Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / AsmParser / LLParser.cpp
blob0ba93b131a3828a2cab654e41cad2c10b0988fec
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
32 namespace llvm {
33 /// ValID - Represents a reference of a definition of some sort with no type.
34 /// There are several cases where we have to parse the value but where the
35 /// type can depend on later context. This may either be a numeric reference
36 /// or a symbolic (%var) reference. This is just a discriminated union.
37 struct ValID {
38 enum {
39 t_LocalID, t_GlobalID, // ID in UIntVal.
40 t_LocalName, t_GlobalName, // Name in StrVal.
41 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
42 t_Null, t_Undef, t_Zero, // No value.
43 t_EmptyArray, // No value: []
44 t_Constant, // Value in ConstantVal.
45 t_InlineAsm, // Value in StrVal/StrVal2/UIntVal.
46 t_Metadata // Value in MetadataVal.
47 } Kind;
49 LLParser::LocTy Loc;
50 unsigned UIntVal;
51 std::string StrVal, StrVal2;
52 APSInt APSIntVal;
53 APFloat APFloatVal;
54 Constant *ConstantVal;
55 MetadataBase *MetadataVal;
56 ValID() : APFloatVal(0.0) {}
60 /// Run: module ::= toplevelentity*
61 bool LLParser::Run() {
62 // Prime the lexer.
63 Lex.Lex();
65 return ParseTopLevelEntities() ||
66 ValidateEndOfModule();
69 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70 /// module.
71 bool LLParser::ValidateEndOfModule() {
72 if (!ForwardRefTypes.empty())
73 return Error(ForwardRefTypes.begin()->second.second,
74 "use of undefined type named '" +
75 ForwardRefTypes.begin()->first + "'");
76 if (!ForwardRefTypeIDs.empty())
77 return Error(ForwardRefTypeIDs.begin()->second.second,
78 "use of undefined type '%" +
79 utostr(ForwardRefTypeIDs.begin()->first) + "'");
81 if (!ForwardRefVals.empty())
82 return Error(ForwardRefVals.begin()->second.second,
83 "use of undefined value '@" + ForwardRefVals.begin()->first +
84 "'");
86 if (!ForwardRefValIDs.empty())
87 return Error(ForwardRefValIDs.begin()->second.second,
88 "use of undefined value '@" +
89 utostr(ForwardRefValIDs.begin()->first) + "'");
91 if (!ForwardRefMDNodes.empty())
92 return Error(ForwardRefMDNodes.begin()->second.second,
93 "use of undefined metadata '!" +
94 utostr(ForwardRefMDNodes.begin()->first) + "'");
97 // Look for intrinsic functions and CallInst that need to be upgraded
98 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
101 return false;
104 //===----------------------------------------------------------------------===//
105 // Top-Level Entities
106 //===----------------------------------------------------------------------===//
108 bool LLParser::ParseTopLevelEntities() {
109 while (1) {
110 switch (Lex.getKind()) {
111 default: return TokError("expected top-level entity");
112 case lltok::Eof: return false;
113 //case lltok::kw_define:
114 case lltok::kw_declare: if (ParseDeclare()) return true; break;
115 case lltok::kw_define: if (ParseDefine()) return true; break;
116 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
117 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
118 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
119 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
120 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
121 case lltok::LocalVar: if (ParseNamedType()) return true; break;
122 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
123 case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break;
124 case lltok::NamedMD: if (ParseNamedMetadata()) return true; break;
126 // The Global variable production with no name can have many different
127 // optional leading prefixes, the production is:
128 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
129 // OptionalAddrSpace ('constant'|'global') ...
130 case lltok::kw_private : // OptionalLinkage
131 case lltok::kw_linker_private: // OptionalLinkage
132 case lltok::kw_internal: // OptionalLinkage
133 case lltok::kw_weak: // OptionalLinkage
134 case lltok::kw_weak_odr: // OptionalLinkage
135 case lltok::kw_linkonce: // OptionalLinkage
136 case lltok::kw_linkonce_odr: // OptionalLinkage
137 case lltok::kw_appending: // OptionalLinkage
138 case lltok::kw_dllexport: // OptionalLinkage
139 case lltok::kw_common: // OptionalLinkage
140 case lltok::kw_dllimport: // OptionalLinkage
141 case lltok::kw_extern_weak: // OptionalLinkage
142 case lltok::kw_external: { // OptionalLinkage
143 unsigned Linkage, Visibility;
144 if (ParseOptionalLinkage(Linkage) ||
145 ParseOptionalVisibility(Visibility) ||
146 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
147 return true;
148 break;
150 case lltok::kw_default: // OptionalVisibility
151 case lltok::kw_hidden: // OptionalVisibility
152 case lltok::kw_protected: { // OptionalVisibility
153 unsigned Visibility;
154 if (ParseOptionalVisibility(Visibility) ||
155 ParseGlobal("", SMLoc(), 0, false, Visibility))
156 return true;
157 break;
160 case lltok::kw_thread_local: // OptionalThreadLocal
161 case lltok::kw_addrspace: // OptionalAddrSpace
162 case lltok::kw_constant: // GlobalType
163 case lltok::kw_global: // GlobalType
164 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
165 break;
171 /// toplevelentity
172 /// ::= 'module' 'asm' STRINGCONSTANT
173 bool LLParser::ParseModuleAsm() {
174 assert(Lex.getKind() == lltok::kw_module);
175 Lex.Lex();
177 std::string AsmStr;
178 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
179 ParseStringConstant(AsmStr)) return true;
181 const std::string &AsmSoFar = M->getModuleInlineAsm();
182 if (AsmSoFar.empty())
183 M->setModuleInlineAsm(AsmStr);
184 else
185 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
186 return false;
189 /// toplevelentity
190 /// ::= 'target' 'triple' '=' STRINGCONSTANT
191 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
192 bool LLParser::ParseTargetDefinition() {
193 assert(Lex.getKind() == lltok::kw_target);
194 std::string Str;
195 switch (Lex.Lex()) {
196 default: return TokError("unknown target property");
197 case lltok::kw_triple:
198 Lex.Lex();
199 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
200 ParseStringConstant(Str))
201 return true;
202 M->setTargetTriple(Str);
203 return false;
204 case lltok::kw_datalayout:
205 Lex.Lex();
206 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
207 ParseStringConstant(Str))
208 return true;
209 M->setDataLayout(Str);
210 return false;
214 /// toplevelentity
215 /// ::= 'deplibs' '=' '[' ']'
216 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
217 bool LLParser::ParseDepLibs() {
218 assert(Lex.getKind() == lltok::kw_deplibs);
219 Lex.Lex();
220 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
221 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
222 return true;
224 if (EatIfPresent(lltok::rsquare))
225 return false;
227 std::string Str;
228 if (ParseStringConstant(Str)) return true;
229 M->addLibrary(Str);
231 while (EatIfPresent(lltok::comma)) {
232 if (ParseStringConstant(Str)) return true;
233 M->addLibrary(Str);
236 return ParseToken(lltok::rsquare, "expected ']' at end of list");
239 /// toplevelentity
240 /// ::= 'type' type
241 bool LLParser::ParseUnnamedType() {
242 assert(Lex.getKind() == lltok::kw_type);
243 LocTy TypeLoc = Lex.getLoc();
244 Lex.Lex(); // eat kw_type
246 PATypeHolder Ty(Type::VoidTy);
247 if (ParseType(Ty)) return true;
249 unsigned TypeID = NumberedTypes.size();
251 // See if this type was previously referenced.
252 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
253 FI = ForwardRefTypeIDs.find(TypeID);
254 if (FI != ForwardRefTypeIDs.end()) {
255 if (FI->second.first.get() == Ty)
256 return Error(TypeLoc, "self referential type is invalid");
258 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
259 Ty = FI->second.first.get();
260 ForwardRefTypeIDs.erase(FI);
263 NumberedTypes.push_back(Ty);
265 return false;
268 /// toplevelentity
269 /// ::= LocalVar '=' 'type' type
270 bool LLParser::ParseNamedType() {
271 std::string Name = Lex.getStrVal();
272 LocTy NameLoc = Lex.getLoc();
273 Lex.Lex(); // eat LocalVar.
275 PATypeHolder Ty(Type::VoidTy);
277 if (ParseToken(lltok::equal, "expected '=' after name") ||
278 ParseToken(lltok::kw_type, "expected 'type' after name") ||
279 ParseType(Ty))
280 return true;
282 // Set the type name, checking for conflicts as we do so.
283 bool AlreadyExists = M->addTypeName(Name, Ty);
284 if (!AlreadyExists) return false;
286 // See if this type is a forward reference. We need to eagerly resolve
287 // types to allow recursive type redefinitions below.
288 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
289 FI = ForwardRefTypes.find(Name);
290 if (FI != ForwardRefTypes.end()) {
291 if (FI->second.first.get() == Ty)
292 return Error(NameLoc, "self referential type is invalid");
294 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
295 Ty = FI->second.first.get();
296 ForwardRefTypes.erase(FI);
299 // Inserting a name that is already defined, get the existing name.
300 const Type *Existing = M->getTypeByName(Name);
301 assert(Existing && "Conflict but no matching type?!");
303 // Otherwise, this is an attempt to redefine a type. That's okay if
304 // the redefinition is identical to the original.
305 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
306 if (Existing == Ty) return false;
308 // Any other kind of (non-equivalent) redefinition is an error.
309 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
310 Ty->getDescription() + "'");
314 /// toplevelentity
315 /// ::= 'declare' FunctionHeader
316 bool LLParser::ParseDeclare() {
317 assert(Lex.getKind() == lltok::kw_declare);
318 Lex.Lex();
320 Function *F;
321 return ParseFunctionHeader(F, false);
324 /// toplevelentity
325 /// ::= 'define' FunctionHeader '{' ...
326 bool LLParser::ParseDefine() {
327 assert(Lex.getKind() == lltok::kw_define);
328 Lex.Lex();
330 Function *F;
331 return ParseFunctionHeader(F, true) ||
332 ParseFunctionBody(*F);
335 /// ParseGlobalType
336 /// ::= 'constant'
337 /// ::= 'global'
338 bool LLParser::ParseGlobalType(bool &IsConstant) {
339 if (Lex.getKind() == lltok::kw_constant)
340 IsConstant = true;
341 else if (Lex.getKind() == lltok::kw_global)
342 IsConstant = false;
343 else {
344 IsConstant = false;
345 return TokError("expected 'global' or 'constant'");
347 Lex.Lex();
348 return false;
351 /// ParseNamedGlobal:
352 /// GlobalVar '=' OptionalVisibility ALIAS ...
353 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
354 bool LLParser::ParseNamedGlobal() {
355 assert(Lex.getKind() == lltok::GlobalVar);
356 LocTy NameLoc = Lex.getLoc();
357 std::string Name = Lex.getStrVal();
358 Lex.Lex();
360 bool HasLinkage;
361 unsigned Linkage, Visibility;
362 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
363 ParseOptionalLinkage(Linkage, HasLinkage) ||
364 ParseOptionalVisibility(Visibility))
365 return true;
367 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
368 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
369 return ParseAlias(Name, NameLoc, Visibility);
372 // MDString:
373 // ::= '!' STRINGCONSTANT
374 bool LLParser::ParseMDString(MetadataBase *&MDS) {
375 std::string Str;
376 if (ParseStringConstant(Str)) return true;
377 MDS = MDString::get(Context, Str);
378 return false;
381 // MDNode:
382 // ::= '!' MDNodeNumber
383 bool LLParser::ParseMDNode(MetadataBase *&Node) {
384 // !{ ..., !42, ... }
385 unsigned MID = 0;
386 if (ParseUInt32(MID)) return true;
388 // Check existing MDNode.
389 std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
390 if (I != MetadataCache.end()) {
391 Node = I->second;
392 return false;
395 // Check known forward references.
396 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
397 FI = ForwardRefMDNodes.find(MID);
398 if (FI != ForwardRefMDNodes.end()) {
399 Node = FI->second.first;
400 return false;
403 // Create MDNode forward reference
404 SmallVector<Value *, 1> Elts;
405 std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
406 Elts.push_back(MDString::get(Context, FwdRefName));
407 MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
408 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
409 Node = FwdNode;
410 return false;
413 ///ParseNamedMetadata:
414 /// !foo = !{ !1, !2 }
415 bool LLParser::ParseNamedMetadata() {
416 assert(Lex.getKind() == lltok::NamedMD);
417 Lex.Lex();
418 std::string Name = Lex.getStrVal();
420 if (ParseToken(lltok::equal, "expected '=' here"))
421 return true;
423 if (Lex.getKind() != lltok::Metadata)
424 return TokError("Expected '!' here");
425 Lex.Lex();
427 if (Lex.getKind() != lltok::lbrace)
428 return TokError("Expected '{' here");
429 Lex.Lex();
430 SmallVector<MetadataBase *, 8> Elts;
431 do {
432 if (Lex.getKind() != lltok::Metadata)
433 return TokError("Expected '!' here");
434 Lex.Lex();
435 MetadataBase *N = 0;
436 if (ParseMDNode(N)) return true;
437 Elts.push_back(N);
438 } while (EatIfPresent(lltok::comma));
440 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
441 return true;
443 NamedMDNode::Create(Name, Elts.data(), Elts.size(), M);
444 return false;
447 /// ParseStandaloneMetadata:
448 /// !42 = !{...}
449 bool LLParser::ParseStandaloneMetadata() {
450 assert(Lex.getKind() == lltok::Metadata);
451 Lex.Lex();
452 unsigned MetadataID = 0;
453 if (ParseUInt32(MetadataID))
454 return true;
455 if (MetadataCache.find(MetadataID) != MetadataCache.end())
456 return TokError("Metadata id is already used");
457 if (ParseToken(lltok::equal, "expected '=' here"))
458 return true;
460 LocTy TyLoc;
461 PATypeHolder Ty(Type::VoidTy);
462 if (ParseType(Ty, TyLoc))
463 return true;
465 if (Lex.getKind() != lltok::Metadata)
466 return TokError("Expected metadata here");
468 Lex.Lex();
469 if (Lex.getKind() != lltok::lbrace)
470 return TokError("Expected '{' here");
472 SmallVector<Value *, 16> Elts;
473 if (ParseMDNodeVector(Elts)
474 || ParseToken(lltok::rbrace, "expected end of metadata node"))
475 return true;
477 MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
478 MetadataCache[MetadataID] = Init;
479 std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
480 FI = ForwardRefMDNodes.find(MetadataID);
481 if (FI != ForwardRefMDNodes.end()) {
482 MDNode *FwdNode = cast<MDNode>(FI->second.first);
483 FwdNode->replaceAllUsesWith(Init);
484 ForwardRefMDNodes.erase(FI);
487 return false;
490 /// ParseAlias:
491 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
492 /// Aliasee
493 /// ::= TypeAndValue
494 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
495 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
497 /// Everything through visibility has already been parsed.
499 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
500 unsigned Visibility) {
501 assert(Lex.getKind() == lltok::kw_alias);
502 Lex.Lex();
503 unsigned Linkage;
504 LocTy LinkageLoc = Lex.getLoc();
505 if (ParseOptionalLinkage(Linkage))
506 return true;
508 if (Linkage != GlobalValue::ExternalLinkage &&
509 Linkage != GlobalValue::WeakAnyLinkage &&
510 Linkage != GlobalValue::WeakODRLinkage &&
511 Linkage != GlobalValue::InternalLinkage &&
512 Linkage != GlobalValue::PrivateLinkage &&
513 Linkage != GlobalValue::LinkerPrivateLinkage)
514 return Error(LinkageLoc, "invalid linkage type for alias");
516 Constant *Aliasee;
517 LocTy AliaseeLoc = Lex.getLoc();
518 if (Lex.getKind() != lltok::kw_bitcast &&
519 Lex.getKind() != lltok::kw_getelementptr) {
520 if (ParseGlobalTypeAndValue(Aliasee)) return true;
521 } else {
522 // The bitcast dest type is not present, it is implied by the dest type.
523 ValID ID;
524 if (ParseValID(ID)) return true;
525 if (ID.Kind != ValID::t_Constant)
526 return Error(AliaseeLoc, "invalid aliasee");
527 Aliasee = ID.ConstantVal;
530 if (!isa<PointerType>(Aliasee->getType()))
531 return Error(AliaseeLoc, "alias must have pointer type");
533 // Okay, create the alias but do not insert it into the module yet.
534 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
535 (GlobalValue::LinkageTypes)Linkage, Name,
536 Aliasee);
537 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
539 // See if this value already exists in the symbol table. If so, it is either
540 // a redefinition or a definition of a forward reference.
541 if (GlobalValue *Val =
542 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
543 // See if this was a redefinition. If so, there is no entry in
544 // ForwardRefVals.
545 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
546 I = ForwardRefVals.find(Name);
547 if (I == ForwardRefVals.end())
548 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
550 // Otherwise, this was a definition of forward ref. Verify that types
551 // agree.
552 if (Val->getType() != GA->getType())
553 return Error(NameLoc,
554 "forward reference and definition of alias have different types");
556 // If they agree, just RAUW the old value with the alias and remove the
557 // forward ref info.
558 Val->replaceAllUsesWith(GA);
559 Val->eraseFromParent();
560 ForwardRefVals.erase(I);
563 // Insert into the module, we know its name won't collide now.
564 M->getAliasList().push_back(GA);
565 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
567 return false;
570 /// ParseGlobal
571 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
572 /// OptionalAddrSpace GlobalType Type Const
573 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
574 /// OptionalAddrSpace GlobalType Type Const
576 /// Everything through visibility has been parsed already.
578 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
579 unsigned Linkage, bool HasLinkage,
580 unsigned Visibility) {
581 unsigned AddrSpace;
582 bool ThreadLocal, IsConstant;
583 LocTy TyLoc;
585 PATypeHolder Ty(Type::VoidTy);
586 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
587 ParseOptionalAddrSpace(AddrSpace) ||
588 ParseGlobalType(IsConstant) ||
589 ParseType(Ty, TyLoc))
590 return true;
592 // If the linkage is specified and is external, then no initializer is
593 // present.
594 Constant *Init = 0;
595 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
596 Linkage != GlobalValue::ExternalWeakLinkage &&
597 Linkage != GlobalValue::ExternalLinkage)) {
598 if (ParseGlobalValue(Ty, Init))
599 return true;
602 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
603 return Error(TyLoc, "invalid type for global variable");
605 GlobalVariable *GV = 0;
607 // See if the global was forward referenced, if so, use the global.
608 if (!Name.empty()) {
609 if ((GV = M->getGlobalVariable(Name, true)) &&
610 !ForwardRefVals.erase(Name))
611 return Error(NameLoc, "redefinition of global '@" + Name + "'");
612 } else {
613 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
614 I = ForwardRefValIDs.find(NumberedVals.size());
615 if (I != ForwardRefValIDs.end()) {
616 GV = cast<GlobalVariable>(I->second.first);
617 ForwardRefValIDs.erase(I);
621 if (GV == 0) {
622 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
623 Name, 0, false, AddrSpace);
624 } else {
625 if (GV->getType()->getElementType() != Ty)
626 return Error(TyLoc,
627 "forward reference and definition of global have different types");
629 // Move the forward-reference to the correct spot in the module.
630 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
633 if (Name.empty())
634 NumberedVals.push_back(GV);
636 // Set the parsed properties on the global.
637 if (Init)
638 GV->setInitializer(Init);
639 GV->setConstant(IsConstant);
640 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
641 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
642 GV->setThreadLocal(ThreadLocal);
644 // Parse attributes on the global.
645 while (Lex.getKind() == lltok::comma) {
646 Lex.Lex();
648 if (Lex.getKind() == lltok::kw_section) {
649 Lex.Lex();
650 GV->setSection(Lex.getStrVal());
651 if (ParseToken(lltok::StringConstant, "expected global section string"))
652 return true;
653 } else if (Lex.getKind() == lltok::kw_align) {
654 unsigned Alignment;
655 if (ParseOptionalAlignment(Alignment)) return true;
656 GV->setAlignment(Alignment);
657 } else {
658 TokError("unknown global variable property!");
662 return false;
666 //===----------------------------------------------------------------------===//
667 // GlobalValue Reference/Resolution Routines.
668 //===----------------------------------------------------------------------===//
670 /// GetGlobalVal - Get a value with the specified name or ID, creating a
671 /// forward reference record if needed. This can return null if the value
672 /// exists but does not have the right type.
673 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
674 LocTy Loc) {
675 const PointerType *PTy = dyn_cast<PointerType>(Ty);
676 if (PTy == 0) {
677 Error(Loc, "global variable reference must have pointer type");
678 return 0;
681 // Look this name up in the normal function symbol table.
682 GlobalValue *Val =
683 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
685 // If this is a forward reference for the value, see if we already created a
686 // forward ref record.
687 if (Val == 0) {
688 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
689 I = ForwardRefVals.find(Name);
690 if (I != ForwardRefVals.end())
691 Val = I->second.first;
694 // If we have the value in the symbol table or fwd-ref table, return it.
695 if (Val) {
696 if (Val->getType() == Ty) return Val;
697 Error(Loc, "'@" + Name + "' defined with type '" +
698 Val->getType()->getDescription() + "'");
699 return 0;
702 // Otherwise, create a new forward reference for this value and remember it.
703 GlobalValue *FwdVal;
704 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
705 // Function types can return opaque but functions can't.
706 if (isa<OpaqueType>(FT->getReturnType())) {
707 Error(Loc, "function may not return opaque type");
708 return 0;
711 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
712 } else {
713 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
714 GlobalValue::ExternalWeakLinkage, 0, Name);
717 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
718 return FwdVal;
721 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
722 const PointerType *PTy = dyn_cast<PointerType>(Ty);
723 if (PTy == 0) {
724 Error(Loc, "global variable reference must have pointer type");
725 return 0;
728 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
730 // If this is a forward reference for the value, see if we already created a
731 // forward ref record.
732 if (Val == 0) {
733 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
734 I = ForwardRefValIDs.find(ID);
735 if (I != ForwardRefValIDs.end())
736 Val = I->second.first;
739 // If we have the value in the symbol table or fwd-ref table, return it.
740 if (Val) {
741 if (Val->getType() == Ty) return Val;
742 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
743 Val->getType()->getDescription() + "'");
744 return 0;
747 // Otherwise, create a new forward reference for this value and remember it.
748 GlobalValue *FwdVal;
749 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
750 // Function types can return opaque but functions can't.
751 if (isa<OpaqueType>(FT->getReturnType())) {
752 Error(Loc, "function may not return opaque type");
753 return 0;
755 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
756 } else {
757 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
758 GlobalValue::ExternalWeakLinkage, 0, "");
761 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
762 return FwdVal;
766 //===----------------------------------------------------------------------===//
767 // Helper Routines.
768 //===----------------------------------------------------------------------===//
770 /// ParseToken - If the current token has the specified kind, eat it and return
771 /// success. Otherwise, emit the specified error and return failure.
772 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
773 if (Lex.getKind() != T)
774 return TokError(ErrMsg);
775 Lex.Lex();
776 return false;
779 /// ParseStringConstant
780 /// ::= StringConstant
781 bool LLParser::ParseStringConstant(std::string &Result) {
782 if (Lex.getKind() != lltok::StringConstant)
783 return TokError("expected string constant");
784 Result = Lex.getStrVal();
785 Lex.Lex();
786 return false;
789 /// ParseUInt32
790 /// ::= uint32
791 bool LLParser::ParseUInt32(unsigned &Val) {
792 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
793 return TokError("expected integer");
794 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
795 if (Val64 != unsigned(Val64))
796 return TokError("expected 32-bit integer (too large)");
797 Val = Val64;
798 Lex.Lex();
799 return false;
803 /// ParseOptionalAddrSpace
804 /// := /*empty*/
805 /// := 'addrspace' '(' uint32 ')'
806 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
807 AddrSpace = 0;
808 if (!EatIfPresent(lltok::kw_addrspace))
809 return false;
810 return ParseToken(lltok::lparen, "expected '(' in address space") ||
811 ParseUInt32(AddrSpace) ||
812 ParseToken(lltok::rparen, "expected ')' in address space");
815 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
816 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
817 /// 2: function attr.
818 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
819 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
820 Attrs = Attribute::None;
821 LocTy AttrLoc = Lex.getLoc();
823 while (1) {
824 switch (Lex.getKind()) {
825 case lltok::kw_sext:
826 case lltok::kw_zext:
827 // Treat these as signext/zeroext if they occur in the argument list after
828 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
829 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
830 // expr.
831 // FIXME: REMOVE THIS IN LLVM 3.0
832 if (AttrKind == 3) {
833 if (Lex.getKind() == lltok::kw_sext)
834 Attrs |= Attribute::SExt;
835 else
836 Attrs |= Attribute::ZExt;
837 break;
839 // FALL THROUGH.
840 default: // End of attributes.
841 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
842 return Error(AttrLoc, "invalid use of function-only attribute");
844 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
845 return Error(AttrLoc, "invalid use of parameter-only attribute");
847 return false;
848 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
849 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
850 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
851 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
852 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
853 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
854 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
855 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
857 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
858 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
859 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
860 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
861 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
862 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
863 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
864 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
865 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
866 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
867 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
868 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
870 case lltok::kw_align: {
871 unsigned Alignment;
872 if (ParseOptionalAlignment(Alignment))
873 return true;
874 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
875 continue;
878 Lex.Lex();
882 /// ParseOptionalLinkage
883 /// ::= /*empty*/
884 /// ::= 'private'
885 /// ::= 'linker_private'
886 /// ::= 'internal'
887 /// ::= 'weak'
888 /// ::= 'weak_odr'
889 /// ::= 'linkonce'
890 /// ::= 'linkonce_odr'
891 /// ::= 'appending'
892 /// ::= 'dllexport'
893 /// ::= 'common'
894 /// ::= 'dllimport'
895 /// ::= 'extern_weak'
896 /// ::= 'external'
897 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
898 HasLinkage = false;
899 switch (Lex.getKind()) {
900 default: Res=GlobalValue::ExternalLinkage; return false;
901 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
902 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
903 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
904 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
905 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
906 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
907 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
908 case lltok::kw_available_externally:
909 Res = GlobalValue::AvailableExternallyLinkage;
910 break;
911 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
912 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
913 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
914 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
915 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
916 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
918 Lex.Lex();
919 HasLinkage = true;
920 return false;
923 /// ParseOptionalVisibility
924 /// ::= /*empty*/
925 /// ::= 'default'
926 /// ::= 'hidden'
927 /// ::= 'protected'
928 ///
929 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
930 switch (Lex.getKind()) {
931 default: Res = GlobalValue::DefaultVisibility; return false;
932 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
933 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
934 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
936 Lex.Lex();
937 return false;
940 /// ParseOptionalCallingConv
941 /// ::= /*empty*/
942 /// ::= 'ccc'
943 /// ::= 'fastcc'
944 /// ::= 'coldcc'
945 /// ::= 'x86_stdcallcc'
946 /// ::= 'x86_fastcallcc'
947 /// ::= 'arm_apcscc'
948 /// ::= 'arm_aapcscc'
949 /// ::= 'arm_aapcs_vfpcc'
950 /// ::= 'cc' UINT
952 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
953 switch (Lex.getKind()) {
954 default: CC = CallingConv::C; return false;
955 case lltok::kw_ccc: CC = CallingConv::C; break;
956 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
957 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
958 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
959 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
960 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
961 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
962 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
963 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
965 Lex.Lex();
966 return false;
969 /// ParseOptionalAlignment
970 /// ::= /* empty */
971 /// ::= 'align' 4
972 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
973 Alignment = 0;
974 if (!EatIfPresent(lltok::kw_align))
975 return false;
976 LocTy AlignLoc = Lex.getLoc();
977 if (ParseUInt32(Alignment)) return true;
978 if (!isPowerOf2_32(Alignment))
979 return Error(AlignLoc, "alignment is not a power of two");
980 return false;
983 /// ParseOptionalCommaAlignment
984 /// ::= /* empty */
985 /// ::= ',' 'align' 4
986 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
987 Alignment = 0;
988 if (!EatIfPresent(lltok::comma))
989 return false;
990 return ParseToken(lltok::kw_align, "expected 'align'") ||
991 ParseUInt32(Alignment);
994 /// ParseIndexList
995 /// ::= (',' uint32)+
996 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
997 if (Lex.getKind() != lltok::comma)
998 return TokError("expected ',' as start of index list");
1000 while (EatIfPresent(lltok::comma)) {
1001 unsigned Idx;
1002 if (ParseUInt32(Idx)) return true;
1003 Indices.push_back(Idx);
1006 return false;
1009 //===----------------------------------------------------------------------===//
1010 // Type Parsing.
1011 //===----------------------------------------------------------------------===//
1013 /// ParseType - Parse and resolve a full type.
1014 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1015 LocTy TypeLoc = Lex.getLoc();
1016 if (ParseTypeRec(Result)) return true;
1018 // Verify no unresolved uprefs.
1019 if (!UpRefs.empty())
1020 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1022 if (!AllowVoid && Result.get() == Type::VoidTy)
1023 return Error(TypeLoc, "void type only allowed for function results");
1025 return false;
1028 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1029 /// called. It loops through the UpRefs vector, which is a list of the
1030 /// currently active types. For each type, if the up-reference is contained in
1031 /// the newly completed type, we decrement the level count. When the level
1032 /// count reaches zero, the up-referenced type is the type that is passed in:
1033 /// thus we can complete the cycle.
1035 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1036 // If Ty isn't abstract, or if there are no up-references in it, then there is
1037 // nothing to resolve here.
1038 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1040 PATypeHolder Ty(ty);
1041 #if 0
1042 errs() << "Type '" << Ty->getDescription()
1043 << "' newly formed. Resolving upreferences.\n"
1044 << UpRefs.size() << " upreferences active!\n";
1045 #endif
1047 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1048 // to zero), we resolve them all together before we resolve them to Ty. At
1049 // the end of the loop, if there is anything to resolve to Ty, it will be in
1050 // this variable.
1051 OpaqueType *TypeToResolve = 0;
1053 for (unsigned i = 0; i != UpRefs.size(); ++i) {
1054 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1055 bool ContainsType =
1056 std::find(Ty->subtype_begin(), Ty->subtype_end(),
1057 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1059 #if 0
1060 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1061 << UpRefs[i].LastContainedTy->getDescription() << ") = "
1062 << (ContainsType ? "true" : "false")
1063 << " level=" << UpRefs[i].NestingLevel << "\n";
1064 #endif
1065 if (!ContainsType)
1066 continue;
1068 // Decrement level of upreference
1069 unsigned Level = --UpRefs[i].NestingLevel;
1070 UpRefs[i].LastContainedTy = Ty;
1072 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1073 if (Level != 0)
1074 continue;
1076 #if 0
1077 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1078 #endif
1079 if (!TypeToResolve)
1080 TypeToResolve = UpRefs[i].UpRefTy;
1081 else
1082 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1083 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
1084 --i; // Do not skip the next element.
1087 if (TypeToResolve)
1088 TypeToResolve->refineAbstractTypeTo(Ty);
1090 return Ty;
1094 /// ParseTypeRec - The recursive function used to process the internal
1095 /// implementation details of types.
1096 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1097 switch (Lex.getKind()) {
1098 default:
1099 return TokError("expected type");
1100 case lltok::Type:
1101 // TypeRec ::= 'float' | 'void' (etc)
1102 Result = Lex.getTyVal();
1103 Lex.Lex();
1104 break;
1105 case lltok::kw_opaque:
1106 // TypeRec ::= 'opaque'
1107 Result = OpaqueType::get();
1108 Lex.Lex();
1109 break;
1110 case lltok::lbrace:
1111 // TypeRec ::= '{' ... '}'
1112 if (ParseStructType(Result, false))
1113 return true;
1114 break;
1115 case lltok::lsquare:
1116 // TypeRec ::= '[' ... ']'
1117 Lex.Lex(); // eat the lsquare.
1118 if (ParseArrayVectorType(Result, false))
1119 return true;
1120 break;
1121 case lltok::less: // Either vector or packed struct.
1122 // TypeRec ::= '<' ... '>'
1123 Lex.Lex();
1124 if (Lex.getKind() == lltok::lbrace) {
1125 if (ParseStructType(Result, true) ||
1126 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1127 return true;
1128 } else if (ParseArrayVectorType(Result, true))
1129 return true;
1130 break;
1131 case lltok::LocalVar:
1132 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
1133 // TypeRec ::= %foo
1134 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1135 Result = T;
1136 } else {
1137 Result = OpaqueType::get();
1138 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1139 std::make_pair(Result,
1140 Lex.getLoc())));
1141 M->addTypeName(Lex.getStrVal(), Result.get());
1143 Lex.Lex();
1144 break;
1146 case lltok::LocalVarID:
1147 // TypeRec ::= %4
1148 if (Lex.getUIntVal() < NumberedTypes.size())
1149 Result = NumberedTypes[Lex.getUIntVal()];
1150 else {
1151 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1152 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1153 if (I != ForwardRefTypeIDs.end())
1154 Result = I->second.first;
1155 else {
1156 Result = OpaqueType::get();
1157 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1158 std::make_pair(Result,
1159 Lex.getLoc())));
1162 Lex.Lex();
1163 break;
1164 case lltok::backslash: {
1165 // TypeRec ::= '\' 4
1166 Lex.Lex();
1167 unsigned Val;
1168 if (ParseUInt32(Val)) return true;
1169 OpaqueType *OT = OpaqueType::get(); //Use temporary placeholder.
1170 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1171 Result = OT;
1172 break;
1176 // Parse the type suffixes.
1177 while (1) {
1178 switch (Lex.getKind()) {
1179 // End of type.
1180 default: return false;
1182 // TypeRec ::= TypeRec '*'
1183 case lltok::star:
1184 if (Result.get() == Type::LabelTy)
1185 return TokError("basic block pointers are invalid");
1186 if (Result.get() == Type::VoidTy)
1187 return TokError("pointers to void are invalid; use i8* instead");
1188 if (!PointerType::isValidElementType(Result.get()))
1189 return TokError("pointer to this type is invalid");
1190 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1191 Lex.Lex();
1192 break;
1194 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1195 case lltok::kw_addrspace: {
1196 if (Result.get() == Type::LabelTy)
1197 return TokError("basic block pointers are invalid");
1198 if (Result.get() == Type::VoidTy)
1199 return TokError("pointers to void are invalid; use i8* instead");
1200 if (!PointerType::isValidElementType(Result.get()))
1201 return TokError("pointer to this type is invalid");
1202 unsigned AddrSpace;
1203 if (ParseOptionalAddrSpace(AddrSpace) ||
1204 ParseToken(lltok::star, "expected '*' in address space"))
1205 return true;
1207 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1208 break;
1211 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1212 case lltok::lparen:
1213 if (ParseFunctionType(Result))
1214 return true;
1215 break;
1220 /// ParseParameterList
1221 /// ::= '(' ')'
1222 /// ::= '(' Arg (',' Arg)* ')'
1223 /// Arg
1224 /// ::= Type OptionalAttributes Value OptionalAttributes
1225 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1226 PerFunctionState &PFS) {
1227 if (ParseToken(lltok::lparen, "expected '(' in call"))
1228 return true;
1230 while (Lex.getKind() != lltok::rparen) {
1231 // If this isn't the first argument, we need a comma.
1232 if (!ArgList.empty() &&
1233 ParseToken(lltok::comma, "expected ',' in argument list"))
1234 return true;
1236 // Parse the argument.
1237 LocTy ArgLoc;
1238 PATypeHolder ArgTy(Type::VoidTy);
1239 unsigned ArgAttrs1, ArgAttrs2;
1240 Value *V;
1241 if (ParseType(ArgTy, ArgLoc) ||
1242 ParseOptionalAttrs(ArgAttrs1, 0) ||
1243 ParseValue(ArgTy, V, PFS) ||
1244 // FIXME: Should not allow attributes after the argument, remove this in
1245 // LLVM 3.0.
1246 ParseOptionalAttrs(ArgAttrs2, 3))
1247 return true;
1248 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1251 Lex.Lex(); // Lex the ')'.
1252 return false;
1257 /// ParseArgumentList - Parse the argument list for a function type or function
1258 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1259 /// ::= '(' ArgTypeListI ')'
1260 /// ArgTypeListI
1261 /// ::= /*empty*/
1262 /// ::= '...'
1263 /// ::= ArgTypeList ',' '...'
1264 /// ::= ArgType (',' ArgType)*
1266 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1267 bool &isVarArg, bool inType) {
1268 isVarArg = false;
1269 assert(Lex.getKind() == lltok::lparen);
1270 Lex.Lex(); // eat the (.
1272 if (Lex.getKind() == lltok::rparen) {
1273 // empty
1274 } else if (Lex.getKind() == lltok::dotdotdot) {
1275 isVarArg = true;
1276 Lex.Lex();
1277 } else {
1278 LocTy TypeLoc = Lex.getLoc();
1279 PATypeHolder ArgTy(Type::VoidTy);
1280 unsigned Attrs;
1281 std::string Name;
1283 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1284 // types (such as a function returning a pointer to itself). If parsing a
1285 // function prototype, we require fully resolved types.
1286 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1287 ParseOptionalAttrs(Attrs, 0)) return true;
1289 if (ArgTy == Type::VoidTy)
1290 return Error(TypeLoc, "argument can not have void type");
1292 if (Lex.getKind() == lltok::LocalVar ||
1293 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1294 Name = Lex.getStrVal();
1295 Lex.Lex();
1298 if (!FunctionType::isValidArgumentType(ArgTy))
1299 return Error(TypeLoc, "invalid type for function argument");
1301 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1303 while (EatIfPresent(lltok::comma)) {
1304 // Handle ... at end of arg list.
1305 if (EatIfPresent(lltok::dotdotdot)) {
1306 isVarArg = true;
1307 break;
1310 // Otherwise must be an argument type.
1311 TypeLoc = Lex.getLoc();
1312 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1313 ParseOptionalAttrs(Attrs, 0)) return true;
1315 if (ArgTy == Type::VoidTy)
1316 return Error(TypeLoc, "argument can not have void type");
1318 if (Lex.getKind() == lltok::LocalVar ||
1319 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1320 Name = Lex.getStrVal();
1321 Lex.Lex();
1322 } else {
1323 Name = "";
1326 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1327 return Error(TypeLoc, "invalid type for function argument");
1329 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1333 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1336 /// ParseFunctionType
1337 /// ::= Type ArgumentList OptionalAttrs
1338 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1339 assert(Lex.getKind() == lltok::lparen);
1341 if (!FunctionType::isValidReturnType(Result))
1342 return TokError("invalid function return type");
1344 std::vector<ArgInfo> ArgList;
1345 bool isVarArg;
1346 unsigned Attrs;
1347 if (ParseArgumentList(ArgList, isVarArg, true) ||
1348 // FIXME: Allow, but ignore attributes on function types!
1349 // FIXME: Remove in LLVM 3.0
1350 ParseOptionalAttrs(Attrs, 2))
1351 return true;
1353 // Reject names on the arguments lists.
1354 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1355 if (!ArgList[i].Name.empty())
1356 return Error(ArgList[i].Loc, "argument name invalid in function type");
1357 if (!ArgList[i].Attrs != 0) {
1358 // Allow but ignore attributes on function types; this permits
1359 // auto-upgrade.
1360 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1364 std::vector<const Type*> ArgListTy;
1365 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1366 ArgListTy.push_back(ArgList[i].Type);
1368 Result = HandleUpRefs(FunctionType::get(Result.get(),
1369 ArgListTy, isVarArg));
1370 return false;
1373 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1374 /// TypeRec
1375 /// ::= '{' '}'
1376 /// ::= '{' TypeRec (',' TypeRec)* '}'
1377 /// ::= '<' '{' '}' '>'
1378 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1379 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1380 assert(Lex.getKind() == lltok::lbrace);
1381 Lex.Lex(); // Consume the '{'
1383 if (EatIfPresent(lltok::rbrace)) {
1384 Result = StructType::get(Packed);
1385 return false;
1388 std::vector<PATypeHolder> ParamsList;
1389 LocTy EltTyLoc = Lex.getLoc();
1390 if (ParseTypeRec(Result)) return true;
1391 ParamsList.push_back(Result);
1393 if (Result == Type::VoidTy)
1394 return Error(EltTyLoc, "struct element can not have void type");
1395 if (!StructType::isValidElementType(Result))
1396 return Error(EltTyLoc, "invalid element type for struct");
1398 while (EatIfPresent(lltok::comma)) {
1399 EltTyLoc = Lex.getLoc();
1400 if (ParseTypeRec(Result)) return true;
1402 if (Result == Type::VoidTy)
1403 return Error(EltTyLoc, "struct element can not have void type");
1404 if (!StructType::isValidElementType(Result))
1405 return Error(EltTyLoc, "invalid element type for struct");
1407 ParamsList.push_back(Result);
1410 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1411 return true;
1413 std::vector<const Type*> ParamsListTy;
1414 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1415 ParamsListTy.push_back(ParamsList[i].get());
1416 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1417 return false;
1420 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1421 /// token has already been consumed.
1422 /// TypeRec
1423 /// ::= '[' APSINTVAL 'x' Types ']'
1424 /// ::= '<' APSINTVAL 'x' Types '>'
1425 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1426 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1427 Lex.getAPSIntVal().getBitWidth() > 64)
1428 return TokError("expected number in address space");
1430 LocTy SizeLoc = Lex.getLoc();
1431 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1432 Lex.Lex();
1434 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1435 return true;
1437 LocTy TypeLoc = Lex.getLoc();
1438 PATypeHolder EltTy(Type::VoidTy);
1439 if (ParseTypeRec(EltTy)) return true;
1441 if (EltTy == Type::VoidTy)
1442 return Error(TypeLoc, "array and vector element type cannot be void");
1444 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1445 "expected end of sequential type"))
1446 return true;
1448 if (isVector) {
1449 if (Size == 0)
1450 return Error(SizeLoc, "zero element vector is illegal");
1451 if ((unsigned)Size != Size)
1452 return Error(SizeLoc, "size too large for vector");
1453 if (!VectorType::isValidElementType(EltTy))
1454 return Error(TypeLoc, "vector element type must be fp or integer");
1455 Result = VectorType::get(EltTy, unsigned(Size));
1456 } else {
1457 if (!ArrayType::isValidElementType(EltTy))
1458 return Error(TypeLoc, "invalid array element type");
1459 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1461 return false;
1464 //===----------------------------------------------------------------------===//
1465 // Function Semantic Analysis.
1466 //===----------------------------------------------------------------------===//
1468 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1469 : P(p), F(f) {
1471 // Insert unnamed arguments into the NumberedVals list.
1472 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1473 AI != E; ++AI)
1474 if (!AI->hasName())
1475 NumberedVals.push_back(AI);
1478 LLParser::PerFunctionState::~PerFunctionState() {
1479 // If there were any forward referenced non-basicblock values, delete them.
1480 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1481 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1482 if (!isa<BasicBlock>(I->second.first)) {
1483 I->second.first->replaceAllUsesWith(
1484 UndefValue::get(I->second.first->getType()));
1485 delete I->second.first;
1486 I->second.first = 0;
1489 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1490 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1491 if (!isa<BasicBlock>(I->second.first)) {
1492 I->second.first->replaceAllUsesWith(
1493 UndefValue::get(I->second.first->getType()));
1494 delete I->second.first;
1495 I->second.first = 0;
1499 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1500 if (!ForwardRefVals.empty())
1501 return P.Error(ForwardRefVals.begin()->second.second,
1502 "use of undefined value '%" + ForwardRefVals.begin()->first +
1503 "'");
1504 if (!ForwardRefValIDs.empty())
1505 return P.Error(ForwardRefValIDs.begin()->second.second,
1506 "use of undefined value '%" +
1507 utostr(ForwardRefValIDs.begin()->first) + "'");
1508 return false;
1512 /// GetVal - Get a value with the specified name or ID, creating a
1513 /// forward reference record if needed. This can return null if the value
1514 /// exists but does not have the right type.
1515 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1516 const Type *Ty, LocTy Loc) {
1517 // Look this name up in the normal function symbol table.
1518 Value *Val = F.getValueSymbolTable().lookup(Name);
1520 // If this is a forward reference for the value, see if we already created a
1521 // forward ref record.
1522 if (Val == 0) {
1523 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1524 I = ForwardRefVals.find(Name);
1525 if (I != ForwardRefVals.end())
1526 Val = I->second.first;
1529 // If we have the value in the symbol table or fwd-ref table, return it.
1530 if (Val) {
1531 if (Val->getType() == Ty) return Val;
1532 if (Ty == Type::LabelTy)
1533 P.Error(Loc, "'%" + Name + "' is not a basic block");
1534 else
1535 P.Error(Loc, "'%" + Name + "' defined with type '" +
1536 Val->getType()->getDescription() + "'");
1537 return 0;
1540 // Don't make placeholders with invalid type.
1541 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1542 P.Error(Loc, "invalid use of a non-first-class type");
1543 return 0;
1546 // Otherwise, create a new forward reference for this value and remember it.
1547 Value *FwdVal;
1548 if (Ty == Type::LabelTy)
1549 FwdVal = BasicBlock::Create(Name, &F);
1550 else
1551 FwdVal = new Argument(Ty, Name);
1553 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1554 return FwdVal;
1557 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1558 LocTy Loc) {
1559 // Look this name up in the normal function symbol table.
1560 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1562 // If this is a forward reference for the value, see if we already created a
1563 // forward ref record.
1564 if (Val == 0) {
1565 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1566 I = ForwardRefValIDs.find(ID);
1567 if (I != ForwardRefValIDs.end())
1568 Val = I->second.first;
1571 // If we have the value in the symbol table or fwd-ref table, return it.
1572 if (Val) {
1573 if (Val->getType() == Ty) return Val;
1574 if (Ty == Type::LabelTy)
1575 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1576 else
1577 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1578 Val->getType()->getDescription() + "'");
1579 return 0;
1582 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1583 P.Error(Loc, "invalid use of a non-first-class type");
1584 return 0;
1587 // Otherwise, create a new forward reference for this value and remember it.
1588 Value *FwdVal;
1589 if (Ty == Type::LabelTy)
1590 FwdVal = BasicBlock::Create("", &F);
1591 else
1592 FwdVal = new Argument(Ty);
1594 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1595 return FwdVal;
1598 /// SetInstName - After an instruction is parsed and inserted into its
1599 /// basic block, this installs its name.
1600 bool LLParser::PerFunctionState::SetInstName(int NameID,
1601 const std::string &NameStr,
1602 LocTy NameLoc, Instruction *Inst) {
1603 // If this instruction has void type, it cannot have a name or ID specified.
1604 if (Inst->getType() == Type::VoidTy) {
1605 if (NameID != -1 || !NameStr.empty())
1606 return P.Error(NameLoc, "instructions returning void cannot have a name");
1607 return false;
1610 // If this was a numbered instruction, verify that the instruction is the
1611 // expected value and resolve any forward references.
1612 if (NameStr.empty()) {
1613 // If neither a name nor an ID was specified, just use the next ID.
1614 if (NameID == -1)
1615 NameID = NumberedVals.size();
1617 if (unsigned(NameID) != NumberedVals.size())
1618 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1619 utostr(NumberedVals.size()) + "'");
1621 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1622 ForwardRefValIDs.find(NameID);
1623 if (FI != ForwardRefValIDs.end()) {
1624 if (FI->second.first->getType() != Inst->getType())
1625 return P.Error(NameLoc, "instruction forward referenced with type '" +
1626 FI->second.first->getType()->getDescription() + "'");
1627 FI->second.first->replaceAllUsesWith(Inst);
1628 ForwardRefValIDs.erase(FI);
1631 NumberedVals.push_back(Inst);
1632 return false;
1635 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1636 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1637 FI = ForwardRefVals.find(NameStr);
1638 if (FI != ForwardRefVals.end()) {
1639 if (FI->second.first->getType() != Inst->getType())
1640 return P.Error(NameLoc, "instruction forward referenced with type '" +
1641 FI->second.first->getType()->getDescription() + "'");
1642 FI->second.first->replaceAllUsesWith(Inst);
1643 ForwardRefVals.erase(FI);
1646 // Set the name on the instruction.
1647 Inst->setName(NameStr);
1649 if (Inst->getNameStr() != NameStr)
1650 return P.Error(NameLoc, "multiple definition of local value named '" +
1651 NameStr + "'");
1652 return false;
1655 /// GetBB - Get a basic block with the specified name or ID, creating a
1656 /// forward reference record if needed.
1657 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1658 LocTy Loc) {
1659 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1662 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1663 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1666 /// DefineBB - Define the specified basic block, which is either named or
1667 /// unnamed. If there is an error, this returns null otherwise it returns
1668 /// the block being defined.
1669 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1670 LocTy Loc) {
1671 BasicBlock *BB;
1672 if (Name.empty())
1673 BB = GetBB(NumberedVals.size(), Loc);
1674 else
1675 BB = GetBB(Name, Loc);
1676 if (BB == 0) return 0; // Already diagnosed error.
1678 // Move the block to the end of the function. Forward ref'd blocks are
1679 // inserted wherever they happen to be referenced.
1680 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1682 // Remove the block from forward ref sets.
1683 if (Name.empty()) {
1684 ForwardRefValIDs.erase(NumberedVals.size());
1685 NumberedVals.push_back(BB);
1686 } else {
1687 // BB forward references are already in the function symbol table.
1688 ForwardRefVals.erase(Name);
1691 return BB;
1694 //===----------------------------------------------------------------------===//
1695 // Constants.
1696 //===----------------------------------------------------------------------===//
1698 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1699 /// type implied. For example, if we parse "4" we don't know what integer type
1700 /// it has. The value will later be combined with its type and checked for
1701 /// sanity.
1702 bool LLParser::ParseValID(ValID &ID) {
1703 ID.Loc = Lex.getLoc();
1704 switch (Lex.getKind()) {
1705 default: return TokError("expected value token");
1706 case lltok::GlobalID: // @42
1707 ID.UIntVal = Lex.getUIntVal();
1708 ID.Kind = ValID::t_GlobalID;
1709 break;
1710 case lltok::GlobalVar: // @foo
1711 ID.StrVal = Lex.getStrVal();
1712 ID.Kind = ValID::t_GlobalName;
1713 break;
1714 case lltok::LocalVarID: // %42
1715 ID.UIntVal = Lex.getUIntVal();
1716 ID.Kind = ValID::t_LocalID;
1717 break;
1718 case lltok::LocalVar: // %foo
1719 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1720 ID.StrVal = Lex.getStrVal();
1721 ID.Kind = ValID::t_LocalName;
1722 break;
1723 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1724 ID.Kind = ValID::t_Metadata;
1725 Lex.Lex();
1726 if (Lex.getKind() == lltok::lbrace) {
1727 SmallVector<Value*, 16> Elts;
1728 if (ParseMDNodeVector(Elts) ||
1729 ParseToken(lltok::rbrace, "expected end of metadata node"))
1730 return true;
1732 ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1733 return false;
1736 // Standalone metadata reference
1737 // !{ ..., !42, ... }
1738 if (!ParseMDNode(ID.MetadataVal))
1739 return false;
1741 // MDString:
1742 // ::= '!' STRINGCONSTANT
1743 if (ParseMDString(ID.MetadataVal)) return true;
1744 ID.Kind = ValID::t_Metadata;
1745 return false;
1747 case lltok::APSInt:
1748 ID.APSIntVal = Lex.getAPSIntVal();
1749 ID.Kind = ValID::t_APSInt;
1750 break;
1751 case lltok::APFloat:
1752 ID.APFloatVal = Lex.getAPFloatVal();
1753 ID.Kind = ValID::t_APFloat;
1754 break;
1755 case lltok::kw_true:
1756 ID.ConstantVal = ConstantInt::getTrue(Context);
1757 ID.Kind = ValID::t_Constant;
1758 break;
1759 case lltok::kw_false:
1760 ID.ConstantVal = ConstantInt::getFalse(Context);
1761 ID.Kind = ValID::t_Constant;
1762 break;
1763 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1764 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1765 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1767 case lltok::lbrace: {
1768 // ValID ::= '{' ConstVector '}'
1769 Lex.Lex();
1770 SmallVector<Constant*, 16> Elts;
1771 if (ParseGlobalValueVector(Elts) ||
1772 ParseToken(lltok::rbrace, "expected end of struct constant"))
1773 return true;
1775 ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1776 ID.Kind = ValID::t_Constant;
1777 return false;
1779 case lltok::less: {
1780 // ValID ::= '<' ConstVector '>' --> Vector.
1781 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1782 Lex.Lex();
1783 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1785 SmallVector<Constant*, 16> Elts;
1786 LocTy FirstEltLoc = Lex.getLoc();
1787 if (ParseGlobalValueVector(Elts) ||
1788 (isPackedStruct &&
1789 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1790 ParseToken(lltok::greater, "expected end of constant"))
1791 return true;
1793 if (isPackedStruct) {
1794 ID.ConstantVal =
1795 ConstantStruct::get(Elts.data(), Elts.size(), true);
1796 ID.Kind = ValID::t_Constant;
1797 return false;
1800 if (Elts.empty())
1801 return Error(ID.Loc, "constant vector must not be empty");
1803 if (!Elts[0]->getType()->isInteger() &&
1804 !Elts[0]->getType()->isFloatingPoint())
1805 return Error(FirstEltLoc,
1806 "vector elements must have integer or floating point type");
1808 // Verify that all the vector elements have the same type.
1809 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1810 if (Elts[i]->getType() != Elts[0]->getType())
1811 return Error(FirstEltLoc,
1812 "vector element #" + utostr(i) +
1813 " is not of type '" + Elts[0]->getType()->getDescription());
1815 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1816 ID.Kind = ValID::t_Constant;
1817 return false;
1819 case lltok::lsquare: { // Array Constant
1820 Lex.Lex();
1821 SmallVector<Constant*, 16> Elts;
1822 LocTy FirstEltLoc = Lex.getLoc();
1823 if (ParseGlobalValueVector(Elts) ||
1824 ParseToken(lltok::rsquare, "expected end of array constant"))
1825 return true;
1827 // Handle empty element.
1828 if (Elts.empty()) {
1829 // Use undef instead of an array because it's inconvenient to determine
1830 // the element type at this point, there being no elements to examine.
1831 ID.Kind = ValID::t_EmptyArray;
1832 return false;
1835 if (!Elts[0]->getType()->isFirstClassType())
1836 return Error(FirstEltLoc, "invalid array element type: " +
1837 Elts[0]->getType()->getDescription());
1839 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1841 // Verify all elements are correct type!
1842 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1843 if (Elts[i]->getType() != Elts[0]->getType())
1844 return Error(FirstEltLoc,
1845 "array element #" + utostr(i) +
1846 " is not of type '" +Elts[0]->getType()->getDescription());
1849 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1850 ID.Kind = ValID::t_Constant;
1851 return false;
1853 case lltok::kw_c: // c "foo"
1854 Lex.Lex();
1855 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1856 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1857 ID.Kind = ValID::t_Constant;
1858 return false;
1860 case lltok::kw_asm: {
1861 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1862 bool HasSideEffect;
1863 Lex.Lex();
1864 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1865 ParseStringConstant(ID.StrVal) ||
1866 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1867 ParseToken(lltok::StringConstant, "expected constraint string"))
1868 return true;
1869 ID.StrVal2 = Lex.getStrVal();
1870 ID.UIntVal = HasSideEffect;
1871 ID.Kind = ValID::t_InlineAsm;
1872 return false;
1875 case lltok::kw_trunc:
1876 case lltok::kw_zext:
1877 case lltok::kw_sext:
1878 case lltok::kw_fptrunc:
1879 case lltok::kw_fpext:
1880 case lltok::kw_bitcast:
1881 case lltok::kw_uitofp:
1882 case lltok::kw_sitofp:
1883 case lltok::kw_fptoui:
1884 case lltok::kw_fptosi:
1885 case lltok::kw_inttoptr:
1886 case lltok::kw_ptrtoint: {
1887 unsigned Opc = Lex.getUIntVal();
1888 PATypeHolder DestTy(Type::VoidTy);
1889 Constant *SrcVal;
1890 Lex.Lex();
1891 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1892 ParseGlobalTypeAndValue(SrcVal) ||
1893 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1894 ParseType(DestTy) ||
1895 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1896 return true;
1897 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1898 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1899 SrcVal->getType()->getDescription() + "' to '" +
1900 DestTy->getDescription() + "'");
1901 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
1902 SrcVal, DestTy);
1903 ID.Kind = ValID::t_Constant;
1904 return false;
1906 case lltok::kw_extractvalue: {
1907 Lex.Lex();
1908 Constant *Val;
1909 SmallVector<unsigned, 4> Indices;
1910 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1911 ParseGlobalTypeAndValue(Val) ||
1912 ParseIndexList(Indices) ||
1913 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1914 return true;
1915 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1916 return Error(ID.Loc, "extractvalue operand must be array or struct");
1917 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1918 Indices.end()))
1919 return Error(ID.Loc, "invalid indices for extractvalue");
1920 ID.ConstantVal =
1921 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
1922 ID.Kind = ValID::t_Constant;
1923 return false;
1925 case lltok::kw_insertvalue: {
1926 Lex.Lex();
1927 Constant *Val0, *Val1;
1928 SmallVector<unsigned, 4> Indices;
1929 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1930 ParseGlobalTypeAndValue(Val0) ||
1931 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1932 ParseGlobalTypeAndValue(Val1) ||
1933 ParseIndexList(Indices) ||
1934 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1935 return true;
1936 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1937 return Error(ID.Loc, "extractvalue operand must be array or struct");
1938 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1939 Indices.end()))
1940 return Error(ID.Loc, "invalid indices for insertvalue");
1941 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1942 Indices.data(), Indices.size());
1943 ID.Kind = ValID::t_Constant;
1944 return false;
1946 case lltok::kw_icmp:
1947 case lltok::kw_fcmp: {
1948 unsigned PredVal, Opc = Lex.getUIntVal();
1949 Constant *Val0, *Val1;
1950 Lex.Lex();
1951 if (ParseCmpPredicate(PredVal, Opc) ||
1952 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1953 ParseGlobalTypeAndValue(Val0) ||
1954 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1955 ParseGlobalTypeAndValue(Val1) ||
1956 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1957 return true;
1959 if (Val0->getType() != Val1->getType())
1960 return Error(ID.Loc, "compare operands must have the same type");
1962 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1964 if (Opc == Instruction::FCmp) {
1965 if (!Val0->getType()->isFPOrFPVector())
1966 return Error(ID.Loc, "fcmp requires floating point operands");
1967 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1968 } else {
1969 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
1970 if (!Val0->getType()->isIntOrIntVector() &&
1971 !isa<PointerType>(Val0->getType()))
1972 return Error(ID.Loc, "icmp requires pointer or integer operands");
1973 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1975 ID.Kind = ValID::t_Constant;
1976 return false;
1979 // Binary Operators.
1980 case lltok::kw_add:
1981 case lltok::kw_fadd:
1982 case lltok::kw_sub:
1983 case lltok::kw_fsub:
1984 case lltok::kw_mul:
1985 case lltok::kw_fmul:
1986 case lltok::kw_udiv:
1987 case lltok::kw_sdiv:
1988 case lltok::kw_fdiv:
1989 case lltok::kw_urem:
1990 case lltok::kw_srem:
1991 case lltok::kw_frem: {
1992 bool NUW = false;
1993 bool NSW = false;
1994 bool Exact = false;
1995 unsigned Opc = Lex.getUIntVal();
1996 Constant *Val0, *Val1;
1997 Lex.Lex();
1998 LocTy ModifierLoc = Lex.getLoc();
1999 if (Opc == Instruction::Add ||
2000 Opc == Instruction::Sub ||
2001 Opc == Instruction::Mul) {
2002 if (EatIfPresent(lltok::kw_nuw))
2003 NUW = true;
2004 if (EatIfPresent(lltok::kw_nsw)) {
2005 NSW = true;
2006 if (EatIfPresent(lltok::kw_nuw))
2007 NUW = true;
2009 } else if (Opc == Instruction::SDiv) {
2010 if (EatIfPresent(lltok::kw_exact))
2011 Exact = true;
2013 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2014 ParseGlobalTypeAndValue(Val0) ||
2015 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2016 ParseGlobalTypeAndValue(Val1) ||
2017 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2018 return true;
2019 if (Val0->getType() != Val1->getType())
2020 return Error(ID.Loc, "operands of constexpr must have same type");
2021 if (!Val0->getType()->isIntOrIntVector()) {
2022 if (NUW)
2023 return Error(ModifierLoc, "nuw only applies to integer operations");
2024 if (NSW)
2025 return Error(ModifierLoc, "nsw only applies to integer operations");
2027 // API compatibility: Accept either integer or floating-point types with
2028 // add, sub, and mul.
2029 if (!Val0->getType()->isIntOrIntVector() &&
2030 !Val0->getType()->isFPOrFPVector())
2031 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2032 Constant *C = ConstantExpr::get(Opc, Val0, Val1);
2033 if (NUW)
2034 cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedOverflow(true);
2035 if (NSW)
2036 cast<OverflowingBinaryOperator>(C)->setHasNoSignedOverflow(true);
2037 if (Exact)
2038 cast<SDivOperator>(C)->setIsExact(true);
2039 ID.ConstantVal = C;
2040 ID.Kind = ValID::t_Constant;
2041 return false;
2044 // Logical Operations
2045 case lltok::kw_shl:
2046 case lltok::kw_lshr:
2047 case lltok::kw_ashr:
2048 case lltok::kw_and:
2049 case lltok::kw_or:
2050 case lltok::kw_xor: {
2051 unsigned Opc = Lex.getUIntVal();
2052 Constant *Val0, *Val1;
2053 Lex.Lex();
2054 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2055 ParseGlobalTypeAndValue(Val0) ||
2056 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2057 ParseGlobalTypeAndValue(Val1) ||
2058 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2059 return true;
2060 if (Val0->getType() != Val1->getType())
2061 return Error(ID.Loc, "operands of constexpr must have same type");
2062 if (!Val0->getType()->isIntOrIntVector())
2063 return Error(ID.Loc,
2064 "constexpr requires integer or integer vector operands");
2065 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2066 ID.Kind = ValID::t_Constant;
2067 return false;
2070 case lltok::kw_getelementptr:
2071 case lltok::kw_shufflevector:
2072 case lltok::kw_insertelement:
2073 case lltok::kw_extractelement:
2074 case lltok::kw_select: {
2075 unsigned Opc = Lex.getUIntVal();
2076 SmallVector<Constant*, 16> Elts;
2077 bool InBounds = false;
2078 Lex.Lex();
2079 if (Opc == Instruction::GetElementPtr)
2080 InBounds = EatIfPresent(lltok::kw_inbounds);
2081 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2082 ParseGlobalValueVector(Elts) ||
2083 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2084 return true;
2086 if (Opc == Instruction::GetElementPtr) {
2087 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2088 return Error(ID.Loc, "getelementptr requires pointer operand");
2090 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2091 (Value**)(Elts.data() + 1),
2092 Elts.size() - 1))
2093 return Error(ID.Loc, "invalid indices for getelementptr");
2094 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
2095 Elts.data() + 1, Elts.size() - 1);
2096 if (InBounds)
2097 cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true);
2098 } else if (Opc == Instruction::Select) {
2099 if (Elts.size() != 3)
2100 return Error(ID.Loc, "expected three operands to select");
2101 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2102 Elts[2]))
2103 return Error(ID.Loc, Reason);
2104 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2105 } else if (Opc == Instruction::ShuffleVector) {
2106 if (Elts.size() != 3)
2107 return Error(ID.Loc, "expected three operands to shufflevector");
2108 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2109 return Error(ID.Loc, "invalid operands to shufflevector");
2110 ID.ConstantVal =
2111 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2112 } else if (Opc == Instruction::ExtractElement) {
2113 if (Elts.size() != 2)
2114 return Error(ID.Loc, "expected two operands to extractelement");
2115 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2116 return Error(ID.Loc, "invalid extractelement operands");
2117 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2118 } else {
2119 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2120 if (Elts.size() != 3)
2121 return Error(ID.Loc, "expected three operands to insertelement");
2122 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2123 return Error(ID.Loc, "invalid insertelement operands");
2124 ID.ConstantVal =
2125 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2128 ID.Kind = ValID::t_Constant;
2129 return false;
2133 Lex.Lex();
2134 return false;
2137 /// ParseGlobalValue - Parse a global value with the specified type.
2138 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2139 V = 0;
2140 ValID ID;
2141 return ParseValID(ID) ||
2142 ConvertGlobalValIDToValue(Ty, ID, V);
2145 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2146 /// constant.
2147 bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2148 Constant *&V) {
2149 if (isa<FunctionType>(Ty))
2150 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2152 switch (ID.Kind) {
2153 default: llvm_unreachable("Unknown ValID!");
2154 case ValID::t_Metadata:
2155 return Error(ID.Loc, "invalid use of metadata");
2156 case ValID::t_LocalID:
2157 case ValID::t_LocalName:
2158 return Error(ID.Loc, "invalid use of function-local name");
2159 case ValID::t_InlineAsm:
2160 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2161 case ValID::t_GlobalName:
2162 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2163 return V == 0;
2164 case ValID::t_GlobalID:
2165 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2166 return V == 0;
2167 case ValID::t_APSInt:
2168 if (!isa<IntegerType>(Ty))
2169 return Error(ID.Loc, "integer constant must have integer type");
2170 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2171 V = ConstantInt::get(Context, ID.APSIntVal);
2172 return false;
2173 case ValID::t_APFloat:
2174 if (!Ty->isFloatingPoint() ||
2175 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2176 return Error(ID.Loc, "floating point constant invalid for type");
2178 // The lexer has no type info, so builds all float and double FP constants
2179 // as double. Fix this here. Long double does not need this.
2180 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2181 Ty == Type::FloatTy) {
2182 bool Ignored;
2183 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2184 &Ignored);
2186 V = ConstantFP::get(Context, ID.APFloatVal);
2188 if (V->getType() != Ty)
2189 return Error(ID.Loc, "floating point constant does not have type '" +
2190 Ty->getDescription() + "'");
2192 return false;
2193 case ValID::t_Null:
2194 if (!isa<PointerType>(Ty))
2195 return Error(ID.Loc, "null must be a pointer type");
2196 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2197 return false;
2198 case ValID::t_Undef:
2199 // FIXME: LabelTy should not be a first-class type.
2200 if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2201 !isa<OpaqueType>(Ty))
2202 return Error(ID.Loc, "invalid type for undef constant");
2203 V = UndefValue::get(Ty);
2204 return false;
2205 case ValID::t_EmptyArray:
2206 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2207 return Error(ID.Loc, "invalid empty array initializer");
2208 V = UndefValue::get(Ty);
2209 return false;
2210 case ValID::t_Zero:
2211 // FIXME: LabelTy should not be a first-class type.
2212 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2213 return Error(ID.Loc, "invalid type for null constant");
2214 V = Constant::getNullValue(Ty);
2215 return false;
2216 case ValID::t_Constant:
2217 if (ID.ConstantVal->getType() != Ty)
2218 return Error(ID.Loc, "constant expression type mismatch");
2219 V = ID.ConstantVal;
2220 return false;
2224 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2225 PATypeHolder Type(Type::VoidTy);
2226 return ParseType(Type) ||
2227 ParseGlobalValue(Type, V);
2230 /// ParseGlobalValueVector
2231 /// ::= /*empty*/
2232 /// ::= TypeAndValue (',' TypeAndValue)*
2233 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2234 // Empty list.
2235 if (Lex.getKind() == lltok::rbrace ||
2236 Lex.getKind() == lltok::rsquare ||
2237 Lex.getKind() == lltok::greater ||
2238 Lex.getKind() == lltok::rparen)
2239 return false;
2241 Constant *C;
2242 if (ParseGlobalTypeAndValue(C)) return true;
2243 Elts.push_back(C);
2245 while (EatIfPresent(lltok::comma)) {
2246 if (ParseGlobalTypeAndValue(C)) return true;
2247 Elts.push_back(C);
2250 return false;
2254 //===----------------------------------------------------------------------===//
2255 // Function Parsing.
2256 //===----------------------------------------------------------------------===//
2258 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2259 PerFunctionState &PFS) {
2260 if (ID.Kind == ValID::t_LocalID)
2261 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2262 else if (ID.Kind == ValID::t_LocalName)
2263 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2264 else if (ID.Kind == ValID::t_InlineAsm) {
2265 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2266 const FunctionType *FTy =
2267 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2268 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2269 return Error(ID.Loc, "invalid type for inline asm constraint string");
2270 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2271 return false;
2272 } else if (ID.Kind == ValID::t_Metadata) {
2273 V = ID.MetadataVal;
2274 } else {
2275 Constant *C;
2276 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2277 V = C;
2278 return false;
2281 return V == 0;
2284 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2285 V = 0;
2286 ValID ID;
2287 return ParseValID(ID) ||
2288 ConvertValIDToValue(Ty, ID, V, PFS);
2291 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2292 PATypeHolder T(Type::VoidTy);
2293 return ParseType(T) ||
2294 ParseValue(T, V, PFS);
2297 /// FunctionHeader
2298 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2299 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2300 /// OptionalAlign OptGC
2301 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2302 // Parse the linkage.
2303 LocTy LinkageLoc = Lex.getLoc();
2304 unsigned Linkage;
2306 unsigned Visibility, CC, RetAttrs;
2307 PATypeHolder RetType(Type::VoidTy);
2308 LocTy RetTypeLoc = Lex.getLoc();
2309 if (ParseOptionalLinkage(Linkage) ||
2310 ParseOptionalVisibility(Visibility) ||
2311 ParseOptionalCallingConv(CC) ||
2312 ParseOptionalAttrs(RetAttrs, 1) ||
2313 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2314 return true;
2316 // Verify that the linkage is ok.
2317 switch ((GlobalValue::LinkageTypes)Linkage) {
2318 case GlobalValue::ExternalLinkage:
2319 break; // always ok.
2320 case GlobalValue::DLLImportLinkage:
2321 case GlobalValue::ExternalWeakLinkage:
2322 if (isDefine)
2323 return Error(LinkageLoc, "invalid linkage for function definition");
2324 break;
2325 case GlobalValue::PrivateLinkage:
2326 case GlobalValue::LinkerPrivateLinkage:
2327 case GlobalValue::InternalLinkage:
2328 case GlobalValue::AvailableExternallyLinkage:
2329 case GlobalValue::LinkOnceAnyLinkage:
2330 case GlobalValue::LinkOnceODRLinkage:
2331 case GlobalValue::WeakAnyLinkage:
2332 case GlobalValue::WeakODRLinkage:
2333 case GlobalValue::DLLExportLinkage:
2334 if (!isDefine)
2335 return Error(LinkageLoc, "invalid linkage for function declaration");
2336 break;
2337 case GlobalValue::AppendingLinkage:
2338 case GlobalValue::GhostLinkage:
2339 case GlobalValue::CommonLinkage:
2340 return Error(LinkageLoc, "invalid function linkage type");
2343 if (!FunctionType::isValidReturnType(RetType) ||
2344 isa<OpaqueType>(RetType))
2345 return Error(RetTypeLoc, "invalid function return type");
2347 LocTy NameLoc = Lex.getLoc();
2349 std::string FunctionName;
2350 if (Lex.getKind() == lltok::GlobalVar) {
2351 FunctionName = Lex.getStrVal();
2352 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2353 unsigned NameID = Lex.getUIntVal();
2355 if (NameID != NumberedVals.size())
2356 return TokError("function expected to be numbered '%" +
2357 utostr(NumberedVals.size()) + "'");
2358 } else {
2359 return TokError("expected function name");
2362 Lex.Lex();
2364 if (Lex.getKind() != lltok::lparen)
2365 return TokError("expected '(' in function argument list");
2367 std::vector<ArgInfo> ArgList;
2368 bool isVarArg;
2369 unsigned FuncAttrs;
2370 std::string Section;
2371 unsigned Alignment;
2372 std::string GC;
2374 if (ParseArgumentList(ArgList, isVarArg, false) ||
2375 ParseOptionalAttrs(FuncAttrs, 2) ||
2376 (EatIfPresent(lltok::kw_section) &&
2377 ParseStringConstant(Section)) ||
2378 ParseOptionalAlignment(Alignment) ||
2379 (EatIfPresent(lltok::kw_gc) &&
2380 ParseStringConstant(GC)))
2381 return true;
2383 // If the alignment was parsed as an attribute, move to the alignment field.
2384 if (FuncAttrs & Attribute::Alignment) {
2385 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2386 FuncAttrs &= ~Attribute::Alignment;
2389 // Okay, if we got here, the function is syntactically valid. Convert types
2390 // and do semantic checks.
2391 std::vector<const Type*> ParamTypeList;
2392 SmallVector<AttributeWithIndex, 8> Attrs;
2393 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2394 // attributes.
2395 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2396 if (FuncAttrs & ObsoleteFuncAttrs) {
2397 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2398 FuncAttrs &= ~ObsoleteFuncAttrs;
2401 if (RetAttrs != Attribute::None)
2402 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2404 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2405 ParamTypeList.push_back(ArgList[i].Type);
2406 if (ArgList[i].Attrs != Attribute::None)
2407 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2410 if (FuncAttrs != Attribute::None)
2411 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2413 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2415 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2416 RetType != Type::VoidTy)
2417 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2419 const FunctionType *FT =
2420 FunctionType::get(RetType, ParamTypeList, isVarArg);
2421 const PointerType *PFT = PointerType::getUnqual(FT);
2423 Fn = 0;
2424 if (!FunctionName.empty()) {
2425 // If this was a definition of a forward reference, remove the definition
2426 // from the forward reference table and fill in the forward ref.
2427 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2428 ForwardRefVals.find(FunctionName);
2429 if (FRVI != ForwardRefVals.end()) {
2430 Fn = M->getFunction(FunctionName);
2431 ForwardRefVals.erase(FRVI);
2432 } else if ((Fn = M->getFunction(FunctionName))) {
2433 // If this function already exists in the symbol table, then it is
2434 // multiply defined. We accept a few cases for old backwards compat.
2435 // FIXME: Remove this stuff for LLVM 3.0.
2436 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2437 (!Fn->isDeclaration() && isDefine)) {
2438 // If the redefinition has different type or different attributes,
2439 // reject it. If both have bodies, reject it.
2440 return Error(NameLoc, "invalid redefinition of function '" +
2441 FunctionName + "'");
2442 } else if (Fn->isDeclaration()) {
2443 // Make sure to strip off any argument names so we can't get conflicts.
2444 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2445 AI != AE; ++AI)
2446 AI->setName("");
2450 } else if (FunctionName.empty()) {
2451 // If this is a definition of a forward referenced function, make sure the
2452 // types agree.
2453 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2454 = ForwardRefValIDs.find(NumberedVals.size());
2455 if (I != ForwardRefValIDs.end()) {
2456 Fn = cast<Function>(I->second.first);
2457 if (Fn->getType() != PFT)
2458 return Error(NameLoc, "type of definition and forward reference of '@" +
2459 utostr(NumberedVals.size()) +"' disagree");
2460 ForwardRefValIDs.erase(I);
2464 if (Fn == 0)
2465 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2466 else // Move the forward-reference to the correct spot in the module.
2467 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2469 if (FunctionName.empty())
2470 NumberedVals.push_back(Fn);
2472 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2473 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2474 Fn->setCallingConv(CC);
2475 Fn->setAttributes(PAL);
2476 Fn->setAlignment(Alignment);
2477 Fn->setSection(Section);
2478 if (!GC.empty()) Fn->setGC(GC.c_str());
2480 // Add all of the arguments we parsed to the function.
2481 Function::arg_iterator ArgIt = Fn->arg_begin();
2482 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2483 // If the argument has a name, insert it into the argument symbol table.
2484 if (ArgList[i].Name.empty()) continue;
2486 // Set the name, if it conflicted, it will be auto-renamed.
2487 ArgIt->setName(ArgList[i].Name);
2489 if (ArgIt->getNameStr() != ArgList[i].Name)
2490 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2491 ArgList[i].Name + "'");
2494 return false;
2498 /// ParseFunctionBody
2499 /// ::= '{' BasicBlock+ '}'
2500 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2502 bool LLParser::ParseFunctionBody(Function &Fn) {
2503 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2504 return TokError("expected '{' in function body");
2505 Lex.Lex(); // eat the {.
2507 PerFunctionState PFS(*this, Fn);
2509 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2510 if (ParseBasicBlock(PFS)) return true;
2512 // Eat the }.
2513 Lex.Lex();
2515 // Verify function is ok.
2516 return PFS.VerifyFunctionComplete();
2519 /// ParseBasicBlock
2520 /// ::= LabelStr? Instruction*
2521 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2522 // If this basic block starts out with a name, remember it.
2523 std::string Name;
2524 LocTy NameLoc = Lex.getLoc();
2525 if (Lex.getKind() == lltok::LabelStr) {
2526 Name = Lex.getStrVal();
2527 Lex.Lex();
2530 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2531 if (BB == 0) return true;
2533 std::string NameStr;
2535 // Parse the instructions in this block until we get a terminator.
2536 Instruction *Inst;
2537 do {
2538 // This instruction may have three possibilities for a name: a) none
2539 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2540 LocTy NameLoc = Lex.getLoc();
2541 int NameID = -1;
2542 NameStr = "";
2544 if (Lex.getKind() == lltok::LocalVarID) {
2545 NameID = Lex.getUIntVal();
2546 Lex.Lex();
2547 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2548 return true;
2549 } else if (Lex.getKind() == lltok::LocalVar ||
2550 // FIXME: REMOVE IN LLVM 3.0
2551 Lex.getKind() == lltok::StringConstant) {
2552 NameStr = Lex.getStrVal();
2553 Lex.Lex();
2554 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2555 return true;
2558 if (ParseInstruction(Inst, BB, PFS)) return true;
2560 BB->getInstList().push_back(Inst);
2562 // Set the name on the instruction.
2563 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2564 } while (!isa<TerminatorInst>(Inst));
2566 return false;
2569 //===----------------------------------------------------------------------===//
2570 // Instruction Parsing.
2571 //===----------------------------------------------------------------------===//
2573 /// ParseInstruction - Parse one of the many different instructions.
2575 bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2576 PerFunctionState &PFS) {
2577 lltok::Kind Token = Lex.getKind();
2578 if (Token == lltok::Eof)
2579 return TokError("found end of file when expecting more instructions");
2580 LocTy Loc = Lex.getLoc();
2581 unsigned KeywordVal = Lex.getUIntVal();
2582 Lex.Lex(); // Eat the keyword.
2584 switch (Token) {
2585 default: return Error(Loc, "expected instruction opcode");
2586 // Terminator Instructions.
2587 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2588 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2589 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2590 case lltok::kw_br: return ParseBr(Inst, PFS);
2591 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2592 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2593 // Binary Operators.
2594 case lltok::kw_add:
2595 case lltok::kw_sub:
2596 case lltok::kw_mul: {
2597 bool NUW = false;
2598 bool NSW = false;
2599 LocTy ModifierLoc = Lex.getLoc();
2600 if (EatIfPresent(lltok::kw_nuw))
2601 NUW = true;
2602 if (EatIfPresent(lltok::kw_nsw)) {
2603 NSW = true;
2604 if (EatIfPresent(lltok::kw_nuw))
2605 NUW = true;
2607 // API compatibility: Accept either integer or floating-point types.
2608 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2609 if (!Result) {
2610 if (!Inst->getType()->isIntOrIntVector()) {
2611 if (NUW)
2612 return Error(ModifierLoc, "nuw only applies to integer operations");
2613 if (NSW)
2614 return Error(ModifierLoc, "nsw only applies to integer operations");
2616 if (NUW)
2617 cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedOverflow(true);
2618 if (NSW)
2619 cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedOverflow(true);
2621 return Result;
2623 case lltok::kw_fadd:
2624 case lltok::kw_fsub:
2625 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2627 case lltok::kw_sdiv: {
2628 bool Exact = false;
2629 if (EatIfPresent(lltok::kw_exact))
2630 Exact = true;
2631 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2632 if (!Result)
2633 if (Exact)
2634 cast<SDivOperator>(Inst)->setIsExact(true);
2635 return Result;
2638 case lltok::kw_udiv:
2639 case lltok::kw_urem:
2640 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2641 case lltok::kw_fdiv:
2642 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2643 case lltok::kw_shl:
2644 case lltok::kw_lshr:
2645 case lltok::kw_ashr:
2646 case lltok::kw_and:
2647 case lltok::kw_or:
2648 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2649 case lltok::kw_icmp:
2650 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
2651 // Casts.
2652 case lltok::kw_trunc:
2653 case lltok::kw_zext:
2654 case lltok::kw_sext:
2655 case lltok::kw_fptrunc:
2656 case lltok::kw_fpext:
2657 case lltok::kw_bitcast:
2658 case lltok::kw_uitofp:
2659 case lltok::kw_sitofp:
2660 case lltok::kw_fptoui:
2661 case lltok::kw_fptosi:
2662 case lltok::kw_inttoptr:
2663 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2664 // Other.
2665 case lltok::kw_select: return ParseSelect(Inst, PFS);
2666 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2667 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2668 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2669 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2670 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2671 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2672 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2673 // Memory.
2674 case lltok::kw_alloca:
2675 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2676 case lltok::kw_free: return ParseFree(Inst, PFS);
2677 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2678 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2679 case lltok::kw_volatile:
2680 if (EatIfPresent(lltok::kw_load))
2681 return ParseLoad(Inst, PFS, true);
2682 else if (EatIfPresent(lltok::kw_store))
2683 return ParseStore(Inst, PFS, true);
2684 else
2685 return TokError("expected 'load' or 'store'");
2686 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2687 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2688 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2689 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2693 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2694 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2695 if (Opc == Instruction::FCmp) {
2696 switch (Lex.getKind()) {
2697 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2698 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2699 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2700 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2701 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2702 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2703 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2704 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2705 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2706 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2707 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2708 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2709 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2710 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2711 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2712 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2713 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2715 } else {
2716 switch (Lex.getKind()) {
2717 default: TokError("expected icmp predicate (e.g. 'eq')");
2718 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2719 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2720 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2721 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2722 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2723 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2724 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2725 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2726 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2727 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2730 Lex.Lex();
2731 return false;
2734 //===----------------------------------------------------------------------===//
2735 // Terminator Instructions.
2736 //===----------------------------------------------------------------------===//
2738 /// ParseRet - Parse a return instruction.
2739 /// ::= 'ret' void
2740 /// ::= 'ret' TypeAndValue
2741 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2742 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2743 PerFunctionState &PFS) {
2744 PATypeHolder Ty(Type::VoidTy);
2745 if (ParseType(Ty, true /*void allowed*/)) return true;
2747 if (Ty == Type::VoidTy) {
2748 Inst = ReturnInst::Create();
2749 return false;
2752 Value *RV;
2753 if (ParseValue(Ty, RV, PFS)) return true;
2755 // The normal case is one return value.
2756 if (Lex.getKind() == lltok::comma) {
2757 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2758 // of 'ret {i32,i32} {i32 1, i32 2}'
2759 SmallVector<Value*, 8> RVs;
2760 RVs.push_back(RV);
2762 while (EatIfPresent(lltok::comma)) {
2763 if (ParseTypeAndValue(RV, PFS)) return true;
2764 RVs.push_back(RV);
2767 RV = UndefValue::get(PFS.getFunction().getReturnType());
2768 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2769 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2770 BB->getInstList().push_back(I);
2771 RV = I;
2774 Inst = ReturnInst::Create(RV);
2775 return false;
2779 /// ParseBr
2780 /// ::= 'br' TypeAndValue
2781 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2782 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2783 LocTy Loc, Loc2;
2784 Value *Op0, *Op1, *Op2;
2785 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2787 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2788 Inst = BranchInst::Create(BB);
2789 return false;
2792 if (Op0->getType() != Type::Int1Ty)
2793 return Error(Loc, "branch condition must have 'i1' type");
2795 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2796 ParseTypeAndValue(Op1, Loc, PFS) ||
2797 ParseToken(lltok::comma, "expected ',' after true destination") ||
2798 ParseTypeAndValue(Op2, Loc2, PFS))
2799 return true;
2801 if (!isa<BasicBlock>(Op1))
2802 return Error(Loc, "true destination of branch must be a basic block");
2803 if (!isa<BasicBlock>(Op2))
2804 return Error(Loc2, "true destination of branch must be a basic block");
2806 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2807 return false;
2810 /// ParseSwitch
2811 /// Instruction
2812 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2813 /// JumpTable
2814 /// ::= (TypeAndValue ',' TypeAndValue)*
2815 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2816 LocTy CondLoc, BBLoc;
2817 Value *Cond, *DefaultBB;
2818 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2819 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2820 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2821 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2822 return true;
2824 if (!isa<IntegerType>(Cond->getType()))
2825 return Error(CondLoc, "switch condition must have integer type");
2826 if (!isa<BasicBlock>(DefaultBB))
2827 return Error(BBLoc, "default destination must be a basic block");
2829 // Parse the jump table pairs.
2830 SmallPtrSet<Value*, 32> SeenCases;
2831 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2832 while (Lex.getKind() != lltok::rsquare) {
2833 Value *Constant, *DestBB;
2835 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2836 ParseToken(lltok::comma, "expected ',' after case value") ||
2837 ParseTypeAndValue(DestBB, BBLoc, PFS))
2838 return true;
2840 if (!SeenCases.insert(Constant))
2841 return Error(CondLoc, "duplicate case value in switch");
2842 if (!isa<ConstantInt>(Constant))
2843 return Error(CondLoc, "case value is not a constant integer");
2844 if (!isa<BasicBlock>(DestBB))
2845 return Error(BBLoc, "case destination is not a basic block");
2847 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2848 cast<BasicBlock>(DestBB)));
2851 Lex.Lex(); // Eat the ']'.
2853 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2854 Table.size());
2855 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2856 SI->addCase(Table[i].first, Table[i].second);
2857 Inst = SI;
2858 return false;
2861 /// ParseInvoke
2862 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2863 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2864 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2865 LocTy CallLoc = Lex.getLoc();
2866 unsigned CC, RetAttrs, FnAttrs;
2867 PATypeHolder RetType(Type::VoidTy);
2868 LocTy RetTypeLoc;
2869 ValID CalleeID;
2870 SmallVector<ParamInfo, 16> ArgList;
2872 Value *NormalBB, *UnwindBB;
2873 if (ParseOptionalCallingConv(CC) ||
2874 ParseOptionalAttrs(RetAttrs, 1) ||
2875 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2876 ParseValID(CalleeID) ||
2877 ParseParameterList(ArgList, PFS) ||
2878 ParseOptionalAttrs(FnAttrs, 2) ||
2879 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2880 ParseTypeAndValue(NormalBB, PFS) ||
2881 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2882 ParseTypeAndValue(UnwindBB, PFS))
2883 return true;
2885 if (!isa<BasicBlock>(NormalBB))
2886 return Error(CallLoc, "normal destination is not a basic block");
2887 if (!isa<BasicBlock>(UnwindBB))
2888 return Error(CallLoc, "unwind destination is not a basic block");
2890 // If RetType is a non-function pointer type, then this is the short syntax
2891 // for the call, which means that RetType is just the return type. Infer the
2892 // rest of the function argument types from the arguments that are present.
2893 const PointerType *PFTy = 0;
2894 const FunctionType *Ty = 0;
2895 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2896 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2897 // Pull out the types of all of the arguments...
2898 std::vector<const Type*> ParamTypes;
2899 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2900 ParamTypes.push_back(ArgList[i].V->getType());
2902 if (!FunctionType::isValidReturnType(RetType))
2903 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2905 Ty = FunctionType::get(RetType, ParamTypes, false);
2906 PFTy = PointerType::getUnqual(Ty);
2909 // Look up the callee.
2910 Value *Callee;
2911 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2913 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2914 // function attributes.
2915 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2916 if (FnAttrs & ObsoleteFuncAttrs) {
2917 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2918 FnAttrs &= ~ObsoleteFuncAttrs;
2921 // Set up the Attributes for the function.
2922 SmallVector<AttributeWithIndex, 8> Attrs;
2923 if (RetAttrs != Attribute::None)
2924 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2926 SmallVector<Value*, 8> Args;
2928 // Loop through FunctionType's arguments and ensure they are specified
2929 // correctly. Also, gather any parameter attributes.
2930 FunctionType::param_iterator I = Ty->param_begin();
2931 FunctionType::param_iterator E = Ty->param_end();
2932 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2933 const Type *ExpectedTy = 0;
2934 if (I != E) {
2935 ExpectedTy = *I++;
2936 } else if (!Ty->isVarArg()) {
2937 return Error(ArgList[i].Loc, "too many arguments specified");
2940 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2941 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2942 ExpectedTy->getDescription() + "'");
2943 Args.push_back(ArgList[i].V);
2944 if (ArgList[i].Attrs != Attribute::None)
2945 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2948 if (I != E)
2949 return Error(CallLoc, "not enough parameters specified for call");
2951 if (FnAttrs != Attribute::None)
2952 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2954 // Finish off the Attributes and check them
2955 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2957 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2958 cast<BasicBlock>(UnwindBB),
2959 Args.begin(), Args.end());
2960 II->setCallingConv(CC);
2961 II->setAttributes(PAL);
2962 Inst = II;
2963 return false;
2968 //===----------------------------------------------------------------------===//
2969 // Binary Operators.
2970 //===----------------------------------------------------------------------===//
2972 /// ParseArithmetic
2973 /// ::= ArithmeticOps TypeAndValue ',' Value
2975 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2976 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2977 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2978 unsigned Opc, unsigned OperandType) {
2979 LocTy Loc; Value *LHS, *RHS;
2980 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2981 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2982 ParseValue(LHS->getType(), RHS, PFS))
2983 return true;
2985 bool Valid;
2986 switch (OperandType) {
2987 default: llvm_unreachable("Unknown operand type!");
2988 case 0: // int or FP.
2989 Valid = LHS->getType()->isIntOrIntVector() ||
2990 LHS->getType()->isFPOrFPVector();
2991 break;
2992 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2993 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2996 if (!Valid)
2997 return Error(Loc, "invalid operand type for instruction");
2999 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3000 return false;
3003 /// ParseLogical
3004 /// ::= ArithmeticOps TypeAndValue ',' Value {
3005 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3006 unsigned Opc) {
3007 LocTy Loc; Value *LHS, *RHS;
3008 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3009 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3010 ParseValue(LHS->getType(), RHS, PFS))
3011 return true;
3013 if (!LHS->getType()->isIntOrIntVector())
3014 return Error(Loc,"instruction requires integer or integer vector operands");
3016 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3017 return false;
3021 /// ParseCompare
3022 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3023 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3024 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3025 unsigned Opc) {
3026 // Parse the integer/fp comparison predicate.
3027 LocTy Loc;
3028 unsigned Pred;
3029 Value *LHS, *RHS;
3030 if (ParseCmpPredicate(Pred, Opc) ||
3031 ParseTypeAndValue(LHS, Loc, PFS) ||
3032 ParseToken(lltok::comma, "expected ',' after compare value") ||
3033 ParseValue(LHS->getType(), RHS, PFS))
3034 return true;
3036 if (Opc == Instruction::FCmp) {
3037 if (!LHS->getType()->isFPOrFPVector())
3038 return Error(Loc, "fcmp requires floating point operands");
3039 Inst = new FCmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3040 } else {
3041 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3042 if (!LHS->getType()->isIntOrIntVector() &&
3043 !isa<PointerType>(LHS->getType()))
3044 return Error(Loc, "icmp requires integer operands");
3045 Inst = new ICmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3047 return false;
3050 //===----------------------------------------------------------------------===//
3051 // Other Instructions.
3052 //===----------------------------------------------------------------------===//
3055 /// ParseCast
3056 /// ::= CastOpc TypeAndValue 'to' Type
3057 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3058 unsigned Opc) {
3059 LocTy Loc; Value *Op;
3060 PATypeHolder DestTy(Type::VoidTy);
3061 if (ParseTypeAndValue(Op, Loc, PFS) ||
3062 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3063 ParseType(DestTy))
3064 return true;
3066 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3067 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3068 return Error(Loc, "invalid cast opcode for cast from '" +
3069 Op->getType()->getDescription() + "' to '" +
3070 DestTy->getDescription() + "'");
3072 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3073 return false;
3076 /// ParseSelect
3077 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3078 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3079 LocTy Loc;
3080 Value *Op0, *Op1, *Op2;
3081 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3082 ParseToken(lltok::comma, "expected ',' after select condition") ||
3083 ParseTypeAndValue(Op1, PFS) ||
3084 ParseToken(lltok::comma, "expected ',' after select value") ||
3085 ParseTypeAndValue(Op2, PFS))
3086 return true;
3088 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3089 return Error(Loc, Reason);
3091 Inst = SelectInst::Create(Op0, Op1, Op2);
3092 return false;
3095 /// ParseVA_Arg
3096 /// ::= 'va_arg' TypeAndValue ',' Type
3097 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3098 Value *Op;
3099 PATypeHolder EltTy(Type::VoidTy);
3100 LocTy TypeLoc;
3101 if (ParseTypeAndValue(Op, PFS) ||
3102 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3103 ParseType(EltTy, TypeLoc))
3104 return true;
3106 if (!EltTy->isFirstClassType())
3107 return Error(TypeLoc, "va_arg requires operand with first class type");
3109 Inst = new VAArgInst(Op, EltTy);
3110 return false;
3113 /// ParseExtractElement
3114 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3115 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3116 LocTy Loc;
3117 Value *Op0, *Op1;
3118 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3119 ParseToken(lltok::comma, "expected ',' after extract value") ||
3120 ParseTypeAndValue(Op1, PFS))
3121 return true;
3123 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3124 return Error(Loc, "invalid extractelement operands");
3126 Inst = ExtractElementInst::Create(Op0, Op1);
3127 return false;
3130 /// ParseInsertElement
3131 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3132 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3133 LocTy Loc;
3134 Value *Op0, *Op1, *Op2;
3135 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3136 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3137 ParseTypeAndValue(Op1, PFS) ||
3138 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3139 ParseTypeAndValue(Op2, PFS))
3140 return true;
3142 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3143 return Error(Loc, "invalid insertelement operands");
3145 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3146 return false;
3149 /// ParseShuffleVector
3150 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3151 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3152 LocTy Loc;
3153 Value *Op0, *Op1, *Op2;
3154 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3155 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3156 ParseTypeAndValue(Op1, PFS) ||
3157 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3158 ParseTypeAndValue(Op2, PFS))
3159 return true;
3161 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3162 return Error(Loc, "invalid extractelement operands");
3164 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3165 return false;
3168 /// ParsePHI
3169 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3170 bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3171 PATypeHolder Ty(Type::VoidTy);
3172 Value *Op0, *Op1;
3173 LocTy TypeLoc = Lex.getLoc();
3175 if (ParseType(Ty) ||
3176 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3177 ParseValue(Ty, Op0, PFS) ||
3178 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3179 ParseValue(Type::LabelTy, Op1, PFS) ||
3180 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3181 return true;
3183 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3184 while (1) {
3185 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3187 if (!EatIfPresent(lltok::comma))
3188 break;
3190 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3191 ParseValue(Ty, Op0, PFS) ||
3192 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3193 ParseValue(Type::LabelTy, Op1, PFS) ||
3194 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3195 return true;
3198 if (!Ty->isFirstClassType())
3199 return Error(TypeLoc, "phi node must have first class type");
3201 PHINode *PN = PHINode::Create(Ty);
3202 PN->reserveOperandSpace(PHIVals.size());
3203 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3204 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3205 Inst = PN;
3206 return false;
3209 /// ParseCall
3210 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3211 /// ParameterList OptionalAttrs
3212 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3213 bool isTail) {
3214 unsigned CC, RetAttrs, FnAttrs;
3215 PATypeHolder RetType(Type::VoidTy);
3216 LocTy RetTypeLoc;
3217 ValID CalleeID;
3218 SmallVector<ParamInfo, 16> ArgList;
3219 LocTy CallLoc = Lex.getLoc();
3221 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3222 ParseOptionalCallingConv(CC) ||
3223 ParseOptionalAttrs(RetAttrs, 1) ||
3224 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3225 ParseValID(CalleeID) ||
3226 ParseParameterList(ArgList, PFS) ||
3227 ParseOptionalAttrs(FnAttrs, 2))
3228 return true;
3230 // If RetType is a non-function pointer type, then this is the short syntax
3231 // for the call, which means that RetType is just the return type. Infer the
3232 // rest of the function argument types from the arguments that are present.
3233 const PointerType *PFTy = 0;
3234 const FunctionType *Ty = 0;
3235 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3236 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3237 // Pull out the types of all of the arguments...
3238 std::vector<const Type*> ParamTypes;
3239 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3240 ParamTypes.push_back(ArgList[i].V->getType());
3242 if (!FunctionType::isValidReturnType(RetType))
3243 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3245 Ty = FunctionType::get(RetType, ParamTypes, false);
3246 PFTy = PointerType::getUnqual(Ty);
3249 // Look up the callee.
3250 Value *Callee;
3251 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3253 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3254 // function attributes.
3255 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3256 if (FnAttrs & ObsoleteFuncAttrs) {
3257 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3258 FnAttrs &= ~ObsoleteFuncAttrs;
3261 // Set up the Attributes for the function.
3262 SmallVector<AttributeWithIndex, 8> Attrs;
3263 if (RetAttrs != Attribute::None)
3264 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3266 SmallVector<Value*, 8> Args;
3268 // Loop through FunctionType's arguments and ensure they are specified
3269 // correctly. Also, gather any parameter attributes.
3270 FunctionType::param_iterator I = Ty->param_begin();
3271 FunctionType::param_iterator E = Ty->param_end();
3272 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3273 const Type *ExpectedTy = 0;
3274 if (I != E) {
3275 ExpectedTy = *I++;
3276 } else if (!Ty->isVarArg()) {
3277 return Error(ArgList[i].Loc, "too many arguments specified");
3280 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3281 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3282 ExpectedTy->getDescription() + "'");
3283 Args.push_back(ArgList[i].V);
3284 if (ArgList[i].Attrs != Attribute::None)
3285 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3288 if (I != E)
3289 return Error(CallLoc, "not enough parameters specified for call");
3291 if (FnAttrs != Attribute::None)
3292 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3294 // Finish off the Attributes and check them
3295 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3297 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3298 CI->setTailCall(isTail);
3299 CI->setCallingConv(CC);
3300 CI->setAttributes(PAL);
3301 Inst = CI;
3302 return false;
3305 //===----------------------------------------------------------------------===//
3306 // Memory Instructions.
3307 //===----------------------------------------------------------------------===//
3309 /// ParseAlloc
3310 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3311 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3312 bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3313 unsigned Opc) {
3314 PATypeHolder Ty(Type::VoidTy);
3315 Value *Size = 0;
3316 LocTy SizeLoc;
3317 unsigned Alignment = 0;
3318 if (ParseType(Ty)) return true;
3320 if (EatIfPresent(lltok::comma)) {
3321 if (Lex.getKind() == lltok::kw_align) {
3322 if (ParseOptionalAlignment(Alignment)) return true;
3323 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3324 ParseOptionalCommaAlignment(Alignment)) {
3325 return true;
3329 if (Size && Size->getType() != Type::Int32Ty)
3330 return Error(SizeLoc, "element count must be i32");
3332 if (Opc == Instruction::Malloc)
3333 Inst = new MallocInst(Ty, Size, Alignment);
3334 else
3335 Inst = new AllocaInst(Ty, Size, Alignment);
3336 return false;
3339 /// ParseFree
3340 /// ::= 'free' TypeAndValue
3341 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3342 Value *Val; LocTy Loc;
3343 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3344 if (!isa<PointerType>(Val->getType()))
3345 return Error(Loc, "operand to free must be a pointer");
3346 Inst = new FreeInst(Val);
3347 return false;
3350 /// ParseLoad
3351 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3352 bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3353 bool isVolatile) {
3354 Value *Val; LocTy Loc;
3355 unsigned Alignment;
3356 if (ParseTypeAndValue(Val, Loc, PFS) ||
3357 ParseOptionalCommaAlignment(Alignment))
3358 return true;
3360 if (!isa<PointerType>(Val->getType()) ||
3361 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3362 return Error(Loc, "load operand must be a pointer to a first class type");
3364 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3365 return false;
3368 /// ParseStore
3369 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3370 bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3371 bool isVolatile) {
3372 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3373 unsigned Alignment;
3374 if (ParseTypeAndValue(Val, Loc, PFS) ||
3375 ParseToken(lltok::comma, "expected ',' after store operand") ||
3376 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3377 ParseOptionalCommaAlignment(Alignment))
3378 return true;
3380 if (!isa<PointerType>(Ptr->getType()))
3381 return Error(PtrLoc, "store operand must be a pointer");
3382 if (!Val->getType()->isFirstClassType())
3383 return Error(Loc, "store operand must be a first class value");
3384 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3385 return Error(Loc, "stored value and pointer type do not match");
3387 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3388 return false;
3391 /// ParseGetResult
3392 /// ::= 'getresult' TypeAndValue ',' i32
3393 /// FIXME: Remove support for getresult in LLVM 3.0
3394 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3395 Value *Val; LocTy ValLoc, EltLoc;
3396 unsigned Element;
3397 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3398 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3399 ParseUInt32(Element, EltLoc))
3400 return true;
3402 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3403 return Error(ValLoc, "getresult inst requires an aggregate operand");
3404 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3405 return Error(EltLoc, "invalid getresult index for value");
3406 Inst = ExtractValueInst::Create(Val, Element);
3407 return false;
3410 /// ParseGetElementPtr
3411 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3412 bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3413 Value *Ptr, *Val; LocTy Loc, EltLoc;
3415 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3417 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3419 if (!isa<PointerType>(Ptr->getType()))
3420 return Error(Loc, "base of getelementptr must be a pointer");
3422 SmallVector<Value*, 16> Indices;
3423 while (EatIfPresent(lltok::comma)) {
3424 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3425 if (!isa<IntegerType>(Val->getType()))
3426 return Error(EltLoc, "getelementptr index must be an integer");
3427 Indices.push_back(Val);
3430 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3431 Indices.begin(), Indices.end()))
3432 return Error(Loc, "invalid getelementptr indices");
3433 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3434 if (InBounds)
3435 cast<GEPOperator>(Inst)->setIsInBounds(true);
3436 return false;
3439 /// ParseExtractValue
3440 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3441 bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3442 Value *Val; LocTy Loc;
3443 SmallVector<unsigned, 4> Indices;
3444 if (ParseTypeAndValue(Val, Loc, PFS) ||
3445 ParseIndexList(Indices))
3446 return true;
3448 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3449 return Error(Loc, "extractvalue operand must be array or struct");
3451 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3452 Indices.end()))
3453 return Error(Loc, "invalid indices for extractvalue");
3454 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3455 return false;
3458 /// ParseInsertValue
3459 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3460 bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3461 Value *Val0, *Val1; LocTy Loc0, Loc1;
3462 SmallVector<unsigned, 4> Indices;
3463 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3464 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3465 ParseTypeAndValue(Val1, Loc1, PFS) ||
3466 ParseIndexList(Indices))
3467 return true;
3469 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3470 return Error(Loc0, "extractvalue operand must be array or struct");
3472 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3473 Indices.end()))
3474 return Error(Loc0, "invalid indices for insertvalue");
3475 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3476 return false;
3479 //===----------------------------------------------------------------------===//
3480 // Embedded metadata.
3481 //===----------------------------------------------------------------------===//
3483 /// ParseMDNodeVector
3484 /// ::= Element (',' Element)*
3485 /// Element
3486 /// ::= 'null' | TypeAndValue
3487 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3488 assert(Lex.getKind() == lltok::lbrace);
3489 Lex.Lex();
3490 do {
3491 Value *V = 0;
3492 if (Lex.getKind() == lltok::kw_null) {
3493 Lex.Lex();
3494 V = 0;
3495 } else {
3496 PATypeHolder Ty(Type::VoidTy);
3497 if (ParseType(Ty)) return true;
3498 if (Lex.getKind() == lltok::Metadata) {
3499 Lex.Lex();
3500 MetadataBase *Node = 0;
3501 if (!ParseMDNode(Node))
3502 V = Node;
3503 else {
3504 MetadataBase *MDS = 0;
3505 if (ParseMDString(MDS)) return true;
3506 V = MDS;
3508 } else {
3509 Constant *C;
3510 if (ParseGlobalValue(Ty, C)) return true;
3511 V = C;
3514 Elts.push_back(V);
3515 } while (EatIfPresent(lltok::comma));
3517 return false;