw; "open" is a valid pthread cancellation point.
1972 setDoesNotCapture(F, 1);
1973 } else if (Name == "opendir") {
1974 if (FTy->getNumParams() != 1 ||
1975 !FTy->getReturnType()->isPointerTy() ||
1976 !FTy->getParamType(0)->isPointerTy())
1977 continue;
1978 setDoesNotThrow(F);
1979 setDoesNotAlias(F, 0);
1980 setDoesNotCapture(F, 1);
1982 break;
1983 case 't':
1984 if (Name == "tmpfile") {
1985 if (!FTy->getReturnType()->isPointerTy())
1986 continue;
1987 setDoesNotThrow(F);
1988 setDoesNotAlias(F, 0);
1989 } else if (Name == "times") {
1990 if (FTy->getNumParams() != 1 ||
1991 !FTy->getParamType(0)->isPointerTy())
1992 continue;
1993 setDoesNotThrow(F);
1994 setDoesNotCapture(F, 1);
1996 break;
1997 case 'h':
1998 if (Name == "htonl" ||
1999 Name == "htons") {
2000 setDoesNotThrow(F);
2001 setDoesNotAccessMemory(F);
2003 break;
2004 case 'n':
2005 if (Name == "ntohl" ||
2006 Name == "ntohs") {
2007 setDoesNotThrow(F);
2008 setDoesNotAccessMemory(F);
2010 break;
2011 case 'l':
2012 if (Name == "lstat") {
2013 if (FTy->getNumParams() != 2 ||
2014 !FTy->getParamType(0)->isPointerTy() ||
2015 !FTy->getParamType(1)->isPointerTy())
2016 continue;
2017 setDoesNotThrow(F);
2018 setDoesNotCapture(F, 1);
2019 setDoesNotCapture(F, 2);
2020 } else if (Name == "lchown") {
2021 if (FTy->getNumParams() != 3 ||
2022 !FTy->getParamType(0)->isPointerTy())
2023 continue;
2024 setDoesNotThrow(F);
2025 setDoesNotCapture(F, 1);
2027 break;
2028 case 'q':
2029 if (Name == "qsort") {
2030 if (FTy->getNumParams() != 4 ||
2031 !FTy->getParamType(3)->isPointerTy())
2032 continue;
2033 // May throw; places call through function pointer.
2034 setDoesNotCapture(F, 4);
2036 break;
2037 case '_':
2038 if (Name == "__strdup" ||
2039 Name == "__strndup") {
2040 if (FTy->getNumParams() < 1 ||
2041 !FTy->getReturnType()->isPointerTy() ||
2042 !FTy->getParamType(0)->isPointerTy())
2043 continue;
2044 setDoesNotThrow(F);
2045 setDoesNotAlias(F, 0);
2046 setDoesNotCapture(F, 1);
2047 } else if (Name == "__strtok_r") {
2048 if (FTy->getNumParams() != 3 ||
2049 !FTy->getParamType(1)->isPointerTy())
2050 continue;
2051 setDoesNotThrow(F);
2052 setDoesNotCapture(F, 2);
2053 } else if (Name == "_IO_getc") {
2054 if (FTy->getNumParams() != 1 ||
2055 !FTy->getParamType(0)->isPointerTy())
2056 continue;
2057 setDoesNotThrow(F);
2058 setDoesNotCapture(F, 1);
2059 } else if (Name == "_IO_putc") {
2060 if (FTy->getNumParams() != 2 ||
2061 !FTy->getParamType(1)->isPointerTy())
2062 continue;
2063 setDoesNotThrow(F);
2064 setDoesNotCapture(F, 2);
2066 break;
2067 case 1:
2068 if (Name == "\1__isoc99_scanf") {
2069 if (FTy->getNumParams() < 1 ||
2070 !FTy->getParamType(0)->isPointerTy())
2071 continue;
2072 setDoesNotThrow(F);
2073 setDoesNotCapture(F, 1);
2074 } else if (Name == "\1stat64" ||
2075 Name == "\1lstat64" ||
2076 Name == "\1statvfs64" ||
2077 Name == "\1__isoc99_sscanf") {
2078 if (FTy->getNumParams() < 1 ||
2079 !FTy->getParamType(0)->isPointerTy() ||
2080 !FTy->getParamType(1)->isPointerTy())
2081 continue;
2082 setDoesNotThrow(F);
2083 setDoesNotCapture(F, 1);
2084 setDoesNotCapture(F, 2);
2085 } else if (Name == "\1fopen64") {
2086 if (FTy->getNumParams() != 2 ||
2087 !FTy->getReturnType()->isPointerTy() ||
2088 !FTy->getParamType(0)->isPointerTy() ||
2089 !FTy->getParamType(1)->isPointerTy())
2090 continue;
2091 setDoesNotThrow(F);
2092 setDoesNotAlias(F, 0);
2093 setDoesNotCapture(F, 1);
2094 setDoesNotCapture(F, 2);
2095 } else if (Name == "\1fseeko64" ||
2096 Name == "\1ftello64") {
2097 if (FTy->getNumParams() == 0 ||
2098 !FTy->getParamType(0)->isPointerTy())
2099 continue;
2100 setDoesNotThrow(F);
2101 setDoesNotCapture(F, 1);
2102 } else if (Name == "\1tmpfile64") {
2103 if (!FTy->getReturnType()->isPointerTy())
2104 continue;
2105 setDoesNotThrow(F);
2106 setDoesNotAlias(F, 0);
2107 } else if (Name == "\1fstat64" ||
2108 Name == "\1fstatvfs64") {
2109 if (FTy->getNumParams() != 2 ||
2110 !FTy->getParamType(1)->isPointerTy())
2111 continue;
2112 setDoesNotThrow(F);
2113 setDoesNotCapture(F, 2);
2114 } else if (Name == "\1open64") {
2115 if (FTy->getNumParams() < 2 ||
2116 !FTy->getParamType(0)->isPointerTy())
2117 continue;
2118 // May throw; "open" is a valid pthread cancellation point.
2119 setDoesNotCapture(F, 1);
2121 break;
2124 return Modified;
2127 // TODO:
2128 // Additional cases that we need to add to this file:
2130 // cbrt:
2131 // * cbrt(expN(X)) -> expN(x/3)
2132 // * cbrt(sqrt(x)) -> pow(x,1/6)
2133 // * cbrt(sqrt(x)) -> pow(x,1/9)
2135 // cos, cosf, cosl:
2136 // * cos(-x) -> cos(x)
2138 // exp, expf, expl:
2139 // * exp(log(x)) -> x
2141 // log, logf, logl:
2142 // * log(exp(x)) -> x
2143 // * log(x**y) -> y*log(x)
2144 // * log(exp(y)) -> y*log(e)
2145 // * log(exp2(y)) -> y*log(2)
2146 // * log(exp10(y)) -> y*log(10)
2147 // * log(sqrt(x)) -> 0.5*log(x)
2148 // * log(pow(x,y)) -> y*log(x)
2150 // lround, lroundf, lroundl:
2151 // * lround(cnst) -> cnst'
2153 // pow, powf, powl:
2154 // * pow(exp(x),y) -> exp(x*y)
2155 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2156 // * pow(pow(x,y),z)-> pow(x,y*z)
2158 // puts:
2159 // * puts("") -> putchar('\n')
2161 // round, roundf, roundl:
2162 // * round(cnst) -> cnst'
2164 // signbit:
2165 // * signbit(cnst) -> cnst'
2166 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2168 // sqrt, sqrtf, sqrtl:
2169 // * sqrt(expN(x)) -> expN(x*0.5)
2170 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2171 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2173 // stpcpy:
2174 // * stpcpy(str, "literal") ->
2175 // llvm.memcpy(str,"literal",strlen("literal")+1,1)
2176 // strrchr:
2177 // * strrchr(s,c) -> reverse_offset_of_in(c,s)
2178 // (if c is a constant integer and s is a constant string)
2179 // * strrchr(s1,0) -> strchr(s1,0)
2181 // strpbrk:
2182 // * strpbrk(s,a) -> offset_in_for(s,a)
2183 // (if s and a are both constant strings)
2184 // * strpbrk(s,"") -> 0
2185 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
2187 // strspn, strcspn:
2188 // * strspn(s,a) -> const_int (if both args are constant)
2189 // * strspn("",a) -> 0
2190 // * strspn(s,"") -> 0
2191 // * strcspn(s,a) -> const_int (if both args are constant)
2192 // * strcspn("",a) -> 0
2193 // * strcspn(s,"") -> strlen(a)
2195 // tan, tanf, tanl:
2196 // * tan(atan(x)) -> x
2198 // trunc, truncf, truncl:
2199 // * trunc(cnst) -> cnst'