Move ConstantExpr to 2.5 API.
[llvm/avr.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blob7ca2c5e7f373022eeb6e68f70bb0d12426f3013b
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/IRBuilder.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/StringExtras.h"
45 using namespace llvm;
47 STATISTIC(NumReplaced, "Number of allocas broken up");
48 STATISTIC(NumPromoted, "Number of allocas promoted");
49 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
50 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
52 namespace {
53 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
54 static char ID; // Pass identification, replacement for typeid
55 explicit SROA(signed T = -1) : FunctionPass(&ID) {
56 if (T == -1)
57 SRThreshold = 128;
58 else
59 SRThreshold = T;
62 bool runOnFunction(Function &F);
64 bool performScalarRepl(Function &F);
65 bool performPromotion(Function &F);
67 // getAnalysisUsage - This pass does not require any passes, but we know it
68 // will not alter the CFG, so say so.
69 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.addRequired<DominatorTree>();
71 AU.addRequired<DominanceFrontier>();
72 AU.addRequired<TargetData>();
73 AU.setPreservesCFG();
76 private:
77 TargetData *TD;
79 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
80 /// information about the uses. All these fields are initialized to false
81 /// and set to true when something is learned.
82 struct AllocaInfo {
83 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
84 bool isUnsafe : 1;
86 /// needsCleanup - This is set to true if there is some use of the alloca
87 /// that requires cleanup.
88 bool needsCleanup : 1;
90 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
91 bool isMemCpySrc : 1;
93 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
94 bool isMemCpyDst : 1;
96 AllocaInfo()
97 : isUnsafe(false), needsCleanup(false),
98 isMemCpySrc(false), isMemCpyDst(false) {}
101 unsigned SRThreshold;
103 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
105 int isSafeAllocaToScalarRepl(AllocationInst *AI);
107 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
108 AllocaInfo &Info);
109 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
110 AllocaInfo &Info);
111 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
112 unsigned OpNo, AllocaInfo &Info);
113 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
114 AllocaInfo &Info);
116 void DoScalarReplacement(AllocationInst *AI,
117 std::vector<AllocationInst*> &WorkList);
118 void CleanupGEP(GetElementPtrInst *GEP);
119 void CleanupAllocaUsers(AllocationInst *AI);
120 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
122 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
123 SmallVector<AllocaInst*, 32> &NewElts);
125 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
126 AllocationInst *AI,
127 SmallVector<AllocaInst*, 32> &NewElts);
128 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
129 SmallVector<AllocaInst*, 32> &NewElts);
130 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
131 SmallVector<AllocaInst*, 32> &NewElts);
133 bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
134 bool &SawVec, uint64_t Offset, unsigned AllocaSize);
135 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
136 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
137 uint64_t Offset, IRBuilder<> &Builder);
138 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
139 uint64_t Offset, IRBuilder<> &Builder);
140 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
144 char SROA::ID = 0;
145 static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
147 // Public interface to the ScalarReplAggregates pass
148 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
149 return new SROA(Threshold);
153 bool SROA::runOnFunction(Function &F) {
154 TD = &getAnalysis<TargetData>();
156 bool Changed = performPromotion(F);
157 while (1) {
158 bool LocalChange = performScalarRepl(F);
159 if (!LocalChange) break; // No need to repromote if no scalarrepl
160 Changed = true;
161 LocalChange = performPromotion(F);
162 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
165 return Changed;
169 bool SROA::performPromotion(Function &F) {
170 std::vector<AllocaInst*> Allocas;
171 DominatorTree &DT = getAnalysis<DominatorTree>();
172 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
174 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
176 bool Changed = false;
178 while (1) {
179 Allocas.clear();
181 // Find allocas that are safe to promote, by looking at all instructions in
182 // the entry node
183 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
184 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
185 if (isAllocaPromotable(AI))
186 Allocas.push_back(AI);
188 if (Allocas.empty()) break;
190 PromoteMemToReg(Allocas, DT, DF, F.getContext());
191 NumPromoted += Allocas.size();
192 Changed = true;
195 return Changed;
198 /// getNumSAElements - Return the number of elements in the specific struct or
199 /// array.
200 static uint64_t getNumSAElements(const Type *T) {
201 if (const StructType *ST = dyn_cast<StructType>(T))
202 return ST->getNumElements();
203 return cast<ArrayType>(T)->getNumElements();
206 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
207 // which runs on all of the malloc/alloca instructions in the function, removing
208 // them if they are only used by getelementptr instructions.
210 bool SROA::performScalarRepl(Function &F) {
211 std::vector<AllocationInst*> WorkList;
213 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
214 BasicBlock &BB = F.getEntryBlock();
215 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
216 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
217 WorkList.push_back(A);
219 // Process the worklist
220 bool Changed = false;
221 while (!WorkList.empty()) {
222 AllocationInst *AI = WorkList.back();
223 WorkList.pop_back();
225 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
226 // with unused elements.
227 if (AI->use_empty()) {
228 AI->eraseFromParent();
229 continue;
232 // If this alloca is impossible for us to promote, reject it early.
233 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
234 continue;
236 // Check to see if this allocation is only modified by a memcpy/memmove from
237 // a constant global. If this is the case, we can change all users to use
238 // the constant global instead. This is commonly produced by the CFE by
239 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
240 // is only subsequently read.
241 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
242 DOUT << "Found alloca equal to global: " << *AI;
243 DOUT << " memcpy = " << *TheCopy;
244 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
245 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
246 TheCopy->eraseFromParent(); // Don't mutate the global.
247 AI->eraseFromParent();
248 ++NumGlobals;
249 Changed = true;
250 continue;
253 // Check to see if we can perform the core SROA transformation. We cannot
254 // transform the allocation instruction if it is an array allocation
255 // (allocations OF arrays are ok though), and an allocation of a scalar
256 // value cannot be decomposed at all.
257 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
259 // Do not promote any struct whose size is too big.
260 if (AllocaSize > SRThreshold) continue;
262 if ((isa<StructType>(AI->getAllocatedType()) ||
263 isa<ArrayType>(AI->getAllocatedType())) &&
264 // Do not promote any struct into more than "32" separate vars.
265 getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
266 // Check that all of the users of the allocation are capable of being
267 // transformed.
268 switch (isSafeAllocaToScalarRepl(AI)) {
269 default: llvm_unreachable("Unexpected value!");
270 case 0: // Not safe to scalar replace.
271 break;
272 case 1: // Safe, but requires cleanup/canonicalizations first
273 CleanupAllocaUsers(AI);
274 // FALL THROUGH.
275 case 3: // Safe to scalar replace.
276 DoScalarReplacement(AI, WorkList);
277 Changed = true;
278 continue;
282 // If we can turn this aggregate value (potentially with casts) into a
283 // simple scalar value that can be mem2reg'd into a register value.
284 // IsNotTrivial tracks whether this is something that mem2reg could have
285 // promoted itself. If so, we don't want to transform it needlessly. Note
286 // that we can't just check based on the type: the alloca may be of an i32
287 // but that has pointer arithmetic to set byte 3 of it or something.
288 bool IsNotTrivial = false;
289 const Type *VectorTy = 0;
290 bool HadAVector = false;
291 if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
292 0, unsigned(AllocaSize)) && IsNotTrivial) {
293 AllocaInst *NewAI;
294 // If we were able to find a vector type that can handle this with
295 // insert/extract elements, and if there was at least one use that had
296 // a vector type, promote this to a vector. We don't want to promote
297 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
298 // we just get a lot of insert/extracts. If at least one vector is
299 // involved, then we probably really do have a union of vector/array.
300 if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
301 DOUT << "CONVERT TO VECTOR: " << *AI << " TYPE = " << *VectorTy <<"\n";
303 // Create and insert the vector alloca.
304 NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
305 ConvertUsesToScalar(AI, NewAI, 0);
306 } else {
307 DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
309 // Create and insert the integer alloca.
310 const Type *NewTy = F.getContext().getIntegerType(AllocaSize*8);
311 NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
312 ConvertUsesToScalar(AI, NewAI, 0);
314 NewAI->takeName(AI);
315 AI->eraseFromParent();
316 ++NumConverted;
317 Changed = true;
318 continue;
321 // Otherwise, couldn't process this alloca.
324 return Changed;
327 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
328 /// predicate, do SROA now.
329 void SROA::DoScalarReplacement(AllocationInst *AI,
330 std::vector<AllocationInst*> &WorkList) {
331 DOUT << "Found inst to SROA: " << *AI;
332 SmallVector<AllocaInst*, 32> ElementAllocas;
333 LLVMContext &Context = AI->getContext();
334 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
335 ElementAllocas.reserve(ST->getNumContainedTypes());
336 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
337 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
338 AI->getAlignment(),
339 AI->getName() + "." + utostr(i), AI);
340 ElementAllocas.push_back(NA);
341 WorkList.push_back(NA); // Add to worklist for recursive processing
343 } else {
344 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
345 ElementAllocas.reserve(AT->getNumElements());
346 const Type *ElTy = AT->getElementType();
347 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
348 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
349 AI->getName() + "." + utostr(i), AI);
350 ElementAllocas.push_back(NA);
351 WorkList.push_back(NA); // Add to worklist for recursive processing
355 // Now that we have created the alloca instructions that we want to use,
356 // expand the getelementptr instructions to use them.
358 while (!AI->use_empty()) {
359 Instruction *User = cast<Instruction>(AI->use_back());
360 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
361 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
362 BCInst->eraseFromParent();
363 continue;
366 // Replace:
367 // %res = load { i32, i32 }* %alloc
368 // with:
369 // %load.0 = load i32* %alloc.0
370 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
371 // %load.1 = load i32* %alloc.1
372 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
373 // (Also works for arrays instead of structs)
374 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
375 Value *Insert = Context.getUndef(LI->getType());
376 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
377 Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
378 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
380 LI->replaceAllUsesWith(Insert);
381 LI->eraseFromParent();
382 continue;
385 // Replace:
386 // store { i32, i32 } %val, { i32, i32 }* %alloc
387 // with:
388 // %val.0 = extractvalue { i32, i32 } %val, 0
389 // store i32 %val.0, i32* %alloc.0
390 // %val.1 = extractvalue { i32, i32 } %val, 1
391 // store i32 %val.1, i32* %alloc.1
392 // (Also works for arrays instead of structs)
393 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
394 Value *Val = SI->getOperand(0);
395 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
396 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
397 new StoreInst(Extract, ElementAllocas[i], SI);
399 SI->eraseFromParent();
400 continue;
403 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
404 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
405 unsigned Idx =
406 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
408 assert(Idx < ElementAllocas.size() && "Index out of range?");
409 AllocaInst *AllocaToUse = ElementAllocas[Idx];
411 Value *RepValue;
412 if (GEPI->getNumOperands() == 3) {
413 // Do not insert a new getelementptr instruction with zero indices, only
414 // to have it optimized out later.
415 RepValue = AllocaToUse;
416 } else {
417 // We are indexing deeply into the structure, so we still need a
418 // getelement ptr instruction to finish the indexing. This may be
419 // expanded itself once the worklist is rerun.
421 SmallVector<Value*, 8> NewArgs;
422 NewArgs.push_back(Context.getNullValue(Type::Int32Ty));
423 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
424 RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
425 NewArgs.end(), "", GEPI);
426 RepValue->takeName(GEPI);
429 // If this GEP is to the start of the aggregate, check for memcpys.
430 if (Idx == 0 && GEPI->hasAllZeroIndices())
431 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
433 // Move all of the users over to the new GEP.
434 GEPI->replaceAllUsesWith(RepValue);
435 // Delete the old GEP
436 GEPI->eraseFromParent();
439 // Finally, delete the Alloca instruction
440 AI->eraseFromParent();
441 NumReplaced++;
445 /// isSafeElementUse - Check to see if this use is an allowed use for a
446 /// getelementptr instruction of an array aggregate allocation. isFirstElt
447 /// indicates whether Ptr is known to the start of the aggregate.
449 void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
450 AllocaInfo &Info) {
451 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
452 I != E; ++I) {
453 Instruction *User = cast<Instruction>(*I);
454 switch (User->getOpcode()) {
455 case Instruction::Load: break;
456 case Instruction::Store:
457 // Store is ok if storing INTO the pointer, not storing the pointer
458 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
459 break;
460 case Instruction::GetElementPtr: {
461 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
462 bool AreAllZeroIndices = isFirstElt;
463 if (GEP->getNumOperands() > 1) {
464 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
465 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
466 // Using pointer arithmetic to navigate the array.
467 return MarkUnsafe(Info);
469 if (AreAllZeroIndices)
470 AreAllZeroIndices = GEP->hasAllZeroIndices();
472 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
473 if (Info.isUnsafe) return;
474 break;
476 case Instruction::BitCast:
477 if (isFirstElt) {
478 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
479 if (Info.isUnsafe) return;
480 break;
482 DOUT << " Transformation preventing inst: " << *User;
483 return MarkUnsafe(Info);
484 case Instruction::Call:
485 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
486 if (isFirstElt) {
487 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
488 if (Info.isUnsafe) return;
489 break;
492 DOUT << " Transformation preventing inst: " << *User;
493 return MarkUnsafe(Info);
494 default:
495 DOUT << " Transformation preventing inst: " << *User;
496 return MarkUnsafe(Info);
499 return; // All users look ok :)
502 /// AllUsersAreLoads - Return true if all users of this value are loads.
503 static bool AllUsersAreLoads(Value *Ptr) {
504 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
505 I != E; ++I)
506 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
507 return false;
508 return true;
511 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
512 /// aggregate allocation.
514 void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
515 AllocaInfo &Info) {
516 LLVMContext &Context = User->getContext();
517 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
518 return isSafeUseOfBitCastedAllocation(C, AI, Info);
520 if (LoadInst *LI = dyn_cast<LoadInst>(User))
521 if (!LI->isVolatile())
522 return;// Loads (returning a first class aggregrate) are always rewritable
524 if (StoreInst *SI = dyn_cast<StoreInst>(User))
525 if (!SI->isVolatile() && SI->getOperand(0) != AI)
526 return;// Store is ok if storing INTO the pointer, not storing the pointer
528 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
529 if (GEPI == 0)
530 return MarkUnsafe(Info);
532 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
534 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
535 if (I == E ||
536 I.getOperand() != Context.getNullValue(I.getOperand()->getType())) {
537 return MarkUnsafe(Info);
540 ++I;
541 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
543 bool IsAllZeroIndices = true;
545 // If the first index is a non-constant index into an array, see if we can
546 // handle it as a special case.
547 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
548 if (!isa<ConstantInt>(I.getOperand())) {
549 IsAllZeroIndices = 0;
550 uint64_t NumElements = AT->getNumElements();
552 // If this is an array index and the index is not constant, we cannot
553 // promote... that is unless the array has exactly one or two elements in
554 // it, in which case we CAN promote it, but we have to canonicalize this
555 // out if this is the only problem.
556 if ((NumElements == 1 || NumElements == 2) &&
557 AllUsersAreLoads(GEPI)) {
558 Info.needsCleanup = true;
559 return; // Canonicalization required!
561 return MarkUnsafe(Info);
565 // Walk through the GEP type indices, checking the types that this indexes
566 // into.
567 for (; I != E; ++I) {
568 // Ignore struct elements, no extra checking needed for these.
569 if (isa<StructType>(*I))
570 continue;
572 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
573 if (!IdxVal) return MarkUnsafe(Info);
575 // Are all indices still zero?
576 IsAllZeroIndices &= IdxVal->isZero();
578 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
579 // This GEP indexes an array. Verify that this is an in-range constant
580 // integer. Specifically, consider A[0][i]. We cannot know that the user
581 // isn't doing invalid things like allowing i to index an out-of-range
582 // subscript that accesses A[1]. Because of this, we have to reject SROA
583 // of any accesses into structs where any of the components are variables.
584 if (IdxVal->getZExtValue() >= AT->getNumElements())
585 return MarkUnsafe(Info);
586 } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
587 if (IdxVal->getZExtValue() >= VT->getNumElements())
588 return MarkUnsafe(Info);
592 // If there are any non-simple uses of this getelementptr, make sure to reject
593 // them.
594 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
597 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
598 /// intrinsic can be promoted by SROA. At this point, we know that the operand
599 /// of the memintrinsic is a pointer to the beginning of the allocation.
600 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
601 unsigned OpNo, AllocaInfo &Info) {
602 // If not constant length, give up.
603 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
604 if (!Length) return MarkUnsafe(Info);
606 // If not the whole aggregate, give up.
607 if (Length->getZExtValue() !=
608 TD->getTypeAllocSize(AI->getType()->getElementType()))
609 return MarkUnsafe(Info);
611 // We only know about memcpy/memset/memmove.
612 if (!isa<MemIntrinsic>(MI))
613 return MarkUnsafe(Info);
615 // Otherwise, we can transform it. Determine whether this is a memcpy/set
616 // into or out of the aggregate.
617 if (OpNo == 1)
618 Info.isMemCpyDst = true;
619 else {
620 assert(OpNo == 2);
621 Info.isMemCpySrc = true;
625 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
626 /// are
627 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
628 AllocaInfo &Info) {
629 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
630 UI != E; ++UI) {
631 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
632 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
633 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
634 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
635 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
636 if (SI->isVolatile())
637 return MarkUnsafe(Info);
639 // If storing the entire alloca in one chunk through a bitcasted pointer
640 // to integer, we can transform it. This happens (for example) when you
641 // cast a {i32,i32}* to i64* and store through it. This is similar to the
642 // memcpy case and occurs in various "byval" cases and emulated memcpys.
643 if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
644 TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
645 TD->getTypeAllocSize(AI->getType()->getElementType())) {
646 Info.isMemCpyDst = true;
647 continue;
649 return MarkUnsafe(Info);
650 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
651 if (LI->isVolatile())
652 return MarkUnsafe(Info);
654 // If loading the entire alloca in one chunk through a bitcasted pointer
655 // to integer, we can transform it. This happens (for example) when you
656 // cast a {i32,i32}* to i64* and load through it. This is similar to the
657 // memcpy case and occurs in various "byval" cases and emulated memcpys.
658 if (isa<IntegerType>(LI->getType()) &&
659 TD->getTypeAllocSize(LI->getType()) ==
660 TD->getTypeAllocSize(AI->getType()->getElementType())) {
661 Info.isMemCpySrc = true;
662 continue;
664 return MarkUnsafe(Info);
665 } else if (isa<DbgInfoIntrinsic>(UI)) {
666 // If one user is DbgInfoIntrinsic then check if all users are
667 // DbgInfoIntrinsics.
668 if (OnlyUsedByDbgInfoIntrinsics(BC)) {
669 Info.needsCleanup = true;
670 return;
672 else
673 MarkUnsafe(Info);
675 else {
676 return MarkUnsafe(Info);
678 if (Info.isUnsafe) return;
682 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
683 /// to its first element. Transform users of the cast to use the new values
684 /// instead.
685 void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
686 SmallVector<AllocaInst*, 32> &NewElts) {
687 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
688 while (UI != UE) {
689 Instruction *User = cast<Instruction>(*UI++);
690 if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
691 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
692 if (BCU->use_empty()) BCU->eraseFromParent();
693 continue;
696 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
697 // This must be memcpy/memmove/memset of the entire aggregate.
698 // Split into one per element.
699 RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
700 continue;
703 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
704 // If this is a store of the entire alloca from an integer, rewrite it.
705 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
706 continue;
709 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
710 // If this is a load of the entire alloca to an integer, rewrite it.
711 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
712 continue;
715 // Otherwise it must be some other user of a gep of the first pointer. Just
716 // leave these alone.
717 continue;
721 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
722 /// Rewrite it to copy or set the elements of the scalarized memory.
723 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
724 AllocationInst *AI,
725 SmallVector<AllocaInst*, 32> &NewElts) {
727 // If this is a memcpy/memmove, construct the other pointer as the
728 // appropriate type. The "Other" pointer is the pointer that goes to memory
729 // that doesn't have anything to do with the alloca that we are promoting. For
730 // memset, this Value* stays null.
731 Value *OtherPtr = 0;
732 LLVMContext &Context = MI->getContext();
733 unsigned MemAlignment = MI->getAlignment();
734 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
735 if (BCInst == MTI->getRawDest())
736 OtherPtr = MTI->getRawSource();
737 else {
738 assert(BCInst == MTI->getRawSource());
739 OtherPtr = MTI->getRawDest();
743 // If there is an other pointer, we want to convert it to the same pointer
744 // type as AI has, so we can GEP through it safely.
745 if (OtherPtr) {
746 // It is likely that OtherPtr is a bitcast, if so, remove it.
747 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
748 OtherPtr = BC->getOperand(0);
749 // All zero GEPs are effectively bitcasts.
750 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
751 if (GEP->hasAllZeroIndices())
752 OtherPtr = GEP->getOperand(0);
754 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
755 if (BCE->getOpcode() == Instruction::BitCast)
756 OtherPtr = BCE->getOperand(0);
758 // If the pointer is not the right type, insert a bitcast to the right
759 // type.
760 if (OtherPtr->getType() != AI->getType())
761 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
762 MI);
765 // Process each element of the aggregate.
766 Value *TheFn = MI->getOperand(0);
767 const Type *BytePtrTy = MI->getRawDest()->getType();
768 bool SROADest = MI->getRawDest() == BCInst;
770 Constant *Zero = Context.getNullValue(Type::Int32Ty);
772 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
773 // If this is a memcpy/memmove, emit a GEP of the other element address.
774 Value *OtherElt = 0;
775 unsigned OtherEltAlign = MemAlignment;
777 if (OtherPtr) {
778 Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
779 OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
780 OtherPtr->getNameStr()+"."+utostr(i),
781 MI);
782 uint64_t EltOffset;
783 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
784 if (const StructType *ST =
785 dyn_cast<StructType>(OtherPtrTy->getElementType())) {
786 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
787 } else {
788 const Type *EltTy =
789 cast<SequentialType>(OtherPtr->getType())->getElementType();
790 EltOffset = TD->getTypeAllocSize(EltTy)*i;
793 // The alignment of the other pointer is the guaranteed alignment of the
794 // element, which is affected by both the known alignment of the whole
795 // mem intrinsic and the alignment of the element. If the alignment of
796 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
797 // known alignment is just 4 bytes.
798 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
801 Value *EltPtr = NewElts[i];
802 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
804 // If we got down to a scalar, insert a load or store as appropriate.
805 if (EltTy->isSingleValueType()) {
806 if (isa<MemTransferInst>(MI)) {
807 if (SROADest) {
808 // From Other to Alloca.
809 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
810 new StoreInst(Elt, EltPtr, MI);
811 } else {
812 // From Alloca to Other.
813 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
814 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
816 continue;
818 assert(isa<MemSetInst>(MI));
820 // If the stored element is zero (common case), just store a null
821 // constant.
822 Constant *StoreVal;
823 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
824 if (CI->isZero()) {
825 StoreVal = Context.getNullValue(EltTy); // 0.0, null, 0, <0,0>
826 } else {
827 // If EltTy is a vector type, get the element type.
828 const Type *ValTy = EltTy->getScalarType();
830 // Construct an integer with the right value.
831 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
832 APInt OneVal(EltSize, CI->getZExtValue());
833 APInt TotalVal(OneVal);
834 // Set each byte.
835 for (unsigned i = 0; 8*i < EltSize; ++i) {
836 TotalVal = TotalVal.shl(8);
837 TotalVal |= OneVal;
840 // Convert the integer value to the appropriate type.
841 StoreVal = ConstantInt::get(Context, TotalVal);
842 if (isa<PointerType>(ValTy))
843 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
844 else if (ValTy->isFloatingPoint())
845 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
846 assert(StoreVal->getType() == ValTy && "Type mismatch!");
848 // If the requested value was a vector constant, create it.
849 if (EltTy != ValTy) {
850 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
851 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
852 StoreVal = ConstantVector::get(&Elts[0], NumElts);
855 new StoreInst(StoreVal, EltPtr, MI);
856 continue;
858 // Otherwise, if we're storing a byte variable, use a memset call for
859 // this element.
862 // Cast the element pointer to BytePtrTy.
863 if (EltPtr->getType() != BytePtrTy)
864 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
866 // Cast the other pointer (if we have one) to BytePtrTy.
867 if (OtherElt && OtherElt->getType() != BytePtrTy)
868 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
869 MI);
871 unsigned EltSize = TD->getTypeAllocSize(EltTy);
873 // Finally, insert the meminst for this element.
874 if (isa<MemTransferInst>(MI)) {
875 Value *Ops[] = {
876 SROADest ? EltPtr : OtherElt, // Dest ptr
877 SROADest ? OtherElt : EltPtr, // Src ptr
878 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
879 ConstantInt::get(Type::Int32Ty, OtherEltAlign) // Align
881 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
882 } else {
883 assert(isa<MemSetInst>(MI));
884 Value *Ops[] = {
885 EltPtr, MI->getOperand(2), // Dest, Value,
886 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
887 Zero // Align
889 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
892 MI->eraseFromParent();
895 /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
896 /// overwrites the entire allocation. Extract out the pieces of the stored
897 /// integer and store them individually.
898 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
899 AllocationInst *AI,
900 SmallVector<AllocaInst*, 32> &NewElts){
901 // Extract each element out of the integer according to its structure offset
902 // and store the element value to the individual alloca.
903 LLVMContext &Context = SI->getContext();
904 Value *SrcVal = SI->getOperand(0);
905 const Type *AllocaEltTy = AI->getType()->getElementType();
906 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
908 // If this isn't a store of an integer to the whole alloca, it may be a store
909 // to the first element. Just ignore the store in this case and normal SROA
910 // will handle it.
911 if (!isa<IntegerType>(SrcVal->getType()) ||
912 TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
913 return;
914 // Handle tail padding by extending the operand
915 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
916 SrcVal = new ZExtInst(SrcVal,
917 Context.getIntegerType(AllocaSizeBits), "", SI);
919 DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
921 // There are two forms here: AI could be an array or struct. Both cases
922 // have different ways to compute the element offset.
923 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
924 const StructLayout *Layout = TD->getStructLayout(EltSTy);
926 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
927 // Get the number of bits to shift SrcVal to get the value.
928 const Type *FieldTy = EltSTy->getElementType(i);
929 uint64_t Shift = Layout->getElementOffsetInBits(i);
931 if (TD->isBigEndian())
932 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
934 Value *EltVal = SrcVal;
935 if (Shift) {
936 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
937 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
938 "sroa.store.elt", SI);
941 // Truncate down to an integer of the right size.
942 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
944 // Ignore zero sized fields like {}, they obviously contain no data.
945 if (FieldSizeBits == 0) continue;
947 if (FieldSizeBits != AllocaSizeBits)
948 EltVal = new TruncInst(EltVal,
949 Context.getIntegerType(FieldSizeBits), "", SI);
950 Value *DestField = NewElts[i];
951 if (EltVal->getType() == FieldTy) {
952 // Storing to an integer field of this size, just do it.
953 } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
954 // Bitcast to the right element type (for fp/vector values).
955 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
956 } else {
957 // Otherwise, bitcast the dest pointer (for aggregates).
958 DestField = new BitCastInst(DestField,
959 Context.getPointerTypeUnqual(EltVal->getType()),
960 "", SI);
962 new StoreInst(EltVal, DestField, SI);
965 } else {
966 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
967 const Type *ArrayEltTy = ATy->getElementType();
968 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
969 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
971 uint64_t Shift;
973 if (TD->isBigEndian())
974 Shift = AllocaSizeBits-ElementOffset;
975 else
976 Shift = 0;
978 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
979 // Ignore zero sized fields like {}, they obviously contain no data.
980 if (ElementSizeBits == 0) continue;
982 Value *EltVal = SrcVal;
983 if (Shift) {
984 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
985 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
986 "sroa.store.elt", SI);
989 // Truncate down to an integer of the right size.
990 if (ElementSizeBits != AllocaSizeBits)
991 EltVal = new TruncInst(EltVal,
992 Context.getIntegerType(ElementSizeBits),"",SI);
993 Value *DestField = NewElts[i];
994 if (EltVal->getType() == ArrayEltTy) {
995 // Storing to an integer field of this size, just do it.
996 } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
997 // Bitcast to the right element type (for fp/vector values).
998 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
999 } else {
1000 // Otherwise, bitcast the dest pointer (for aggregates).
1001 DestField = new BitCastInst(DestField,
1002 Context.getPointerTypeUnqual(EltVal->getType()),
1003 "", SI);
1005 new StoreInst(EltVal, DestField, SI);
1007 if (TD->isBigEndian())
1008 Shift -= ElementOffset;
1009 else
1010 Shift += ElementOffset;
1014 SI->eraseFromParent();
1017 /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1018 /// an integer. Load the individual pieces to form the aggregate value.
1019 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1020 SmallVector<AllocaInst*, 32> &NewElts) {
1021 // Extract each element out of the NewElts according to its structure offset
1022 // and form the result value.
1023 const Type *AllocaEltTy = AI->getType()->getElementType();
1024 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1026 // If this isn't a load of the whole alloca to an integer, it may be a load
1027 // of the first element. Just ignore the load in this case and normal SROA
1028 // will handle it.
1029 if (!isa<IntegerType>(LI->getType()) ||
1030 TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1031 return;
1033 DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1035 // There are two forms here: AI could be an array or struct. Both cases
1036 // have different ways to compute the element offset.
1037 const StructLayout *Layout = 0;
1038 uint64_t ArrayEltBitOffset = 0;
1039 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1040 Layout = TD->getStructLayout(EltSTy);
1041 } else {
1042 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1043 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1046 LLVMContext &Context = LI->getContext();
1048 Value *ResultVal =
1049 Context.getNullValue(Context.getIntegerType(AllocaSizeBits));
1051 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1052 // Load the value from the alloca. If the NewElt is an aggregate, cast
1053 // the pointer to an integer of the same size before doing the load.
1054 Value *SrcField = NewElts[i];
1055 const Type *FieldTy =
1056 cast<PointerType>(SrcField->getType())->getElementType();
1057 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1059 // Ignore zero sized fields like {}, they obviously contain no data.
1060 if (FieldSizeBits == 0) continue;
1062 const IntegerType *FieldIntTy = Context.getIntegerType(FieldSizeBits);
1063 if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1064 !isa<VectorType>(FieldTy))
1065 SrcField = new BitCastInst(SrcField,
1066 Context.getPointerTypeUnqual(FieldIntTy),
1067 "", LI);
1068 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1070 // If SrcField is a fp or vector of the right size but that isn't an
1071 // integer type, bitcast to an integer so we can shift it.
1072 if (SrcField->getType() != FieldIntTy)
1073 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1075 // Zero extend the field to be the same size as the final alloca so that
1076 // we can shift and insert it.
1077 if (SrcField->getType() != ResultVal->getType())
1078 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1080 // Determine the number of bits to shift SrcField.
1081 uint64_t Shift;
1082 if (Layout) // Struct case.
1083 Shift = Layout->getElementOffsetInBits(i);
1084 else // Array case.
1085 Shift = i*ArrayEltBitOffset;
1087 if (TD->isBigEndian())
1088 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1090 if (Shift) {
1091 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1092 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1095 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1098 // Handle tail padding by truncating the result
1099 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1100 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1102 LI->replaceAllUsesWith(ResultVal);
1103 LI->eraseFromParent();
1107 /// HasPadding - Return true if the specified type has any structure or
1108 /// alignment padding, false otherwise.
1109 static bool HasPadding(const Type *Ty, const TargetData &TD) {
1110 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1111 const StructLayout *SL = TD.getStructLayout(STy);
1112 unsigned PrevFieldBitOffset = 0;
1113 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1114 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1116 // Padding in sub-elements?
1117 if (HasPadding(STy->getElementType(i), TD))
1118 return true;
1120 // Check to see if there is any padding between this element and the
1121 // previous one.
1122 if (i) {
1123 unsigned PrevFieldEnd =
1124 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1125 if (PrevFieldEnd < FieldBitOffset)
1126 return true;
1129 PrevFieldBitOffset = FieldBitOffset;
1132 // Check for tail padding.
1133 if (unsigned EltCount = STy->getNumElements()) {
1134 unsigned PrevFieldEnd = PrevFieldBitOffset +
1135 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1136 if (PrevFieldEnd < SL->getSizeInBits())
1137 return true;
1140 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1141 return HasPadding(ATy->getElementType(), TD);
1142 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1143 return HasPadding(VTy->getElementType(), TD);
1145 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1148 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1149 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1150 /// or 1 if safe after canonicalization has been performed.
1152 int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1153 // Loop over the use list of the alloca. We can only transform it if all of
1154 // the users are safe to transform.
1155 AllocaInfo Info;
1157 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1158 I != E; ++I) {
1159 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1160 if (Info.isUnsafe) {
1161 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
1162 return 0;
1166 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1167 // source and destination, we have to be careful. In particular, the memcpy
1168 // could be moving around elements that live in structure padding of the LLVM
1169 // types, but may actually be used. In these cases, we refuse to promote the
1170 // struct.
1171 if (Info.isMemCpySrc && Info.isMemCpyDst &&
1172 HasPadding(AI->getType()->getElementType(), *TD))
1173 return 0;
1175 // If we require cleanup, return 1, otherwise return 3.
1176 return Info.needsCleanup ? 1 : 3;
1179 /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1180 /// is canonicalized here.
1181 void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1182 gep_type_iterator I = gep_type_begin(GEPI);
1183 ++I;
1185 const ArrayType *AT = dyn_cast<ArrayType>(*I);
1186 if (!AT)
1187 return;
1189 uint64_t NumElements = AT->getNumElements();
1191 if (isa<ConstantInt>(I.getOperand()))
1192 return;
1194 LLVMContext &Context = GEPI->getContext();
1196 if (NumElements == 1) {
1197 GEPI->setOperand(2, Context.getNullValue(Type::Int32Ty));
1198 return;
1201 assert(NumElements == 2 && "Unhandled case!");
1202 // All users of the GEP must be loads. At each use of the GEP, insert
1203 // two loads of the appropriate indexed GEP and select between them.
1204 Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1205 Context.getNullValue(I.getOperand()->getType()),
1206 "isone");
1207 // Insert the new GEP instructions, which are properly indexed.
1208 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1209 Indices[1] = Context.getNullValue(Type::Int32Ty);
1210 Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1211 Indices.begin(),
1212 Indices.end(),
1213 GEPI->getName()+".0", GEPI);
1214 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1215 Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1216 Indices.begin(),
1217 Indices.end(),
1218 GEPI->getName()+".1", GEPI);
1219 // Replace all loads of the variable index GEP with loads from both
1220 // indexes and a select.
1221 while (!GEPI->use_empty()) {
1222 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1223 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1224 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
1225 Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1226 LI->replaceAllUsesWith(R);
1227 LI->eraseFromParent();
1229 GEPI->eraseFromParent();
1233 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
1234 /// allocation, but only if cleaned up, perform the cleanups required.
1235 void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1236 // At this point, we know that the end result will be SROA'd and promoted, so
1237 // we can insert ugly code if required so long as sroa+mem2reg will clean it
1238 // up.
1239 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1240 UI != E; ) {
1241 User *U = *UI++;
1242 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1243 CleanupGEP(GEPI);
1244 else {
1245 Instruction *I = cast<Instruction>(U);
1246 SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1247 if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1248 // Safe to remove debug info uses.
1249 while (!DbgInUses.empty()) {
1250 DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1251 DI->eraseFromParent();
1253 I->eraseFromParent();
1259 /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1260 /// the offset specified by Offset (which is specified in bytes).
1262 /// There are two cases we handle here:
1263 /// 1) A union of vector types of the same size and potentially its elements.
1264 /// Here we turn element accesses into insert/extract element operations.
1265 /// This promotes a <4 x float> with a store of float to the third element
1266 /// into a <4 x float> that uses insert element.
1267 /// 2) A fully general blob of memory, which we turn into some (potentially
1268 /// large) integer type with extract and insert operations where the loads
1269 /// and stores would mutate the memory.
1270 static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1271 unsigned AllocaSize, const TargetData &TD,
1272 LLVMContext &Context) {
1273 // If this could be contributing to a vector, analyze it.
1274 if (VecTy != Type::VoidTy) { // either null or a vector type.
1276 // If the In type is a vector that is the same size as the alloca, see if it
1277 // matches the existing VecTy.
1278 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1279 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1280 // If we're storing/loading a vector of the right size, allow it as a
1281 // vector. If this the first vector we see, remember the type so that
1282 // we know the element size.
1283 if (VecTy == 0)
1284 VecTy = VInTy;
1285 return;
1287 } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1288 (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1289 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1290 // If we're accessing something that could be an element of a vector, see
1291 // if the implied vector agrees with what we already have and if Offset is
1292 // compatible with it.
1293 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1294 if (Offset % EltSize == 0 &&
1295 AllocaSize % EltSize == 0 &&
1296 (VecTy == 0 ||
1297 cast<VectorType>(VecTy)->getElementType()
1298 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1299 if (VecTy == 0)
1300 VecTy = In->getContext().getVectorType(In, AllocaSize/EltSize);
1301 return;
1306 // Otherwise, we have a case that we can't handle with an optimized vector
1307 // form. We can still turn this into a large integer.
1308 VecTy = Type::VoidTy;
1311 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
1312 /// its accesses to use a to single vector type, return true, and set VecTy to
1313 /// the new type. If we could convert the alloca into a single promotable
1314 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
1315 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
1316 /// is the current offset from the base of the alloca being analyzed.
1318 /// If we see at least one access to the value that is as a vector type, set the
1319 /// SawVec flag.
1321 bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1322 bool &SawVec, uint64_t Offset,
1323 unsigned AllocaSize) {
1324 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1325 Instruction *User = cast<Instruction>(*UI);
1327 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1328 // Don't break volatile loads.
1329 if (LI->isVolatile())
1330 return false;
1331 MergeInType(LI->getType(), Offset, VecTy,
1332 AllocaSize, *TD, V->getContext());
1333 SawVec |= isa<VectorType>(LI->getType());
1334 continue;
1337 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1338 // Storing the pointer, not into the value?
1339 if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1340 MergeInType(SI->getOperand(0)->getType(), Offset,
1341 VecTy, AllocaSize, *TD, V->getContext());
1342 SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1343 continue;
1346 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1347 if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1348 AllocaSize))
1349 return false;
1350 IsNotTrivial = true;
1351 continue;
1354 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1355 // If this is a GEP with a variable indices, we can't handle it.
1356 if (!GEP->hasAllConstantIndices())
1357 return false;
1359 // Compute the offset that this GEP adds to the pointer.
1360 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1361 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1362 &Indices[0], Indices.size());
1363 // See if all uses can be converted.
1364 if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1365 AllocaSize))
1366 return false;
1367 IsNotTrivial = true;
1368 continue;
1371 // If this is a constant sized memset of a constant value (e.g. 0) we can
1372 // handle it.
1373 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1374 // Store of constant value and constant size.
1375 if (isa<ConstantInt>(MSI->getValue()) &&
1376 isa<ConstantInt>(MSI->getLength())) {
1377 IsNotTrivial = true;
1378 continue;
1382 // If this is a memcpy or memmove into or out of the whole allocation, we
1383 // can handle it like a load or store of the scalar type.
1384 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1385 if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1386 if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1387 IsNotTrivial = true;
1388 continue;
1392 // Ignore dbg intrinsic.
1393 if (isa<DbgInfoIntrinsic>(User))
1394 continue;
1396 // Otherwise, we cannot handle this!
1397 return false;
1400 return true;
1404 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1405 /// directly. This happens when we are converting an "integer union" to a
1406 /// single integer scalar, or when we are converting a "vector union" to a
1407 /// vector with insert/extractelement instructions.
1409 /// Offset is an offset from the original alloca, in bits that need to be
1410 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1411 void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1412 while (!Ptr->use_empty()) {
1413 Instruction *User = cast<Instruction>(Ptr->use_back());
1415 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1416 ConvertUsesToScalar(CI, NewAI, Offset);
1417 CI->eraseFromParent();
1418 continue;
1421 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1422 // Compute the offset that this GEP adds to the pointer.
1423 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1424 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1425 &Indices[0], Indices.size());
1426 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1427 GEP->eraseFromParent();
1428 continue;
1431 IRBuilder<> Builder(User->getParent(), User);
1433 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1434 // The load is a bit extract from NewAI shifted right by Offset bits.
1435 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1436 Value *NewLoadVal
1437 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1438 LI->replaceAllUsesWith(NewLoadVal);
1439 LI->eraseFromParent();
1440 continue;
1443 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1444 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1445 // FIXME: Remove once builder has Twine API.
1446 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1447 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1448 Builder);
1449 Builder.CreateStore(New, NewAI);
1450 SI->eraseFromParent();
1451 continue;
1454 // If this is a constant sized memset of a constant value (e.g. 0) we can
1455 // transform it into a store of the expanded constant value.
1456 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1457 assert(MSI->getRawDest() == Ptr && "Consistency error!");
1458 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1459 if (NumBytes != 0) {
1460 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1462 // Compute the value replicated the right number of times.
1463 APInt APVal(NumBytes*8, Val);
1465 // Splat the value if non-zero.
1466 if (Val)
1467 for (unsigned i = 1; i != NumBytes; ++i)
1468 APVal |= APVal << 8;
1470 // FIXME: Remove once builder has Twine API.
1471 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1472 Value *New = ConvertScalar_InsertValue(
1473 ConstantInt::get(User->getContext(), APVal),
1474 Old, Offset, Builder);
1475 Builder.CreateStore(New, NewAI);
1477 MSI->eraseFromParent();
1478 continue;
1481 // If this is a memcpy or memmove into or out of the whole allocation, we
1482 // can handle it like a load or store of the scalar type.
1483 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1484 assert(Offset == 0 && "must be store to start of alloca");
1486 // If the source and destination are both to the same alloca, then this is
1487 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
1488 // as appropriate.
1489 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1491 if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1492 // Dest must be OrigAI, change this to be a load from the original
1493 // pointer (bitcasted), then a store to our new alloca.
1494 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1495 Value *SrcPtr = MTI->getSource();
1496 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1498 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1499 SrcVal->setAlignment(MTI->getAlignment());
1500 Builder.CreateStore(SrcVal, NewAI);
1501 } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1502 // Src must be OrigAI, change this to be a load from NewAI then a store
1503 // through the original dest pointer (bitcasted).
1504 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1505 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1507 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1508 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1509 NewStore->setAlignment(MTI->getAlignment());
1510 } else {
1511 // Noop transfer. Src == Dst
1515 MTI->eraseFromParent();
1516 continue;
1519 // If user is a dbg info intrinsic then it is safe to remove it.
1520 if (isa<DbgInfoIntrinsic>(User)) {
1521 User->eraseFromParent();
1522 continue;
1525 llvm_unreachable("Unsupported operation!");
1529 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1530 /// or vector value FromVal, extracting the bits from the offset specified by
1531 /// Offset. This returns the value, which is of type ToType.
1533 /// This happens when we are converting an "integer union" to a single
1534 /// integer scalar, or when we are converting a "vector union" to a vector with
1535 /// insert/extractelement instructions.
1537 /// Offset is an offset from the original alloca, in bits that need to be
1538 /// shifted to the right.
1539 Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1540 uint64_t Offset, IRBuilder<> &Builder) {
1541 // If the load is of the whole new alloca, no conversion is needed.
1542 if (FromVal->getType() == ToType && Offset == 0)
1543 return FromVal;
1545 LLVMContext &Context = FromVal->getContext();
1547 // If the result alloca is a vector type, this is either an element
1548 // access or a bitcast to another vector type of the same size.
1549 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1550 if (isa<VectorType>(ToType))
1551 return Builder.CreateBitCast(FromVal, ToType, "tmp");
1553 // Otherwise it must be an element access.
1554 unsigned Elt = 0;
1555 if (Offset) {
1556 unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1557 Elt = Offset/EltSize;
1558 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1560 // Return the element extracted out of it.
1561 Value *V = Builder.CreateExtractElement(FromVal,
1562 ConstantInt::get(Type::Int32Ty,Elt),
1563 "tmp");
1564 if (V->getType() != ToType)
1565 V = Builder.CreateBitCast(V, ToType, "tmp");
1566 return V;
1569 // If ToType is a first class aggregate, extract out each of the pieces and
1570 // use insertvalue's to form the FCA.
1571 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1572 const StructLayout &Layout = *TD->getStructLayout(ST);
1573 Value *Res = Context.getUndef(ST);
1574 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1575 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1576 Offset+Layout.getElementOffsetInBits(i),
1577 Builder);
1578 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1580 return Res;
1583 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1584 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1585 Value *Res = Context.getUndef(AT);
1586 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1587 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1588 Offset+i*EltSize, Builder);
1589 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1591 return Res;
1594 // Otherwise, this must be a union that was converted to an integer value.
1595 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1597 // If this is a big-endian system and the load is narrower than the
1598 // full alloca type, we need to do a shift to get the right bits.
1599 int ShAmt = 0;
1600 if (TD->isBigEndian()) {
1601 // On big-endian machines, the lowest bit is stored at the bit offset
1602 // from the pointer given by getTypeStoreSizeInBits. This matters for
1603 // integers with a bitwidth that is not a multiple of 8.
1604 ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1605 TD->getTypeStoreSizeInBits(ToType) - Offset;
1606 } else {
1607 ShAmt = Offset;
1610 // Note: we support negative bitwidths (with shl) which are not defined.
1611 // We do this to support (f.e.) loads off the end of a structure where
1612 // only some bits are used.
1613 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1614 FromVal = Builder.CreateLShr(FromVal,
1615 ConstantInt::get(FromVal->getType(),
1616 ShAmt), "tmp");
1617 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1618 FromVal = Builder.CreateShl(FromVal,
1619 ConstantInt::get(FromVal->getType(),
1620 -ShAmt), "tmp");
1622 // Finally, unconditionally truncate the integer to the right width.
1623 unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1624 if (LIBitWidth < NTy->getBitWidth())
1625 FromVal =
1626 Builder.CreateTrunc(FromVal, Context.getIntegerType(LIBitWidth), "tmp");
1627 else if (LIBitWidth > NTy->getBitWidth())
1628 FromVal =
1629 Builder.CreateZExt(FromVal, Context.getIntegerType(LIBitWidth), "tmp");
1631 // If the result is an integer, this is a trunc or bitcast.
1632 if (isa<IntegerType>(ToType)) {
1633 // Should be done.
1634 } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1635 // Just do a bitcast, we know the sizes match up.
1636 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1637 } else {
1638 // Otherwise must be a pointer.
1639 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1641 assert(FromVal->getType() == ToType && "Didn't convert right?");
1642 return FromVal;
1646 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1647 /// or vector value "Old" at the offset specified by Offset.
1649 /// This happens when we are converting an "integer union" to a
1650 /// single integer scalar, or when we are converting a "vector union" to a
1651 /// vector with insert/extractelement instructions.
1653 /// Offset is an offset from the original alloca, in bits that need to be
1654 /// shifted to the right.
1655 Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1656 uint64_t Offset, IRBuilder<> &Builder) {
1658 // Convert the stored type to the actual type, shift it left to insert
1659 // then 'or' into place.
1660 const Type *AllocaType = Old->getType();
1661 LLVMContext &Context = Old->getContext();
1663 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1664 uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1665 uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1667 // Changing the whole vector with memset or with an access of a different
1668 // vector type?
1669 if (ValSize == VecSize)
1670 return Builder.CreateBitCast(SV, AllocaType, "tmp");
1672 uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1674 // Must be an element insertion.
1675 unsigned Elt = Offset/EltSize;
1677 if (SV->getType() != VTy->getElementType())
1678 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1680 SV = Builder.CreateInsertElement(Old, SV,
1681 ConstantInt::get(Type::Int32Ty, Elt),
1682 "tmp");
1683 return SV;
1686 // If SV is a first-class aggregate value, insert each value recursively.
1687 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1688 const StructLayout &Layout = *TD->getStructLayout(ST);
1689 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1690 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1691 Old = ConvertScalar_InsertValue(Elt, Old,
1692 Offset+Layout.getElementOffsetInBits(i),
1693 Builder);
1695 return Old;
1698 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1699 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1700 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1701 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1702 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1704 return Old;
1707 // If SV is a float, convert it to the appropriate integer type.
1708 // If it is a pointer, do the same.
1709 unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1710 unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1711 unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1712 unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1713 if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1714 SV = Builder.CreateBitCast(SV, Context.getIntegerType(SrcWidth), "tmp");
1715 else if (isa<PointerType>(SV->getType()))
1716 SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1718 // Zero extend or truncate the value if needed.
1719 if (SV->getType() != AllocaType) {
1720 if (SV->getType()->getPrimitiveSizeInBits() <
1721 AllocaType->getPrimitiveSizeInBits())
1722 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1723 else {
1724 // Truncation may be needed if storing more than the alloca can hold
1725 // (undefined behavior).
1726 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1727 SrcWidth = DestWidth;
1728 SrcStoreWidth = DestStoreWidth;
1732 // If this is a big-endian system and the store is narrower than the
1733 // full alloca type, we need to do a shift to get the right bits.
1734 int ShAmt = 0;
1735 if (TD->isBigEndian()) {
1736 // On big-endian machines, the lowest bit is stored at the bit offset
1737 // from the pointer given by getTypeStoreSizeInBits. This matters for
1738 // integers with a bitwidth that is not a multiple of 8.
1739 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1740 } else {
1741 ShAmt = Offset;
1744 // Note: we support negative bitwidths (with shr) which are not defined.
1745 // We do this to support (f.e.) stores off the end of a structure where
1746 // only some bits in the structure are set.
1747 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1748 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1749 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1750 ShAmt), "tmp");
1751 Mask <<= ShAmt;
1752 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1753 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1754 -ShAmt), "tmp");
1755 Mask = Mask.lshr(-ShAmt);
1758 // Mask out the bits we are about to insert from the old value, and or
1759 // in the new bits.
1760 if (SrcWidth != DestWidth) {
1761 assert(DestWidth > SrcWidth);
1762 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1763 SV = Builder.CreateOr(Old, SV, "ins");
1765 return SV;
1770 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1771 /// some part of a constant global variable. This intentionally only accepts
1772 /// constant expressions because we don't can't rewrite arbitrary instructions.
1773 static bool PointsToConstantGlobal(Value *V) {
1774 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1775 return GV->isConstant();
1776 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1777 if (CE->getOpcode() == Instruction::BitCast ||
1778 CE->getOpcode() == Instruction::GetElementPtr)
1779 return PointsToConstantGlobal(CE->getOperand(0));
1780 return false;
1783 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1784 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1785 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1786 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1787 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1788 /// the alloca, and if the source pointer is a pointer to a constant global, we
1789 /// can optimize this.
1790 static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1791 bool isOffset) {
1792 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1793 if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1794 // Ignore non-volatile loads, they are always ok.
1795 if (!LI->isVolatile())
1796 continue;
1798 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1799 // If uses of the bitcast are ok, we are ok.
1800 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1801 return false;
1802 continue;
1804 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1805 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1806 // doesn't, it does.
1807 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1808 isOffset || !GEP->hasAllZeroIndices()))
1809 return false;
1810 continue;
1813 // If this is isn't our memcpy/memmove, reject it as something we can't
1814 // handle.
1815 if (!isa<MemTransferInst>(*UI))
1816 return false;
1818 // If we already have seen a copy, reject the second one.
1819 if (TheCopy) return false;
1821 // If the pointer has been offset from the start of the alloca, we can't
1822 // safely handle this.
1823 if (isOffset) return false;
1825 // If the memintrinsic isn't using the alloca as the dest, reject it.
1826 if (UI.getOperandNo() != 1) return false;
1828 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1830 // If the source of the memcpy/move is not a constant global, reject it.
1831 if (!PointsToConstantGlobal(MI->getOperand(2)))
1832 return false;
1834 // Otherwise, the transform is safe. Remember the copy instruction.
1835 TheCopy = MI;
1837 return true;
1840 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1841 /// modified by a copy from a constant global. If we can prove this, we can
1842 /// replace any uses of the alloca with uses of the global directly.
1843 Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1844 Instruction *TheCopy = 0;
1845 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1846 return TheCopy;
1847 return 0;