Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / JumpThreading.cpp
blob6125f8b939119f28a30d97de81ee5d7f8852236c
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include "llvm/Support/raw_ostream.h"
33 using namespace llvm;
35 STATISTIC(NumThreads, "Number of jumps threaded");
36 STATISTIC(NumFolds, "Number of terminators folded");
38 static cl::opt<unsigned>
39 Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
43 namespace {
44 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
60 class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
61 TargetData *TD;
62 #ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64 #else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66 #endif
67 public:
68 static char ID; // Pass identification
69 JumpThreading() : FunctionPass(&ID) {}
71 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74 bool runOnFunction(Function &F);
75 void FindLoopHeaders(Function &F);
77 bool ProcessBlock(BasicBlock *BB);
78 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
79 unsigned JumpThreadCost);
80 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
81 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
84 bool ProcessJumpOnPHI(PHINode *PN);
85 bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
86 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
88 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
92 char JumpThreading::ID = 0;
93 static RegisterPass<JumpThreading>
94 X("jump-threading", "Jump Threading");
96 // Public interface to the Jump Threading pass
97 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
99 /// runOnFunction - Top level algorithm.
101 bool JumpThreading::runOnFunction(Function &F) {
102 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
103 TD = getAnalysisIfAvailable<TargetData>();
105 FindLoopHeaders(F);
107 bool AnotherIteration = true, EverChanged = false;
108 while (AnotherIteration) {
109 AnotherIteration = false;
110 bool Changed = false;
111 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
112 BasicBlock *BB = I;
113 while (ProcessBlock(BB))
114 Changed = true;
116 ++I;
118 // If the block is trivially dead, zap it. This eliminates the successor
119 // edges which simplifies the CFG.
120 if (pred_begin(BB) == pred_end(BB) &&
121 BB != &BB->getParent()->getEntryBlock()) {
122 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
123 << "' with terminator: " << *BB->getTerminator());
124 LoopHeaders.erase(BB);
125 DeleteDeadBlock(BB);
126 Changed = true;
129 AnotherIteration = Changed;
130 EverChanged |= Changed;
133 LoopHeaders.clear();
134 return EverChanged;
137 /// FindLoopHeaders - We do not want jump threading to turn proper loop
138 /// structures into irreducible loops. Doing this breaks up the loop nesting
139 /// hierarchy and pessimizes later transformations. To prevent this from
140 /// happening, we first have to find the loop headers. Here we approximate this
141 /// by finding targets of backedges in the CFG.
143 /// Note that there definitely are cases when we want to allow threading of
144 /// edges across a loop header. For example, threading a jump from outside the
145 /// loop (the preheader) to an exit block of the loop is definitely profitable.
146 /// It is also almost always profitable to thread backedges from within the loop
147 /// to exit blocks, and is often profitable to thread backedges to other blocks
148 /// within the loop (forming a nested loop). This simple analysis is not rich
149 /// enough to track all of these properties and keep it up-to-date as the CFG
150 /// mutates, so we don't allow any of these transformations.
152 void JumpThreading::FindLoopHeaders(Function &F) {
153 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
154 FindFunctionBackedges(F, Edges);
156 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
157 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
161 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
162 /// value for the PHI, factor them together so we get one block to thread for
163 /// the whole group.
164 /// This is important for things like "phi i1 [true, true, false, true, x]"
165 /// where we only need to clone the block for the true blocks once.
167 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
168 SmallVector<BasicBlock*, 16> CommonPreds;
169 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
170 if (PN->getIncomingValue(i) == Val)
171 CommonPreds.push_back(PN->getIncomingBlock(i));
173 if (CommonPreds.size() == 1)
174 return CommonPreds[0];
176 DEBUG(errs() << " Factoring out " << CommonPreds.size()
177 << " common predecessors.\n");
178 return SplitBlockPredecessors(PN->getParent(),
179 &CommonPreds[0], CommonPreds.size(),
180 ".thr_comm", this);
184 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
185 /// thread across it.
186 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
187 /// Ignore PHI nodes, these will be flattened when duplication happens.
188 BasicBlock::const_iterator I = BB->getFirstNonPHI();
190 // Sum up the cost of each instruction until we get to the terminator. Don't
191 // include the terminator because the copy won't include it.
192 unsigned Size = 0;
193 for (; !isa<TerminatorInst>(I); ++I) {
194 // Debugger intrinsics don't incur code size.
195 if (isa<DbgInfoIntrinsic>(I)) continue;
197 // If this is a pointer->pointer bitcast, it is free.
198 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
199 continue;
201 // All other instructions count for at least one unit.
202 ++Size;
204 // Calls are more expensive. If they are non-intrinsic calls, we model them
205 // as having cost of 4. If they are a non-vector intrinsic, we model them
206 // as having cost of 2 total, and if they are a vector intrinsic, we model
207 // them as having cost 1.
208 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
209 if (!isa<IntrinsicInst>(CI))
210 Size += 3;
211 else if (!isa<VectorType>(CI->getType()))
212 Size += 1;
216 // Threading through a switch statement is particularly profitable. If this
217 // block ends in a switch, decrease its cost to make it more likely to happen.
218 if (isa<SwitchInst>(I))
219 Size = Size > 6 ? Size-6 : 0;
221 return Size;
224 /// ProcessBlock - If there are any predecessors whose control can be threaded
225 /// through to a successor, transform them now.
226 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
227 // If this block has a single predecessor, and if that pred has a single
228 // successor, merge the blocks. This encourages recursive jump threading
229 // because now the condition in this block can be threaded through
230 // predecessors of our predecessor block.
231 if (BasicBlock *SinglePred = BB->getSinglePredecessor())
232 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
233 SinglePred != BB) {
234 // If SinglePred was a loop header, BB becomes one.
235 if (LoopHeaders.erase(SinglePred))
236 LoopHeaders.insert(BB);
238 // Remember if SinglePred was the entry block of the function. If so, we
239 // will need to move BB back to the entry position.
240 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
241 MergeBasicBlockIntoOnlyPred(BB);
243 if (isEntry && BB != &BB->getParent()->getEntryBlock())
244 BB->moveBefore(&BB->getParent()->getEntryBlock());
245 return true;
248 // See if this block ends with a branch or switch. If so, see if the
249 // condition is a phi node. If so, and if an entry of the phi node is a
250 // constant, we can thread the block.
251 Value *Condition;
252 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
253 // Can't thread an unconditional jump.
254 if (BI->isUnconditional()) return false;
255 Condition = BI->getCondition();
256 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
257 Condition = SI->getCondition();
258 else
259 return false; // Must be an invoke.
261 // If the terminator of this block is branching on a constant, simplify the
262 // terminator to an unconditional branch. This can occur due to threading in
263 // other blocks.
264 if (isa<ConstantInt>(Condition)) {
265 DEBUG(errs() << " In block '" << BB->getName()
266 << "' folding terminator: " << *BB->getTerminator());
267 ++NumFolds;
268 ConstantFoldTerminator(BB);
269 return true;
272 // If the terminator is branching on an undef, we can pick any of the
273 // successors to branch to. Since this is arbitrary, we pick the successor
274 // with the fewest predecessors. This should reduce the in-degree of the
275 // others.
276 if (isa<UndefValue>(Condition)) {
277 TerminatorInst *BBTerm = BB->getTerminator();
278 unsigned MinSucc = 0;
279 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
280 // Compute the successor with the minimum number of predecessors.
281 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
282 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
283 TestBB = BBTerm->getSuccessor(i);
284 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
285 if (NumPreds < MinNumPreds)
286 MinSucc = i;
289 // Fold the branch/switch.
290 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
291 if (i == MinSucc) continue;
292 BBTerm->getSuccessor(i)->removePredecessor(BB);
295 DEBUG(errs() << " In block '" << BB->getName()
296 << "' folding undef terminator: " << *BBTerm);
297 BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
298 BBTerm->eraseFromParent();
299 return true;
302 Instruction *CondInst = dyn_cast<Instruction>(Condition);
304 // If the condition is an instruction defined in another block, see if a
305 // predecessor has the same condition:
306 // br COND, BBX, BBY
307 // BBX:
308 // br COND, BBZ, BBW
309 if (!Condition->hasOneUse() && // Multiple uses.
310 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
311 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
312 if (isa<BranchInst>(BB->getTerminator())) {
313 for (; PI != E; ++PI)
314 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
315 if (PBI->isConditional() && PBI->getCondition() == Condition &&
316 ProcessBranchOnDuplicateCond(*PI, BB))
317 return true;
318 } else {
319 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
320 for (; PI != E; ++PI)
321 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
322 if (PSI->getCondition() == Condition &&
323 ProcessSwitchOnDuplicateCond(*PI, BB))
324 return true;
328 // All the rest of our checks depend on the condition being an instruction.
329 if (CondInst == 0)
330 return false;
332 // See if this is a phi node in the current block.
333 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
334 if (PN->getParent() == BB)
335 return ProcessJumpOnPHI(PN);
337 // If this is a conditional branch whose condition is and/or of a phi, try to
338 // simplify it.
339 if ((CondInst->getOpcode() == Instruction::And ||
340 CondInst->getOpcode() == Instruction::Or) &&
341 isa<BranchInst>(BB->getTerminator()) &&
342 ProcessBranchOnLogical(CondInst, BB,
343 CondInst->getOpcode() == Instruction::And))
344 return true;
346 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
347 if (isa<PHINode>(CondCmp->getOperand(0))) {
348 // If we have "br (phi != 42)" and the phi node has any constant values
349 // as operands, we can thread through this block.
351 // If we have "br (cmp phi, x)" and the phi node contains x such that the
352 // comparison uniquely identifies the branch target, we can thread
353 // through this block.
355 if (ProcessBranchOnCompare(CondCmp, BB))
356 return true;
359 // If we have a comparison, loop over the predecessors to see if there is
360 // a condition with the same value.
361 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
362 for (; PI != E; ++PI)
363 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
364 if (PBI->isConditional() && *PI != BB) {
365 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
366 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
367 CI->getOperand(1) == CondCmp->getOperand(1) &&
368 CI->getPredicate() == CondCmp->getPredicate()) {
369 // TODO: Could handle things like (x != 4) --> (x == 17)
370 if (ProcessBranchOnDuplicateCond(*PI, BB))
371 return true;
377 // Check for some cases that are worth simplifying. Right now we want to look
378 // for loads that are used by a switch or by the condition for the branch. If
379 // we see one, check to see if it's partially redundant. If so, insert a PHI
380 // which can then be used to thread the values.
382 // This is particularly important because reg2mem inserts loads and stores all
383 // over the place, and this blocks jump threading if we don't zap them.
384 Value *SimplifyValue = CondInst;
385 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
386 if (isa<Constant>(CondCmp->getOperand(1)))
387 SimplifyValue = CondCmp->getOperand(0);
389 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
390 if (SimplifyPartiallyRedundantLoad(LI))
391 return true;
393 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
394 // "(X == 4)" thread through this block.
396 return false;
399 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
400 /// block that jump on exactly the same condition. This means that we almost
401 /// always know the direction of the edge in the DESTBB:
402 /// PREDBB:
403 /// br COND, DESTBB, BBY
404 /// DESTBB:
405 /// br COND, BBZ, BBW
407 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
408 /// in DESTBB, we have to thread over it.
409 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
410 BasicBlock *BB) {
411 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
413 // If both successors of PredBB go to DESTBB, we don't know anything. We can
414 // fold the branch to an unconditional one, which allows other recursive
415 // simplifications.
416 bool BranchDir;
417 if (PredBI->getSuccessor(1) != BB)
418 BranchDir = true;
419 else if (PredBI->getSuccessor(0) != BB)
420 BranchDir = false;
421 else {
422 DEBUG(errs() << " In block '" << PredBB->getName()
423 << "' folding terminator: " << *PredBB->getTerminator());
424 ++NumFolds;
425 ConstantFoldTerminator(PredBB);
426 return true;
429 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
431 // If the dest block has one predecessor, just fix the branch condition to a
432 // constant and fold it.
433 if (BB->getSinglePredecessor()) {
434 DEBUG(errs() << " In block '" << BB->getName()
435 << "' folding condition to '" << BranchDir << "': "
436 << *BB->getTerminator());
437 ++NumFolds;
438 DestBI->setCondition(ConstantInt::get(Type::Int1Ty, BranchDir));
439 ConstantFoldTerminator(BB);
440 return true;
443 // Otherwise we need to thread from PredBB to DestBB's successor which
444 // involves code duplication. Check to see if it is worth it.
445 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
446 if (JumpThreadCost > Threshold) {
447 DEBUG(errs() << " Not threading BB '" << BB->getName()
448 << "' - Cost is too high: " << JumpThreadCost << "\n");
449 return false;
452 // Next, figure out which successor we are threading to.
453 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
455 // Ok, try to thread it!
456 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
459 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
460 /// block that switch on exactly the same condition. This means that we almost
461 /// always know the direction of the edge in the DESTBB:
462 /// PREDBB:
463 /// switch COND [... DESTBB, BBY ... ]
464 /// DESTBB:
465 /// switch COND [... BBZ, BBW ]
467 /// Optimizing switches like this is very important, because simplifycfg builds
468 /// switches out of repeated 'if' conditions.
469 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
470 BasicBlock *DestBB) {
471 // Can't thread edge to self.
472 if (PredBB == DestBB)
473 return false;
476 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
477 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
479 // There are a variety of optimizations that we can potentially do on these
480 // blocks: we order them from most to least preferable.
482 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
483 // directly to their destination. This does not introduce *any* code size
484 // growth. Skip debug info first.
485 BasicBlock::iterator BBI = DestBB->begin();
486 while (isa<DbgInfoIntrinsic>(BBI))
487 BBI++;
489 // FIXME: Thread if it just contains a PHI.
490 if (isa<SwitchInst>(BBI)) {
491 bool MadeChange = false;
492 // Ignore the default edge for now.
493 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
494 ConstantInt *DestVal = DestSI->getCaseValue(i);
495 BasicBlock *DestSucc = DestSI->getSuccessor(i);
497 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
498 // PredSI has an explicit case for it. If so, forward. If it is covered
499 // by the default case, we can't update PredSI.
500 unsigned PredCase = PredSI->findCaseValue(DestVal);
501 if (PredCase == 0) continue;
503 // If PredSI doesn't go to DestBB on this value, then it won't reach the
504 // case on this condition.
505 if (PredSI->getSuccessor(PredCase) != DestBB &&
506 DestSI->getSuccessor(i) != DestBB)
507 continue;
509 // Otherwise, we're safe to make the change. Make sure that the edge from
510 // DestSI to DestSucc is not critical and has no PHI nodes.
511 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
512 DEBUG(errs() << "THROUGH: " << *DestSI);
514 // If the destination has PHI nodes, just split the edge for updating
515 // simplicity.
516 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
517 SplitCriticalEdge(DestSI, i, this);
518 DestSucc = DestSI->getSuccessor(i);
520 FoldSingleEntryPHINodes(DestSucc);
521 PredSI->setSuccessor(PredCase, DestSucc);
522 MadeChange = true;
525 if (MadeChange)
526 return true;
529 return false;
533 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
534 /// load instruction, eliminate it by replacing it with a PHI node. This is an
535 /// important optimization that encourages jump threading, and needs to be run
536 /// interlaced with other jump threading tasks.
537 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
538 // Don't hack volatile loads.
539 if (LI->isVolatile()) return false;
541 // If the load is defined in a block with exactly one predecessor, it can't be
542 // partially redundant.
543 BasicBlock *LoadBB = LI->getParent();
544 if (LoadBB->getSinglePredecessor())
545 return false;
547 Value *LoadedPtr = LI->getOperand(0);
549 // If the loaded operand is defined in the LoadBB, it can't be available.
550 // FIXME: Could do PHI translation, that would be fun :)
551 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
552 if (PtrOp->getParent() == LoadBB)
553 return false;
555 // Scan a few instructions up from the load, to see if it is obviously live at
556 // the entry to its block.
557 BasicBlock::iterator BBIt = LI;
559 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
560 BBIt, 6)) {
561 // If the value if the load is locally available within the block, just use
562 // it. This frequently occurs for reg2mem'd allocas.
563 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
565 // If the returned value is the load itself, replace with an undef. This can
566 // only happen in dead loops.
567 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
568 LI->replaceAllUsesWith(AvailableVal);
569 LI->eraseFromParent();
570 return true;
573 // Otherwise, if we scanned the whole block and got to the top of the block,
574 // we know the block is locally transparent to the load. If not, something
575 // might clobber its value.
576 if (BBIt != LoadBB->begin())
577 return false;
580 SmallPtrSet<BasicBlock*, 8> PredsScanned;
581 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
582 AvailablePredsTy AvailablePreds;
583 BasicBlock *OneUnavailablePred = 0;
585 // If we got here, the loaded value is transparent through to the start of the
586 // block. Check to see if it is available in any of the predecessor blocks.
587 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
588 PI != PE; ++PI) {
589 BasicBlock *PredBB = *PI;
591 // If we already scanned this predecessor, skip it.
592 if (!PredsScanned.insert(PredBB))
593 continue;
595 // Scan the predecessor to see if the value is available in the pred.
596 BBIt = PredBB->end();
597 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
598 if (!PredAvailable) {
599 OneUnavailablePred = PredBB;
600 continue;
603 // If so, this load is partially redundant. Remember this info so that we
604 // can create a PHI node.
605 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
608 // If the loaded value isn't available in any predecessor, it isn't partially
609 // redundant.
610 if (AvailablePreds.empty()) return false;
612 // Okay, the loaded value is available in at least one (and maybe all!)
613 // predecessors. If the value is unavailable in more than one unique
614 // predecessor, we want to insert a merge block for those common predecessors.
615 // This ensures that we only have to insert one reload, thus not increasing
616 // code size.
617 BasicBlock *UnavailablePred = 0;
619 // If there is exactly one predecessor where the value is unavailable, the
620 // already computed 'OneUnavailablePred' block is it. If it ends in an
621 // unconditional branch, we know that it isn't a critical edge.
622 if (PredsScanned.size() == AvailablePreds.size()+1 &&
623 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
624 UnavailablePred = OneUnavailablePred;
625 } else if (PredsScanned.size() != AvailablePreds.size()) {
626 // Otherwise, we had multiple unavailable predecessors or we had a critical
627 // edge from the one.
628 SmallVector<BasicBlock*, 8> PredsToSplit;
629 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
631 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
632 AvailablePredSet.insert(AvailablePreds[i].first);
634 // Add all the unavailable predecessors to the PredsToSplit list.
635 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
636 PI != PE; ++PI)
637 if (!AvailablePredSet.count(*PI))
638 PredsToSplit.push_back(*PI);
640 // Split them out to their own block.
641 UnavailablePred =
642 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
643 "thread-split", this);
646 // If the value isn't available in all predecessors, then there will be
647 // exactly one where it isn't available. Insert a load on that edge and add
648 // it to the AvailablePreds list.
649 if (UnavailablePred) {
650 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
651 "Can't handle critical edge here!");
652 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
653 UnavailablePred->getTerminator());
654 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
657 // Now we know that each predecessor of this block has a value in
658 // AvailablePreds, sort them for efficient access as we're walking the preds.
659 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
661 // Create a PHI node at the start of the block for the PRE'd load value.
662 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
663 PN->takeName(LI);
665 // Insert new entries into the PHI for each predecessor. A single block may
666 // have multiple entries here.
667 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
668 ++PI) {
669 AvailablePredsTy::iterator I =
670 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
671 std::make_pair(*PI, (Value*)0));
673 assert(I != AvailablePreds.end() && I->first == *PI &&
674 "Didn't find entry for predecessor!");
676 PN->addIncoming(I->second, I->first);
679 //cerr << "PRE: " << *LI << *PN << "\n";
681 LI->replaceAllUsesWith(PN);
682 LI->eraseFromParent();
684 return true;
688 /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
689 /// the current block. See if there are any simplifications we can do based on
690 /// inputs to the phi node.
691 ///
692 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
693 // See if the phi node has any constant values. If so, we can determine where
694 // the corresponding predecessor will branch.
695 ConstantInt *PredCst = 0;
696 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
697 if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
698 break;
700 // If no incoming value has a constant, we don't know the destination of any
701 // predecessors.
702 if (PredCst == 0)
703 return false;
705 // See if the cost of duplicating this block is low enough.
706 BasicBlock *BB = PN->getParent();
707 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
708 if (JumpThreadCost > Threshold) {
709 DEBUG(errs() << " Not threading BB '" << BB->getName()
710 << "' - Cost is too high: " << JumpThreadCost << "\n");
711 return false;
714 // If so, we can actually do this threading. Merge any common predecessors
715 // that will act the same.
716 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
718 // Next, figure out which successor we are threading to.
719 BasicBlock *SuccBB;
720 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
721 SuccBB = BI->getSuccessor(PredCst ==
722 ConstantInt::getFalse(PredBB->getContext()));
723 else {
724 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
725 SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
728 // Ok, try to thread it!
729 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
732 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
733 /// whose condition is an AND/OR where one side is PN. If PN has constant
734 /// operands that permit us to evaluate the condition for some operand, thread
735 /// through the block. For example with:
736 /// br (and X, phi(Y, Z, false))
737 /// the predecessor corresponding to the 'false' will always jump to the false
738 /// destination of the branch.
740 bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
741 bool isAnd) {
742 // If this is a binary operator tree of the same AND/OR opcode, check the
743 // LHS/RHS.
744 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
745 if ((isAnd && BO->getOpcode() == Instruction::And) ||
746 (!isAnd && BO->getOpcode() == Instruction::Or)) {
747 if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
748 return true;
749 if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
750 return true;
753 // If this isn't a PHI node, we can't handle it.
754 PHINode *PN = dyn_cast<PHINode>(V);
755 if (!PN || PN->getParent() != BB) return false;
757 // We can only do the simplification for phi nodes of 'false' with AND or
758 // 'true' with OR. See if we have any entries in the phi for this.
759 unsigned PredNo = ~0U;
760 ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
761 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
762 if (PN->getIncomingValue(i) == PredCst) {
763 PredNo = i;
764 break;
768 // If no match, bail out.
769 if (PredNo == ~0U)
770 return false;
772 // See if the cost of duplicating this block is low enough.
773 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
774 if (JumpThreadCost > Threshold) {
775 DEBUG(errs() << " Not threading BB '" << BB->getName()
776 << "' - Cost is too high: " << JumpThreadCost << "\n");
777 return false;
780 // If so, we can actually do this threading. Merge any common predecessors
781 // that will act the same.
782 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
784 // Next, figure out which successor we are threading to. If this was an AND,
785 // the constant must be FALSE, and we must be targeting the 'false' block.
786 // If this is an OR, the constant must be TRUE, and we must be targeting the
787 // 'true' block.
788 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
790 // Ok, try to thread it!
791 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
794 /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
795 /// hand sides of the compare instruction, try to determine the result. If the
796 /// result can not be determined, a null pointer is returned.
797 static Constant *GetResultOfComparison(CmpInst::Predicate pred,
798 Value *LHS, Value *RHS,
799 LLVMContext &Context) {
800 if (Constant *CLHS = dyn_cast<Constant>(LHS))
801 if (Constant *CRHS = dyn_cast<Constant>(RHS))
802 return ConstantExpr::getCompare(pred, CLHS, CRHS);
804 if (LHS == RHS)
805 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
806 return ICmpInst::isTrueWhenEqual(pred) ?
807 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
809 return 0;
812 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
813 /// node and a value. If we can identify when the comparison is true between
814 /// the phi inputs and the value, we can fold the compare for that edge and
815 /// thread through it.
816 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
817 PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
818 Value *RHS = Cmp->getOperand(1);
820 // If the phi isn't in the current block, an incoming edge to this block
821 // doesn't control the destination.
822 if (PN->getParent() != BB)
823 return false;
825 // We can do this simplification if any comparisons fold to true or false.
826 // See if any do.
827 Value *PredVal = 0;
828 bool TrueDirection = false;
829 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
830 PredVal = PN->getIncomingValue(i);
832 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
833 RHS, Cmp->getContext());
834 if (!Res) {
835 PredVal = 0;
836 continue;
839 // If this folded to a constant expr, we can't do anything.
840 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
841 TrueDirection = ResC->getZExtValue();
842 break;
844 // If this folded to undef, just go the false way.
845 if (isa<UndefValue>(Res)) {
846 TrueDirection = false;
847 break;
850 // Otherwise, we can't fold this input.
851 PredVal = 0;
854 // If no match, bail out.
855 if (PredVal == 0)
856 return false;
858 // See if the cost of duplicating this block is low enough.
859 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
860 if (JumpThreadCost > Threshold) {
861 DEBUG(errs() << " Not threading BB '" << BB->getName()
862 << "' - Cost is too high: " << JumpThreadCost << "\n");
863 return false;
866 // If so, we can actually do this threading. Merge any common predecessors
867 // that will act the same.
868 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
870 // Next, get our successor.
871 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
873 // Ok, try to thread it!
874 return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
878 /// ThreadEdge - We have decided that it is safe and profitable to thread an
879 /// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
880 /// change.
881 bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
882 BasicBlock *SuccBB, unsigned JumpThreadCost) {
884 // If threading to the same block as we come from, we would infinite loop.
885 if (SuccBB == BB) {
886 DEBUG(errs() << " Not threading across BB '" << BB->getName()
887 << "' - would thread to self!\n");
888 return false;
891 // If threading this would thread across a loop header, don't thread the edge.
892 // See the comments above FindLoopHeaders for justifications and caveats.
893 if (LoopHeaders.count(BB)) {
894 DEBUG(errs() << " Not threading from '" << PredBB->getName()
895 << "' across loop header BB '" << BB->getName()
896 << "' to dest BB '" << SuccBB->getName()
897 << "' - it might create an irreducible loop!\n");
898 return false;
901 // And finally, do it!
902 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
903 << SuccBB->getName() << "' with cost: " << JumpThreadCost
904 << ", across block:\n "
905 << *BB << "\n");
907 // Jump Threading can not update SSA properties correctly if the values
908 // defined in the duplicated block are used outside of the block itself. For
909 // this reason, we spill all values that are used outside of BB to the stack.
910 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
911 if (!I->isUsedOutsideOfBlock(BB))
912 continue;
914 // We found a use of I outside of BB. Create a new stack slot to
915 // break this inter-block usage pattern.
916 DemoteRegToStack(*I);
919 // We are going to have to map operands from the original BB block to the new
920 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
921 // account for entry from PredBB.
922 DenseMap<Instruction*, Value*> ValueMapping;
924 BasicBlock *NewBB =
925 BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
926 NewBB->moveAfter(PredBB);
928 BasicBlock::iterator BI = BB->begin();
929 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
930 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
932 // Clone the non-phi instructions of BB into NewBB, keeping track of the
933 // mapping and using it to remap operands in the cloned instructions.
934 for (; !isa<TerminatorInst>(BI); ++BI) {
935 Instruction *New = BI->clone(BI->getContext());
936 New->setName(BI->getName());
937 NewBB->getInstList().push_back(New);
938 ValueMapping[BI] = New;
940 // Remap operands to patch up intra-block references.
941 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
942 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
943 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
944 if (I != ValueMapping.end())
945 New->setOperand(i, I->second);
949 // We didn't copy the terminator from BB over to NewBB, because there is now
950 // an unconditional jump to SuccBB. Insert the unconditional jump.
951 BranchInst::Create(SuccBB, NewBB);
953 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
954 // PHI nodes for NewBB now.
955 for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
956 PHINode *PN = cast<PHINode>(PNI);
957 // Ok, we have a PHI node. Figure out what the incoming value was for the
958 // DestBlock.
959 Value *IV = PN->getIncomingValueForBlock(BB);
961 // Remap the value if necessary.
962 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
963 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
964 if (I != ValueMapping.end())
965 IV = I->second;
967 PN->addIncoming(IV, NewBB);
970 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
971 // NewBB instead of BB. This eliminates predecessors from BB, which requires
972 // us to simplify any PHI nodes in BB.
973 TerminatorInst *PredTerm = PredBB->getTerminator();
974 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
975 if (PredTerm->getSuccessor(i) == BB) {
976 BB->removePredecessor(PredBB);
977 PredTerm->setSuccessor(i, NewBB);
980 // At this point, the IR is fully up to date and consistent. Do a quick scan
981 // over the new instructions and zap any that are constants or dead. This
982 // frequently happens because of phi translation.
983 BI = NewBB->begin();
984 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
985 Instruction *Inst = BI++;
986 if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
987 Inst->replaceAllUsesWith(C);
988 Inst->eraseFromParent();
989 continue;
992 RecursivelyDeleteTriviallyDeadInstructions(Inst);
995 // Threaded an edge!
996 ++NumThreads;
997 return true;