1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. The canonical induction variable is guaranteed to be in a wide enough
21 // type so that IV expressions need not be (directly) zero-extended or
23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts.
25 // If the trip count of a loop is computable, this pass also makes the following
27 // 1. The exit condition for the loop is canonicalized to compare the
28 // induction value against the exit value. This turns loops like:
29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 // 2. Any use outside of the loop of an expression derived from the indvar
31 // is changed to compute the derived value outside of the loop, eliminating
32 // the dependence on the exit value of the induction variable. If the only
33 // purpose of the loop is to compute the exit value of some derived
34 // expression, this transformation will make the loop dead.
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/Dominators.h"
49 #include "llvm/Analysis/IVUsers.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Support/CFG.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/STLExtras.h"
64 STATISTIC(NumRemoved
, "Number of aux indvars removed");
65 STATISTIC(NumInserted
, "Number of canonical indvars added");
66 STATISTIC(NumReplaced
, "Number of exit values replaced");
67 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
70 class VISIBILITY_HIDDEN IndVarSimplify
: public LoopPass
{
78 static char ID
; // Pass identification, replacement for typeid
79 IndVarSimplify() : LoopPass(&ID
) {}
81 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
83 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
84 AU
.addRequired
<DominatorTree
>();
85 AU
.addRequired
<LoopInfo
>();
86 AU
.addRequired
<ScalarEvolution
>();
87 AU
.addRequiredID(LoopSimplifyID
);
88 AU
.addRequiredID(LCSSAID
);
89 AU
.addRequired
<IVUsers
>();
90 AU
.addPreserved
<ScalarEvolution
>();
91 AU
.addPreservedID(LoopSimplifyID
);
92 AU
.addPreservedID(LCSSAID
);
93 AU
.addPreserved
<IVUsers
>();
99 void RewriteNonIntegerIVs(Loop
*L
);
101 ICmpInst
*LinearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
103 BasicBlock
*ExitingBlock
,
105 SCEVExpander
&Rewriter
);
106 void RewriteLoopExitValues(Loop
*L
, const SCEV
*BackedgeTakenCount
,
107 SCEVExpander
&Rewriter
);
109 void RewriteIVExpressions(Loop
*L
, const Type
*LargestType
,
110 SCEVExpander
&Rewriter
);
112 void SinkUnusedInvariants(Loop
*L
);
114 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
);
118 char IndVarSimplify::ID
= 0;
119 static RegisterPass
<IndVarSimplify
>
120 X("indvars", "Canonicalize Induction Variables");
122 Pass
*llvm::createIndVarSimplifyPass() {
123 return new IndVarSimplify();
126 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
127 /// loop to be a canonical != comparison against the incremented loop induction
128 /// variable. This pass is able to rewrite the exit tests of any loop where the
129 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
130 /// is actually a much broader range than just linear tests.
131 ICmpInst
*IndVarSimplify::LinearFunctionTestReplace(Loop
*L
,
132 const SCEV
*BackedgeTakenCount
,
134 BasicBlock
*ExitingBlock
,
136 SCEVExpander
&Rewriter
) {
137 // If the exiting block is not the same as the backedge block, we must compare
138 // against the preincremented value, otherwise we prefer to compare against
139 // the post-incremented value.
141 const SCEV
*RHS
= BackedgeTakenCount
;
142 if (ExitingBlock
== L
->getLoopLatch()) {
143 // Add one to the "backedge-taken" count to get the trip count.
144 // If this addition may overflow, we have to be more pessimistic and
145 // cast the induction variable before doing the add.
146 const SCEV
*Zero
= SE
->getIntegerSCEV(0, BackedgeTakenCount
->getType());
148 SE
->getAddExpr(BackedgeTakenCount
,
149 SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType()));
150 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
151 SE
->isLoopGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
152 // No overflow. Cast the sum.
153 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
155 // Potential overflow. Cast before doing the add.
156 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
158 RHS
= SE
->getAddExpr(RHS
,
159 SE
->getIntegerSCEV(1, IndVar
->getType()));
162 // The BackedgeTaken expression contains the number of times that the
163 // backedge branches to the loop header. This is one less than the
164 // number of times the loop executes, so use the incremented indvar.
165 CmpIndVar
= L
->getCanonicalInductionVariableIncrement();
167 // We have to use the preincremented value...
168 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
173 // Expand the code for the iteration count.
174 assert(RHS
->isLoopInvariant(L
) &&
175 "Computed iteration count is not loop invariant!");
176 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(), BI
);
178 // Insert a new icmp_ne or icmp_eq instruction before the branch.
179 ICmpInst::Predicate Opcode
;
180 if (L
->contains(BI
->getSuccessor(0)))
181 Opcode
= ICmpInst::ICMP_NE
;
183 Opcode
= ICmpInst::ICMP_EQ
;
185 DOUT
<< "INDVARS: Rewriting loop exit condition to:\n"
186 << " LHS:" << *CmpIndVar
// includes a newline
188 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
189 << " RHS:\t" << *RHS
<< "\n";
191 ICmpInst
*Cond
= new ICmpInst(BI
, Opcode
, CmpIndVar
, ExitCnt
, "exitcond");
193 Instruction
*OrigCond
= cast
<Instruction
>(BI
->getCondition());
194 // It's tempting to use replaceAllUsesWith here to fully replace the old
195 // comparison, but that's not immediately safe, since users of the old
196 // comparison may not be dominated by the new comparison. Instead, just
197 // update the branch to use the new comparison; in the common case this
198 // will make old comparison dead.
199 BI
->setCondition(Cond
);
200 RecursivelyDeleteTriviallyDeadInstructions(OrigCond
);
207 /// RewriteLoopExitValues - Check to see if this loop has a computable
208 /// loop-invariant execution count. If so, this means that we can compute the
209 /// final value of any expressions that are recurrent in the loop, and
210 /// substitute the exit values from the loop into any instructions outside of
211 /// the loop that use the final values of the current expressions.
213 /// This is mostly redundant with the regular IndVarSimplify activities that
214 /// happen later, except that it's more powerful in some cases, because it's
215 /// able to brute-force evaluate arbitrary instructions as long as they have
216 /// constant operands at the beginning of the loop.
217 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
,
218 const SCEV
*BackedgeTakenCount
,
219 SCEVExpander
&Rewriter
) {
220 // Verify the input to the pass in already in LCSSA form.
221 assert(L
->isLCSSAForm());
223 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
224 L
->getUniqueExitBlocks(ExitBlocks
);
226 // Find all values that are computed inside the loop, but used outside of it.
227 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
228 // the exit blocks of the loop to find them.
229 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
230 BasicBlock
*ExitBB
= ExitBlocks
[i
];
232 // If there are no PHI nodes in this exit block, then no values defined
233 // inside the loop are used on this path, skip it.
234 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
237 unsigned NumPreds
= PN
->getNumIncomingValues();
239 // Iterate over all of the PHI nodes.
240 BasicBlock::iterator BBI
= ExitBB
->begin();
241 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
243 continue; // dead use, don't replace it
244 // Iterate over all of the values in all the PHI nodes.
245 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
246 // If the value being merged in is not integer or is not defined
247 // in the loop, skip it.
248 Value
*InVal
= PN
->getIncomingValue(i
);
249 if (!isa
<Instruction
>(InVal
) ||
250 // SCEV only supports integer expressions for now.
251 (!isa
<IntegerType
>(InVal
->getType()) &&
252 !isa
<PointerType
>(InVal
->getType())))
255 // If this pred is for a subloop, not L itself, skip it.
256 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
257 continue; // The Block is in a subloop, skip it.
259 // Check that InVal is defined in the loop.
260 Instruction
*Inst
= cast
<Instruction
>(InVal
);
261 if (!L
->contains(Inst
->getParent()))
264 // Okay, this instruction has a user outside of the current loop
265 // and varies predictably *inside* the loop. Evaluate the value it
266 // contains when the loop exits, if possible.
267 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
268 if (!ExitValue
->isLoopInvariant(L
))
274 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
276 DOUT
<< "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
277 << " LoopVal = " << *Inst
<< "\n";
279 PN
->setIncomingValue(i
, ExitVal
);
281 // If this instruction is dead now, delete it.
282 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
285 // Completely replace a single-pred PHI. This is safe, because the
286 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
288 PN
->replaceAllUsesWith(ExitVal
);
289 RecursivelyDeleteTriviallyDeadInstructions(PN
);
293 // Clone the PHI and delete the original one. This lets IVUsers and
294 // any other maps purge the original user from their records.
295 PHINode
*NewPN
= PN
->clone(PN
->getContext());
297 NewPN
->insertBefore(PN
);
298 PN
->replaceAllUsesWith(NewPN
);
299 PN
->eraseFromParent();
305 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
306 // First step. Check to see if there are any floating-point recurrences.
307 // If there are, change them into integer recurrences, permitting analysis by
308 // the SCEV routines.
310 BasicBlock
*Header
= L
->getHeader();
312 SmallVector
<WeakVH
, 8> PHIs
;
313 for (BasicBlock::iterator I
= Header
->begin();
314 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
317 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
318 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(PHIs
[i
]))
319 HandleFloatingPointIV(L
, PN
);
321 // If the loop previously had floating-point IV, ScalarEvolution
322 // may not have been able to compute a trip count. Now that we've done some
323 // re-writing, the trip count may be computable.
325 SE
->forgetLoopBackedgeTakenCount(L
);
328 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
329 IU
= &getAnalysis
<IVUsers
>();
330 LI
= &getAnalysis
<LoopInfo
>();
331 SE
= &getAnalysis
<ScalarEvolution
>();
332 DT
= &getAnalysis
<DominatorTree
>();
335 // If there are any floating-point recurrences, attempt to
336 // transform them to use integer recurrences.
337 RewriteNonIntegerIVs(L
);
339 BasicBlock
*ExitingBlock
= L
->getExitingBlock(); // may be null
340 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
342 // Create a rewriter object which we'll use to transform the code with.
343 SCEVExpander
Rewriter(*SE
);
345 // Check to see if this loop has a computable loop-invariant execution count.
346 // If so, this means that we can compute the final value of any expressions
347 // that are recurrent in the loop, and substitute the exit values from the
348 // loop into any instructions outside of the loop that use the final values of
349 // the current expressions.
351 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
352 RewriteLoopExitValues(L
, BackedgeTakenCount
, Rewriter
);
354 // Compute the type of the largest recurrence expression, and decide whether
355 // a canonical induction variable should be inserted.
356 const Type
*LargestType
= 0;
357 bool NeedCannIV
= false;
358 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
359 LargestType
= BackedgeTakenCount
->getType();
360 LargestType
= SE
->getEffectiveSCEVType(LargestType
);
361 // If we have a known trip count and a single exit block, we'll be
362 // rewriting the loop exit test condition below, which requires a
363 // canonical induction variable.
367 for (unsigned i
= 0, e
= IU
->StrideOrder
.size(); i
!= e
; ++i
) {
368 const SCEV
*Stride
= IU
->StrideOrder
[i
];
369 const Type
*Ty
= SE
->getEffectiveSCEVType(Stride
->getType());
371 SE
->getTypeSizeInBits(Ty
) >
372 SE
->getTypeSizeInBits(LargestType
))
375 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
376 IU
->IVUsesByStride
.find(IU
->StrideOrder
[i
]);
377 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
379 if (!SI
->second
->Users
.empty())
383 // Now that we know the largest of of the induction variable expressions
384 // in this loop, insert a canonical induction variable of the largest size.
387 // Check to see if the loop already has a canonical-looking induction
388 // variable. If one is present and it's wider than the planned canonical
389 // induction variable, temporarily remove it, so that the Rewriter
390 // doesn't attempt to reuse it.
391 PHINode
*OldCannIV
= L
->getCanonicalInductionVariable();
393 if (SE
->getTypeSizeInBits(OldCannIV
->getType()) >
394 SE
->getTypeSizeInBits(LargestType
))
395 OldCannIV
->removeFromParent();
400 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
, LargestType
);
404 DOUT
<< "INDVARS: New CanIV: " << *IndVar
;
406 // Now that the official induction variable is established, reinsert
407 // the old canonical-looking variable after it so that the IR remains
408 // consistent. It will be deleted as part of the dead-PHI deletion at
409 // the end of the pass.
411 OldCannIV
->insertAfter(cast
<Instruction
>(IndVar
));
414 // If we have a trip count expression, rewrite the loop's exit condition
415 // using it. We can currently only handle loops with a single exit.
416 ICmpInst
*NewICmp
= 0;
417 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) && ExitingBlock
) {
419 "LinearFunctionTestReplace requires a canonical induction variable");
420 // Can't rewrite non-branch yet.
421 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
422 NewICmp
= LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
423 ExitingBlock
, BI
, Rewriter
);
426 // Rewrite IV-derived expressions. Clears the rewriter cache.
427 RewriteIVExpressions(L
, LargestType
, Rewriter
);
429 // The Rewriter may not be used from this point on.
431 // Loop-invariant instructions in the preheader that aren't used in the
432 // loop may be sunk below the loop to reduce register pressure.
433 SinkUnusedInvariants(L
);
435 // For completeness, inform IVUsers of the IV use in the newly-created
436 // loop exit test instruction.
438 IU
->AddUsersIfInteresting(cast
<Instruction
>(NewICmp
->getOperand(0)));
440 // Clean up dead instructions.
441 DeleteDeadPHIs(L
->getHeader());
442 // Check a post-condition.
443 assert(L
->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
447 void IndVarSimplify::RewriteIVExpressions(Loop
*L
, const Type
*LargestType
,
448 SCEVExpander
&Rewriter
) {
449 SmallVector
<WeakVH
, 16> DeadInsts
;
451 // Rewrite all induction variable expressions in terms of the canonical
452 // induction variable.
454 // If there were induction variables of other sizes or offsets, manually
455 // add the offsets to the primary induction variable and cast, avoiding
456 // the need for the code evaluation methods to insert induction variables
457 // of different sizes.
458 for (unsigned i
= 0, e
= IU
->StrideOrder
.size(); i
!= e
; ++i
) {
459 const SCEV
*Stride
= IU
->StrideOrder
[i
];
461 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
462 IU
->IVUsesByStride
.find(IU
->StrideOrder
[i
]);
463 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
464 ilist
<IVStrideUse
> &List
= SI
->second
->Users
;
465 for (ilist
<IVStrideUse
>::iterator UI
= List
.begin(),
466 E
= List
.end(); UI
!= E
; ++UI
) {
467 Value
*Op
= UI
->getOperandValToReplace();
468 const Type
*UseTy
= Op
->getType();
469 Instruction
*User
= UI
->getUser();
471 // Compute the final addrec to expand into code.
472 const SCEV
*AR
= IU
->getReplacementExpr(*UI
);
474 // FIXME: It is an extremely bad idea to indvar substitute anything more
475 // complex than affine induction variables. Doing so will put expensive
476 // polynomial evaluations inside of the loop, and the str reduction pass
477 // currently can only reduce affine polynomials. For now just disable
478 // indvar subst on anything more complex than an affine addrec, unless
479 // it can be expanded to a trivial value.
480 if (!AR
->isLoopInvariant(L
) && !Stride
->isLoopInvariant(L
))
483 // Determine the insertion point for this user. By default, insert
484 // immediately before the user. The SCEVExpander class will automatically
485 // hoist loop invariants out of the loop. For PHI nodes, there may be
486 // multiple uses, so compute the nearest common dominator for the
488 Instruction
*InsertPt
= User
;
489 if (PHINode
*PHI
= dyn_cast
<PHINode
>(InsertPt
))
490 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
)
491 if (PHI
->getIncomingValue(i
) == Op
) {
492 if (InsertPt
== User
)
493 InsertPt
= PHI
->getIncomingBlock(i
)->getTerminator();
496 DT
->findNearestCommonDominator(InsertPt
->getParent(),
497 PHI
->getIncomingBlock(i
))
501 // Now expand it into actual Instructions and patch it into place.
502 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, UseTy
, InsertPt
);
504 // Patch the new value into place.
506 NewVal
->takeName(Op
);
507 User
->replaceUsesOfWith(Op
, NewVal
);
508 UI
->setOperandValToReplace(NewVal
);
509 DOUT
<< "INDVARS: Rewrote IV '" << *AR
<< "' " << *Op
510 << " into = " << *NewVal
<< "\n";
514 // The old value may be dead now.
515 DeadInsts
.push_back(Op
);
519 // Clear the rewriter cache, because values that are in the rewriter's cache
520 // can be deleted in the loop below, causing the AssertingVH in the cache to
523 // Now that we're done iterating through lists, clean up any instructions
524 // which are now dead.
525 while (!DeadInsts
.empty()) {
526 Instruction
*Inst
= dyn_cast_or_null
<Instruction
>(DeadInsts
.pop_back_val());
528 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
532 /// If there's a single exit block, sink any loop-invariant values that
533 /// were defined in the preheader but not used inside the loop into the
534 /// exit block to reduce register pressure in the loop.
535 void IndVarSimplify::SinkUnusedInvariants(Loop
*L
) {
536 BasicBlock
*ExitBlock
= L
->getExitBlock();
537 if (!ExitBlock
) return;
539 Instruction
*InsertPt
= ExitBlock
->getFirstNonPHI();
540 BasicBlock
*Preheader
= L
->getLoopPreheader();
541 BasicBlock::iterator I
= Preheader
->getTerminator();
542 while (I
!= Preheader
->begin()) {
544 // New instructions were inserted at the end of the preheader.
547 // Don't move instructions which might have side effects, since the side
548 // effects need to complete before instructions inside the loop. Also
549 // don't move instructions which might read memory, since the loop may
550 // modify memory. Note that it's okay if the instruction might have
551 // undefined behavior: LoopSimplify guarantees that the preheader
552 // dominates the exit block.
553 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
555 // Determine if there is a use in or before the loop (direct or
557 bool UsedInLoop
= false;
558 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
560 BasicBlock
*UseBB
= cast
<Instruction
>(UI
)->getParent();
561 if (PHINode
*P
= dyn_cast
<PHINode
>(UI
)) {
563 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo());
564 UseBB
= P
->getIncomingBlock(i
);
566 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
571 // If there is, the def must remain in the preheader.
574 // Otherwise, sink it to the exit block.
575 Instruction
*ToMove
= I
;
577 if (I
!= Preheader
->begin())
581 ToMove
->moveBefore(InsertPt
);
588 /// Return true if it is OK to use SIToFPInst for an inducation variable
589 /// with given inital and exit values.
590 static bool useSIToFPInst(ConstantFP
&InitV
, ConstantFP
&ExitV
,
591 uint64_t intIV
, uint64_t intEV
) {
593 if (InitV
.getValueAPF().isNegative() || ExitV
.getValueAPF().isNegative())
596 // If the iteration range can be handled by SIToFPInst then use it.
597 APInt Max
= APInt::getSignedMaxValue(32);
598 if (Max
.getZExtValue() > static_cast<uint64_t>(abs64(intEV
- intIV
)))
604 /// convertToInt - Convert APF to an integer, if possible.
605 static bool convertToInt(const APFloat
&APF
, uint64_t *intVal
) {
607 bool isExact
= false;
608 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
610 if (APF
.convertToInteger(intVal
, 32, APF
.isNegative(),
611 APFloat::rmTowardZero
, &isExact
)
620 /// HandleFloatingPointIV - If the loop has floating induction variable
621 /// then insert corresponding integer induction variable if possible.
623 /// for(double i = 0; i < 10000; ++i)
625 /// is converted into
626 /// for(int i = 0; i < 10000; ++i)
629 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PH
) {
631 unsigned IncomingEdge
= L
->contains(PH
->getIncomingBlock(0));
632 unsigned BackEdge
= IncomingEdge
^1;
634 // Check incoming value.
635 ConstantFP
*InitValue
= dyn_cast
<ConstantFP
>(PH
->getIncomingValue(IncomingEdge
));
636 if (!InitValue
) return;
637 uint64_t newInitValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
638 if (!convertToInt(InitValue
->getValueAPF(), &newInitValue
))
641 // Check IV increment. Reject this PH if increement operation is not
642 // an add or increment value can not be represented by an integer.
643 BinaryOperator
*Incr
=
644 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(BackEdge
));
646 if (Incr
->getOpcode() != Instruction::FAdd
) return;
647 ConstantFP
*IncrValue
= NULL
;
648 unsigned IncrVIndex
= 1;
649 if (Incr
->getOperand(1) == PH
)
651 IncrValue
= dyn_cast
<ConstantFP
>(Incr
->getOperand(IncrVIndex
));
652 if (!IncrValue
) return;
653 uint64_t newIncrValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
654 if (!convertToInt(IncrValue
->getValueAPF(), &newIncrValue
))
657 // Check Incr uses. One user is PH and the other users is exit condition used
658 // by the conditional terminator.
659 Value::use_iterator IncrUse
= Incr
->use_begin();
660 Instruction
*U1
= cast
<Instruction
>(IncrUse
++);
661 if (IncrUse
== Incr
->use_end()) return;
662 Instruction
*U2
= cast
<Instruction
>(IncrUse
++);
663 if (IncrUse
!= Incr
->use_end()) return;
665 // Find exit condition.
666 FCmpInst
*EC
= dyn_cast
<FCmpInst
>(U1
);
668 EC
= dyn_cast
<FCmpInst
>(U2
);
671 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(EC
->getParent()->getTerminator())) {
672 if (!BI
->isConditional()) return;
673 if (BI
->getCondition() != EC
) return;
676 // Find exit value. If exit value can not be represented as an interger then
677 // do not handle this floating point PH.
678 ConstantFP
*EV
= NULL
;
679 unsigned EVIndex
= 1;
680 if (EC
->getOperand(1) == Incr
)
682 EV
= dyn_cast
<ConstantFP
>(EC
->getOperand(EVIndex
));
684 uint64_t intEV
= Type::Int32Ty
->getPrimitiveSizeInBits();
685 if (!convertToInt(EV
->getValueAPF(), &intEV
))
688 // Find new predicate for integer comparison.
689 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
690 switch (EC
->getPredicate()) {
691 case CmpInst::FCMP_OEQ
:
692 case CmpInst::FCMP_UEQ
:
693 NewPred
= CmpInst::ICMP_EQ
;
695 case CmpInst::FCMP_OGT
:
696 case CmpInst::FCMP_UGT
:
697 NewPred
= CmpInst::ICMP_UGT
;
699 case CmpInst::FCMP_OGE
:
700 case CmpInst::FCMP_UGE
:
701 NewPred
= CmpInst::ICMP_UGE
;
703 case CmpInst::FCMP_OLT
:
704 case CmpInst::FCMP_ULT
:
705 NewPred
= CmpInst::ICMP_ULT
;
707 case CmpInst::FCMP_OLE
:
708 case CmpInst::FCMP_ULE
:
709 NewPred
= CmpInst::ICMP_ULE
;
714 if (NewPred
== CmpInst::BAD_ICMP_PREDICATE
) return;
716 // Insert new integer induction variable.
717 PHINode
*NewPHI
= PHINode::Create(Type::Int32Ty
,
718 PH
->getName()+".int", PH
);
719 NewPHI
->addIncoming(ConstantInt::get(Type::Int32Ty
, newInitValue
),
720 PH
->getIncomingBlock(IncomingEdge
));
722 Value
*NewAdd
= BinaryOperator::CreateAdd(NewPHI
,
723 ConstantInt::get(Type::Int32Ty
,
725 Incr
->getName()+".int", Incr
);
726 NewPHI
->addIncoming(NewAdd
, PH
->getIncomingBlock(BackEdge
));
728 // The back edge is edge 1 of newPHI, whatever it may have been in the
730 ConstantInt
*NewEV
= ConstantInt::get(Type::Int32Ty
, intEV
);
731 Value
*LHS
= (EVIndex
== 1 ? NewPHI
->getIncomingValue(1) : NewEV
);
732 Value
*RHS
= (EVIndex
== 1 ? NewEV
: NewPHI
->getIncomingValue(1));
733 ICmpInst
*NewEC
= new ICmpInst(EC
->getParent()->getTerminator(),
734 NewPred
, LHS
, RHS
, EC
->getName());
736 // In the following deltions, PH may become dead and may be deleted.
737 // Use a WeakVH to observe whether this happens.
740 // Delete old, floating point, exit comparision instruction.
742 EC
->replaceAllUsesWith(NewEC
);
743 RecursivelyDeleteTriviallyDeadInstructions(EC
);
745 // Delete old, floating point, increment instruction.
746 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
747 RecursivelyDeleteTriviallyDeadInstructions(Incr
);
749 // Replace floating induction variable, if it isn't already deleted.
750 // Give SIToFPInst preference over UIToFPInst because it is faster on
751 // platforms that are widely used.
752 if (WeakPH
&& !PH
->use_empty()) {
753 if (useSIToFPInst(*InitValue
, *EV
, newInitValue
, intEV
)) {
754 SIToFPInst
*Conv
= new SIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
755 PH
->getParent()->getFirstNonPHI());
756 PH
->replaceAllUsesWith(Conv
);
758 UIToFPInst
*Conv
= new UIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
759 PH
->getParent()->getFirstNonPHI());
760 PH
->replaceAllUsesWith(Conv
);
762 RecursivelyDeleteTriviallyDeadInstructions(PH
);
765 // Add a new IVUsers entry for the newly-created integer PHI.
766 IU
->AddUsersIfInteresting(NewPHI
);