Remove VISIBILITY_HIDDEN from this file.
[llvm/avr.git] / docs / Passes.html
blob362be32d7da9fc9623e51a1bef688ad70dcc2dec
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM's Analysis and Transform Passes</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8 </head>
9 <body>
11 <!--
13 If Passes.html is up to date, the following "one-liner" should print
14 an empty diff.
16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17 -e '^ <a name=".*">.*</a>$' < Passes.html >html; \
18 perl >help <<'EOT' && diff -u help html; rm -f help html
19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20 while (<HTML>) {
21 m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22 $order{$1} = sprintf("%03d", 1 + int %order);
24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25 while (<HELP>) {
26 m:^ -([^ ]+) +- (.*)$: or next;
27 my $o = $order{$1};
28 $o = "000" unless defined $o;
29 push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30 push @y, "$o <a name=\"$1\">$2</a>\n";
32 @x = map { s/^\d\d\d//; $_ } sort @x;
33 @y = map { s/^\d\d\d//; $_ } sort @y;
34 print @x, @y;
35 EOT
37 This (real) one-liner can also be helpful when converting comments to HTML:
39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print " <p>\n" if !$on && $_ =~ /\S/; print " </p>\n" if $on && $_ =~ /^\s*$/; print " $_\n"; $on = ($_ =~ /\S/); } print " </p>\n" if $on'
41 -->
43 <div class="doc_title">LLVM's Analysis and Transform Passes</div>
45 <ol>
46 <li><a href="#intro">Introduction</a></li>
47 <li><a href="#analyses">Analysis Passes</a>
48 <li><a href="#transforms">Transform Passes</a></li>
49 <li><a href="#utilities">Utility Passes</a></li>
50 </ol>
52 <div class="doc_author">
53 <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54 and Gordon Henriksen</p>
55 </div>
57 <!-- ======================================================================= -->
58 <div class="doc_section"> <a name="intro">Introduction</a> </div>
59 <div class="doc_text">
60 <p>This document serves as a high level summary of the optimization features
61 that LLVM provides. Optimizations are implemented as Passes that traverse some
62 portion of a program to either collect information or transform the program.
63 The table below divides the passes that LLVM provides into three categories.
64 Analysis passes compute information that other passes can use or for debugging
65 or program visualization purposes. Transform passes can use (or invalidate)
66 the analysis passes. Transform passes all mutate the program in some way.
67 Utility passes provides some utility but don't otherwise fit categorization.
68 For example passes to extract functions to bitcode or write a module to
69 bitcode are neither analysis nor transform passes.
70 <p>The table below provides a quick summary of each pass and links to the more
71 complete pass description later in the document.</p>
72 </div>
73 <div class="doc_text" >
74 <table>
75 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
76 <tr><th>Option</th><th>Name</th></tr>
77 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
78 <tr><td><a href="#anders-aa">-anders-aa</a></td><td>Andersen's Interprocedural Alias Analysis</td></tr>
79 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (default AA impl)</td></tr>
80 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
81 <tr><td><a href="#basicvn">-basicvn</a></td><td>Basic Value Numbering (default GVN impl)</td></tr>
82 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
83 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
84 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
85 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
86 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
87 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
88 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
89 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
90 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93 <tr><td><a href="#load-vn">-load-vn</a></td><td>Load Value Numbering</td></tr>
94 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Construction</td></tr>
95 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
96 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
97 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
98 <tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
99 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
100 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
101 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
102 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
103 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
104 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
105 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
106 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
107 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
108 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
109 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
110 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
113 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
114 <tr><th>Option</th><th>Name</th></tr>
115 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
116 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
117 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
118 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
119 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Prepare a function for code generation </td></tr>
120 <tr><td><a href="#condprop">-condprop</a></td><td>Conditional Propagation</td></tr>
121 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
122 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
123 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
124 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
125 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
126 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
127 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
128 <tr><td><a href="#gcse">-gcse</a></td><td>Global Common Subexpression Elimination</td></tr>
129 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
130 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
131 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
132 <tr><td><a href="#gvnpre">-gvnpre</a></td><td>Global Value Numbering/Partial Redundancy Elimination</td></tr>
133 <tr><td><a href="#indmemrem">-indmemrem</a></td><td>Indirect Malloc and Free Removal</td></tr>
134 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
135 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
136 <tr><td><a href="#insert-block-profiling">-insert-block-profiling</a></td><td>Insert instrumentation for block profiling</td></tr>
137 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
138 <tr><td><a href="#insert-function-profiling">-insert-function-profiling</a></td><td>Insert instrumentation for function profiling</td></tr>
139 <tr><td><a href="#insert-null-profiling-rs">-insert-null-profiling-rs</a></td><td>Measure profiling framework overhead</td></tr>
140 <tr><td><a href="#insert-rs-profiling-framework">-insert-rs-profiling-framework</a></td><td>Insert random sampling instrumentation framework</td></tr>
141 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
142 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
143 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
144 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
145 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Thread control through conditional blocks </td></tr>
146 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
147 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
148 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Dead Loop Deletion Pass </td></tr>
149 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
150 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
151 <tr><td><a href="#loop-index-split">-loop-index-split</a></td><td>Index Split Loops</td></tr>
152 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
153 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
154 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
155 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
156 <tr><td><a href="#loopsimplify">-loopsimplify</a></td><td>Canonicalize natural loops</td></tr>
157 <tr><td><a href="#lowerallocs">-lowerallocs</a></td><td>Lower allocations from instructions to calls</td></tr>
158 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
159 <tr><td><a href="#lowersetjmp">-lowersetjmp</a></td><td>Lower Set Jump</td></tr>
160 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
161 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
162 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>Optimize use of memcpy and friends</td></tr>
163 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
164 <tr><td><a href="#predsimplify">-predsimplify</a></td><td>Predicate Simplifier</td></tr>
165 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
166 <tr><td><a href="#raiseallocs">-raiseallocs</a></td><td>Raise allocations from calls to instructions</td></tr>
167 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
168 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
169 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates</td></tr>
170 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
171 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
172 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
173 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
174 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Remove unused function declarations</td></tr>
175 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments</td></tr>
176 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
177 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
180 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
181 <tr><th>Option</th><th>Name</th></tr>
182 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
183 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
184 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
185 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
186 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
187 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
188 </table>
189 </div>
191 <!-- ======================================================================= -->
192 <div class="doc_section"> <a name="example">Analysis Passes</a></div>
193 <div class="doc_text">
194 <p>This section describes the LLVM Analysis Passes.</p>
195 </div>
197 <!-------------------------------------------------------------------------- -->
198 <div class="doc_subsection">
199 <a name="aa-eval">Exhaustive Alias Analysis Precision Evaluator</a>
200 </div>
201 <div class="doc_text">
202 <p>This is a simple N^2 alias analysis accuracy evaluator.
203 Basically, for each function in the program, it simply queries to see how the
204 alias analysis implementation answers alias queries between each pair of
205 pointers in the function.</p>
207 <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
208 Spadini, and Wojciech Stryjewski.</p>
209 </div>
211 <!-------------------------------------------------------------------------- -->
212 <div class="doc_subsection">
213 <a name="anders-aa">Andersen's Interprocedural Alias Analysis</a>
214 </div>
215 <div class="doc_text">
217 This is an implementation of Andersen's interprocedural alias
218 analysis
219 </p>
222 In pointer analysis terms, this is a subset-based, flow-insensitive,
223 field-sensitive, and context-insensitive algorithm pointer algorithm.
224 </p>
227 This algorithm is implemented as three stages:
228 </p>
230 <ol>
231 <li>Object identification.</li>
232 <li>Inclusion constraint identification.</li>
233 <li>Offline constraint graph optimization.</li>
234 <li>Inclusion constraint solving.</li>
235 </ol>
238 The object identification stage identifies all of the memory objects in the
239 program, which includes globals, heap allocated objects, and stack allocated
240 objects.
241 </p>
244 The inclusion constraint identification stage finds all inclusion constraints
245 in the program by scanning the program, looking for pointer assignments and
246 other statements that effect the points-to graph. For a statement like
247 <code><var>A</var> = <var>B</var></code>, this statement is processed to
248 indicate that <var>A</var> can point to anything that <var>B</var> can point
249 to. Constraints can handle copies, loads, and stores, and address taking.
250 </p>
253 The offline constraint graph optimization portion includes offline variable
254 substitution algorithms intended to computer pointer and location
255 equivalences. Pointer equivalences are those pointers that will have the
256 same points-to sets, and location equivalences are those variables that
257 always appear together in points-to sets.
258 </p>
261 The inclusion constraint solving phase iteratively propagates the inclusion
262 constraints until a fixed point is reached. This is an O(<var>n</var>³)
263 algorithm.
264 </p>
267 Function constraints are handled as if they were structs with <var>X</var>
268 fields. Thus, an access to argument <var>X</var> of function <var>Y</var> is
269 an access to node index <code>getNode(<var>Y</var>) + <var>X</var></code>.
270 This representation allows handling of indirect calls without any issues. To
271 wit, an indirect call <code><var>Y</var>(<var>a</var>,<var>b</var>)</code> is
272 equivalent to <code>*(<var>Y</var> + 1) = <var>a</var>, *(<var>Y</var> + 2) =
273 <var>b</var></code>. The return node for a function <var>F</var> is always
274 located at <code>getNode(<var>F</var>) + CallReturnPos</code>. The arguments
275 start at <code>getNode(<var>F</var>) + CallArgPos</code>.
276 </p>
279 Please keep in mind that the current andersen's pass has many known
280 problems and bugs. It should be considered "research quality".
281 </p>
283 </div>
285 <!-------------------------------------------------------------------------- -->
286 <div class="doc_subsection">
287 <a name="basicaa">Basic Alias Analysis (default AA impl)</a>
288 </div>
289 <div class="doc_text">
291 This is the default implementation of the Alias Analysis interface
292 that simply implements a few identities (two different globals cannot alias,
293 etc), but otherwise does no analysis.
294 </p>
295 </div>
297 <!-------------------------------------------------------------------------- -->
298 <div class="doc_subsection">
299 <a name="basiccg">Basic CallGraph Construction</a>
300 </div>
301 <div class="doc_text">
302 <p>Yet to be written.</p>
303 </div>
305 <!-------------------------------------------------------------------------- -->
306 <div class="doc_subsection">
307 <a name="basicvn">Basic Value Numbering (default Value Numbering impl)</a>
308 </div>
309 <div class="doc_text">
311 This is the default implementation of the <code>ValueNumbering</code>
312 interface. It walks the SSA def-use chains to trivially identify
313 lexically identical expressions. This does not require any ahead of time
314 analysis, so it is a very fast default implementation.
315 </p>
317 The ValueNumbering analysis passes are mostly deprecated. They are only used
318 by the <a href="#gcse">Global Common Subexpression Elimination pass</a>, which
319 is deprecated by the <a href="#gvn">Global Value Numbering pass</a> (which
320 does its value numbering on its own).
321 </p>
322 </div>
324 <!-------------------------------------------------------------------------- -->
325 <div class="doc_subsection">
326 <a name="codegenprepare">Optimize for code generation</a>
327 </div>
328 <div class="doc_text">
330 This pass munges the code in the input function to better prepare it for
331 SelectionDAG-based code generation. This works around limitations in it's
332 basic-block-at-a-time approach. It should eventually be removed.
333 </p>
334 </div>
336 <!-------------------------------------------------------------------------- -->
337 <div class="doc_subsection">
338 <a name="count-aa">Count Alias Analysis Query Responses</a>
339 </div>
340 <div class="doc_text">
342 A pass which can be used to count how many alias queries
343 are being made and how the alias analysis implementation being used responds.
344 </p>
345 </div>
347 <!-------------------------------------------------------------------------- -->
348 <div class="doc_subsection">
349 <a name="debug-aa">AA use debugger</a>
350 </div>
351 <div class="doc_text">
353 This simple pass checks alias analysis users to ensure that if they
354 create a new value, they do not query AA without informing it of the value.
355 It acts as a shim over any other AA pass you want.
356 </p>
359 Yes keeping track of every value in the program is expensive, but this is
360 a debugging pass.
361 </p>
362 </div>
364 <!-------------------------------------------------------------------------- -->
365 <div class="doc_subsection">
366 <a name="domfrontier">Dominance Frontier Construction</a>
367 </div>
368 <div class="doc_text">
370 This pass is a simple dominator construction algorithm for finding forward
371 dominator frontiers.
372 </p>
373 </div>
375 <!-------------------------------------------------------------------------- -->
376 <div class="doc_subsection">
377 <a name="domtree">Dominator Tree Construction</a>
378 </div>
379 <div class="doc_text">
381 This pass is a simple dominator construction algorithm for finding forward
382 dominators.
383 </p>
384 </div>
386 <!-------------------------------------------------------------------------- -->
387 <div class="doc_subsection">
388 <a name="dot-callgraph">Print Call Graph to 'dot' file</a>
389 </div>
390 <div class="doc_text">
392 This pass, only available in <code>opt</code>, prints the call graph into a
393 <code>.dot</code> graph. This graph can then be processed with the "dot" tool
394 to convert it to postscript or some other suitable format.
395 </p>
396 </div>
398 <!-------------------------------------------------------------------------- -->
399 <div class="doc_subsection">
400 <a name="dot-cfg">Print CFG of function to 'dot' file</a>
401 </div>
402 <div class="doc_text">
404 This pass, only available in <code>opt</code>, prints the control flow graph
405 into a <code>.dot</code> graph. This graph can then be processed with the
406 "dot" tool to convert it to postscript or some other suitable format.
407 </p>
408 </div>
410 <!-------------------------------------------------------------------------- -->
411 <div class="doc_subsection">
412 <a name="dot-cfg-only">Print CFG of function to 'dot' file (with no function bodies)</a>
413 </div>
414 <div class="doc_text">
416 This pass, only available in <code>opt</code>, prints the control flow graph
417 into a <code>.dot</code> graph, omitting the function bodies. This graph can
418 then be processed with the "dot" tool to convert it to postscript or some
419 other suitable format.
420 </p>
421 </div>
423 <!-------------------------------------------------------------------------- -->
424 <div class="doc_subsection">
425 <a name="globalsmodref-aa">Simple mod/ref analysis for globals</a>
426 </div>
427 <div class="doc_text">
429 This simple pass provides alias and mod/ref information for global values
430 that do not have their address taken, and keeps track of whether functions
431 read or write memory (are "pure"). For this simple (but very common) case,
432 we can provide pretty accurate and useful information.
433 </p>
434 </div>
436 <!-------------------------------------------------------------------------- -->
437 <div class="doc_subsection">
438 <a name="instcount">Counts the various types of Instructions</a>
439 </div>
440 <div class="doc_text">
442 This pass collects the count of all instructions and reports them
443 </p>
444 </div>
446 <!-------------------------------------------------------------------------- -->
447 <div class="doc_subsection">
448 <a name="intervals">Interval Partition Construction</a>
449 </div>
450 <div class="doc_text">
452 This analysis calculates and represents the interval partition of a function,
453 or a preexisting interval partition.
454 </p>
457 In this way, the interval partition may be used to reduce a flow graph down
458 to its degenerate single node interval partition (unless it is irreducible).
459 </p>
460 </div>
462 <!-------------------------------------------------------------------------- -->
463 <div class="doc_subsection">
464 <a name="load-vn">Load Value Numbering</a>
465 </div>
466 <div class="doc_text">
468 This pass value numbers load and call instructions. To do this, it finds
469 lexically identical load instructions, and uses alias analysis to determine
470 which loads are guaranteed to produce the same value. To value number call
471 instructions, it looks for calls to functions that do not write to memory
472 which do not have intervening instructions that clobber the memory that is
473 read from.
474 </p>
477 This pass builds off of another value numbering pass to implement value
478 numbering for non-load and non-call instructions. It uses Alias Analysis so
479 that it can disambiguate the load instructions. The more powerful these base
480 analyses are, the more powerful the resultant value numbering will be.
481 </p>
482 </div>
484 <!-------------------------------------------------------------------------- -->
485 <div class="doc_subsection">
486 <a name="loops">Natural Loop Construction</a>
487 </div>
488 <div class="doc_text">
490 This analysis is used to identify natural loops and determine the loop depth
491 of various nodes of the CFG. Note that the loops identified may actually be
492 several natural loops that share the same header node... not just a single
493 natural loop.
494 </p>
495 </div>
497 <!-------------------------------------------------------------------------- -->
498 <div class="doc_subsection">
499 <a name="memdep">Memory Dependence Analysis</a>
500 </div>
501 <div class="doc_text">
503 An analysis that determines, for a given memory operation, what preceding
504 memory operations it depends on. It builds on alias analysis information, and
505 tries to provide a lazy, caching interface to a common kind of alias
506 information query.
507 </p>
508 </div>
510 <!-------------------------------------------------------------------------- -->
511 <div class="doc_subsection">
512 <a name="no-aa">No Alias Analysis (always returns 'may' alias)</a>
513 </div>
514 <div class="doc_text">
516 Always returns "I don't know" for alias queries. NoAA is unlike other alias
517 analysis implementations, in that it does not chain to a previous analysis. As
518 such it doesn't follow many of the rules that other alias analyses must.
519 </p>
520 </div>
522 <!-------------------------------------------------------------------------- -->
523 <div class="doc_subsection">
524 <a name="no-profile">No Profile Information</a>
525 </div>
526 <div class="doc_text">
528 The default "no profile" implementation of the abstract
529 <code>ProfileInfo</code> interface.
530 </p>
531 </div>
533 <!-------------------------------------------------------------------------- -->
534 <div class="doc_subsection">
535 <a name="postdomfrontier">Post-Dominance Frontier Construction</a>
536 </div>
537 <div class="doc_text">
539 This pass is a simple post-dominator construction algorithm for finding
540 post-dominator frontiers.
541 </p>
542 </div>
544 <!-------------------------------------------------------------------------- -->
545 <div class="doc_subsection">
546 <a name="postdomtree">Post-Dominator Tree Construction</a>
547 </div>
548 <div class="doc_text">
550 This pass is a simple post-dominator construction algorithm for finding
551 post-dominators.
552 </p>
553 </div>
555 <!-------------------------------------------------------------------------- -->
556 <div class="doc_subsection">
557 <a name="print-alias-sets">Alias Set Printer</a>
558 </div>
559 <div class="doc_text">
560 <p>Yet to be written.</p>
561 </div>
563 <!-------------------------------------------------------------------------- -->
564 <div class="doc_subsection">
565 <a name="print-callgraph">Print a call graph</a>
566 </div>
567 <div class="doc_text">
569 This pass, only available in <code>opt</code>, prints the call graph to
570 standard output in a human-readable form.
571 </p>
572 </div>
574 <!-------------------------------------------------------------------------- -->
575 <div class="doc_subsection">
576 <a name="print-callgraph-sccs">Print SCCs of the Call Graph</a>
577 </div>
578 <div class="doc_text">
580 This pass, only available in <code>opt</code>, prints the SCCs of the call
581 graph to standard output in a human-readable form.
582 </p>
583 </div>
585 <!-------------------------------------------------------------------------- -->
586 <div class="doc_subsection">
587 <a name="print-cfg-sccs">Print SCCs of each function CFG</a>
588 </div>
589 <div class="doc_text">
591 This pass, only available in <code>opt</code>, prints the SCCs of each
592 function CFG to standard output in a human-readable form.
593 </p>
594 </div>
596 <!-------------------------------------------------------------------------- -->
597 <div class="doc_subsection">
598 <a name="print-externalfnconstants">Print external fn callsites passed constants</a>
599 </div>
600 <div class="doc_text">
602 This pass, only available in <code>opt</code>, prints out call sites to
603 external functions that are called with constant arguments. This can be
604 useful when looking for standard library functions we should constant fold
605 or handle in alias analyses.
606 </p>
607 </div>
609 <!-------------------------------------------------------------------------- -->
610 <div class="doc_subsection">
611 <a name="print-function">Print function to stderr</a>
612 </div>
613 <div class="doc_text">
615 The <code>PrintFunctionPass</code> class is designed to be pipelined with
616 other <code>FunctionPass</code>es, and prints out the functions of the module
617 as they are processed.
618 </p>
619 </div>
621 <!-------------------------------------------------------------------------- -->
622 <div class="doc_subsection">
623 <a name="print-module">Print module to stderr</a>
624 </div>
625 <div class="doc_text">
627 This pass simply prints out the entire module when it is executed.
628 </p>
629 </div>
631 <!-------------------------------------------------------------------------- -->
632 <div class="doc_subsection">
633 <a name="print-used-types">Find Used Types</a>
634 </div>
635 <div class="doc_text">
637 This pass is used to seek out all of the types in use by the program. Note
638 that this analysis explicitly does not include types only used by the symbol
639 table.
640 </div>
642 <!-------------------------------------------------------------------------- -->
643 <div class="doc_subsection">
644 <a name="profile-loader">Load profile information from llvmprof.out</a>
645 </div>
646 <div class="doc_text">
648 A concrete implementation of profiling information that loads the information
649 from a profile dump file.
650 </p>
651 </div>
653 <!-------------------------------------------------------------------------- -->
654 <div class="doc_subsection">
655 <a name="scalar-evolution">Scalar Evolution Analysis</a>
656 </div>
657 <div class="doc_text">
659 The <code>ScalarEvolution</code> analysis can be used to analyze and
660 catagorize scalar expressions in loops. It specializes in recognizing general
661 induction variables, representing them with the abstract and opaque
662 <code>SCEV</code> class. Given this analysis, trip counts of loops and other
663 important properties can be obtained.
664 </p>
667 This analysis is primarily useful for induction variable substitution and
668 strength reduction.
669 </p>
670 </div>
672 <!-------------------------------------------------------------------------- -->
673 <div class="doc_subsection">
674 <a name="targetdata">Target Data Layout</a>
675 </div>
676 <div class="doc_text">
677 <p>Provides other passes access to information on how the size and alignment
678 required by the the target ABI for various data types.</p>
679 </div>
681 <!-- ======================================================================= -->
682 <div class="doc_section"> <a name="transform">Transform Passes</a></div>
683 <div class="doc_text">
684 <p>This section describes the LLVM Transform Passes.</p>
685 </div>
687 <!-------------------------------------------------------------------------- -->
688 <div class="doc_subsection">
689 <a name="adce">Aggressive Dead Code Elimination</a>
690 </div>
691 <div class="doc_text">
692 <p>ADCE aggressively tries to eliminate code. This pass is similar to
693 <a href="#dce">DCE</a> but it assumes that values are dead until proven
694 otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
695 the liveness of values.</p>
696 </div>
698 <!-------------------------------------------------------------------------- -->
699 <div class="doc_subsection">
700 <a name="argpromotion">Promote 'by reference' arguments to scalars</a>
701 </div>
702 <div class="doc_text">
704 This pass promotes "by reference" arguments to be "by value" arguments. In
705 practice, this means looking for internal functions that have pointer
706 arguments. If it can prove, through the use of alias analysis, that an
707 argument is *only* loaded, then it can pass the value into the function
708 instead of the address of the value. This can cause recursive simplification
709 of code and lead to the elimination of allocas (especially in C++ template
710 code like the STL).
711 </p>
714 This pass also handles aggregate arguments that are passed into a function,
715 scalarizing them if the elements of the aggregate are only loaded. Note that
716 it refuses to scalarize aggregates which would require passing in more than
717 three operands to the function, because passing thousands of operands for a
718 large array or structure is unprofitable!
719 </p>
722 Note that this transformation could also be done for arguments that are only
723 stored to (returning the value instead), but does not currently. This case
724 would be best handled when and if LLVM starts supporting multiple return
725 values from functions.
726 </p>
727 </div>
729 <!-------------------------------------------------------------------------- -->
730 <div class="doc_subsection">
731 <a name="block-placement">Profile Guided Basic Block Placement</a>
732 </div>
733 <div class="doc_text">
734 <p>This pass is a very simple profile guided basic block placement algorithm.
735 The idea is to put frequently executed blocks together at the start of the
736 function and hopefully increase the number of fall-through conditional
737 branches. If there is no profile information for a particular function, this
738 pass basically orders blocks in depth-first order.</p>
739 </div>
741 <!-------------------------------------------------------------------------- -->
742 <div class="doc_subsection">
743 <a name="break-crit-edges">Break critical edges in CFG</a>
744 </div>
745 <div class="doc_text">
747 Break all of the critical edges in the CFG by inserting a dummy basic block.
748 It may be "required" by passes that cannot deal with critical edges. This
749 transformation obviously invalidates the CFG, but can update forward dominator
750 (set, immediate dominators, tree, and frontier) information.
751 </p>
752 </div>
754 <!-------------------------------------------------------------------------- -->
755 <div class="doc_subsection">
756 <a name="codegenprepare">Prepare a function for code generation</a>
757 </div>
758 <div class="doc_text">
759 This pass munges the code in the input function to better prepare it for
760 SelectionDAG-based code generation. This works around limitations in it's
761 basic-block-at-a-time approach. It should eventually be removed.
762 </div>
764 <!-------------------------------------------------------------------------- -->
765 <div class="doc_subsection">
766 <a name="condprop">Conditional Propagation</a>
767 </div>
768 <div class="doc_text">
769 <p>This pass propagates information about conditional expressions through the
770 program, allowing it to eliminate conditional branches in some cases.</p>
771 </div>
773 <!-------------------------------------------------------------------------- -->
774 <div class="doc_subsection">
775 <a name="constmerge">Merge Duplicate Global Constants</a>
776 </div>
777 <div class="doc_text">
779 Merges duplicate global constants together into a single constant that is
780 shared. This is useful because some passes (ie TraceValues) insert a lot of
781 string constants into the program, regardless of whether or not an existing
782 string is available.
783 </p>
784 </div>
786 <!-------------------------------------------------------------------------- -->
787 <div class="doc_subsection">
788 <a name="constprop">Simple constant propagation</a>
789 </div>
790 <div class="doc_text">
791 <p>This file implements constant propagation and merging. It looks for
792 instructions involving only constant operands and replaces them with a
793 constant value instead of an instruction. For example:</p>
794 <blockquote><pre>add i32 1, 2</pre></blockquote>
795 <p>becomes</p>
796 <blockquote><pre>i32 3</pre></blockquote>
797 <p>NOTE: this pass has a habit of making definitions be dead. It is a good
798 idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
799 sometime after running this pass.</p>
800 </div>
802 <!-------------------------------------------------------------------------- -->
803 <div class="doc_subsection">
804 <a name="dce">Dead Code Elimination</a>
805 </div>
806 <div class="doc_text">
808 Dead code elimination is similar to <a href="#die">dead instruction
809 elimination</a>, but it rechecks instructions that were used by removed
810 instructions to see if they are newly dead.
811 </p>
812 </div>
814 <!-------------------------------------------------------------------------- -->
815 <div class="doc_subsection">
816 <a name="deadargelim">Dead Argument Elimination</a>
817 </div>
818 <div class="doc_text">
820 This pass deletes dead arguments from internal functions. Dead argument
821 elimination removes arguments which are directly dead, as well as arguments
822 only passed into function calls as dead arguments of other functions. This
823 pass also deletes dead arguments in a similar way.
824 </p>
827 This pass is often useful as a cleanup pass to run after aggressive
828 interprocedural passes, which add possibly-dead arguments.
829 </p>
830 </div>
832 <!-------------------------------------------------------------------------- -->
833 <div class="doc_subsection">
834 <a name="deadtypeelim">Dead Type Elimination</a>
835 </div>
836 <div class="doc_text">
838 This pass is used to cleanup the output of GCC. It eliminate names for types
839 that are unused in the entire translation unit, using the <a
840 href="#findusedtypes">find used types</a> pass.
841 </p>
842 </div>
844 <!-------------------------------------------------------------------------- -->
845 <div class="doc_subsection">
846 <a name="die">Dead Instruction Elimination</a>
847 </div>
848 <div class="doc_text">
850 Dead instruction elimination performs a single pass over the function,
851 removing instructions that are obviously dead.
852 </p>
853 </div>
855 <!-------------------------------------------------------------------------- -->
856 <div class="doc_subsection">
857 <a name="dse">Dead Store Elimination</a>
858 </div>
859 <div class="doc_text">
861 A trivial dead store elimination that only considers basic-block local
862 redundant stores.
863 </p>
864 </div>
866 <!-------------------------------------------------------------------------- -->
867 <div class="doc_subsection">
868 <a name="gcse">Global Common Subexpression Elimination</a>
869 </div>
870 <div class="doc_text">
872 This pass is designed to be a very quick global transformation that
873 eliminates global common subexpressions from a function. It does this by
874 using an existing value numbering analysis pass to identify the common
875 subexpressions, eliminating them when possible.
876 </p>
878 This pass is deprecated by the <a href="#gvn">Global Value Numbering pass</a>
879 (which does a better job with its own value numbering).
880 </p>
881 </div>
883 <!-------------------------------------------------------------------------- -->
884 <div class="doc_subsection">
885 <a name="globaldce">Dead Global Elimination</a>
886 </div>
887 <div class="doc_text">
889 This transform is designed to eliminate unreachable internal globals from the
890 program. It uses an aggressive algorithm, searching out globals that are
891 known to be alive. After it finds all of the globals which are needed, it
892 deletes whatever is left over. This allows it to delete recursive chunks of
893 the program which are unreachable.
894 </p>
895 </div>
897 <!-------------------------------------------------------------------------- -->
898 <div class="doc_subsection">
899 <a name="globalopt">Global Variable Optimizer</a>
900 </div>
901 <div class="doc_text">
903 This pass transforms simple global variables that never have their address
904 taken. If obviously true, it marks read/write globals as constant, deletes
905 variables only stored to, etc.
906 </p>
907 </div>
909 <!-------------------------------------------------------------------------- -->
910 <div class="doc_subsection">
911 <a name="gvn">Global Value Numbering</a>
912 </div>
913 <div class="doc_text">
915 This pass performs global value numbering to eliminate fully redundant
916 instructions. It also performs simple dead load elimination.
917 </p>
919 Note that this pass does the value numbering itself, it does not use the
920 ValueNumbering analysis passes.
921 </p>
922 </div>
924 <!-------------------------------------------------------------------------- -->
925 <div class="doc_subsection">
926 <a name="gvnpre">Global Value Numbering/Partial Redundancy Elimination</a>
927 </div>
928 <div class="doc_text">
930 This pass performs a hybrid of global value numbering and partial redundancy
931 elimination, known as GVN-PRE. It performs partial redundancy elimination on
932 values, rather than lexical expressions, allowing a more comprehensive view
933 the optimization. It replaces redundant values with uses of earlier
934 occurences of the same value. While this is beneficial in that it eliminates
935 unneeded computation, it also increases register pressure by creating large
936 live ranges, and should be used with caution on platforms that are very
937 sensitive to register pressure.
938 </p>
940 Note that this pass does the value numbering itself, it does not use the
941 ValueNumbering analysis passes.
942 </p>
943 </div>
945 <!-------------------------------------------------------------------------- -->
946 <div class="doc_subsection">
947 <a name="indmemrem">Indirect Malloc and Free Removal</a>
948 </div>
949 <div class="doc_text">
951 This pass finds places where memory allocation functions may escape into
952 indirect land. Some transforms are much easier (aka possible) only if free
953 or malloc are not called indirectly.
954 </p>
957 Thus find places where the address of memory functions are taken and construct
958 bounce functions with direct calls of those functions.
959 </p>
960 </div>
962 <!-------------------------------------------------------------------------- -->
963 <div class="doc_subsection">
964 <a name="indvars">Canonicalize Induction Variables</a>
965 </div>
966 <div class="doc_text">
968 This transformation analyzes and transforms the induction variables (and
969 computations derived from them) into simpler forms suitable for subsequent
970 analysis and transformation.
971 </p>
974 This transformation makes the following changes to each loop with an
975 identifiable induction variable:
976 </p>
978 <ol>
979 <li>All loops are transformed to have a <em>single</em> canonical
980 induction variable which starts at zero and steps by one.</li>
981 <li>The canonical induction variable is guaranteed to be the first PHI node
982 in the loop header block.</li>
983 <li>Any pointer arithmetic recurrences are raised to use array
984 subscripts.</li>
985 </ol>
988 If the trip count of a loop is computable, this pass also makes the following
989 changes:
990 </p>
992 <ol>
993 <li>The exit condition for the loop is canonicalized to compare the
994 induction value against the exit value. This turns loops like:
995 <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
996 into
997 <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
998 <li>Any use outside of the loop of an expression derived from the indvar
999 is changed to compute the derived value outside of the loop, eliminating
1000 the dependence on the exit value of the induction variable. If the only
1001 purpose of the loop is to compute the exit value of some derived
1002 expression, this transformation will make the loop dead.</li>
1003 </ol>
1006 This transformation should be followed by strength reduction after all of the
1007 desired loop transformations have been performed. Additionally, on targets
1008 where it is profitable, the loop could be transformed to count down to zero
1009 (the "do loop" optimization).
1010 </p>
1011 </div>
1013 <!-------------------------------------------------------------------------- -->
1014 <div class="doc_subsection">
1015 <a name="inline">Function Integration/Inlining</a>
1016 </div>
1017 <div class="doc_text">
1019 Bottom-up inlining of functions into callees.
1020 </p>
1021 </div>
1023 <!-------------------------------------------------------------------------- -->
1024 <div class="doc_subsection">
1025 <a name="insert-block-profiling">Insert instrumentation for block profiling</a>
1026 </div>
1027 <div class="doc_text">
1029 This pass instruments the specified program with counters for basic block
1030 profiling, which counts the number of times each basic block executes. This
1031 is the most basic form of profiling, which can tell which blocks are hot, but
1032 cannot reliably detect hot paths through the CFG.
1033 </p>
1036 Note that this implementation is very naïve. Control equivalent regions of
1037 the CFG should not require duplicate counters, but it does put duplicate
1038 counters in.
1039 </p>
1040 </div>
1042 <!-------------------------------------------------------------------------- -->
1043 <div class="doc_subsection">
1044 <a name="insert-edge-profiling">Insert instrumentation for edge profiling</a>
1045 </div>
1046 <div class="doc_text">
1048 This pass instruments the specified program with counters for edge profiling.
1049 Edge profiling can give a reasonable approximation of the hot paths through a
1050 program, and is used for a wide variety of program transformations.
1051 </p>
1054 Note that this implementation is very naïve. It inserts a counter for
1055 <em>every</em> edge in the program, instead of using control flow information
1056 to prune the number of counters inserted.
1057 </p>
1058 </div>
1060 <!-------------------------------------------------------------------------- -->
1061 <div class="doc_subsection">
1062 <a name="insert-function-profiling">Insert instrumentation for function profiling</a>
1063 </div>
1064 <div class="doc_text">
1066 This pass instruments the specified program with counters for function
1067 profiling, which counts the number of times each function is called.
1068 </p>
1069 </div>
1071 <!-------------------------------------------------------------------------- -->
1072 <div class="doc_subsection">
1073 <a name="insert-null-profiling-rs">Measure profiling framework overhead</a>
1074 </div>
1075 <div class="doc_text">
1077 The basic profiler that does nothing. It is the default profiler and thus
1078 terminates <code>RSProfiler</code> chains. It is useful for measuring
1079 framework overhead.
1080 </p>
1081 </div>
1083 <!-------------------------------------------------------------------------- -->
1084 <div class="doc_subsection">
1085 <a name="insert-rs-profiling-framework">Insert random sampling instrumentation framework</a>
1086 </div>
1087 <div class="doc_text">
1089 The second stage of the random-sampling instrumentation framework, duplicates
1090 all instructions in a function, ignoring the profiling code, then connects the
1091 two versions together at the entry and at backedges. At each connection point
1092 a choice is made as to whether to jump to the profiled code (take a sample) or
1093 execute the unprofiled code.
1094 </p>
1097 After this pass, it is highly recommended to run<a href="#mem2reg">mem2reg</a>
1098 and <a href="#adce">adce</a>. <a href="#instcombine">instcombine</a>,
1099 <a href="#load-vn">load-vn</a>, <a href="#gdce">gdce</a>, and
1100 <a href="#dse">dse</a> also are good to run afterwards.
1101 </p>
1102 </div>
1104 <!-------------------------------------------------------------------------- -->
1105 <div class="doc_subsection">
1106 <a name="instcombine">Combine redundant instructions</a>
1107 </div>
1108 <div class="doc_text">
1110 Combine instructions to form fewer, simple
1111 instructions. This pass does not modify the CFG This pass is where algebraic
1112 simplification happens.
1113 </p>
1116 This pass combines things like:
1117 </p>
1119 <blockquote><pre
1120 >%Y = add i32 %X, 1
1121 %Z = add i32 %Y, 1</pre></blockquote>
1124 into:
1125 </p>
1127 <blockquote><pre
1128 >%Z = add i32 %X, 2</pre></blockquote>
1131 This is a simple worklist driven algorithm.
1132 </p>
1135 This pass guarantees that the following canonicalizations are performed on
1136 the program:
1137 </p>
1139 <ul>
1140 <li>If a binary operator has a constant operand, it is moved to the right-
1141 hand side.</li>
1142 <li>Bitwise operators with constant operands are always grouped so that
1143 shifts are performed first, then <code>or</code>s, then
1144 <code>and</code>s, then <code>xor</code>s.</li>
1145 <li>Compare instructions are converted from <code>&lt;</code>,
1146 <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1147 <code>=</code> or <code>≠</code> if possible.</li>
1148 <li>All <code>cmp</code> instructions on boolean values are replaced with
1149 logical operations.</li>
1150 <li><code>add <var>X</var>, <var>X</var></code> is represented as
1151 <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1152 <li>Multiplies with a constant power-of-two argument are transformed into
1153 shifts.</li>
1154 <li>… etc.</li>
1155 </ul>
1156 </div>
1158 <!-------------------------------------------------------------------------- -->
1159 <div class="doc_subsection">
1160 <a name="internalize">Internalize Global Symbols</a>
1161 </div>
1162 <div class="doc_text">
1164 This pass loops over all of the functions in the input module, looking for a
1165 main function. If a main function is found, all other functions and all
1166 global variables with initializers are marked as internal.
1167 </p>
1168 </div>
1170 <!-------------------------------------------------------------------------- -->
1171 <div class="doc_subsection">
1172 <a name="ipconstprop">Interprocedural constant propagation</a>
1173 </div>
1174 <div class="doc_text">
1176 This pass implements an <em>extremely</em> simple interprocedural constant
1177 propagation pass. It could certainly be improved in many different ways,
1178 like using a worklist. This pass makes arguments dead, but does not remove
1179 them. The existing dead argument elimination pass should be run after this
1180 to clean up the mess.
1181 </p>
1182 </div>
1184 <!-------------------------------------------------------------------------- -->
1185 <div class="doc_subsection">
1186 <a name="ipsccp">Interprocedural Sparse Conditional Constant Propagation</a>
1187 </div>
1188 <div class="doc_text">
1190 An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1191 Propagation</a>.
1192 </p>
1193 </div>
1195 <!-------------------------------------------------------------------------- -->
1196 <div class="doc_subsection">
1197 <a name="jump-threading">Thread control through conditional blocks</a>
1198 </div>
1199 <div class="doc_text">
1201 Jump threading tries to find distinct threads of control flow running through
1202 a basic block. This pass looks at blocks that have multiple predecessors and
1203 multiple successors. If one or more of the predecessors of the block can be
1204 proven to always cause a jump to one of the successors, we forward the edge
1205 from the predecessor to the successor by duplicating the contents of this
1206 block.
1207 </p>
1209 An example of when this can occur is code like this:
1210 </p>
1212 <pre
1213 >if () { ...
1214 X = 4;
1216 if (X &lt; 3) {</pre>
1219 In this case, the unconditional branch at the end of the first if can be
1220 revectored to the false side of the second if.
1221 </p>
1222 </div>
1224 <!-------------------------------------------------------------------------- -->
1225 <div class="doc_subsection">
1226 <a name="lcssa">Loop-Closed SSA Form Pass</a>
1227 </div>
1228 <div class="doc_text">
1230 This pass transforms loops by placing phi nodes at the end of the loops for
1231 all values that are live across the loop boundary. For example, it turns
1232 the left into the right code:
1233 </p>
1235 <pre
1236 >for (...) for (...)
1237 if (c) if (c)
1238 X1 = ... X1 = ...
1239 else else
1240 X2 = ... X2 = ...
1241 X3 = phi(X1, X2) X3 = phi(X1, X2)
1242 ... = X3 + 4 X4 = phi(X3)
1243 ... = X4 + 4</pre>
1246 This is still valid LLVM; the extra phi nodes are purely redundant, and will
1247 be trivially eliminated by <code>InstCombine</code>. The major benefit of
1248 this transformation is that it makes many other loop optimizations, such as
1249 LoopUnswitching, simpler.
1250 </p>
1251 </div>
1253 <!-------------------------------------------------------------------------- -->
1254 <div class="doc_subsection">
1255 <a name="licm">Loop Invariant Code Motion</a>
1256 </div>
1257 <div class="doc_text">
1259 This pass performs loop invariant code motion, attempting to remove as much
1260 code from the body of a loop as possible. It does this by either hoisting
1261 code into the preheader block, or by sinking code to the exit blocks if it is
1262 safe. This pass also promotes must-aliased memory locations in the loop to
1263 live in registers, thus hoisting and sinking "invariant" loads and stores.
1264 </p>
1267 This pass uses alias analysis for two purposes:
1268 </p>
1270 <ul>
1271 <li>Moving loop invariant loads and calls out of loops. If we can determine
1272 that a load or call inside of a loop never aliases anything stored to,
1273 we can hoist it or sink it like any other instruction.</li>
1274 <li>Scalar Promotion of Memory - If there is a store instruction inside of
1275 the loop, we try to move the store to happen AFTER the loop instead of
1276 inside of the loop. This can only happen if a few conditions are true:
1277 <ul>
1278 <li>The pointer stored through is loop invariant.</li>
1279 <li>There are no stores or loads in the loop which <em>may</em> alias
1280 the pointer. There are no calls in the loop which mod/ref the
1281 pointer.</li>
1282 </ul>
1283 If these conditions are true, we can promote the loads and stores in the
1284 loop of the pointer to use a temporary alloca'd variable. We then use
1285 the mem2reg functionality to construct the appropriate SSA form for the
1286 variable.</li>
1287 </ul>
1288 </div>
1289 <!-------------------------------------------------------------------------- -->
1290 <div class="doc_subsection">
1291 <a name="loop-deletion">Dead Loop Deletion Pass</a>
1292 </div>
1293 <div class="doc_text">
1295 This file implements the Dead Loop Deletion Pass. This pass is responsible
1296 for eliminating loops with non-infinite computable trip counts that have no
1297 side effects or volatile instructions, and do not contribute to the
1298 computation of the function's return value.
1299 </p>
1300 </div>
1302 <!-------------------------------------------------------------------------- -->
1303 <div class="doc_subsection">
1304 <a name="loop-extract">Extract loops into new functions</a>
1305 </div>
1306 <div class="doc_text">
1308 A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1309 extract each top-level loop into its own new function. If the loop is the
1310 <em>only</em> loop in a given function, it is not touched. This is a pass most
1311 useful for debugging via bugpoint.
1312 </p>
1313 </div>
1315 <!-------------------------------------------------------------------------- -->
1316 <div class="doc_subsection">
1317 <a name="loop-extract-single">Extract at most one loop into a new function</a>
1318 </div>
1319 <div class="doc_text">
1321 Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1322 this pass extracts one natural loop from the program into a function if it
1323 can. This is used by bugpoint.
1324 </p>
1325 </div>
1327 <!-------------------------------------------------------------------------- -->
1328 <div class="doc_subsection">
1329 <a name="loop-index-split">Index Split Loops</a>
1330 </div>
1331 <div class="doc_text">
1333 This pass divides loop's iteration range by spliting loop such that each
1334 individual loop is executed efficiently.
1335 </p>
1336 </div>
1338 <!-------------------------------------------------------------------------- -->
1339 <div class="doc_subsection">
1340 <a name="loop-reduce">Loop Strength Reduction</a>
1341 </div>
1342 <div class="doc_text">
1344 This pass performs a strength reduction on array references inside loops that
1345 have as one or more of their components the loop induction variable. This is
1346 accomplished by creating a new value to hold the initial value of the array
1347 access for the first iteration, and then creating a new GEP instruction in
1348 the loop to increment the value by the appropriate amount.
1349 </p>
1350 </div>
1352 <!-------------------------------------------------------------------------- -->
1353 <div class="doc_subsection">
1354 <a name="loop-rotate">Rotate Loops</a>
1355 </div>
1356 <div class="doc_text">
1357 <p>A simple loop rotation transformation.</p>
1358 </div>
1360 <!-------------------------------------------------------------------------- -->
1361 <div class="doc_subsection">
1362 <a name="loop-unroll">Unroll loops</a>
1363 </div>
1364 <div class="doc_text">
1366 This pass implements a simple loop unroller. It works best when loops have
1367 been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1368 allowing it to determine the trip counts of loops easily.
1369 </p>
1370 </div>
1372 <!-------------------------------------------------------------------------- -->
1373 <div class="doc_subsection">
1374 <a name="loop-unswitch">Unswitch loops</a>
1375 </div>
1376 <div class="doc_text">
1378 This pass transforms loops that contain branches on loop-invariant conditions
1379 to have multiple loops. For example, it turns the left into the right code:
1380 </p>
1382 <pre
1383 >for (...) if (lic)
1384 A for (...)
1385 if (lic) A; B; C
1386 B else
1387 C for (...)
1388 A; C</pre>
1391 This can increase the size of the code exponentially (doubling it every time
1392 a loop is unswitched) so we only unswitch if the resultant code will be
1393 smaller than a threshold.
1394 </p>
1397 This pass expects LICM to be run before it to hoist invariant conditions out
1398 of the loop, to make the unswitching opportunity obvious.
1399 </p>
1400 </div>
1402 <!-------------------------------------------------------------------------- -->
1403 <div class="doc_subsection">
1404 <a name="loopsimplify">Canonicalize natural loops</a>
1405 </div>
1406 <div class="doc_text">
1408 This pass performs several transformations to transform natural loops into a
1409 simpler form, which makes subsequent analyses and transformations simpler and
1410 more effective.
1411 </p>
1414 Loop pre-header insertion guarantees that there is a single, non-critical
1415 entry edge from outside of the loop to the loop header. This simplifies a
1416 number of analyses and transformations, such as LICM.
1417 </p>
1420 Loop exit-block insertion guarantees that all exit blocks from the loop
1421 (blocks which are outside of the loop that have predecessors inside of the
1422 loop) only have predecessors from inside of the loop (and are thus dominated
1423 by the loop header). This simplifies transformations such as store-sinking
1424 that are built into LICM.
1425 </p>
1428 This pass also guarantees that loops will have exactly one backedge.
1429 </p>
1432 Note that the simplifycfg pass will clean up blocks which are split out but
1433 end up being unnecessary, so usage of this pass should not pessimize
1434 generated code.
1435 </p>
1438 This pass obviously modifies the CFG, but updates loop information and
1439 dominator information.
1440 </p>
1441 </div>
1443 <!-------------------------------------------------------------------------- -->
1444 <div class="doc_subsection">
1445 <a name="lowerallocs">Lower allocations from instructions to calls</a>
1446 </div>
1447 <div class="doc_text">
1449 Turn <tt>malloc</tt> and <tt>free</tt> instructions into <tt>@malloc</tt> and
1450 <tt>@free</tt> calls.
1451 </p>
1454 This is a target-dependent tranformation because it depends on the size of
1455 data types and alignment constraints.
1456 </p>
1457 </div>
1459 <!-------------------------------------------------------------------------- -->
1460 <div class="doc_subsection">
1461 <a name="lowerinvoke">Lower invoke and unwind, for unwindless code generators</a>
1462 </div>
1463 <div class="doc_text">
1465 This transformation is designed for use by code generators which do not yet
1466 support stack unwinding. This pass supports two models of exception handling
1467 lowering, the 'cheap' support and the 'expensive' support.
1468 </p>
1471 'Cheap' exception handling support gives the program the ability to execute
1472 any program which does not "throw an exception", by turning 'invoke'
1473 instructions into calls and by turning 'unwind' instructions into calls to
1474 abort(). If the program does dynamically use the unwind instruction, the
1475 program will print a message then abort.
1476 </p>
1479 'Expensive' exception handling support gives the full exception handling
1480 support to the program at the cost of making the 'invoke' instruction
1481 really expensive. It basically inserts setjmp/longjmp calls to emulate the
1482 exception handling as necessary.
1483 </p>
1486 Because the 'expensive' support slows down programs a lot, and EH is only
1487 used for a subset of the programs, it must be specifically enabled by the
1488 <tt>-enable-correct-eh-support</tt> option.
1489 </p>
1492 Note that after this pass runs the CFG is not entirely accurate (exceptional
1493 control flow edges are not correct anymore) so only very simple things should
1494 be done after the lowerinvoke pass has run (like generation of native code).
1495 This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1496 support the invoke instruction yet" lowering pass.
1497 </p>
1498 </div>
1500 <!-------------------------------------------------------------------------- -->
1501 <div class="doc_subsection">
1502 <a name="lowersetjmp">Lower Set Jump</a>
1503 </div>
1504 <div class="doc_text">
1506 Lowers <tt>setjmp</tt> and <tt>longjmp</tt> to use the LLVM invoke and unwind
1507 instructions as necessary.
1508 </p>
1511 Lowering of <tt>longjmp</tt> is fairly trivial. We replace the call with a
1512 call to the LLVM library function <tt>__llvm_sjljeh_throw_longjmp()</tt>.
1513 This unwinds the stack for us calling all of the destructors for
1514 objects allocated on the stack.
1515 </p>
1518 At a <tt>setjmp</tt> call, the basic block is split and the <tt>setjmp</tt>
1519 removed. The calls in a function that have a <tt>setjmp</tt> are converted to
1520 invoke where the except part checks to see if it's a <tt>longjmp</tt>
1521 exception and, if so, if it's handled in the function. If it is, then it gets
1522 the value returned by the <tt>longjmp</tt> and goes to where the basic block
1523 was split. <tt>invoke</tt> instructions are handled in a similar fashion with
1524 the original except block being executed if it isn't a <tt>longjmp</tt>
1525 except that is handled by that function.
1526 </p>
1527 </div>
1529 <!-------------------------------------------------------------------------- -->
1530 <div class="doc_subsection">
1531 <a name="lowerswitch">Lower SwitchInst's to branches</a>
1532 </div>
1533 <div class="doc_text">
1535 Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1536 allows targets to get away with not implementing the switch instruction until
1537 it is convenient.
1538 </p>
1539 </div>
1541 <!-------------------------------------------------------------------------- -->
1542 <div class="doc_subsection">
1543 <a name="mem2reg">Promote Memory to Register</a>
1544 </div>
1545 <div class="doc_text">
1547 This file promotes memory references to be register references. It promotes
1548 <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1549 <tt>store</tt>s as uses. An <tt>alloca</tt> is transformed by using dominator
1550 frontiers to place <tt>phi</tt> nodes, then traversing the function in
1551 depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1552 appropriate. This is just the standard SSA construction algorithm to construct
1553 "pruned" SSA form.
1554 </p>
1555 </div>
1557 <!-------------------------------------------------------------------------- -->
1558 <div class="doc_subsection">
1559 <a name="memcpyopt">Optimize use of memcpy and friend</a>
1560 </div>
1561 <div class="doc_text">
1563 This pass performs various transformations related to eliminating memcpy
1564 calls, or transforming sets of stores into memset's.
1565 </p>
1566 </div>
1568 <!-------------------------------------------------------------------------- -->
1569 <div class="doc_subsection">
1570 <a name="mergereturn">Unify function exit nodes</a>
1571 </div>
1572 <div class="doc_text">
1574 Ensure that functions have at most one <tt>ret</tt> instruction in them.
1575 Additionally, it keeps track of which node is the new exit node of the CFG.
1576 </p>
1577 </div>
1579 <!-------------------------------------------------------------------------- -->
1580 <div class="doc_subsection">
1581 <a name="predsimplify">Predicate Simplifier</a>
1582 </div>
1583 <div class="doc_text">
1585 Path-sensitive optimizer. In a branch where <tt>x == y</tt>, replace uses of
1586 <tt>x</tt> with <tt>y</tt>. Permits further optimization, such as the
1587 elimination of the unreachable call:
1588 </p>
1590 <blockquote><pre
1591 >void test(int *p, int *q)
1593 if (p != q)
1594 return;
1596 if (*p != *q)
1597 foo(); // unreachable
1598 }</pre></blockquote>
1599 </div>
1601 <!-------------------------------------------------------------------------- -->
1602 <div class="doc_subsection">
1603 <a name="prune-eh">Remove unused exception handling info</a>
1604 </div>
1605 <div class="doc_text">
1607 This file implements a simple interprocedural pass which walks the call-graph,
1608 turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1609 only if the callee cannot throw an exception. It implements this as a
1610 bottom-up traversal of the call-graph.
1611 </p>
1612 </div>
1614 <!-------------------------------------------------------------------------- -->
1615 <div class="doc_subsection">
1616 <a name="raiseallocs">Raise allocations from calls to instructions</a>
1617 </div>
1618 <div class="doc_text">
1620 Converts <tt>@malloc</tt> and <tt>@free</tt> calls to <tt>malloc</tt> and
1621 <tt>free</tt> instructions.
1622 </p>
1623 </div>
1625 <!-------------------------------------------------------------------------- -->
1626 <div class="doc_subsection">
1627 <a name="reassociate">Reassociate expressions</a>
1628 </div>
1629 <div class="doc_text">
1631 This pass reassociates commutative expressions in an order that is designed
1632 to promote better constant propagation, GCSE, LICM, PRE, etc.
1633 </p>
1636 For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1637 </p>
1640 In the implementation of this algorithm, constants are assigned rank = 0,
1641 function arguments are rank = 1, and other values are assigned ranks
1642 corresponding to the reverse post order traversal of current function
1643 (starting at 2), which effectively gives values in deep loops higher rank
1644 than values not in loops.
1645 </p>
1646 </div>
1648 <!-------------------------------------------------------------------------- -->
1649 <div class="doc_subsection">
1650 <a name="reg2mem">Demote all values to stack slots</a>
1651 </div>
1652 <div class="doc_text">
1654 This file demotes all registers to memory references. It is intented to be
1655 the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>. By converting to
1656 <tt>load</tt> instructions, the only values live accross basic blocks are
1657 <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1658 <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1659 easier. To make later hacking easier, the entry block is split into two, such
1660 that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1661 entry block.
1662 </p>
1663 </div>
1665 <!-------------------------------------------------------------------------- -->
1666 <div class="doc_subsection">
1667 <a name="scalarrepl">Scalar Replacement of Aggregates</a>
1668 </div>
1669 <div class="doc_text">
1671 The well-known scalar replacement of aggregates transformation. This
1672 transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1673 or array) into individual <tt>alloca</tt> instructions for each member if
1674 possible. Then, if possible, it transforms the individual <tt>alloca</tt>
1675 instructions into nice clean scalar SSA form.
1676 </p>
1679 This combines a simple scalar replacement of aggregates algorithm with the <a
1680 href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1681 especially for C++ programs. As such, iterating between <tt>scalarrepl</tt>,
1682 then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1683 promote works well.
1684 </p>
1685 </div>
1687 <!-------------------------------------------------------------------------- -->
1688 <div class="doc_subsection">
1689 <a name="sccp">Sparse Conditional Constant Propagation</a>
1690 </div>
1691 <div class="doc_text">
1693 Sparse conditional constant propagation and merging, which can be summarized
1695 </p>
1697 <ol>
1698 <li>Assumes values are constant unless proven otherwise</li>
1699 <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1700 <li>Proves values to be constant, and replaces them with constants</li>
1701 <li>Proves conditional branches to be unconditional</li>
1702 </ol>
1705 Note that this pass has a habit of making definitions be dead. It is a good
1706 idea to to run a DCE pass sometime after running this pass.
1707 </p>
1708 </div>
1710 <!-------------------------------------------------------------------------- -->
1711 <div class="doc_subsection">
1712 <a name="simplify-libcalls">Simplify well-known library calls</a>
1713 </div>
1714 <div class="doc_text">
1716 Applies a variety of small optimizations for calls to specific well-known
1717 function calls (e.g. runtime library functions). For example, a call
1718 <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1719 transformed into simply <tt>return 3</tt>.
1720 </p>
1721 </div>
1723 <!-------------------------------------------------------------------------- -->
1724 <div class="doc_subsection">
1725 <a name="simplifycfg">Simplify the CFG</a>
1726 </div>
1727 <div class="doc_text">
1729 Performs dead code elimination and basic block merging. Specifically:
1730 </p>
1732 <ol>
1733 <li>Removes basic blocks with no predecessors.</li>
1734 <li>Merges a basic block into its predecessor if there is only one and the
1735 predecessor only has one successor.</li>
1736 <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1737 <li>Eliminates a basic block that only contains an unconditional
1738 branch.</li>
1739 </ol>
1740 </div>
1742 <!-------------------------------------------------------------------------- -->
1743 <div class="doc_subsection">
1744 <a name="strip">Strip all symbols from a module</a>
1745 </div>
1746 <div class="doc_text">
1748 Performs code stripping. This transformation can delete:
1749 </p>
1751 <ol>
1752 <li>names for virtual registers</li>
1753 <li>symbols for internal globals and functions</li>
1754 <li>debug information</li>
1755 </ol>
1758 Note that this transformation makes code much less readable, so it should
1759 only be used in situations where the <tt>strip</tt> utility would be used,
1760 such as reducing code size or making it harder to reverse engineer code.
1761 </p>
1762 </div>
1764 <!-------------------------------------------------------------------------- -->
1765 <div class="doc_subsection">
1766 <a name="strip-dead-prototypes">Remove unused function declarations</a>
1767 </div>
1768 <div class="doc_text">
1770 This pass loops over all of the functions in the input module, looking for
1771 dead declarations and removes them. Dead declarations are declarations of
1772 functions for which no implementation is available (i.e., declarations for
1773 unused library functions).
1774 </p>
1775 </div>
1777 <!-------------------------------------------------------------------------- -->
1778 <div class="doc_subsection">
1779 <a name="sretpromotion">Promote sret arguments</a>
1780 </div>
1781 <div class="doc_text">
1783 This pass finds functions that return a struct (using a pointer to the struct
1784 as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1785 replaces them with a new function that simply returns each of the elements of
1786 that struct (using multiple return values).
1787 </p>
1790 This pass works under a number of conditions:
1791 </p>
1793 <ul>
1794 <li>The returned struct must not contain other structs</li>
1795 <li>The returned struct must only be used to load values from</li>
1796 <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1797 </ul>
1798 </div>
1800 <!-------------------------------------------------------------------------- -->
1801 <div class="doc_subsection">
1802 <a name="tailcallelim">Tail Call Elimination</a>
1803 </div>
1804 <div class="doc_text">
1806 This file transforms calls of the current function (self recursion) followed
1807 by a return instruction with a branch to the entry of the function, creating
1808 a loop. This pass also implements the following extensions to the basic
1809 algorithm:
1810 </p>
1812 <ul>
1813 <li>Trivial instructions between the call and return do not prevent the
1814 transformation from taking place, though currently the analysis cannot
1815 support moving any really useful instructions (only dead ones).
1816 <li>This pass transforms functions that are prevented from being tail
1817 recursive by an associative expression to use an accumulator variable,
1818 thus compiling the typical naive factorial or <tt>fib</tt> implementation
1819 into efficient code.
1820 <li>TRE is performed if the function returns void, if the return
1821 returns the result returned by the call, or if the function returns a
1822 run-time constant on all exits from the function. It is possible, though
1823 unlikely, that the return returns something else (like constant 0), and
1824 can still be TRE'd. It can be TRE'd if <em>all other</em> return
1825 instructions in the function return the exact same value.
1826 <li>If it can prove that callees do not access theier caller stack frame,
1827 they are marked as eligible for tail call elimination (by the code
1828 generator).
1829 </ul>
1830 </div>
1832 <!-------------------------------------------------------------------------- -->
1833 <div class="doc_subsection">
1834 <a name="tailduplicate">Tail Duplication</a>
1835 </div>
1836 <div class="doc_text">
1838 This pass performs a limited form of tail duplication, intended to simplify
1839 CFGs by removing some unconditional branches. This pass is necessary to
1840 straighten out loops created by the C front-end, but also is capable of
1841 making other code nicer. After this pass is run, the CFG simplify pass
1842 should be run to clean up the mess.
1843 </p>
1844 </div>
1846 <!-- ======================================================================= -->
1847 <div class="doc_section"> <a name="transform">Utility Passes</a></div>
1848 <div class="doc_text">
1849 <p>This section describes the LLVM Utility Passes.</p>
1850 </div>
1852 <!-------------------------------------------------------------------------- -->
1853 <div class="doc_subsection">
1854 <a name="deadarghaX0r">Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1855 </div>
1856 <div class="doc_text">
1858 Same as dead argument elimination, but deletes arguments to functions which
1859 are external. This is only for use by <a
1860 href="Bugpoint.html">bugpoint</a>.</p>
1861 </div>
1863 <!-------------------------------------------------------------------------- -->
1864 <div class="doc_subsection">
1865 <a name="extract-blocks">Extract Basic Blocks From Module (for bugpoint use)</a>
1866 </div>
1867 <div class="doc_text">
1869 This pass is used by bugpoint to extract all blocks from the module into their
1870 own functions.</p>
1871 </div>
1873 <!-------------------------------------------------------------------------- -->
1874 <div class="doc_subsection">
1875 <a name="preverify">Preliminary module verification</a>
1876 </div>
1877 <div class="doc_text">
1879 Ensures that the module is in the form required by the <a
1880 href="#verifier">Module Verifier</a> pass.
1881 </p>
1884 Running the verifier runs this pass automatically, so there should be no need
1885 to use it directly.
1886 </p>
1887 </div>
1889 <!-------------------------------------------------------------------------- -->
1890 <div class="doc_subsection">
1891 <a name="verify">Module Verifier</a>
1892 </div>
1893 <div class="doc_text">
1895 Verifies an LLVM IR code. This is useful to run after an optimization which is
1896 undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1897 emitting bitcode, and also that malformed bitcode is likely to make LLVM
1898 crash. All language front-ends are therefore encouraged to verify their output
1899 before performing optimizing transformations.
1900 </p>
1902 <ul>
1903 <li>Both of a binary operator's parameters are of the same type.</li>
1904 <li>Verify that the indices of mem access instructions match other
1905 operands.</li>
1906 <li>Verify that arithmetic and other things are only performed on
1907 first-class types. Verify that shifts and logicals only happen on
1908 integrals f.e.</li>
1909 <li>All of the constants in a switch statement are of the correct type.</li>
1910 <li>The code is in valid SSA form.</li>
1911 <li>It should be illegal to put a label into any other type (like a
1912 structure) or to return one. [except constant arrays!]</li>
1913 <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1914 invalid.</li>
1915 <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1916 <li>PHI nodes must be the first thing in a basic block, all grouped
1917 together.</li>
1918 <li>PHI nodes must have at least one entry.</li>
1919 <li>All basic blocks should only end with terminator insts, not contain
1920 them.</li>
1921 <li>The entry node to a function must not have predecessors.</li>
1922 <li>All Instructions must be embedded into a basic block.</li>
1923 <li>Functions cannot take a void-typed parameter.</li>
1924 <li>Verify that a function's argument list agrees with its declared
1925 type.</li>
1926 <li>It is illegal to specify a name for a void value.</li>
1927 <li>It is illegal to have a internal global value with no initializer.</li>
1928 <li>It is illegal to have a ret instruction that returns a value that does
1929 not agree with the function return value type.</li>
1930 <li>Function call argument types match the function prototype.</li>
1931 <li>All other things that are tested by asserts spread about the code.</li>
1932 </ul>
1935 Note that this does not provide full security verification (like Java), but
1936 instead just tries to ensure that code is well-formed.
1937 </p>
1938 </div>
1940 <!-------------------------------------------------------------------------- -->
1941 <div class="doc_subsection">
1942 <a name="view-cfg">View CFG of function</a>
1943 </div>
1944 <div class="doc_text">
1946 Displays the control flow graph using the GraphViz tool.
1947 </p>
1948 </div>
1950 <!-------------------------------------------------------------------------- -->
1951 <div class="doc_subsection">
1952 <a name="view-cfg-only">View CFG of function (with no function bodies)</a>
1953 </div>
1954 <div class="doc_text">
1956 Displays the control flow graph using the GraphViz tool, but omitting function
1957 bodies.
1958 </p>
1959 </div>
1961 <!-- *********************************************************************** -->
1963 <hr>
1964 <address>
1965 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1966 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1967 <a href="http://validator.w3.org/check/referer"><img
1968 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1970 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
1971 <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
1972 Last modified: $Date$
1973 </address>
1975 </body>
1976 </html>