Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / GVN.cpp
blob21a52891933b8ef920c358af74332b3b1b8fc11e
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/BasicBlock.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Value.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
36 #include "llvm/Support/CFG.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cstdio>
45 using namespace llvm;
47 STATISTIC(NumGVNInstr, "Number of instructions deleted");
48 STATISTIC(NumGVNLoad, "Number of loads deleted");
49 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
50 STATISTIC(NumGVNBlocks, "Number of blocks merged");
51 STATISTIC(NumPRELoad, "Number of loads PRE'd");
53 static cl::opt<bool> EnablePRE("enable-pre",
54 cl::init(true), cl::Hidden);
55 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
57 //===----------------------------------------------------------------------===//
58 // ValueTable Class
59 //===----------------------------------------------------------------------===//
61 /// This class holds the mapping between values and value numbers. It is used
62 /// as an efficient mechanism to determine the expression-wise equivalence of
63 /// two values.
64 namespace {
65 struct VISIBILITY_HIDDEN Expression {
66 enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
67 UDIV, SDIV, FDIV, UREM, SREM,
68 FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
69 ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
70 ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
71 FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
72 FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
73 FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
74 SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
75 FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
76 PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
77 EMPTY, TOMBSTONE };
79 ExpressionOpcode opcode;
80 const Type* type;
81 uint32_t firstVN;
82 uint32_t secondVN;
83 uint32_t thirdVN;
84 SmallVector<uint32_t, 4> varargs;
85 Value* function;
87 Expression() { }
88 Expression(ExpressionOpcode o) : opcode(o) { }
90 bool operator==(const Expression &other) const {
91 if (opcode != other.opcode)
92 return false;
93 else if (opcode == EMPTY || opcode == TOMBSTONE)
94 return true;
95 else if (type != other.type)
96 return false;
97 else if (function != other.function)
98 return false;
99 else if (firstVN != other.firstVN)
100 return false;
101 else if (secondVN != other.secondVN)
102 return false;
103 else if (thirdVN != other.thirdVN)
104 return false;
105 else {
106 if (varargs.size() != other.varargs.size())
107 return false;
109 for (size_t i = 0; i < varargs.size(); ++i)
110 if (varargs[i] != other.varargs[i])
111 return false;
113 return true;
117 bool operator!=(const Expression &other) const {
118 return !(*this == other);
122 class VISIBILITY_HIDDEN ValueTable {
123 private:
124 DenseMap<Value*, uint32_t> valueNumbering;
125 DenseMap<Expression, uint32_t> expressionNumbering;
126 AliasAnalysis* AA;
127 MemoryDependenceAnalysis* MD;
128 DominatorTree* DT;
130 uint32_t nextValueNumber;
132 Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
133 Expression::ExpressionOpcode getOpcode(CmpInst* C);
134 Expression::ExpressionOpcode getOpcode(CastInst* C);
135 Expression create_expression(BinaryOperator* BO);
136 Expression create_expression(CmpInst* C);
137 Expression create_expression(ShuffleVectorInst* V);
138 Expression create_expression(ExtractElementInst* C);
139 Expression create_expression(InsertElementInst* V);
140 Expression create_expression(SelectInst* V);
141 Expression create_expression(CastInst* C);
142 Expression create_expression(GetElementPtrInst* G);
143 Expression create_expression(CallInst* C);
144 Expression create_expression(Constant* C);
145 public:
146 ValueTable() : nextValueNumber(1) { }
147 uint32_t lookup_or_add(Value* V);
148 uint32_t lookup(Value* V) const;
149 void add(Value* V, uint32_t num);
150 void clear();
151 void erase(Value* v);
152 unsigned size();
153 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
154 AliasAnalysis *getAliasAnalysis() const { return AA; }
155 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
156 void setDomTree(DominatorTree* D) { DT = D; }
157 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
158 void verifyRemoved(const Value *) const;
162 namespace llvm {
163 template <> struct DenseMapInfo<Expression> {
164 static inline Expression getEmptyKey() {
165 return Expression(Expression::EMPTY);
168 static inline Expression getTombstoneKey() {
169 return Expression(Expression::TOMBSTONE);
172 static unsigned getHashValue(const Expression e) {
173 unsigned hash = e.opcode;
175 hash = e.firstVN + hash * 37;
176 hash = e.secondVN + hash * 37;
177 hash = e.thirdVN + hash * 37;
179 hash = ((unsigned)((uintptr_t)e.type >> 4) ^
180 (unsigned)((uintptr_t)e.type >> 9)) +
181 hash * 37;
183 for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
184 E = e.varargs.end(); I != E; ++I)
185 hash = *I + hash * 37;
187 hash = ((unsigned)((uintptr_t)e.function >> 4) ^
188 (unsigned)((uintptr_t)e.function >> 9)) +
189 hash * 37;
191 return hash;
193 static bool isEqual(const Expression &LHS, const Expression &RHS) {
194 return LHS == RHS;
196 static bool isPod() { return true; }
200 //===----------------------------------------------------------------------===//
201 // ValueTable Internal Functions
202 //===----------------------------------------------------------------------===//
203 Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
204 switch(BO->getOpcode()) {
205 default: // THIS SHOULD NEVER HAPPEN
206 llvm_unreachable("Binary operator with unknown opcode?");
207 case Instruction::Add: return Expression::ADD;
208 case Instruction::FAdd: return Expression::FADD;
209 case Instruction::Sub: return Expression::SUB;
210 case Instruction::FSub: return Expression::FSUB;
211 case Instruction::Mul: return Expression::MUL;
212 case Instruction::FMul: return Expression::FMUL;
213 case Instruction::UDiv: return Expression::UDIV;
214 case Instruction::SDiv: return Expression::SDIV;
215 case Instruction::FDiv: return Expression::FDIV;
216 case Instruction::URem: return Expression::UREM;
217 case Instruction::SRem: return Expression::SREM;
218 case Instruction::FRem: return Expression::FREM;
219 case Instruction::Shl: return Expression::SHL;
220 case Instruction::LShr: return Expression::LSHR;
221 case Instruction::AShr: return Expression::ASHR;
222 case Instruction::And: return Expression::AND;
223 case Instruction::Or: return Expression::OR;
224 case Instruction::Xor: return Expression::XOR;
228 Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
229 if (isa<ICmpInst>(C)) {
230 switch (C->getPredicate()) {
231 default: // THIS SHOULD NEVER HAPPEN
232 llvm_unreachable("Comparison with unknown predicate?");
233 case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
234 case ICmpInst::ICMP_NE: return Expression::ICMPNE;
235 case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
236 case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
237 case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
238 case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
239 case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
240 case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
241 case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
242 case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
244 } else {
245 switch (C->getPredicate()) {
246 default: // THIS SHOULD NEVER HAPPEN
247 llvm_unreachable("Comparison with unknown predicate?");
248 case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
249 case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
250 case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
251 case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
252 case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
253 case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
254 case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
255 case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
256 case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
257 case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
258 case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
259 case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
260 case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
261 case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
266 Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
267 switch(C->getOpcode()) {
268 default: // THIS SHOULD NEVER HAPPEN
269 llvm_unreachable("Cast operator with unknown opcode?");
270 case Instruction::Trunc: return Expression::TRUNC;
271 case Instruction::ZExt: return Expression::ZEXT;
272 case Instruction::SExt: return Expression::SEXT;
273 case Instruction::FPToUI: return Expression::FPTOUI;
274 case Instruction::FPToSI: return Expression::FPTOSI;
275 case Instruction::UIToFP: return Expression::UITOFP;
276 case Instruction::SIToFP: return Expression::SITOFP;
277 case Instruction::FPTrunc: return Expression::FPTRUNC;
278 case Instruction::FPExt: return Expression::FPEXT;
279 case Instruction::PtrToInt: return Expression::PTRTOINT;
280 case Instruction::IntToPtr: return Expression::INTTOPTR;
281 case Instruction::BitCast: return Expression::BITCAST;
285 Expression ValueTable::create_expression(CallInst* C) {
286 Expression e;
288 e.type = C->getType();
289 e.firstVN = 0;
290 e.secondVN = 0;
291 e.thirdVN = 0;
292 e.function = C->getCalledFunction();
293 e.opcode = Expression::CALL;
295 for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
296 I != E; ++I)
297 e.varargs.push_back(lookup_or_add(*I));
299 return e;
302 Expression ValueTable::create_expression(BinaryOperator* BO) {
303 Expression e;
305 e.firstVN = lookup_or_add(BO->getOperand(0));
306 e.secondVN = lookup_or_add(BO->getOperand(1));
307 e.thirdVN = 0;
308 e.function = 0;
309 e.type = BO->getType();
310 e.opcode = getOpcode(BO);
312 return e;
315 Expression ValueTable::create_expression(CmpInst* C) {
316 Expression e;
318 e.firstVN = lookup_or_add(C->getOperand(0));
319 e.secondVN = lookup_or_add(C->getOperand(1));
320 e.thirdVN = 0;
321 e.function = 0;
322 e.type = C->getType();
323 e.opcode = getOpcode(C);
325 return e;
328 Expression ValueTable::create_expression(CastInst* C) {
329 Expression e;
331 e.firstVN = lookup_or_add(C->getOperand(0));
332 e.secondVN = 0;
333 e.thirdVN = 0;
334 e.function = 0;
335 e.type = C->getType();
336 e.opcode = getOpcode(C);
338 return e;
341 Expression ValueTable::create_expression(ShuffleVectorInst* S) {
342 Expression e;
344 e.firstVN = lookup_or_add(S->getOperand(0));
345 e.secondVN = lookup_or_add(S->getOperand(1));
346 e.thirdVN = lookup_or_add(S->getOperand(2));
347 e.function = 0;
348 e.type = S->getType();
349 e.opcode = Expression::SHUFFLE;
351 return e;
354 Expression ValueTable::create_expression(ExtractElementInst* E) {
355 Expression e;
357 e.firstVN = lookup_or_add(E->getOperand(0));
358 e.secondVN = lookup_or_add(E->getOperand(1));
359 e.thirdVN = 0;
360 e.function = 0;
361 e.type = E->getType();
362 e.opcode = Expression::EXTRACT;
364 return e;
367 Expression ValueTable::create_expression(InsertElementInst* I) {
368 Expression e;
370 e.firstVN = lookup_or_add(I->getOperand(0));
371 e.secondVN = lookup_or_add(I->getOperand(1));
372 e.thirdVN = lookup_or_add(I->getOperand(2));
373 e.function = 0;
374 e.type = I->getType();
375 e.opcode = Expression::INSERT;
377 return e;
380 Expression ValueTable::create_expression(SelectInst* I) {
381 Expression e;
383 e.firstVN = lookup_or_add(I->getCondition());
384 e.secondVN = lookup_or_add(I->getTrueValue());
385 e.thirdVN = lookup_or_add(I->getFalseValue());
386 e.function = 0;
387 e.type = I->getType();
388 e.opcode = Expression::SELECT;
390 return e;
393 Expression ValueTable::create_expression(GetElementPtrInst* G) {
394 Expression e;
396 e.firstVN = lookup_or_add(G->getPointerOperand());
397 e.secondVN = 0;
398 e.thirdVN = 0;
399 e.function = 0;
400 e.type = G->getType();
401 e.opcode = Expression::GEP;
403 for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
404 I != E; ++I)
405 e.varargs.push_back(lookup_or_add(*I));
407 return e;
410 //===----------------------------------------------------------------------===//
411 // ValueTable External Functions
412 //===----------------------------------------------------------------------===//
414 /// add - Insert a value into the table with a specified value number.
415 void ValueTable::add(Value* V, uint32_t num) {
416 valueNumbering.insert(std::make_pair(V, num));
419 /// lookup_or_add - Returns the value number for the specified value, assigning
420 /// it a new number if it did not have one before.
421 uint32_t ValueTable::lookup_or_add(Value* V) {
422 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
423 if (VI != valueNumbering.end())
424 return VI->second;
426 if (CallInst* C = dyn_cast<CallInst>(V)) {
427 if (AA->doesNotAccessMemory(C)) {
428 Expression e = create_expression(C);
430 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
431 if (EI != expressionNumbering.end()) {
432 valueNumbering.insert(std::make_pair(V, EI->second));
433 return EI->second;
434 } else {
435 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
436 valueNumbering.insert(std::make_pair(V, nextValueNumber));
438 return nextValueNumber++;
440 } else if (AA->onlyReadsMemory(C)) {
441 Expression e = create_expression(C);
443 if (expressionNumbering.find(e) == expressionNumbering.end()) {
444 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
445 valueNumbering.insert(std::make_pair(V, nextValueNumber));
446 return nextValueNumber++;
449 MemDepResult local_dep = MD->getDependency(C);
451 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
452 valueNumbering.insert(std::make_pair(V, nextValueNumber));
453 return nextValueNumber++;
456 if (local_dep.isDef()) {
457 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
459 if (local_cdep->getNumOperands() != C->getNumOperands()) {
460 valueNumbering.insert(std::make_pair(V, nextValueNumber));
461 return nextValueNumber++;
464 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
465 uint32_t c_vn = lookup_or_add(C->getOperand(i));
466 uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
467 if (c_vn != cd_vn) {
468 valueNumbering.insert(std::make_pair(V, nextValueNumber));
469 return nextValueNumber++;
473 uint32_t v = lookup_or_add(local_cdep);
474 valueNumbering.insert(std::make_pair(V, v));
475 return v;
478 // Non-local case.
479 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
480 MD->getNonLocalCallDependency(CallSite(C));
481 // FIXME: call/call dependencies for readonly calls should return def, not
482 // clobber! Move the checking logic to MemDep!
483 CallInst* cdep = 0;
485 // Check to see if we have a single dominating call instruction that is
486 // identical to C.
487 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
488 const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
489 // Ignore non-local dependencies.
490 if (I->second.isNonLocal())
491 continue;
493 // We don't handle non-depedencies. If we already have a call, reject
494 // instruction dependencies.
495 if (I->second.isClobber() || cdep != 0) {
496 cdep = 0;
497 break;
500 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
501 // FIXME: All duplicated with non-local case.
502 if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
503 cdep = NonLocalDepCall;
504 continue;
507 cdep = 0;
508 break;
511 if (!cdep) {
512 valueNumbering.insert(std::make_pair(V, nextValueNumber));
513 return nextValueNumber++;
516 if (cdep->getNumOperands() != C->getNumOperands()) {
517 valueNumbering.insert(std::make_pair(V, nextValueNumber));
518 return nextValueNumber++;
520 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
521 uint32_t c_vn = lookup_or_add(C->getOperand(i));
522 uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
523 if (c_vn != cd_vn) {
524 valueNumbering.insert(std::make_pair(V, nextValueNumber));
525 return nextValueNumber++;
529 uint32_t v = lookup_or_add(cdep);
530 valueNumbering.insert(std::make_pair(V, v));
531 return v;
533 } else {
534 valueNumbering.insert(std::make_pair(V, nextValueNumber));
535 return nextValueNumber++;
537 } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
538 Expression e = create_expression(BO);
540 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
541 if (EI != expressionNumbering.end()) {
542 valueNumbering.insert(std::make_pair(V, EI->second));
543 return EI->second;
544 } else {
545 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
546 valueNumbering.insert(std::make_pair(V, nextValueNumber));
548 return nextValueNumber++;
550 } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
551 Expression e = create_expression(C);
553 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
554 if (EI != expressionNumbering.end()) {
555 valueNumbering.insert(std::make_pair(V, EI->second));
556 return EI->second;
557 } else {
558 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
559 valueNumbering.insert(std::make_pair(V, nextValueNumber));
561 return nextValueNumber++;
563 } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
564 Expression e = create_expression(U);
566 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
567 if (EI != expressionNumbering.end()) {
568 valueNumbering.insert(std::make_pair(V, EI->second));
569 return EI->second;
570 } else {
571 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
572 valueNumbering.insert(std::make_pair(V, nextValueNumber));
574 return nextValueNumber++;
576 } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
577 Expression e = create_expression(U);
579 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
580 if (EI != expressionNumbering.end()) {
581 valueNumbering.insert(std::make_pair(V, EI->second));
582 return EI->second;
583 } else {
584 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
585 valueNumbering.insert(std::make_pair(V, nextValueNumber));
587 return nextValueNumber++;
589 } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
590 Expression e = create_expression(U);
592 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
593 if (EI != expressionNumbering.end()) {
594 valueNumbering.insert(std::make_pair(V, EI->second));
595 return EI->second;
596 } else {
597 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
598 valueNumbering.insert(std::make_pair(V, nextValueNumber));
600 return nextValueNumber++;
602 } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
603 Expression e = create_expression(U);
605 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
606 if (EI != expressionNumbering.end()) {
607 valueNumbering.insert(std::make_pair(V, EI->second));
608 return EI->second;
609 } else {
610 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
611 valueNumbering.insert(std::make_pair(V, nextValueNumber));
613 return nextValueNumber++;
615 } else if (CastInst* U = dyn_cast<CastInst>(V)) {
616 Expression e = create_expression(U);
618 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
619 if (EI != expressionNumbering.end()) {
620 valueNumbering.insert(std::make_pair(V, EI->second));
621 return EI->second;
622 } else {
623 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
624 valueNumbering.insert(std::make_pair(V, nextValueNumber));
626 return nextValueNumber++;
628 } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
629 Expression e = create_expression(U);
631 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
632 if (EI != expressionNumbering.end()) {
633 valueNumbering.insert(std::make_pair(V, EI->second));
634 return EI->second;
635 } else {
636 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
637 valueNumbering.insert(std::make_pair(V, nextValueNumber));
639 return nextValueNumber++;
641 } else {
642 valueNumbering.insert(std::make_pair(V, nextValueNumber));
643 return nextValueNumber++;
647 /// lookup - Returns the value number of the specified value. Fails if
648 /// the value has not yet been numbered.
649 uint32_t ValueTable::lookup(Value* V) const {
650 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
651 assert(VI != valueNumbering.end() && "Value not numbered?");
652 return VI->second;
655 /// clear - Remove all entries from the ValueTable
656 void ValueTable::clear() {
657 valueNumbering.clear();
658 expressionNumbering.clear();
659 nextValueNumber = 1;
662 /// erase - Remove a value from the value numbering
663 void ValueTable::erase(Value* V) {
664 valueNumbering.erase(V);
667 /// verifyRemoved - Verify that the value is removed from all internal data
668 /// structures.
669 void ValueTable::verifyRemoved(const Value *V) const {
670 for (DenseMap<Value*, uint32_t>::iterator
671 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
672 assert(I->first != V && "Inst still occurs in value numbering map!");
676 //===----------------------------------------------------------------------===//
677 // GVN Pass
678 //===----------------------------------------------------------------------===//
680 namespace {
681 struct VISIBILITY_HIDDEN ValueNumberScope {
682 ValueNumberScope* parent;
683 DenseMap<uint32_t, Value*> table;
685 ValueNumberScope(ValueNumberScope* p) : parent(p) { }
689 namespace {
691 class VISIBILITY_HIDDEN GVN : public FunctionPass {
692 bool runOnFunction(Function &F);
693 public:
694 static char ID; // Pass identification, replacement for typeid
695 GVN() : FunctionPass(&ID) { }
697 private:
698 MemoryDependenceAnalysis *MD;
699 DominatorTree *DT;
701 ValueTable VN;
702 DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
704 typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
705 PhiMapType phiMap;
708 // This transformation requires dominator postdominator info
709 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
710 AU.addRequired<DominatorTree>();
711 AU.addRequired<MemoryDependenceAnalysis>();
712 AU.addRequired<AliasAnalysis>();
714 AU.addPreserved<DominatorTree>();
715 AU.addPreserved<AliasAnalysis>();
718 // Helper fuctions
719 // FIXME: eliminate or document these better
720 bool processLoad(LoadInst* L,
721 SmallVectorImpl<Instruction*> &toErase);
722 bool processInstruction(Instruction* I,
723 SmallVectorImpl<Instruction*> &toErase);
724 bool processNonLocalLoad(LoadInst* L,
725 SmallVectorImpl<Instruction*> &toErase);
726 bool processBlock(BasicBlock* BB);
727 Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
728 DenseMap<BasicBlock*, Value*> &Phis,
729 bool top_level = false);
730 void dump(DenseMap<uint32_t, Value*>& d);
731 bool iterateOnFunction(Function &F);
732 Value* CollapsePhi(PHINode* p);
733 bool isSafeReplacement(PHINode* p, Instruction* inst);
734 bool performPRE(Function& F);
735 Value* lookupNumber(BasicBlock* BB, uint32_t num);
736 bool mergeBlockIntoPredecessor(BasicBlock* BB);
737 Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
738 void cleanupGlobalSets();
739 void verifyRemoved(const Instruction *I) const;
742 char GVN::ID = 0;
745 // createGVNPass - The public interface to this file...
746 FunctionPass *llvm::createGVNPass() { return new GVN(); }
748 static RegisterPass<GVN> X("gvn",
749 "Global Value Numbering");
751 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
752 printf("{\n");
753 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
754 E = d.end(); I != E; ++I) {
755 printf("%d\n", I->first);
756 I->second->dump();
758 printf("}\n");
761 Value* GVN::CollapsePhi(PHINode* p) {
762 Value* constVal = p->hasConstantValue();
763 if (!constVal) return 0;
765 Instruction* inst = dyn_cast<Instruction>(constVal);
766 if (!inst)
767 return constVal;
769 if (DT->dominates(inst, p))
770 if (isSafeReplacement(p, inst))
771 return inst;
772 return 0;
775 bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
776 if (!isa<PHINode>(inst))
777 return true;
779 for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
780 UI != E; ++UI)
781 if (PHINode* use_phi = dyn_cast<PHINode>(UI))
782 if (use_phi->getParent() == inst->getParent())
783 return false;
785 return true;
788 /// GetValueForBlock - Get the value to use within the specified basic block.
789 /// available values are in Phis.
790 Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
791 DenseMap<BasicBlock*, Value*> &Phis,
792 bool top_level) {
794 // If we have already computed this value, return the previously computed val.
795 DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
796 if (V != Phis.end() && !top_level) return V->second;
798 // If the block is unreachable, just return undef, since this path
799 // can't actually occur at runtime.
800 if (!DT->isReachableFromEntry(BB))
801 return Phis[BB] = UndefValue::get(orig->getType());
803 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
804 Value *ret = GetValueForBlock(Pred, orig, Phis);
805 Phis[BB] = ret;
806 return ret;
809 // Get the number of predecessors of this block so we can reserve space later.
810 // If there is already a PHI in it, use the #preds from it, otherwise count.
811 // Getting it from the PHI is constant time.
812 unsigned NumPreds;
813 if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
814 NumPreds = ExistingPN->getNumIncomingValues();
815 else
816 NumPreds = std::distance(pred_begin(BB), pred_end(BB));
818 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
819 // now, then get values to fill in the incoming values for the PHI.
820 PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
821 BB->begin());
822 PN->reserveOperandSpace(NumPreds);
824 Phis.insert(std::make_pair(BB, PN));
826 // Fill in the incoming values for the block.
827 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
828 Value* val = GetValueForBlock(*PI, orig, Phis);
829 PN->addIncoming(val, *PI);
832 VN.getAliasAnalysis()->copyValue(orig, PN);
834 // Attempt to collapse PHI nodes that are trivially redundant
835 Value* v = CollapsePhi(PN);
836 if (!v) {
837 // Cache our phi construction results
838 if (LoadInst* L = dyn_cast<LoadInst>(orig))
839 phiMap[L->getPointerOperand()].insert(PN);
840 else
841 phiMap[orig].insert(PN);
843 return PN;
846 PN->replaceAllUsesWith(v);
847 if (isa<PointerType>(v->getType()))
848 MD->invalidateCachedPointerInfo(v);
850 for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
851 E = Phis.end(); I != E; ++I)
852 if (I->second == PN)
853 I->second = v;
855 DEBUG(errs() << "GVN removed: " << *PN << '\n');
856 MD->removeInstruction(PN);
857 PN->eraseFromParent();
858 DEBUG(verifyRemoved(PN));
860 Phis[BB] = v;
861 return v;
864 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
865 /// we're analyzing is fully available in the specified block. As we go, keep
866 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
867 /// map is actually a tri-state map with the following values:
868 /// 0) we know the block *is not* fully available.
869 /// 1) we know the block *is* fully available.
870 /// 2) we do not know whether the block is fully available or not, but we are
871 /// currently speculating that it will be.
872 /// 3) we are speculating for this block and have used that to speculate for
873 /// other blocks.
874 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
875 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
876 // Optimistically assume that the block is fully available and check to see
877 // if we already know about this block in one lookup.
878 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
879 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
881 // If the entry already existed for this block, return the precomputed value.
882 if (!IV.second) {
883 // If this is a speculative "available" value, mark it as being used for
884 // speculation of other blocks.
885 if (IV.first->second == 2)
886 IV.first->second = 3;
887 return IV.first->second != 0;
890 // Otherwise, see if it is fully available in all predecessors.
891 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
893 // If this block has no predecessors, it isn't live-in here.
894 if (PI == PE)
895 goto SpeculationFailure;
897 for (; PI != PE; ++PI)
898 // If the value isn't fully available in one of our predecessors, then it
899 // isn't fully available in this block either. Undo our previous
900 // optimistic assumption and bail out.
901 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
902 goto SpeculationFailure;
904 return true;
906 // SpeculationFailure - If we get here, we found out that this is not, after
907 // all, a fully-available block. We have a problem if we speculated on this and
908 // used the speculation to mark other blocks as available.
909 SpeculationFailure:
910 char &BBVal = FullyAvailableBlocks[BB];
912 // If we didn't speculate on this, just return with it set to false.
913 if (BBVal == 2) {
914 BBVal = 0;
915 return false;
918 // If we did speculate on this value, we could have blocks set to 1 that are
919 // incorrect. Walk the (transitive) successors of this block and mark them as
920 // 0 if set to one.
921 SmallVector<BasicBlock*, 32> BBWorklist;
922 BBWorklist.push_back(BB);
924 while (!BBWorklist.empty()) {
925 BasicBlock *Entry = BBWorklist.pop_back_val();
926 // Note that this sets blocks to 0 (unavailable) if they happen to not
927 // already be in FullyAvailableBlocks. This is safe.
928 char &EntryVal = FullyAvailableBlocks[Entry];
929 if (EntryVal == 0) continue; // Already unavailable.
931 // Mark as unavailable.
932 EntryVal = 0;
934 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
935 BBWorklist.push_back(*I);
938 return false;
941 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
942 /// non-local by performing PHI construction.
943 bool GVN::processNonLocalLoad(LoadInst *LI,
944 SmallVectorImpl<Instruction*> &toErase) {
945 // Find the non-local dependencies of the load.
946 SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
947 MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
948 Deps);
949 //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
950 // << Deps.size() << *LI << '\n');
952 // If we had to process more than one hundred blocks to find the
953 // dependencies, this load isn't worth worrying about. Optimizing
954 // it will be too expensive.
955 if (Deps.size() > 100)
956 return false;
958 // If we had a phi translation failure, we'll have a single entry which is a
959 // clobber in the current block. Reject this early.
960 if (Deps.size() == 1 && Deps[0].second.isClobber()) {
961 DEBUG(
962 errs() << "GVN: non-local load ";
963 WriteAsOperand(errs(), LI);
964 errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
966 return false;
969 // Filter out useless results (non-locals, etc). Keep track of the blocks
970 // where we have a value available in repl, also keep track of whether we see
971 // dependencies that produce an unknown value for the load (such as a call
972 // that could potentially clobber the load).
973 SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
974 SmallVector<BasicBlock*, 16> UnavailableBlocks;
976 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
977 BasicBlock *DepBB = Deps[i].first;
978 MemDepResult DepInfo = Deps[i].second;
980 if (DepInfo.isClobber()) {
981 UnavailableBlocks.push_back(DepBB);
982 continue;
985 Instruction *DepInst = DepInfo.getInst();
987 // Loading the allocation -> undef.
988 if (isa<AllocationInst>(DepInst)) {
989 ValuesPerBlock.push_back(std::make_pair(DepBB,
990 UndefValue::get(LI->getType())));
991 continue;
994 if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
995 // Reject loads and stores that are to the same address but are of
996 // different types.
997 // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
998 // of bitfield access, it would be interesting to optimize for it at some
999 // point.
1000 if (S->getOperand(0)->getType() != LI->getType()) {
1001 UnavailableBlocks.push_back(DepBB);
1002 continue;
1005 ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1007 } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1008 if (LD->getType() != LI->getType()) {
1009 UnavailableBlocks.push_back(DepBB);
1010 continue;
1012 ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1013 } else {
1014 UnavailableBlocks.push_back(DepBB);
1015 continue;
1019 // If we have no predecessors that produce a known value for this load, exit
1020 // early.
1021 if (ValuesPerBlock.empty()) return false;
1023 // If all of the instructions we depend on produce a known value for this
1024 // load, then it is fully redundant and we can use PHI insertion to compute
1025 // its value. Insert PHIs and remove the fully redundant value now.
1026 if (UnavailableBlocks.empty()) {
1027 // Use cached PHI construction information from previous runs
1028 SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1029 // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1030 for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1031 I != E; ++I) {
1032 if ((*I)->getParent() == LI->getParent()) {
1033 DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1034 LI->replaceAllUsesWith(*I);
1035 if (isa<PointerType>((*I)->getType()))
1036 MD->invalidateCachedPointerInfo(*I);
1037 toErase.push_back(LI);
1038 NumGVNLoad++;
1039 return true;
1042 ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1045 DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1047 DenseMap<BasicBlock*, Value*> BlockReplValues;
1048 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1049 // Perform PHI construction.
1050 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1051 LI->replaceAllUsesWith(v);
1053 if (isa<PHINode>(v))
1054 v->takeName(LI);
1055 if (isa<PointerType>(v->getType()))
1056 MD->invalidateCachedPointerInfo(v);
1057 toErase.push_back(LI);
1058 NumGVNLoad++;
1059 return true;
1062 if (!EnablePRE || !EnableLoadPRE)
1063 return false;
1065 // Okay, we have *some* definitions of the value. This means that the value
1066 // is available in some of our (transitive) predecessors. Lets think about
1067 // doing PRE of this load. This will involve inserting a new load into the
1068 // predecessor when it's not available. We could do this in general, but
1069 // prefer to not increase code size. As such, we only do this when we know
1070 // that we only have to insert *one* load (which means we're basically moving
1071 // the load, not inserting a new one).
1073 SmallPtrSet<BasicBlock *, 4> Blockers;
1074 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1075 Blockers.insert(UnavailableBlocks[i]);
1077 // Lets find first basic block with more than one predecessor. Walk backwards
1078 // through predecessors if needed.
1079 BasicBlock *LoadBB = LI->getParent();
1080 BasicBlock *TmpBB = LoadBB;
1082 bool isSinglePred = false;
1083 bool allSingleSucc = true;
1084 while (TmpBB->getSinglePredecessor()) {
1085 isSinglePred = true;
1086 TmpBB = TmpBB->getSinglePredecessor();
1087 if (!TmpBB) // If haven't found any, bail now.
1088 return false;
1089 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1090 return false;
1091 if (Blockers.count(TmpBB))
1092 return false;
1093 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1094 allSingleSucc = false;
1097 assert(TmpBB);
1098 LoadBB = TmpBB;
1100 // If we have a repl set with LI itself in it, this means we have a loop where
1101 // at least one of the values is LI. Since this means that we won't be able
1102 // to eliminate LI even if we insert uses in the other predecessors, we will
1103 // end up increasing code size. Reject this by scanning for LI.
1104 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1105 if (ValuesPerBlock[i].second == LI)
1106 return false;
1108 if (isSinglePred) {
1109 bool isHot = false;
1110 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1111 if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1112 // "Hot" Instruction is in some loop (because it dominates its dep.
1113 // instruction).
1114 if (DT->dominates(LI, I)) {
1115 isHot = true;
1116 break;
1119 // We are interested only in "hot" instructions. We don't want to do any
1120 // mis-optimizations here.
1121 if (!isHot)
1122 return false;
1125 // Okay, we have some hope :). Check to see if the loaded value is fully
1126 // available in all but one predecessor.
1127 // FIXME: If we could restructure the CFG, we could make a common pred with
1128 // all the preds that don't have an available LI and insert a new load into
1129 // that one block.
1130 BasicBlock *UnavailablePred = 0;
1132 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1133 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1134 FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1135 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1136 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1138 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1139 PI != E; ++PI) {
1140 if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1141 continue;
1143 // If this load is not available in multiple predecessors, reject it.
1144 if (UnavailablePred && UnavailablePred != *PI)
1145 return false;
1146 UnavailablePred = *PI;
1149 assert(UnavailablePred != 0 &&
1150 "Fully available value should be eliminated above!");
1152 // If the loaded pointer is PHI node defined in this block, do PHI translation
1153 // to get its value in the predecessor.
1154 Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1156 // Make sure the value is live in the predecessor. If it was defined by a
1157 // non-PHI instruction in this block, we don't know how to recompute it above.
1158 if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1159 if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1160 DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1161 << *LPInst << '\n' << *LI << "\n");
1162 return false;
1165 // We don't currently handle critical edges :(
1166 if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1167 DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1168 << UnavailablePred->getName() << "': " << *LI << '\n');
1169 return false;
1172 // Make sure it is valid to move this load here. We have to watch out for:
1173 // @1 = getelementptr (i8* p, ...
1174 // test p and branch if == 0
1175 // load @1
1176 // It is valid to have the getelementptr before the test, even if p can be 0,
1177 // as getelementptr only does address arithmetic.
1178 // If we are not pushing the value through any multiple-successor blocks
1179 // we do not have this case. Otherwise, check that the load is safe to
1180 // put anywhere; this can be improved, but should be conservatively safe.
1181 if (!allSingleSucc &&
1182 !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1183 return false;
1185 // Okay, we can eliminate this load by inserting a reload in the predecessor
1186 // and using PHI construction to get the value in the other predecessors, do
1187 // it.
1188 DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1190 Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1191 LI->getAlignment(),
1192 UnavailablePred->getTerminator());
1194 SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1195 for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1196 I != E; ++I)
1197 ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1199 DenseMap<BasicBlock*, Value*> BlockReplValues;
1200 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1201 BlockReplValues[UnavailablePred] = NewLoad;
1203 // Perform PHI construction.
1204 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1205 LI->replaceAllUsesWith(v);
1206 if (isa<PHINode>(v))
1207 v->takeName(LI);
1208 if (isa<PointerType>(v->getType()))
1209 MD->invalidateCachedPointerInfo(v);
1210 toErase.push_back(LI);
1211 NumPRELoad++;
1212 return true;
1215 /// processLoad - Attempt to eliminate a load, first by eliminating it
1216 /// locally, and then attempting non-local elimination if that fails.
1217 bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1218 if (L->isVolatile())
1219 return false;
1221 Value* pointer = L->getPointerOperand();
1223 // ... to a pointer that has been loaded from before...
1224 MemDepResult dep = MD->getDependency(L);
1226 // If the value isn't available, don't do anything!
1227 if (dep.isClobber()) {
1228 DEBUG(
1229 // fast print dep, using operator<< on instruction would be too slow
1230 errs() << "GVN: load ";
1231 WriteAsOperand(errs(), L);
1232 Instruction *I = dep.getInst();
1233 errs() << " is clobbered by " << *I << '\n';
1235 return false;
1238 // If it is defined in another block, try harder.
1239 if (dep.isNonLocal())
1240 return processNonLocalLoad(L, toErase);
1242 Instruction *DepInst = dep.getInst();
1243 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1244 // Only forward substitute stores to loads of the same type.
1245 // FIXME: Could do better!
1246 if (DepSI->getPointerOperand()->getType() != pointer->getType())
1247 return false;
1249 // Remove it!
1250 L->replaceAllUsesWith(DepSI->getOperand(0));
1251 if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1252 MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1253 toErase.push_back(L);
1254 NumGVNLoad++;
1255 return true;
1258 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1259 // Only forward substitute stores to loads of the same type.
1260 // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1261 if (DepLI->getType() != L->getType())
1262 return false;
1264 // Remove it!
1265 L->replaceAllUsesWith(DepLI);
1266 if (isa<PointerType>(DepLI->getType()))
1267 MD->invalidateCachedPointerInfo(DepLI);
1268 toErase.push_back(L);
1269 NumGVNLoad++;
1270 return true;
1273 // If this load really doesn't depend on anything, then we must be loading an
1274 // undef value. This can happen when loading for a fresh allocation with no
1275 // intervening stores, for example.
1276 if (isa<AllocationInst>(DepInst)) {
1277 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1278 toErase.push_back(L);
1279 NumGVNLoad++;
1280 return true;
1283 return false;
1286 Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1287 DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1288 if (I == localAvail.end())
1289 return 0;
1291 ValueNumberScope* locals = I->second;
1293 while (locals) {
1294 DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1295 if (I != locals->table.end())
1296 return I->second;
1297 else
1298 locals = locals->parent;
1301 return 0;
1304 /// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1305 /// by inheritance from the dominator fails, see if we can perform phi
1306 /// construction to eliminate the redundancy.
1307 Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1308 BasicBlock* BaseBlock = orig->getParent();
1310 SmallPtrSet<BasicBlock*, 4> Visited;
1311 SmallVector<BasicBlock*, 8> Stack;
1312 Stack.push_back(BaseBlock);
1314 DenseMap<BasicBlock*, Value*> Results;
1316 // Walk backwards through our predecessors, looking for instances of the
1317 // value number we're looking for. Instances are recorded in the Results
1318 // map, which is then used to perform phi construction.
1319 while (!Stack.empty()) {
1320 BasicBlock* Current = Stack.back();
1321 Stack.pop_back();
1323 // If we've walked all the way to a proper dominator, then give up. Cases
1324 // where the instance is in the dominator will have been caught by the fast
1325 // path, and any cases that require phi construction further than this are
1326 // probably not worth it anyways. Note that this is a SIGNIFICANT compile
1327 // time improvement.
1328 if (DT->properlyDominates(Current, orig->getParent())) return 0;
1330 DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1331 localAvail.find(Current);
1332 if (LA == localAvail.end()) return 0;
1333 DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1335 if (V != LA->second->table.end()) {
1336 // Found an instance, record it.
1337 Results.insert(std::make_pair(Current, V->second));
1338 continue;
1341 // If we reach the beginning of the function, then give up.
1342 if (pred_begin(Current) == pred_end(Current))
1343 return 0;
1345 for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1346 PI != PE; ++PI)
1347 if (Visited.insert(*PI))
1348 Stack.push_back(*PI);
1351 // If we didn't find instances, give up. Otherwise, perform phi construction.
1352 if (Results.size() == 0)
1353 return 0;
1354 else
1355 return GetValueForBlock(BaseBlock, orig, Results, true);
1358 /// processInstruction - When calculating availability, handle an instruction
1359 /// by inserting it into the appropriate sets
1360 bool GVN::processInstruction(Instruction *I,
1361 SmallVectorImpl<Instruction*> &toErase) {
1362 if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1363 bool changed = processLoad(L, toErase);
1365 if (!changed) {
1366 unsigned num = VN.lookup_or_add(L);
1367 localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1370 return changed;
1373 uint32_t nextNum = VN.getNextUnusedValueNumber();
1374 unsigned num = VN.lookup_or_add(I);
1376 if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1377 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1379 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1380 return false;
1382 Value* branchCond = BI->getCondition();
1383 uint32_t condVN = VN.lookup_or_add(branchCond);
1385 BasicBlock* trueSucc = BI->getSuccessor(0);
1386 BasicBlock* falseSucc = BI->getSuccessor(1);
1388 if (trueSucc->getSinglePredecessor())
1389 localAvail[trueSucc]->table[condVN] =
1390 ConstantInt::getTrue(trueSucc->getContext());
1391 if (falseSucc->getSinglePredecessor())
1392 localAvail[falseSucc]->table[condVN] =
1393 ConstantInt::getFalse(trueSucc->getContext());
1395 return false;
1397 // Allocations are always uniquely numbered, so we can save time and memory
1398 // by fast failing them.
1399 } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1400 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1401 return false;
1404 // Collapse PHI nodes
1405 if (PHINode* p = dyn_cast<PHINode>(I)) {
1406 Value* constVal = CollapsePhi(p);
1408 if (constVal) {
1409 for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1410 PI != PE; ++PI)
1411 PI->second.erase(p);
1413 p->replaceAllUsesWith(constVal);
1414 if (isa<PointerType>(constVal->getType()))
1415 MD->invalidateCachedPointerInfo(constVal);
1416 VN.erase(p);
1418 toErase.push_back(p);
1419 } else {
1420 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1423 // If the number we were assigned was a brand new VN, then we don't
1424 // need to do a lookup to see if the number already exists
1425 // somewhere in the domtree: it can't!
1426 } else if (num == nextNum) {
1427 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1429 // Perform fast-path value-number based elimination of values inherited from
1430 // dominators.
1431 } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1432 // Remove it!
1433 VN.erase(I);
1434 I->replaceAllUsesWith(repl);
1435 if (isa<PointerType>(repl->getType()))
1436 MD->invalidateCachedPointerInfo(repl);
1437 toErase.push_back(I);
1438 return true;
1440 #if 0
1441 // Perform slow-pathvalue-number based elimination with phi construction.
1442 } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1443 // Remove it!
1444 VN.erase(I);
1445 I->replaceAllUsesWith(repl);
1446 if (isa<PointerType>(repl->getType()))
1447 MD->invalidateCachedPointerInfo(repl);
1448 toErase.push_back(I);
1449 return true;
1450 #endif
1451 } else {
1452 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1455 return false;
1458 /// runOnFunction - This is the main transformation entry point for a function.
1459 bool GVN::runOnFunction(Function& F) {
1460 MD = &getAnalysis<MemoryDependenceAnalysis>();
1461 DT = &getAnalysis<DominatorTree>();
1462 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1463 VN.setMemDep(MD);
1464 VN.setDomTree(DT);
1466 bool changed = false;
1467 bool shouldContinue = true;
1469 // Merge unconditional branches, allowing PRE to catch more
1470 // optimization opportunities.
1471 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1472 BasicBlock* BB = FI;
1473 ++FI;
1474 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1475 if (removedBlock) NumGVNBlocks++;
1477 changed |= removedBlock;
1480 unsigned Iteration = 0;
1482 while (shouldContinue) {
1483 DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1484 shouldContinue = iterateOnFunction(F);
1485 changed |= shouldContinue;
1486 ++Iteration;
1489 if (EnablePRE) {
1490 bool PREChanged = true;
1491 while (PREChanged) {
1492 PREChanged = performPRE(F);
1493 changed |= PREChanged;
1496 // FIXME: Should perform GVN again after PRE does something. PRE can move
1497 // computations into blocks where they become fully redundant. Note that
1498 // we can't do this until PRE's critical edge splitting updates memdep.
1499 // Actually, when this happens, we should just fully integrate PRE into GVN.
1501 cleanupGlobalSets();
1503 return changed;
1507 bool GVN::processBlock(BasicBlock* BB) {
1508 // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1509 // incrementing BI before processing an instruction).
1510 SmallVector<Instruction*, 8> toErase;
1511 bool changed_function = false;
1513 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1514 BI != BE;) {
1515 changed_function |= processInstruction(BI, toErase);
1516 if (toErase.empty()) {
1517 ++BI;
1518 continue;
1521 // If we need some instructions deleted, do it now.
1522 NumGVNInstr += toErase.size();
1524 // Avoid iterator invalidation.
1525 bool AtStart = BI == BB->begin();
1526 if (!AtStart)
1527 --BI;
1529 for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1530 E = toErase.end(); I != E; ++I) {
1531 DEBUG(errs() << "GVN removed: " << **I << '\n');
1532 MD->removeInstruction(*I);
1533 (*I)->eraseFromParent();
1534 DEBUG(verifyRemoved(*I));
1536 toErase.clear();
1538 if (AtStart)
1539 BI = BB->begin();
1540 else
1541 ++BI;
1544 return changed_function;
1547 /// performPRE - Perform a purely local form of PRE that looks for diamond
1548 /// control flow patterns and attempts to perform simple PRE at the join point.
1549 bool GVN::performPRE(Function& F) {
1550 bool Changed = false;
1551 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1552 DenseMap<BasicBlock*, Value*> predMap;
1553 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1554 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1555 BasicBlock* CurrentBlock = *DI;
1557 // Nothing to PRE in the entry block.
1558 if (CurrentBlock == &F.getEntryBlock()) continue;
1560 for (BasicBlock::iterator BI = CurrentBlock->begin(),
1561 BE = CurrentBlock->end(); BI != BE; ) {
1562 Instruction *CurInst = BI++;
1564 if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1565 isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1566 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1567 isa<DbgInfoIntrinsic>(CurInst))
1568 continue;
1570 uint32_t valno = VN.lookup(CurInst);
1572 // Look for the predecessors for PRE opportunities. We're
1573 // only trying to solve the basic diamond case, where
1574 // a value is computed in the successor and one predecessor,
1575 // but not the other. We also explicitly disallow cases
1576 // where the successor is its own predecessor, because they're
1577 // more complicated to get right.
1578 unsigned numWith = 0;
1579 unsigned numWithout = 0;
1580 BasicBlock* PREPred = 0;
1581 predMap.clear();
1583 for (pred_iterator PI = pred_begin(CurrentBlock),
1584 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1585 // We're not interested in PRE where the block is its
1586 // own predecessor, on in blocks with predecessors
1587 // that are not reachable.
1588 if (*PI == CurrentBlock) {
1589 numWithout = 2;
1590 break;
1591 } else if (!localAvail.count(*PI)) {
1592 numWithout = 2;
1593 break;
1596 DenseMap<uint32_t, Value*>::iterator predV =
1597 localAvail[*PI]->table.find(valno);
1598 if (predV == localAvail[*PI]->table.end()) {
1599 PREPred = *PI;
1600 numWithout++;
1601 } else if (predV->second == CurInst) {
1602 numWithout = 2;
1603 } else {
1604 predMap[*PI] = predV->second;
1605 numWith++;
1609 // Don't do PRE when it might increase code size, i.e. when
1610 // we would need to insert instructions in more than one pred.
1611 if (numWithout != 1 || numWith == 0)
1612 continue;
1614 // We can't do PRE safely on a critical edge, so instead we schedule
1615 // the edge to be split and perform the PRE the next time we iterate
1616 // on the function.
1617 unsigned succNum = 0;
1618 for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1619 i != e; ++i)
1620 if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1621 succNum = i;
1622 break;
1625 if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1626 toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1627 continue;
1630 // Instantiate the expression the in predecessor that lacked it.
1631 // Because we are going top-down through the block, all value numbers
1632 // will be available in the predecessor by the time we need them. Any
1633 // that weren't original present will have been instantiated earlier
1634 // in this loop.
1635 Instruction* PREInstr = CurInst->clone(CurInst->getContext());
1636 bool success = true;
1637 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1638 Value *Op = PREInstr->getOperand(i);
1639 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1640 continue;
1642 if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1643 PREInstr->setOperand(i, V);
1644 } else {
1645 success = false;
1646 break;
1650 // Fail out if we encounter an operand that is not available in
1651 // the PRE predecessor. This is typically because of loads which
1652 // are not value numbered precisely.
1653 if (!success) {
1654 delete PREInstr;
1655 DEBUG(verifyRemoved(PREInstr));
1656 continue;
1659 PREInstr->insertBefore(PREPred->getTerminator());
1660 PREInstr->setName(CurInst->getName() + ".pre");
1661 predMap[PREPred] = PREInstr;
1662 VN.add(PREInstr, valno);
1663 NumGVNPRE++;
1665 // Update the availability map to include the new instruction.
1666 localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1668 // Create a PHI to make the value available in this block.
1669 PHINode* Phi = PHINode::Create(CurInst->getType(),
1670 CurInst->getName() + ".pre-phi",
1671 CurrentBlock->begin());
1672 for (pred_iterator PI = pred_begin(CurrentBlock),
1673 PE = pred_end(CurrentBlock); PI != PE; ++PI)
1674 Phi->addIncoming(predMap[*PI], *PI);
1676 VN.add(Phi, valno);
1677 localAvail[CurrentBlock]->table[valno] = Phi;
1679 CurInst->replaceAllUsesWith(Phi);
1680 if (isa<PointerType>(Phi->getType()))
1681 MD->invalidateCachedPointerInfo(Phi);
1682 VN.erase(CurInst);
1684 DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1685 MD->removeInstruction(CurInst);
1686 CurInst->eraseFromParent();
1687 DEBUG(verifyRemoved(CurInst));
1688 Changed = true;
1692 for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1693 I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1694 SplitCriticalEdge(I->first, I->second, this);
1696 return Changed || toSplit.size();
1699 /// iterateOnFunction - Executes one iteration of GVN
1700 bool GVN::iterateOnFunction(Function &F) {
1701 cleanupGlobalSets();
1703 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1704 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1705 if (DI->getIDom())
1706 localAvail[DI->getBlock()] =
1707 new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1708 else
1709 localAvail[DI->getBlock()] = new ValueNumberScope(0);
1712 // Top-down walk of the dominator tree
1713 bool changed = false;
1714 #if 0
1715 // Needed for value numbering with phi construction to work.
1716 ReversePostOrderTraversal<Function*> RPOT(&F);
1717 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1718 RE = RPOT.end(); RI != RE; ++RI)
1719 changed |= processBlock(*RI);
1720 #else
1721 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1722 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1723 changed |= processBlock(DI->getBlock());
1724 #endif
1726 return changed;
1729 void GVN::cleanupGlobalSets() {
1730 VN.clear();
1731 phiMap.clear();
1733 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1734 I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1735 delete I->second;
1736 localAvail.clear();
1739 /// verifyRemoved - Verify that the specified instruction does not occur in our
1740 /// internal data structures.
1741 void GVN::verifyRemoved(const Instruction *Inst) const {
1742 VN.verifyRemoved(Inst);
1744 // Walk through the PHI map to make sure the instruction isn't hiding in there
1745 // somewhere.
1746 for (PhiMapType::iterator
1747 I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1748 assert(I->first != Inst && "Inst is still a key in PHI map!");
1750 for (SmallPtrSet<Instruction*, 4>::iterator
1751 II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1752 assert(*II != Inst && "Inst is still a value in PHI map!");
1756 // Walk through the value number scope to make sure the instruction isn't
1757 // ferreted away in it.
1758 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1759 I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1760 const ValueNumberScope *VNS = I->second;
1762 while (VNS) {
1763 for (DenseMap<uint32_t, Value*>::iterator
1764 II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1765 assert(II->second != Inst && "Inst still in value numbering scope!");
1768 VNS = VNS->parent;