Move ConstantExpr to 2.5 API.
[llvm/avr.git] / lib / Transforms / Instrumentation / RSProfiling.cpp
blob2afc0cb2729b233eec4be9163b3d76b5e0c223a7
1 //===- RSProfiling.cpp - Various profiling using random sampling ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These passes implement a random sampling based profiling. Different methods
11 // of choosing when to sample are supported, as well as different types of
12 // profiling. This is done as two passes. The first is a sequence of profiling
13 // passes which insert profiling into the program, and remember what they
14 // inserted.
16 // The second stage duplicates all instructions in a function, ignoring the
17 // profiling code, then connects the two versions togeather at the entry and at
18 // backedges. At each connection point a choice is made as to whether to jump
19 // to the profiled code (take a sample) or execute the unprofiled code.
21 // It is highly recommended that after this pass one runs mem2reg and adce
22 // (instcombine load-vn gdce dse also are good to run afterwards)
24 // This design is intended to make the profiling passes independent of the RS
25 // framework, but any profiling pass that implements the RSProfiling interface
26 // is compatible with the rs framework (and thus can be sampled)
28 // TODO: obviously the block and function profiling are almost identical to the
29 // existing ones, so they can be unified (esp since these passes are valid
30 // without the rs framework).
31 // TODO: Fix choice code so that frequency is not hard coded
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Pass.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/Module.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Intrinsics.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Instrumentation.h"
50 #include "RSProfiling.h"
51 #include <set>
52 #include <map>
53 #include <queue>
54 using namespace llvm;
56 namespace {
57 enum RandomMeth {
58 GBV, GBVO, HOSTCC
62 static cl::opt<RandomMeth> RandomMethod("profile-randomness",
63 cl::desc("How to randomly choose to profile:"),
64 cl::values(
65 clEnumValN(GBV, "global", "global counter"),
66 clEnumValN(GBVO, "ra_global",
67 "register allocated global counter"),
68 clEnumValN(HOSTCC, "rdcc", "cycle counter"),
69 clEnumValEnd));
71 namespace {
72 /// NullProfilerRS - The basic profiler that does nothing. It is the default
73 /// profiler and thus terminates RSProfiler chains. It is useful for
74 /// measuring framework overhead
75 class VISIBILITY_HIDDEN NullProfilerRS : public RSProfilers {
76 public:
77 static char ID; // Pass identification, replacement for typeid
78 bool isProfiling(Value* v) {
79 return false;
81 bool runOnModule(Module &M) {
82 return false;
84 void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesAll();
90 static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
91 static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
92 "Measure profiling framework overhead");
93 static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);
95 namespace {
96 /// Chooser - Something that chooses when to make a sample of the profiled code
97 class VISIBILITY_HIDDEN Chooser {
98 public:
99 /// ProcessChoicePoint - is called for each basic block inserted to choose
100 /// between normal and sample code
101 virtual void ProcessChoicePoint(BasicBlock*) = 0;
102 /// PrepFunction - is called once per function before other work is done.
103 /// This gives the opertunity to insert new allocas and such.
104 virtual void PrepFunction(Function*) = 0;
105 virtual ~Chooser() {}
108 //Things that implement sampling policies
109 //A global value that is read-mod-stored to choose when to sample.
110 //A sample is taken when the global counter hits 0
111 class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser {
112 GlobalVariable* Counter;
113 Value* ResetValue;
114 const IntegerType* T;
115 public:
116 GlobalRandomCounter(Module& M, const IntegerType* t, uint64_t resetval);
117 virtual ~GlobalRandomCounter();
118 virtual void PrepFunction(Function* F);
119 virtual void ProcessChoicePoint(BasicBlock* bb);
122 //Same is GRC, but allow register allocation of the global counter
123 class VISIBILITY_HIDDEN GlobalRandomCounterOpt : public Chooser {
124 GlobalVariable* Counter;
125 Value* ResetValue;
126 AllocaInst* AI;
127 const IntegerType* T;
128 public:
129 GlobalRandomCounterOpt(Module& M, const IntegerType* t, uint64_t resetval);
130 virtual ~GlobalRandomCounterOpt();
131 virtual void PrepFunction(Function* F);
132 virtual void ProcessChoicePoint(BasicBlock* bb);
135 //Use the cycle counter intrinsic as a source of pseudo randomness when
136 //deciding when to sample.
137 class VISIBILITY_HIDDEN CycleCounter : public Chooser {
138 uint64_t rm;
139 Constant *F;
140 public:
141 CycleCounter(Module& m, uint64_t resetmask);
142 virtual ~CycleCounter();
143 virtual void PrepFunction(Function* F);
144 virtual void ProcessChoicePoint(BasicBlock* bb);
147 /// ProfilerRS - Insert the random sampling framework
148 struct VISIBILITY_HIDDEN ProfilerRS : public FunctionPass {
149 static char ID; // Pass identification, replacement for typeid
150 ProfilerRS() : FunctionPass(&ID) {}
152 std::map<Value*, Value*> TransCache;
153 std::set<BasicBlock*> ChoicePoints;
154 Chooser* c;
156 //Translate and duplicate values for the new profile free version of stuff
157 Value* Translate(Value* v);
158 //Duplicate an entire function (with out profiling)
159 void Duplicate(Function& F, RSProfilers& LI);
160 //Called once for each backedge, handle the insertion of choice points and
161 //the interconection of the two versions of the code
162 void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
163 bool runOnFunction(Function& F);
164 bool doInitialization(Module &M);
165 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
169 static RegisterPass<ProfilerRS>
170 X("insert-rs-profiling-framework",
171 "Insert random sampling instrumentation framework");
173 char RSProfilers::ID = 0;
174 char NullProfilerRS::ID = 0;
175 char ProfilerRS::ID = 0;
177 //Local utilities
178 static void ReplacePhiPred(BasicBlock* btarget,
179 BasicBlock* bold, BasicBlock* bnew);
181 static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
183 template<class T>
184 static void recBackEdge(BasicBlock* bb, T& BackEdges,
185 std::map<BasicBlock*, int>& color,
186 std::map<BasicBlock*, int>& depth,
187 std::map<BasicBlock*, int>& finish,
188 int& time);
190 //find the back edges and where they go to
191 template<class T>
192 static void getBackEdges(Function& F, T& BackEdges);
195 ///////////////////////////////////////
196 // Methods of choosing when to profile
197 ///////////////////////////////////////
199 GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
200 uint64_t resetval) : T(t) {
201 ConstantInt* Init = ConstantInt::get(T, resetval);
202 ResetValue = Init;
203 Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
204 Init, "RandomSteeringCounter");
207 GlobalRandomCounter::~GlobalRandomCounter() {}
209 void GlobalRandomCounter::PrepFunction(Function* F) {}
211 void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
212 BranchInst* t = cast<BranchInst>(bb->getTerminator());
214 //decrement counter
215 LoadInst* l = new LoadInst(Counter, "counter", t);
217 ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
218 ConstantInt::get(T, 0),
219 "countercc");
221 Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
222 "counternew", t);
223 new StoreInst(nv, Counter, t);
224 t->setCondition(s);
226 //reset counter
227 BasicBlock* oldnext = t->getSuccessor(0);
228 BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
229 oldnext);
230 TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
231 t->setSuccessor(0, resetblock);
232 new StoreInst(ResetValue, Counter, t2);
233 ReplacePhiPred(oldnext, bb, resetblock);
236 GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
237 uint64_t resetval)
238 : AI(0), T(t) {
239 ConstantInt* Init = ConstantInt::get(T, resetval);
240 ResetValue = Init;
241 Counter = new GlobalVariable(M, T, false, GlobalValue::InternalLinkage,
242 Init, "RandomSteeringCounter");
245 GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
247 void GlobalRandomCounterOpt::PrepFunction(Function* F) {
248 //make a local temporary to cache the global
249 BasicBlock& bb = F->getEntryBlock();
250 BasicBlock::iterator InsertPt = bb.begin();
251 AI = new AllocaInst(T, 0, "localcounter", InsertPt);
252 LoadInst* l = new LoadInst(Counter, "counterload", InsertPt);
253 new StoreInst(l, AI, InsertPt);
255 //modify all functions and return values to restore the local variable to/from
256 //the global variable
257 for(Function::iterator fib = F->begin(), fie = F->end();
258 fib != fie; ++fib)
259 for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
260 bib != bie; ++bib)
261 if (isa<CallInst>(bib)) {
262 LoadInst* l = new LoadInst(AI, "counter", bib);
263 new StoreInst(l, Counter, bib);
264 l = new LoadInst(Counter, "counter", ++bib);
265 new StoreInst(l, AI, bib--);
266 } else if (isa<InvokeInst>(bib)) {
267 LoadInst* l = new LoadInst(AI, "counter", bib);
268 new StoreInst(l, Counter, bib);
270 BasicBlock* bb = cast<InvokeInst>(bib)->getNormalDest();
271 BasicBlock::iterator i = bb->getFirstNonPHI();
272 l = new LoadInst(Counter, "counter", i);
274 bb = cast<InvokeInst>(bib)->getUnwindDest();
275 i = bb->getFirstNonPHI();
276 l = new LoadInst(Counter, "counter", i);
277 new StoreInst(l, AI, i);
278 } else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
279 LoadInst* l = new LoadInst(AI, "counter", bib);
280 new StoreInst(l, Counter, bib);
284 void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
285 BranchInst* t = cast<BranchInst>(bb->getTerminator());
287 //decrement counter
288 LoadInst* l = new LoadInst(AI, "counter", t);
290 ICmpInst* s = new ICmpInst(t, ICmpInst::ICMP_EQ, l,
291 ConstantInt::get(T, 0),
292 "countercc");
294 Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
295 "counternew", t);
296 new StoreInst(nv, AI, t);
297 t->setCondition(s);
299 //reset counter
300 BasicBlock* oldnext = t->getSuccessor(0);
301 BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
302 oldnext);
303 TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
304 t->setSuccessor(0, resetblock);
305 new StoreInst(ResetValue, AI, t2);
306 ReplacePhiPred(oldnext, bb, resetblock);
310 CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
311 F = Intrinsic::getDeclaration(&m, Intrinsic::readcyclecounter);
314 CycleCounter::~CycleCounter() {}
316 void CycleCounter::PrepFunction(Function* F) {}
318 void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
319 BranchInst* t = cast<BranchInst>(bb->getTerminator());
321 CallInst* c = CallInst::Create(F, "rdcc", t);
322 BinaryOperator* b =
323 BinaryOperator::CreateAnd(c, ConstantInt::get(Type::Int64Ty, rm),
324 "mrdcc", t);
326 ICmpInst *s = new ICmpInst(t, ICmpInst::ICMP_EQ, b,
327 ConstantInt::get(Type::Int64Ty, 0),
328 "mrdccc");
330 t->setCondition(s);
333 ///////////////////////////////////////
334 // Profiling:
335 ///////////////////////////////////////
336 bool RSProfilers_std::isProfiling(Value* v) {
337 if (profcode.find(v) != profcode.end())
338 return true;
339 //else
340 RSProfilers& LI = getAnalysis<RSProfilers>();
341 return LI.isProfiling(v);
344 void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
345 GlobalValue *CounterArray) {
346 // Insert the increment after any alloca or PHI instructions...
347 BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
348 while (isa<AllocaInst>(InsertPos))
349 ++InsertPos;
351 // Create the getelementptr constant expression
352 std::vector<Constant*> Indices(2);
353 Indices[0] = BB->getContext().getNullValue(Type::Int32Ty);
354 Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
355 Constant *ElementPtr =ConstantExpr::getGetElementPtr(CounterArray,
356 &Indices[0], 2);
358 // Load, increment and store the value back.
359 Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
360 profcode.insert(OldVal);
361 Value *NewVal = BinaryOperator::CreateAdd(OldVal,
362 ConstantInt::get(Type::Int32Ty, 1),
363 "NewCounter", InsertPos);
364 profcode.insert(NewVal);
365 profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
368 void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
369 //grab any outstanding profiler, or get the null one
370 AU.addRequired<RSProfilers>();
373 ///////////////////////////////////////
374 // RS Framework
375 ///////////////////////////////////////
377 Value* ProfilerRS::Translate(Value* v) {
378 if(TransCache[v])
379 return TransCache[v];
381 if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
382 if (bb == &bb->getParent()->getEntryBlock())
383 TransCache[bb] = bb; //don't translate entry block
384 else
385 TransCache[bb] = BasicBlock::Create("dup_" + bb->getName(),
386 bb->getParent(), NULL);
387 return TransCache[bb];
388 } else if (Instruction* i = dyn_cast<Instruction>(v)) {
389 //we have already translated this
390 //do not translate entry block allocas
391 if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
392 TransCache[i] = i;
393 return i;
394 } else {
395 //translate this
396 Instruction* i2 = i->clone(v->getContext());
397 if (i->hasName())
398 i2->setName("dup_" + i->getName());
399 TransCache[i] = i2;
400 //NumNewInst++;
401 for (unsigned x = 0; x < i2->getNumOperands(); ++x)
402 i2->setOperand(x, Translate(i2->getOperand(x)));
403 return i2;
405 } else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
406 TransCache[v] = v;
407 return v;
409 llvm_unreachable("Value not handled");
410 return 0;
413 void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
415 //perform a breadth first search, building up a duplicate of the code
416 std::queue<BasicBlock*> worklist;
417 std::set<BasicBlock*> seen;
419 //This loop ensures proper BB order, to help performance
420 for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
421 worklist.push(fib);
422 while (!worklist.empty()) {
423 Translate(worklist.front());
424 worklist.pop();
427 //remember than reg2mem created a new entry block we don't want to duplicate
428 worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
429 seen.insert(&F.getEntryBlock());
431 while (!worklist.empty()) {
432 BasicBlock* bb = worklist.front();
433 worklist.pop();
434 if(seen.find(bb) == seen.end()) {
435 BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
436 BasicBlock::InstListType& instlist = bbtarget->getInstList();
437 for (BasicBlock::iterator iib = bb->begin(), iie = bb->end();
438 iib != iie; ++iib) {
439 //NumOldInst++;
440 if (!LI.isProfiling(&*iib)) {
441 Instruction* i = cast<Instruction>(Translate(iib));
442 instlist.insert(bbtarget->end(), i);
445 //updated search state;
446 seen.insert(bb);
447 TerminatorInst* ti = bb->getTerminator();
448 for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
449 BasicBlock* bbs = ti->getSuccessor(x);
450 if (seen.find(bbs) == seen.end()) {
451 worklist.push(bbs);
458 void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
459 //given a backedge from B -> A, and translations A' and B',
460 //a: insert C and C'
461 //b: add branches in C to A and A' and in C' to A and A'
462 //c: mod terminators@B, replace A with C
463 //d: mod terminators@B', replace A' with C'
464 //e: mod phis@A for pred B to be pred C
465 // if multiple entries, simplify to one
466 //f: mod phis@A' for pred B' to be pred C'
467 // if multiple entries, simplify to one
468 //g: for all phis@A with pred C using x
469 // add in edge from C' using x'
470 // add in edge from C using x in A'
472 //a:
473 Function::iterator BBN = src; ++BBN;
474 BasicBlock* bbC = BasicBlock::Create("choice", &F, BBN);
475 //ChoicePoints.insert(bbC);
476 BBN = cast<BasicBlock>(Translate(src));
477 BasicBlock* bbCp = BasicBlock::Create("choice", &F, ++BBN);
478 ChoicePoints.insert(bbCp);
480 //b:
481 BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
482 BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
483 ConstantInt::get(Type::Int1Ty, true), bbCp);
484 //c:
486 TerminatorInst* iB = src->getTerminator();
487 for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
488 if (iB->getSuccessor(x) == dst)
489 iB->setSuccessor(x, bbC);
491 //d:
493 TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
494 for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
495 if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
496 iBp->setSuccessor(x, bbCp);
498 //e:
499 ReplacePhiPred(dst, src, bbC);
500 //src could be a switch, in which case we are replacing several edges with one
501 //thus collapse those edges int the Phi
502 CollapsePhi(dst, bbC);
503 //f:
504 ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
505 cast<BasicBlock>(Translate(src)),bbCp);
506 CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
507 //g:
508 for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
509 ++ib)
510 if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
511 for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
512 if(bbC == phi->getIncomingBlock(x)) {
513 phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
514 cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x),
515 bbC);
517 phi->removeIncomingValue(bbC);
521 bool ProfilerRS::runOnFunction(Function& F) {
522 if (!F.isDeclaration()) {
523 std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
524 RSProfilers& LI = getAnalysis<RSProfilers>();
526 getBackEdges(F, BackEdges);
527 Duplicate(F, LI);
528 //assume that stuff worked. now connect the duplicated basic blocks
529 //with the originals in such a way as to preserve ssa. yuk!
530 for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator
531 ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
532 ProcessBackEdge(ib->first, ib->second, F);
534 //oh, and add the edge from the reg2mem created entry node to the
535 //duplicated second node
536 TerminatorInst* T = F.getEntryBlock().getTerminator();
537 ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
538 cast<BasicBlock>(
539 Translate(T->getSuccessor(0))),
540 ConstantInt::get(Type::Int1Ty, true)));
542 //do whatever is needed now that the function is duplicated
543 c->PrepFunction(&F);
545 //add entry node to choice points
546 ChoicePoints.insert(&F.getEntryBlock());
548 for (std::set<BasicBlock*>::iterator
549 ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
550 c->ProcessChoicePoint(*ii);
552 ChoicePoints.clear();
553 TransCache.clear();
555 return true;
557 return false;
560 bool ProfilerRS::doInitialization(Module &M) {
561 switch (RandomMethod) {
562 case GBV:
563 c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
564 break;
565 case GBVO:
566 c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
567 break;
568 case HOSTCC:
569 c = new CycleCounter(M, (1 << 14) - 1);
570 break;
572 return true;
575 void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
576 AU.addRequired<RSProfilers>();
577 AU.addRequiredID(DemoteRegisterToMemoryID);
580 ///////////////////////////////////////
581 // Utilities:
582 ///////////////////////////////////////
583 static void ReplacePhiPred(BasicBlock* btarget,
584 BasicBlock* bold, BasicBlock* bnew) {
585 for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
586 ib != ie; ++ib)
587 if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
588 for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
589 if(bold == phi->getIncomingBlock(x))
590 phi->setIncomingBlock(x, bnew);
594 static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
595 for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
596 ib != ie; ++ib)
597 if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
598 std::map<BasicBlock*, Value*> counter;
599 for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
600 if (counter[phi->getIncomingBlock(i)]) {
601 assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
602 phi->removeIncomingValue(i, false);
603 } else {
604 counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
605 ++i;
611 template<class T>
612 static void recBackEdge(BasicBlock* bb, T& BackEdges,
613 std::map<BasicBlock*, int>& color,
614 std::map<BasicBlock*, int>& depth,
615 std::map<BasicBlock*, int>& finish,
616 int& time)
618 color[bb] = 1;
619 ++time;
620 depth[bb] = time;
621 TerminatorInst* t= bb->getTerminator();
622 for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
623 BasicBlock* bbnew = t->getSuccessor(i);
624 if (color[bbnew] == 0)
625 recBackEdge(bbnew, BackEdges, color, depth, finish, time);
626 else if (color[bbnew] == 1) {
627 BackEdges.insert(std::make_pair(bb, bbnew));
628 //NumBackEdges++;
631 color[bb] = 2;
632 ++time;
633 finish[bb] = time;
638 //find the back edges and where they go to
639 template<class T>
640 static void getBackEdges(Function& F, T& BackEdges) {
641 std::map<BasicBlock*, int> color;
642 std::map<BasicBlock*, int> depth;
643 std::map<BasicBlock*, int> finish;
644 int time = 0;
645 recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
646 DEBUG(errs() << F.getName() << " " << BackEdges.size() << "\n");
650 //Creation functions
651 ModulePass* llvm::createNullProfilerRSPass() {
652 return new NullProfilerRS();
655 FunctionPass* llvm::createRSProfilingPass() {
656 return new ProfilerRS();