1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include "llvm/Support/raw_ostream.h"
35 STATISTIC(NumThreads
, "Number of jumps threaded");
36 STATISTIC(NumFolds
, "Number of terminators folded");
38 static cl::opt
<unsigned>
39 Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden
);
44 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
50 /// An example of when this can occur is code like this:
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
60 class VISIBILITY_HIDDEN JumpThreading
: public FunctionPass
{
63 SmallPtrSet
<BasicBlock
*, 16> LoopHeaders
;
65 SmallSet
<AssertingVH
<BasicBlock
>, 16> LoopHeaders
;
68 static char ID
; // Pass identification
69 JumpThreading() : FunctionPass(&ID
) {}
71 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
74 bool runOnFunction(Function
&F
);
75 void FindLoopHeaders(Function
&F
);
77 bool ProcessBlock(BasicBlock
*BB
);
78 bool ThreadEdge(BasicBlock
*BB
, BasicBlock
*PredBB
, BasicBlock
*SuccBB
,
79 unsigned JumpThreadCost
);
80 BasicBlock
*FactorCommonPHIPreds(PHINode
*PN
, Value
*Val
);
81 bool ProcessBranchOnDuplicateCond(BasicBlock
*PredBB
, BasicBlock
*DestBB
);
82 bool ProcessSwitchOnDuplicateCond(BasicBlock
*PredBB
, BasicBlock
*DestBB
);
84 bool ProcessJumpOnPHI(PHINode
*PN
);
85 bool ProcessBranchOnLogical(Value
*V
, BasicBlock
*BB
, bool isAnd
);
86 bool ProcessBranchOnCompare(CmpInst
*Cmp
, BasicBlock
*BB
);
88 bool SimplifyPartiallyRedundantLoad(LoadInst
*LI
);
92 char JumpThreading::ID
= 0;
93 static RegisterPass
<JumpThreading
>
94 X("jump-threading", "Jump Threading");
96 // Public interface to the Jump Threading pass
97 FunctionPass
*llvm::createJumpThreadingPass() { return new JumpThreading(); }
99 /// runOnFunction - Top level algorithm.
101 bool JumpThreading::runOnFunction(Function
&F
) {
102 DEBUG(errs() << "Jump threading on function '" << F
.getName() << "'\n");
103 TD
= getAnalysisIfAvailable
<TargetData
>();
107 bool AnotherIteration
= true, EverChanged
= false;
108 while (AnotherIteration
) {
109 AnotherIteration
= false;
110 bool Changed
= false;
111 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
;) {
113 while (ProcessBlock(BB
))
118 // If the block is trivially dead, zap it. This eliminates the successor
119 // edges which simplifies the CFG.
120 if (pred_begin(BB
) == pred_end(BB
) &&
121 BB
!= &BB
->getParent()->getEntryBlock()) {
122 DEBUG(errs() << " JT: Deleting dead block '" << BB
->getName()
123 << "' with terminator: " << *BB
->getTerminator());
124 LoopHeaders
.erase(BB
);
129 AnotherIteration
= Changed
;
130 EverChanged
|= Changed
;
137 /// FindLoopHeaders - We do not want jump threading to turn proper loop
138 /// structures into irreducible loops. Doing this breaks up the loop nesting
139 /// hierarchy and pessimizes later transformations. To prevent this from
140 /// happening, we first have to find the loop headers. Here we approximate this
141 /// by finding targets of backedges in the CFG.
143 /// Note that there definitely are cases when we want to allow threading of
144 /// edges across a loop header. For example, threading a jump from outside the
145 /// loop (the preheader) to an exit block of the loop is definitely profitable.
146 /// It is also almost always profitable to thread backedges from within the loop
147 /// to exit blocks, and is often profitable to thread backedges to other blocks
148 /// within the loop (forming a nested loop). This simple analysis is not rich
149 /// enough to track all of these properties and keep it up-to-date as the CFG
150 /// mutates, so we don't allow any of these transformations.
152 void JumpThreading::FindLoopHeaders(Function
&F
) {
153 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
154 FindFunctionBackedges(F
, Edges
);
156 for (unsigned i
= 0, e
= Edges
.size(); i
!= e
; ++i
)
157 LoopHeaders
.insert(const_cast<BasicBlock
*>(Edges
[i
].second
));
161 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
162 /// value for the PHI, factor them together so we get one block to thread for
164 /// This is important for things like "phi i1 [true, true, false, true, x]"
165 /// where we only need to clone the block for the true blocks once.
167 BasicBlock
*JumpThreading::FactorCommonPHIPreds(PHINode
*PN
, Value
*Val
) {
168 SmallVector
<BasicBlock
*, 16> CommonPreds
;
169 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
170 if (PN
->getIncomingValue(i
) == Val
)
171 CommonPreds
.push_back(PN
->getIncomingBlock(i
));
173 if (CommonPreds
.size() == 1)
174 return CommonPreds
[0];
176 DEBUG(errs() << " Factoring out " << CommonPreds
.size()
177 << " common predecessors.\n");
178 return SplitBlockPredecessors(PN
->getParent(),
179 &CommonPreds
[0], CommonPreds
.size(),
184 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
185 /// thread across it.
186 static unsigned getJumpThreadDuplicationCost(const BasicBlock
*BB
) {
187 /// Ignore PHI nodes, these will be flattened when duplication happens.
188 BasicBlock::const_iterator I
= BB
->getFirstNonPHI();
190 // Sum up the cost of each instruction until we get to the terminator. Don't
191 // include the terminator because the copy won't include it.
193 for (; !isa
<TerminatorInst
>(I
); ++I
) {
194 // Debugger intrinsics don't incur code size.
195 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
197 // If this is a pointer->pointer bitcast, it is free.
198 if (isa
<BitCastInst
>(I
) && isa
<PointerType
>(I
->getType()))
201 // All other instructions count for at least one unit.
204 // Calls are more expensive. If they are non-intrinsic calls, we model them
205 // as having cost of 4. If they are a non-vector intrinsic, we model them
206 // as having cost of 2 total, and if they are a vector intrinsic, we model
207 // them as having cost 1.
208 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
209 if (!isa
<IntrinsicInst
>(CI
))
211 else if (!isa
<VectorType
>(CI
->getType()))
216 // Threading through a switch statement is particularly profitable. If this
217 // block ends in a switch, decrease its cost to make it more likely to happen.
218 if (isa
<SwitchInst
>(I
))
219 Size
= Size
> 6 ? Size
-6 : 0;
224 /// ProcessBlock - If there are any predecessors whose control can be threaded
225 /// through to a successor, transform them now.
226 bool JumpThreading::ProcessBlock(BasicBlock
*BB
) {
227 // If this block has a single predecessor, and if that pred has a single
228 // successor, merge the blocks. This encourages recursive jump threading
229 // because now the condition in this block can be threaded through
230 // predecessors of our predecessor block.
231 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor())
232 if (SinglePred
->getTerminator()->getNumSuccessors() == 1 &&
234 // If SinglePred was a loop header, BB becomes one.
235 if (LoopHeaders
.erase(SinglePred
))
236 LoopHeaders
.insert(BB
);
238 // Remember if SinglePred was the entry block of the function. If so, we
239 // will need to move BB back to the entry position.
240 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
241 MergeBasicBlockIntoOnlyPred(BB
);
243 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
244 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
248 // See if this block ends with a branch or switch. If so, see if the
249 // condition is a phi node. If so, and if an entry of the phi node is a
250 // constant, we can thread the block.
252 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
253 // Can't thread an unconditional jump.
254 if (BI
->isUnconditional()) return false;
255 Condition
= BI
->getCondition();
256 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
257 Condition
= SI
->getCondition();
259 return false; // Must be an invoke.
261 // If the terminator of this block is branching on a constant, simplify the
262 // terminator to an unconditional branch. This can occur due to threading in
264 if (isa
<ConstantInt
>(Condition
)) {
265 DEBUG(errs() << " In block '" << BB
->getName()
266 << "' folding terminator: " << *BB
->getTerminator());
268 ConstantFoldTerminator(BB
);
272 // If the terminator is branching on an undef, we can pick any of the
273 // successors to branch to. Since this is arbitrary, we pick the successor
274 // with the fewest predecessors. This should reduce the in-degree of the
276 if (isa
<UndefValue
>(Condition
)) {
277 TerminatorInst
*BBTerm
= BB
->getTerminator();
278 unsigned MinSucc
= 0;
279 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
280 // Compute the successor with the minimum number of predecessors.
281 unsigned MinNumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
282 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
283 TestBB
= BBTerm
->getSuccessor(i
);
284 unsigned NumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
285 if (NumPreds
< MinNumPreds
)
289 // Fold the branch/switch.
290 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
291 if (i
== MinSucc
) continue;
292 BBTerm
->getSuccessor(i
)->removePredecessor(BB
);
295 DEBUG(errs() << " In block '" << BB
->getName()
296 << "' folding undef terminator: " << *BBTerm
);
297 BranchInst::Create(BBTerm
->getSuccessor(MinSucc
), BBTerm
);
298 BBTerm
->eraseFromParent();
302 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
304 // If the condition is an instruction defined in another block, see if a
305 // predecessor has the same condition:
309 if (!Condition
->hasOneUse() && // Multiple uses.
310 (CondInst
== 0 || CondInst
->getParent() != BB
)) { // Non-local definition.
311 pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
);
312 if (isa
<BranchInst
>(BB
->getTerminator())) {
313 for (; PI
!= E
; ++PI
)
314 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
315 if (PBI
->isConditional() && PBI
->getCondition() == Condition
&&
316 ProcessBranchOnDuplicateCond(*PI
, BB
))
319 assert(isa
<SwitchInst
>(BB
->getTerminator()) && "Unknown jump terminator");
320 for (; PI
!= E
; ++PI
)
321 if (SwitchInst
*PSI
= dyn_cast
<SwitchInst
>((*PI
)->getTerminator()))
322 if (PSI
->getCondition() == Condition
&&
323 ProcessSwitchOnDuplicateCond(*PI
, BB
))
328 // All the rest of our checks depend on the condition being an instruction.
332 // See if this is a phi node in the current block.
333 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
334 if (PN
->getParent() == BB
)
335 return ProcessJumpOnPHI(PN
);
337 // If this is a conditional branch whose condition is and/or of a phi, try to
339 if ((CondInst
->getOpcode() == Instruction::And
||
340 CondInst
->getOpcode() == Instruction::Or
) &&
341 isa
<BranchInst
>(BB
->getTerminator()) &&
342 ProcessBranchOnLogical(CondInst
, BB
,
343 CondInst
->getOpcode() == Instruction::And
))
346 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
347 if (isa
<PHINode
>(CondCmp
->getOperand(0))) {
348 // If we have "br (phi != 42)" and the phi node has any constant values
349 // as operands, we can thread through this block.
351 // If we have "br (cmp phi, x)" and the phi node contains x such that the
352 // comparison uniquely identifies the branch target, we can thread
353 // through this block.
355 if (ProcessBranchOnCompare(CondCmp
, BB
))
359 // If we have a comparison, loop over the predecessors to see if there is
360 // a condition with the same value.
361 pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
);
362 for (; PI
!= E
; ++PI
)
363 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
364 if (PBI
->isConditional() && *PI
!= BB
) {
365 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(PBI
->getCondition())) {
366 if (CI
->getOperand(0) == CondCmp
->getOperand(0) &&
367 CI
->getOperand(1) == CondCmp
->getOperand(1) &&
368 CI
->getPredicate() == CondCmp
->getPredicate()) {
369 // TODO: Could handle things like (x != 4) --> (x == 17)
370 if (ProcessBranchOnDuplicateCond(*PI
, BB
))
377 // Check for some cases that are worth simplifying. Right now we want to look
378 // for loads that are used by a switch or by the condition for the branch. If
379 // we see one, check to see if it's partially redundant. If so, insert a PHI
380 // which can then be used to thread the values.
382 // This is particularly important because reg2mem inserts loads and stores all
383 // over the place, and this blocks jump threading if we don't zap them.
384 Value
*SimplifyValue
= CondInst
;
385 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
386 if (isa
<Constant
>(CondCmp
->getOperand(1)))
387 SimplifyValue
= CondCmp
->getOperand(0);
389 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SimplifyValue
))
390 if (SimplifyPartiallyRedundantLoad(LI
))
393 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
394 // "(X == 4)" thread through this block.
399 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
400 /// block that jump on exactly the same condition. This means that we almost
401 /// always know the direction of the edge in the DESTBB:
403 /// br COND, DESTBB, BBY
405 /// br COND, BBZ, BBW
407 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
408 /// in DESTBB, we have to thread over it.
409 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock
*PredBB
,
411 BranchInst
*PredBI
= cast
<BranchInst
>(PredBB
->getTerminator());
413 // If both successors of PredBB go to DESTBB, we don't know anything. We can
414 // fold the branch to an unconditional one, which allows other recursive
417 if (PredBI
->getSuccessor(1) != BB
)
419 else if (PredBI
->getSuccessor(0) != BB
)
422 DEBUG(errs() << " In block '" << PredBB
->getName()
423 << "' folding terminator: " << *PredBB
->getTerminator());
425 ConstantFoldTerminator(PredBB
);
429 BranchInst
*DestBI
= cast
<BranchInst
>(BB
->getTerminator());
431 // If the dest block has one predecessor, just fix the branch condition to a
432 // constant and fold it.
433 if (BB
->getSinglePredecessor()) {
434 DEBUG(errs() << " In block '" << BB
->getName()
435 << "' folding condition to '" << BranchDir
<< "': "
436 << *BB
->getTerminator());
438 DestBI
->setCondition(ConstantInt::get(Type::Int1Ty
, BranchDir
));
439 ConstantFoldTerminator(BB
);
443 // Otherwise we need to thread from PredBB to DestBB's successor which
444 // involves code duplication. Check to see if it is worth it.
445 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
446 if (JumpThreadCost
> Threshold
) {
447 DEBUG(errs() << " Not threading BB '" << BB
->getName()
448 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
452 // Next, figure out which successor we are threading to.
453 BasicBlock
*SuccBB
= DestBI
->getSuccessor(!BranchDir
);
455 // Ok, try to thread it!
456 return ThreadEdge(BB
, PredBB
, SuccBB
, JumpThreadCost
);
459 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
460 /// block that switch on exactly the same condition. This means that we almost
461 /// always know the direction of the edge in the DESTBB:
463 /// switch COND [... DESTBB, BBY ... ]
465 /// switch COND [... BBZ, BBW ]
467 /// Optimizing switches like this is very important, because simplifycfg builds
468 /// switches out of repeated 'if' conditions.
469 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock
*PredBB
,
470 BasicBlock
*DestBB
) {
471 // Can't thread edge to self.
472 if (PredBB
== DestBB
)
476 SwitchInst
*PredSI
= cast
<SwitchInst
>(PredBB
->getTerminator());
477 SwitchInst
*DestSI
= cast
<SwitchInst
>(DestBB
->getTerminator());
479 // There are a variety of optimizations that we can potentially do on these
480 // blocks: we order them from most to least preferable.
482 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
483 // directly to their destination. This does not introduce *any* code size
484 // growth. Skip debug info first.
485 BasicBlock::iterator BBI
= DestBB
->begin();
486 while (isa
<DbgInfoIntrinsic
>(BBI
))
489 // FIXME: Thread if it just contains a PHI.
490 if (isa
<SwitchInst
>(BBI
)) {
491 bool MadeChange
= false;
492 // Ignore the default edge for now.
493 for (unsigned i
= 1, e
= DestSI
->getNumSuccessors(); i
!= e
; ++i
) {
494 ConstantInt
*DestVal
= DestSI
->getCaseValue(i
);
495 BasicBlock
*DestSucc
= DestSI
->getSuccessor(i
);
497 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
498 // PredSI has an explicit case for it. If so, forward. If it is covered
499 // by the default case, we can't update PredSI.
500 unsigned PredCase
= PredSI
->findCaseValue(DestVal
);
501 if (PredCase
== 0) continue;
503 // If PredSI doesn't go to DestBB on this value, then it won't reach the
504 // case on this condition.
505 if (PredSI
->getSuccessor(PredCase
) != DestBB
&&
506 DestSI
->getSuccessor(i
) != DestBB
)
509 // Otherwise, we're safe to make the change. Make sure that the edge from
510 // DestSI to DestSucc is not critical and has no PHI nodes.
511 DEBUG(errs() << "FORWARDING EDGE " << *DestVal
<< " FROM: " << *PredSI
);
512 DEBUG(errs() << "THROUGH: " << *DestSI
);
514 // If the destination has PHI nodes, just split the edge for updating
516 if (isa
<PHINode
>(DestSucc
->begin()) && !DestSucc
->getSinglePredecessor()){
517 SplitCriticalEdge(DestSI
, i
, this);
518 DestSucc
= DestSI
->getSuccessor(i
);
520 FoldSingleEntryPHINodes(DestSucc
);
521 PredSI
->setSuccessor(PredCase
, DestSucc
);
533 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
534 /// load instruction, eliminate it by replacing it with a PHI node. This is an
535 /// important optimization that encourages jump threading, and needs to be run
536 /// interlaced with other jump threading tasks.
537 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst
*LI
) {
538 // Don't hack volatile loads.
539 if (LI
->isVolatile()) return false;
541 // If the load is defined in a block with exactly one predecessor, it can't be
542 // partially redundant.
543 BasicBlock
*LoadBB
= LI
->getParent();
544 if (LoadBB
->getSinglePredecessor())
547 Value
*LoadedPtr
= LI
->getOperand(0);
549 // If the loaded operand is defined in the LoadBB, it can't be available.
550 // FIXME: Could do PHI translation, that would be fun :)
551 if (Instruction
*PtrOp
= dyn_cast
<Instruction
>(LoadedPtr
))
552 if (PtrOp
->getParent() == LoadBB
)
555 // Scan a few instructions up from the load, to see if it is obviously live at
556 // the entry to its block.
557 BasicBlock::iterator BBIt
= LI
;
559 if (Value
*AvailableVal
= FindAvailableLoadedValue(LoadedPtr
, LoadBB
,
561 // If the value if the load is locally available within the block, just use
562 // it. This frequently occurs for reg2mem'd allocas.
563 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
565 // If the returned value is the load itself, replace with an undef. This can
566 // only happen in dead loops.
567 if (AvailableVal
== LI
) AvailableVal
= UndefValue::get(LI
->getType());
568 LI
->replaceAllUsesWith(AvailableVal
);
569 LI
->eraseFromParent();
573 // Otherwise, if we scanned the whole block and got to the top of the block,
574 // we know the block is locally transparent to the load. If not, something
575 // might clobber its value.
576 if (BBIt
!= LoadBB
->begin())
580 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
581 typedef SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> AvailablePredsTy
;
582 AvailablePredsTy AvailablePreds
;
583 BasicBlock
*OneUnavailablePred
= 0;
585 // If we got here, the loaded value is transparent through to the start of the
586 // block. Check to see if it is available in any of the predecessor blocks.
587 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
589 BasicBlock
*PredBB
= *PI
;
591 // If we already scanned this predecessor, skip it.
592 if (!PredsScanned
.insert(PredBB
))
595 // Scan the predecessor to see if the value is available in the pred.
596 BBIt
= PredBB
->end();
597 Value
*PredAvailable
= FindAvailableLoadedValue(LoadedPtr
, PredBB
, BBIt
, 6);
598 if (!PredAvailable
) {
599 OneUnavailablePred
= PredBB
;
603 // If so, this load is partially redundant. Remember this info so that we
604 // can create a PHI node.
605 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
608 // If the loaded value isn't available in any predecessor, it isn't partially
610 if (AvailablePreds
.empty()) return false;
612 // Okay, the loaded value is available in at least one (and maybe all!)
613 // predecessors. If the value is unavailable in more than one unique
614 // predecessor, we want to insert a merge block for those common predecessors.
615 // This ensures that we only have to insert one reload, thus not increasing
617 BasicBlock
*UnavailablePred
= 0;
619 // If there is exactly one predecessor where the value is unavailable, the
620 // already computed 'OneUnavailablePred' block is it. If it ends in an
621 // unconditional branch, we know that it isn't a critical edge.
622 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
623 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
624 UnavailablePred
= OneUnavailablePred
;
625 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
626 // Otherwise, we had multiple unavailable predecessors or we had a critical
627 // edge from the one.
628 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
629 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
631 for (unsigned i
= 0, e
= AvailablePreds
.size(); i
!= e
; ++i
)
632 AvailablePredSet
.insert(AvailablePreds
[i
].first
);
634 // Add all the unavailable predecessors to the PredsToSplit list.
635 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
637 if (!AvailablePredSet
.count(*PI
))
638 PredsToSplit
.push_back(*PI
);
640 // Split them out to their own block.
642 SplitBlockPredecessors(LoadBB
, &PredsToSplit
[0], PredsToSplit
.size(),
643 "thread-split", this);
646 // If the value isn't available in all predecessors, then there will be
647 // exactly one where it isn't available. Insert a load on that edge and add
648 // it to the AvailablePreds list.
649 if (UnavailablePred
) {
650 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
651 "Can't handle critical edge here!");
652 Value
*NewVal
= new LoadInst(LoadedPtr
, LI
->getName()+".pr",
653 UnavailablePred
->getTerminator());
654 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
657 // Now we know that each predecessor of this block has a value in
658 // AvailablePreds, sort them for efficient access as we're walking the preds.
659 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
661 // Create a PHI node at the start of the block for the PRE'd load value.
662 PHINode
*PN
= PHINode::Create(LI
->getType(), "", LoadBB
->begin());
665 // Insert new entries into the PHI for each predecessor. A single block may
666 // have multiple entries here.
667 for (pred_iterator PI
= pred_begin(LoadBB
), E
= pred_end(LoadBB
); PI
!= E
;
669 AvailablePredsTy::iterator I
=
670 std::lower_bound(AvailablePreds
.begin(), AvailablePreds
.end(),
671 std::make_pair(*PI
, (Value
*)0));
673 assert(I
!= AvailablePreds
.end() && I
->first
== *PI
&&
674 "Didn't find entry for predecessor!");
676 PN
->addIncoming(I
->second
, I
->first
);
679 //cerr << "PRE: " << *LI << *PN << "\n";
681 LI
->replaceAllUsesWith(PN
);
682 LI
->eraseFromParent();
688 /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
689 /// the current block. See if there are any simplifications we can do based on
690 /// inputs to the phi node.
692 bool JumpThreading::ProcessJumpOnPHI(PHINode
*PN
) {
693 // See if the phi node has any constant values. If so, we can determine where
694 // the corresponding predecessor will branch.
695 ConstantInt
*PredCst
= 0;
696 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
697 if ((PredCst
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))))
700 // If no incoming value has a constant, we don't know the destination of any
705 // See if the cost of duplicating this block is low enough.
706 BasicBlock
*BB
= PN
->getParent();
707 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
708 if (JumpThreadCost
> Threshold
) {
709 DEBUG(errs() << " Not threading BB '" << BB
->getName()
710 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
714 // If so, we can actually do this threading. Merge any common predecessors
715 // that will act the same.
716 BasicBlock
*PredBB
= FactorCommonPHIPreds(PN
, PredCst
);
718 // Next, figure out which successor we are threading to.
720 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator()))
721 SuccBB
= BI
->getSuccessor(PredCst
==
722 ConstantInt::getFalse(PredBB
->getContext()));
724 SwitchInst
*SI
= cast
<SwitchInst
>(BB
->getTerminator());
725 SuccBB
= SI
->getSuccessor(SI
->findCaseValue(PredCst
));
728 // Ok, try to thread it!
729 return ThreadEdge(BB
, PredBB
, SuccBB
, JumpThreadCost
);
732 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
733 /// whose condition is an AND/OR where one side is PN. If PN has constant
734 /// operands that permit us to evaluate the condition for some operand, thread
735 /// through the block. For example with:
736 /// br (and X, phi(Y, Z, false))
737 /// the predecessor corresponding to the 'false' will always jump to the false
738 /// destination of the branch.
740 bool JumpThreading::ProcessBranchOnLogical(Value
*V
, BasicBlock
*BB
,
742 // If this is a binary operator tree of the same AND/OR opcode, check the
744 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(V
))
745 if ((isAnd
&& BO
->getOpcode() == Instruction::And
) ||
746 (!isAnd
&& BO
->getOpcode() == Instruction::Or
)) {
747 if (ProcessBranchOnLogical(BO
->getOperand(0), BB
, isAnd
))
749 if (ProcessBranchOnLogical(BO
->getOperand(1), BB
, isAnd
))
753 // If this isn't a PHI node, we can't handle it.
754 PHINode
*PN
= dyn_cast
<PHINode
>(V
);
755 if (!PN
|| PN
->getParent() != BB
) return false;
757 // We can only do the simplification for phi nodes of 'false' with AND or
758 // 'true' with OR. See if we have any entries in the phi for this.
759 unsigned PredNo
= ~0U;
760 ConstantInt
*PredCst
= ConstantInt::get(Type::Int1Ty
, !isAnd
);
761 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
762 if (PN
->getIncomingValue(i
) == PredCst
) {
768 // If no match, bail out.
772 // See if the cost of duplicating this block is low enough.
773 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
774 if (JumpThreadCost
> Threshold
) {
775 DEBUG(errs() << " Not threading BB '" << BB
->getName()
776 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
780 // If so, we can actually do this threading. Merge any common predecessors
781 // that will act the same.
782 BasicBlock
*PredBB
= FactorCommonPHIPreds(PN
, PredCst
);
784 // Next, figure out which successor we are threading to. If this was an AND,
785 // the constant must be FALSE, and we must be targeting the 'false' block.
786 // If this is an OR, the constant must be TRUE, and we must be targeting the
788 BasicBlock
*SuccBB
= BB
->getTerminator()->getSuccessor(isAnd
);
790 // Ok, try to thread it!
791 return ThreadEdge(BB
, PredBB
, SuccBB
, JumpThreadCost
);
794 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
795 /// hand sides of the compare instruction, try to determine the result. If the
796 /// result can not be determined, a null pointer is returned.
797 static Constant
*GetResultOfComparison(CmpInst::Predicate pred
,
798 Value
*LHS
, Value
*RHS
,
799 LLVMContext
&Context
) {
800 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
801 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
802 return ConstantExpr::getCompare(pred
, CLHS
, CRHS
);
805 if (isa
<IntegerType
>(LHS
->getType()) || isa
<PointerType
>(LHS
->getType()))
806 return ICmpInst::isTrueWhenEqual(pred
) ?
807 ConstantInt::getTrue(Context
) : ConstantInt::getFalse(Context
);
812 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
813 /// node and a value. If we can identify when the comparison is true between
814 /// the phi inputs and the value, we can fold the compare for that edge and
815 /// thread through it.
816 bool JumpThreading::ProcessBranchOnCompare(CmpInst
*Cmp
, BasicBlock
*BB
) {
817 PHINode
*PN
= cast
<PHINode
>(Cmp
->getOperand(0));
818 Value
*RHS
= Cmp
->getOperand(1);
820 // If the phi isn't in the current block, an incoming edge to this block
821 // doesn't control the destination.
822 if (PN
->getParent() != BB
)
825 // We can do this simplification if any comparisons fold to true or false.
828 bool TrueDirection
= false;
829 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
830 PredVal
= PN
->getIncomingValue(i
);
832 Constant
*Res
= GetResultOfComparison(Cmp
->getPredicate(), PredVal
,
833 RHS
, Cmp
->getContext());
839 // If this folded to a constant expr, we can't do anything.
840 if (ConstantInt
*ResC
= dyn_cast
<ConstantInt
>(Res
)) {
841 TrueDirection
= ResC
->getZExtValue();
844 // If this folded to undef, just go the false way.
845 if (isa
<UndefValue
>(Res
)) {
846 TrueDirection
= false;
850 // Otherwise, we can't fold this input.
854 // If no match, bail out.
858 // See if the cost of duplicating this block is low enough.
859 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
860 if (JumpThreadCost
> Threshold
) {
861 DEBUG(errs() << " Not threading BB '" << BB
->getName()
862 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
866 // If so, we can actually do this threading. Merge any common predecessors
867 // that will act the same.
868 BasicBlock
*PredBB
= FactorCommonPHIPreds(PN
, PredVal
);
870 // Next, get our successor.
871 BasicBlock
*SuccBB
= BB
->getTerminator()->getSuccessor(!TrueDirection
);
873 // Ok, try to thread it!
874 return ThreadEdge(BB
, PredBB
, SuccBB
, JumpThreadCost
);
878 /// ThreadEdge - We have decided that it is safe and profitable to thread an
879 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
881 bool JumpThreading::ThreadEdge(BasicBlock
*BB
, BasicBlock
*PredBB
,
882 BasicBlock
*SuccBB
, unsigned JumpThreadCost
) {
884 // If threading to the same block as we come from, we would infinite loop.
886 DEBUG(errs() << " Not threading across BB '" << BB
->getName()
887 << "' - would thread to self!\n");
891 // If threading this would thread across a loop header, don't thread the edge.
892 // See the comments above FindLoopHeaders for justifications and caveats.
893 if (LoopHeaders
.count(BB
)) {
894 DEBUG(errs() << " Not threading from '" << PredBB
->getName()
895 << "' across loop header BB '" << BB
->getName()
896 << "' to dest BB '" << SuccBB
->getName()
897 << "' - it might create an irreducible loop!\n");
901 // And finally, do it!
902 DEBUG(errs() << " Threading edge from '" << PredBB
->getName() << "' to '"
903 << SuccBB
->getName() << "' with cost: " << JumpThreadCost
904 << ", across block:\n "
907 // Jump Threading can not update SSA properties correctly if the values
908 // defined in the duplicated block are used outside of the block itself. For
909 // this reason, we spill all values that are used outside of BB to the stack.
910 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
911 if (!I
->isUsedOutsideOfBlock(BB
))
914 // We found a use of I outside of BB. Create a new stack slot to
915 // break this inter-block usage pattern.
916 DemoteRegToStack(*I
);
919 // We are going to have to map operands from the original BB block to the new
920 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
921 // account for entry from PredBB.
922 DenseMap
<Instruction
*, Value
*> ValueMapping
;
925 BasicBlock::Create(BB
->getName()+".thread", BB
->getParent(), BB
);
926 NewBB
->moveAfter(PredBB
);
928 BasicBlock::iterator BI
= BB
->begin();
929 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
930 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
932 // Clone the non-phi instructions of BB into NewBB, keeping track of the
933 // mapping and using it to remap operands in the cloned instructions.
934 for (; !isa
<TerminatorInst
>(BI
); ++BI
) {
935 Instruction
*New
= BI
->clone(BI
->getContext());
936 New
->setName(BI
->getName());
937 NewBB
->getInstList().push_back(New
);
938 ValueMapping
[BI
] = New
;
940 // Remap operands to patch up intra-block references.
941 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
942 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
943 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
944 if (I
!= ValueMapping
.end())
945 New
->setOperand(i
, I
->second
);
949 // We didn't copy the terminator from BB over to NewBB, because there is now
950 // an unconditional jump to SuccBB. Insert the unconditional jump.
951 BranchInst::Create(SuccBB
, NewBB
);
953 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
954 // PHI nodes for NewBB now.
955 for (BasicBlock::iterator PNI
= SuccBB
->begin(); isa
<PHINode
>(PNI
); ++PNI
) {
956 PHINode
*PN
= cast
<PHINode
>(PNI
);
957 // Ok, we have a PHI node. Figure out what the incoming value was for the
959 Value
*IV
= PN
->getIncomingValueForBlock(BB
);
961 // Remap the value if necessary.
962 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
963 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
964 if (I
!= ValueMapping
.end())
967 PN
->addIncoming(IV
, NewBB
);
970 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
971 // NewBB instead of BB. This eliminates predecessors from BB, which requires
972 // us to simplify any PHI nodes in BB.
973 TerminatorInst
*PredTerm
= PredBB
->getTerminator();
974 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
975 if (PredTerm
->getSuccessor(i
) == BB
) {
976 BB
->removePredecessor(PredBB
);
977 PredTerm
->setSuccessor(i
, NewBB
);
980 // At this point, the IR is fully up to date and consistent. Do a quick scan
981 // over the new instructions and zap any that are constants or dead. This
982 // frequently happens because of phi translation.
984 for (BasicBlock::iterator E
= NewBB
->end(); BI
!= E
; ) {
985 Instruction
*Inst
= BI
++;
986 if (Constant
*C
= ConstantFoldInstruction(Inst
, BB
->getContext(), TD
)) {
987 Inst
->replaceAllUsesWith(C
);
988 Inst
->eraseFromParent();
992 RecursivelyDeleteTriviallyDeadInstructions(Inst
);