1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
16 // This pass uses alias analysis for two purposes:
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the mem2reg functionality to construct the appropriate SSA form for the
32 //===----------------------------------------------------------------------===//
34 #define DEBUG_TYPE "licm"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Constants.h"
37 #include "llvm/DerivedTypes.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/LoopPass.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/AliasSetTracker.h"
45 #include "llvm/Analysis/Dominators.h"
46 #include "llvm/Analysis/ScalarEvolution.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 #include "llvm/Support/CFG.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/ADT/Statistic.h"
57 STATISTIC(NumSunk
, "Number of instructions sunk out of loop");
58 STATISTIC(NumHoisted
, "Number of instructions hoisted out of loop");
59 STATISTIC(NumMovedLoads
, "Number of load insts hoisted or sunk");
60 STATISTIC(NumMovedCalls
, "Number of call insts hoisted or sunk");
61 STATISTIC(NumPromoted
, "Number of memory locations promoted to registers");
64 DisablePromotion("disable-licm-promotion", cl::Hidden
,
65 cl::desc("Disable memory promotion in LICM pass"));
67 // This feature is currently disabled by default because CodeGen is not yet
68 // capable of rematerializing these constants in PIC mode, so it can lead to
69 // degraded performance. Compile test/CodeGen/X86/remat-constant.ll with
70 // -relocation-model=pic to see an example of this.
72 EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden
,
73 cl::desc("Enable hoisting/sinking of constant "
77 struct VISIBILITY_HIDDEN LICM
: public LoopPass
{
78 static char ID
; // Pass identification, replacement for typeid
79 LICM() : LoopPass(&ID
) {}
81 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
83 /// This transformation requires natural loop information & requires that
84 /// loop preheaders be inserted into the CFG...
86 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
88 AU
.addRequiredID(LoopSimplifyID
);
89 AU
.addRequired
<LoopInfo
>();
90 AU
.addRequired
<DominatorTree
>();
91 AU
.addRequired
<DominanceFrontier
>(); // For scalar promotion (mem2reg)
92 AU
.addRequired
<AliasAnalysis
>();
93 AU
.addPreserved
<ScalarEvolution
>();
94 AU
.addPreserved
<DominanceFrontier
>();
97 bool doFinalization() {
98 // Free the values stored in the map
99 for (std::map
<Loop
*, AliasSetTracker
*>::iterator
100 I
= LoopToAliasMap
.begin(), E
= LoopToAliasMap
.end(); I
!= E
; ++I
)
103 LoopToAliasMap
.clear();
108 // Various analyses that we use...
109 AliasAnalysis
*AA
; // Current AliasAnalysis information
110 LoopInfo
*LI
; // Current LoopInfo
111 DominatorTree
*DT
; // Dominator Tree for the current Loop...
112 DominanceFrontier
*DF
; // Current Dominance Frontier
114 // State that is updated as we process loops
115 bool Changed
; // Set to true when we change anything.
116 BasicBlock
*Preheader
; // The preheader block of the current loop...
117 Loop
*CurLoop
; // The current loop we are working on...
118 AliasSetTracker
*CurAST
; // AliasSet information for the current loop...
119 std::map
<Loop
*, AliasSetTracker
*> LoopToAliasMap
;
121 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
122 void cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
);
124 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
126 void deleteAnalysisValue(Value
*V
, Loop
*L
);
128 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
129 /// dominated by the specified block, and that are in the current loop) in
130 /// reverse depth first order w.r.t the DominatorTree. This allows us to
131 /// visit uses before definitions, allowing us to sink a loop body in one
132 /// pass without iteration.
134 void SinkRegion(DomTreeNode
*N
);
136 /// HoistRegion - Walk the specified region of the CFG (defined by all
137 /// blocks dominated by the specified block, and that are in the current
138 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
139 /// visit definitions before uses, allowing us to hoist a loop body in one
140 /// pass without iteration.
142 void HoistRegion(DomTreeNode
*N
);
144 /// inSubLoop - Little predicate that returns true if the specified basic
145 /// block is in a subloop of the current one, not the current one itself.
147 bool inSubLoop(BasicBlock
*BB
) {
148 assert(CurLoop
->contains(BB
) && "Only valid if BB is IN the loop");
149 for (Loop::iterator I
= CurLoop
->begin(), E
= CurLoop
->end(); I
!= E
; ++I
)
150 if ((*I
)->contains(BB
))
151 return true; // A subloop actually contains this block!
155 /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
156 /// specified exit block of the loop is dominated by the specified block
157 /// that is in the body of the loop. We use these constraints to
158 /// dramatically limit the amount of the dominator tree that needs to be
160 bool isExitBlockDominatedByBlockInLoop(BasicBlock
*ExitBlock
,
161 BasicBlock
*BlockInLoop
) const {
162 // If the block in the loop is the loop header, it must be dominated!
163 BasicBlock
*LoopHeader
= CurLoop
->getHeader();
164 if (BlockInLoop
== LoopHeader
)
167 DomTreeNode
*BlockInLoopNode
= DT
->getNode(BlockInLoop
);
168 DomTreeNode
*IDom
= DT
->getNode(ExitBlock
);
170 // Because the exit block is not in the loop, we know we have to get _at
171 // least_ its immediate dominator.
173 // Get next Immediate Dominator.
174 IDom
= IDom
->getIDom();
176 // If we have got to the header of the loop, then the instructions block
177 // did not dominate the exit node, so we can't hoist it.
178 if (IDom
->getBlock() == LoopHeader
)
181 } while (IDom
!= BlockInLoopNode
);
186 /// sink - When an instruction is found to only be used outside of the loop,
187 /// this function moves it to the exit blocks and patches up SSA form as
190 void sink(Instruction
&I
);
192 /// hoist - When an instruction is found to only use loop invariant operands
193 /// that is safe to hoist, this instruction is called to do the dirty work.
195 void hoist(Instruction
&I
);
197 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
198 /// is not a trapping instruction or if it is a trapping instruction and is
199 /// guaranteed to execute.
201 bool isSafeToExecuteUnconditionally(Instruction
&I
);
203 /// pointerInvalidatedByLoop - Return true if the body of this loop may
204 /// store into the memory location pointed to by V.
206 bool pointerInvalidatedByLoop(Value
*V
, unsigned Size
) {
207 // Check to see if any of the basic blocks in CurLoop invalidate *V.
208 return CurAST
->getAliasSetForPointer(V
, Size
).isMod();
211 bool canSinkOrHoistInst(Instruction
&I
);
212 bool isLoopInvariantInst(Instruction
&I
);
213 bool isNotUsedInLoop(Instruction
&I
);
215 /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
216 /// to scalars as we can.
218 void PromoteValuesInLoop();
220 /// FindPromotableValuesInLoop - Check the current loop for stores to
221 /// definite pointers, which are not loaded and stored through may aliases.
222 /// If these are found, create an alloca for the value, add it to the
223 /// PromotedValues list, and keep track of the mapping from value to
226 void FindPromotableValuesInLoop(
227 std::vector
<std::pair
<AllocaInst
*, Value
*> > &PromotedValues
,
228 std::map
<Value
*, AllocaInst
*> &Val2AlMap
);
233 static RegisterPass
<LICM
> X("licm", "Loop Invariant Code Motion");
235 Pass
*llvm::createLICMPass() { return new LICM(); }
237 /// Hoist expressions out of the specified loop. Note, alias info for inner
238 /// loop is not preserved so it is not a good idea to run LICM multiple
239 /// times on one loop.
241 bool LICM::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
244 // Get our Loop and Alias Analysis information...
245 LI
= &getAnalysis
<LoopInfo
>();
246 AA
= &getAnalysis
<AliasAnalysis
>();
247 DF
= &getAnalysis
<DominanceFrontier
>();
248 DT
= &getAnalysis
<DominatorTree
>();
250 CurAST
= new AliasSetTracker(*AA
);
251 // Collect Alias info from subloops
252 for (Loop::iterator LoopItr
= L
->begin(), LoopItrE
= L
->end();
253 LoopItr
!= LoopItrE
; ++LoopItr
) {
254 Loop
*InnerL
= *LoopItr
;
255 AliasSetTracker
*InnerAST
= LoopToAliasMap
[InnerL
];
256 assert (InnerAST
&& "Where is my AST?");
258 // What if InnerLoop was modified by other passes ?
259 CurAST
->add(*InnerAST
);
264 // Get the preheader block to move instructions into...
265 Preheader
= L
->getLoopPreheader();
266 assert(Preheader
&&"Preheader insertion pass guarantees we have a preheader!");
268 // Loop over the body of this loop, looking for calls, invokes, and stores.
269 // Because subloops have already been incorporated into AST, we skip blocks in
272 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
275 if (LI
->getLoopFor(BB
) == L
) // Ignore blocks in subloops...
276 CurAST
->add(*BB
); // Incorporate the specified basic block
279 // We want to visit all of the instructions in this loop... that are not parts
280 // of our subloops (they have already had their invariants hoisted out of
281 // their loop, into this loop, so there is no need to process the BODIES of
284 // Traverse the body of the loop in depth first order on the dominator tree so
285 // that we are guaranteed to see definitions before we see uses. This allows
286 // us to sink instructions in one pass, without iteration. After sinking
287 // instructions, we perform another pass to hoist them out of the loop.
289 SinkRegion(DT
->getNode(L
->getHeader()));
290 HoistRegion(DT
->getNode(L
->getHeader()));
292 // Now that all loop invariants have been removed from the loop, promote any
293 // memory references to scalars that we can...
294 if (!DisablePromotion
)
295 PromoteValuesInLoop();
297 // Clear out loops state information for the next iteration
301 LoopToAliasMap
[L
] = CurAST
;
305 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
306 /// dominated by the specified block, and that are in the current loop) in
307 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
308 /// uses before definitions, allowing us to sink a loop body in one pass without
311 void LICM::SinkRegion(DomTreeNode
*N
) {
312 assert(N
!= 0 && "Null dominator tree node?");
313 BasicBlock
*BB
= N
->getBlock();
315 // If this subregion is not in the top level loop at all, exit.
316 if (!CurLoop
->contains(BB
)) return;
318 // We are processing blocks in reverse dfo, so process children first...
319 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
320 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
321 SinkRegion(Children
[i
]);
323 // Only need to process the contents of this block if it is not part of a
324 // subloop (which would already have been processed).
325 if (inSubLoop(BB
)) return;
327 for (BasicBlock::iterator II
= BB
->end(); II
!= BB
->begin(); ) {
328 Instruction
&I
= *--II
;
330 // Check to see if we can sink this instruction to the exit blocks
331 // of the loop. We can do this if the all users of the instruction are
332 // outside of the loop. In this case, it doesn't even matter if the
333 // operands of the instruction are loop invariant.
335 if (isNotUsedInLoop(I
) && canSinkOrHoistInst(I
)) {
343 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
344 /// dominated by the specified block, and that are in the current loop) in depth
345 /// first order w.r.t the DominatorTree. This allows us to visit definitions
346 /// before uses, allowing us to hoist a loop body in one pass without iteration.
348 void LICM::HoistRegion(DomTreeNode
*N
) {
349 assert(N
!= 0 && "Null dominator tree node?");
350 BasicBlock
*BB
= N
->getBlock();
352 // If this subregion is not in the top level loop at all, exit.
353 if (!CurLoop
->contains(BB
)) return;
355 // Only need to process the contents of this block if it is not part of a
356 // subloop (which would already have been processed).
358 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ) {
359 Instruction
&I
= *II
++;
361 // Try hoisting the instruction out to the preheader. We can only do this
362 // if all of the operands of the instruction are loop invariant and if it
363 // is safe to hoist the instruction.
365 if (isLoopInvariantInst(I
) && canSinkOrHoistInst(I
) &&
366 isSafeToExecuteUnconditionally(I
))
370 const std::vector
<DomTreeNode
*> &Children
= N
->getChildren();
371 for (unsigned i
= 0, e
= Children
.size(); i
!= e
; ++i
)
372 HoistRegion(Children
[i
]);
375 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
378 bool LICM::canSinkOrHoistInst(Instruction
&I
) {
379 // Loads have extra constraints we have to verify before we can hoist them.
380 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
)) {
381 if (LI
->isVolatile())
382 return false; // Don't hoist volatile loads!
384 // Loads from constant memory are always safe to move, even if they end up
385 // in the same alias set as something that ends up being modified.
386 if (EnableLICMConstantMotion
&&
387 AA
->pointsToConstantMemory(LI
->getOperand(0)))
390 // Don't hoist loads which have may-aliased stores in loop.
392 if (LI
->getType()->isSized())
393 Size
= AA
->getTypeStoreSize(LI
->getType());
394 return !pointerInvalidatedByLoop(LI
->getOperand(0), Size
);
395 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
396 // Handle obvious cases efficiently.
397 AliasAnalysis::ModRefBehavior Behavior
= AA
->getModRefBehavior(CI
);
398 if (Behavior
== AliasAnalysis::DoesNotAccessMemory
)
400 else if (Behavior
== AliasAnalysis::OnlyReadsMemory
) {
401 // If this call only reads from memory and there are no writes to memory
402 // in the loop, we can hoist or sink the call as appropriate.
403 bool FoundMod
= false;
404 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
407 if (!AS
.isForwardingAliasSet() && AS
.isMod()) {
412 if (!FoundMod
) return true;
415 // FIXME: This should use mod/ref information to see if we can hoist or sink
421 // Otherwise these instructions are hoistable/sinkable
422 return isa
<BinaryOperator
>(I
) || isa
<CastInst
>(I
) ||
423 isa
<SelectInst
>(I
) || isa
<GetElementPtrInst
>(I
) || isa
<CmpInst
>(I
) ||
424 isa
<InsertElementInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
425 isa
<ShuffleVectorInst
>(I
);
428 /// isNotUsedInLoop - Return true if the only users of this instruction are
429 /// outside of the loop. If this is true, we can sink the instruction to the
430 /// exit blocks of the loop.
432 bool LICM::isNotUsedInLoop(Instruction
&I
) {
433 for (Value::use_iterator UI
= I
.use_begin(), E
= I
.use_end(); UI
!= E
; ++UI
) {
434 Instruction
*User
= cast
<Instruction
>(*UI
);
435 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
436 // PHI node uses occur in predecessor blocks!
437 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
438 if (PN
->getIncomingValue(i
) == &I
)
439 if (CurLoop
->contains(PN
->getIncomingBlock(i
)))
441 } else if (CurLoop
->contains(User
->getParent())) {
449 /// isLoopInvariantInst - Return true if all operands of this instruction are
450 /// loop invariant. We also filter out non-hoistable instructions here just for
453 bool LICM::isLoopInvariantInst(Instruction
&I
) {
454 // The instruction is loop invariant if all of its operands are loop-invariant
455 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
456 if (!CurLoop
->isLoopInvariant(I
.getOperand(i
)))
459 // If we got this far, the instruction is loop invariant!
463 /// sink - When an instruction is found to only be used outside of the loop,
464 /// this function moves it to the exit blocks and patches up SSA form as needed.
465 /// This method is guaranteed to remove the original instruction from its
466 /// position, and may either delete it or move it to outside of the loop.
468 void LICM::sink(Instruction
&I
) {
469 DOUT
<< "LICM sinking instruction: " << I
;
471 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
472 CurLoop
->getExitBlocks(ExitBlocks
);
474 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
475 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
479 LLVMContext
&Context
= I
.getContext();
481 // The case where there is only a single exit node of this loop is common
482 // enough that we handle it as a special (more efficient) case. It is more
483 // efficient to handle because there are no PHI nodes that need to be placed.
484 if (ExitBlocks
.size() == 1) {
485 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[0], I
.getParent())) {
486 // Instruction is not used, just delete it.
487 CurAST
->deleteValue(&I
);
488 if (!I
.use_empty()) // If I has users in unreachable blocks, eliminate.
489 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
492 // Move the instruction to the start of the exit block, after any PHI
494 I
.removeFromParent();
496 BasicBlock::iterator InsertPt
= ExitBlocks
[0]->getFirstNonPHI();
497 ExitBlocks
[0]->getInstList().insert(InsertPt
, &I
);
499 } else if (ExitBlocks
.empty()) {
500 // The instruction is actually dead if there ARE NO exit blocks.
501 CurAST
->deleteValue(&I
);
502 if (!I
.use_empty()) // If I has users in unreachable blocks, eliminate.
503 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
506 // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
507 // do all of the hard work of inserting PHI nodes as necessary. We convert
508 // the value into a stack object to get it to do this.
510 // Firstly, we create a stack object to hold the value...
513 if (I
.getType() != Type::VoidTy
) {
514 AI
= new AllocaInst(I
.getType(), 0, I
.getName(),
515 I
.getParent()->getParent()->getEntryBlock().begin());
519 // Secondly, insert load instructions for each use of the instruction
520 // outside of the loop.
521 while (!I
.use_empty()) {
522 Instruction
*U
= cast
<Instruction
>(I
.use_back());
524 // If the user is a PHI Node, we actually have to insert load instructions
525 // in all predecessor blocks, not in the PHI block itself!
526 if (PHINode
*UPN
= dyn_cast
<PHINode
>(U
)) {
527 // Only insert into each predecessor once, so that we don't have
528 // different incoming values from the same block!
529 std::map
<BasicBlock
*, Value
*> InsertedBlocks
;
530 for (unsigned i
= 0, e
= UPN
->getNumIncomingValues(); i
!= e
; ++i
)
531 if (UPN
->getIncomingValue(i
) == &I
) {
532 BasicBlock
*Pred
= UPN
->getIncomingBlock(i
);
533 Value
*&PredVal
= InsertedBlocks
[Pred
];
535 // Insert a new load instruction right before the terminator in
536 // the predecessor block.
537 PredVal
= new LoadInst(AI
, "", Pred
->getTerminator());
538 CurAST
->add(cast
<LoadInst
>(PredVal
));
541 UPN
->setIncomingValue(i
, PredVal
);
545 LoadInst
*L
= new LoadInst(AI
, "", U
);
546 U
->replaceUsesOfWith(&I
, L
);
551 // Thirdly, insert a copy of the instruction in each exit block of the loop
552 // that is dominated by the instruction, storing the result into the memory
553 // location. Be careful not to insert the instruction into any particular
554 // basic block more than once.
555 std::set
<BasicBlock
*> InsertedBlocks
;
556 BasicBlock
*InstOrigBB
= I
.getParent();
558 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
559 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
561 if (isExitBlockDominatedByBlockInLoop(ExitBlock
, InstOrigBB
)) {
562 // If we haven't already processed this exit block, do so now.
563 if (InsertedBlocks
.insert(ExitBlock
).second
) {
564 // Insert the code after the last PHI node...
565 BasicBlock::iterator InsertPt
= ExitBlock
->getFirstNonPHI();
567 // If this is the first exit block processed, just move the original
568 // instruction, otherwise clone the original instruction and insert
571 if (InsertedBlocks
.size() == 1) {
572 I
.removeFromParent();
573 ExitBlock
->getInstList().insert(InsertPt
, &I
);
576 New
= I
.clone(Context
);
577 CurAST
->copyValue(&I
, New
);
578 if (!I
.getName().empty())
579 New
->setName(I
.getName()+".le");
580 ExitBlock
->getInstList().insert(InsertPt
, New
);
583 // Now that we have inserted the instruction, store it into the alloca
584 if (AI
) new StoreInst(New
, AI
, InsertPt
);
589 // If the instruction doesn't dominate any exit blocks, it must be dead.
590 if (InsertedBlocks
.empty()) {
591 CurAST
->deleteValue(&I
);
595 // Finally, promote the fine value to SSA form.
597 std::vector
<AllocaInst
*> Allocas
;
598 Allocas
.push_back(AI
);
599 PromoteMemToReg(Allocas
, *DT
, *DF
, Context
, CurAST
);
604 /// hoist - When an instruction is found to only use loop invariant operands
605 /// that is safe to hoist, this instruction is called to do the dirty work.
607 void LICM::hoist(Instruction
&I
) {
608 DEBUG(errs() << "LICM hoisting to " << Preheader
->getName() << ": " << I
);
610 // Remove the instruction from its current basic block... but don't delete the
612 I
.removeFromParent();
614 // Insert the new node in Preheader, before the terminator.
615 Preheader
->getInstList().insert(Preheader
->getTerminator(), &I
);
617 if (isa
<LoadInst
>(I
)) ++NumMovedLoads
;
618 else if (isa
<CallInst
>(I
)) ++NumMovedCalls
;
623 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
624 /// not a trapping instruction or if it is a trapping instruction and is
625 /// guaranteed to execute.
627 bool LICM::isSafeToExecuteUnconditionally(Instruction
&Inst
) {
628 // If it is not a trapping instruction, it is always safe to hoist.
629 if (Inst
.isSafeToSpeculativelyExecute())
632 // Otherwise we have to check to make sure that the instruction dominates all
633 // of the exit blocks. If it doesn't, then there is a path out of the loop
634 // which does not execute this instruction, so we can't hoist it.
636 // If the instruction is in the header block for the loop (which is very
637 // common), it is always guaranteed to dominate the exit blocks. Since this
638 // is a common case, and can save some work, check it now.
639 if (Inst
.getParent() == CurLoop
->getHeader())
642 // Get the exit blocks for the current loop.
643 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
644 CurLoop
->getExitBlocks(ExitBlocks
);
646 // For each exit block, get the DT node and walk up the DT until the
647 // instruction's basic block is found or we exit the loop.
648 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
649 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks
[i
], Inst
.getParent()))
656 /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
657 /// stores out of the loop and moving loads to before the loop. We do this by
658 /// looping over the stores in the loop, looking for stores to Must pointers
659 /// which are loop invariant. We promote these memory locations to use allocas
660 /// instead. These allocas can easily be raised to register values by the
661 /// PromoteMem2Reg functionality.
663 void LICM::PromoteValuesInLoop() {
664 // PromotedValues - List of values that are promoted out of the loop. Each
665 // value has an alloca instruction for it, and a canonical version of the
667 std::vector
<std::pair
<AllocaInst
*, Value
*> > PromotedValues
;
668 std::map
<Value
*, AllocaInst
*> ValueToAllocaMap
; // Map of ptr to alloca
670 FindPromotableValuesInLoop(PromotedValues
, ValueToAllocaMap
);
671 if (ValueToAllocaMap
.empty()) return; // If there are values to promote.
674 NumPromoted
+= PromotedValues
.size();
676 std::vector
<Value
*> PointerValueNumbers
;
678 // Emit a copy from the value into the alloca'd value in the loop preheader
679 TerminatorInst
*LoopPredInst
= Preheader
->getTerminator();
680 for (unsigned i
= 0, e
= PromotedValues
.size(); i
!= e
; ++i
) {
681 Value
*Ptr
= PromotedValues
[i
].second
;
683 // If we are promoting a pointer value, update alias information for the
685 Value
*LoadValue
= 0;
686 if (isa
<PointerType
>(cast
<PointerType
>(Ptr
->getType())->getElementType())) {
687 // Locate a load or store through the pointer, and assign the same value
688 // to LI as we are loading or storing. Since we know that the value is
689 // stored in this loop, this will always succeed.
690 for (Value::use_iterator UI
= Ptr
->use_begin(), E
= Ptr
->use_end();
692 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
695 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
696 if (SI
->getOperand(1) == Ptr
) {
697 LoadValue
= SI
->getOperand(0);
701 assert(LoadValue
&& "No store through the pointer found!");
702 PointerValueNumbers
.push_back(LoadValue
); // Remember this for later.
705 // Load from the memory we are promoting.
706 LoadInst
*LI
= new LoadInst(Ptr
, Ptr
->getName()+".promoted", LoopPredInst
);
708 if (LoadValue
) CurAST
->copyValue(LoadValue
, LI
);
710 // Store into the temporary alloca.
711 new StoreInst(LI
, PromotedValues
[i
].first
, LoopPredInst
);
714 // Scan the basic blocks in the loop, replacing uses of our pointers with
715 // uses of the allocas in question.
717 for (Loop::block_iterator I
= CurLoop
->block_begin(),
718 E
= CurLoop
->block_end(); I
!= E
; ++I
) {
720 // Rewrite all loads and stores in the block of the pointer...
721 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
722 if (LoadInst
*L
= dyn_cast
<LoadInst
>(II
)) {
723 std::map
<Value
*, AllocaInst
*>::iterator
724 I
= ValueToAllocaMap
.find(L
->getOperand(0));
725 if (I
!= ValueToAllocaMap
.end())
726 L
->setOperand(0, I
->second
); // Rewrite load instruction...
727 } else if (StoreInst
*S
= dyn_cast
<StoreInst
>(II
)) {
728 std::map
<Value
*, AllocaInst
*>::iterator
729 I
= ValueToAllocaMap
.find(S
->getOperand(1));
730 if (I
!= ValueToAllocaMap
.end())
731 S
->setOperand(1, I
->second
); // Rewrite store instruction...
736 // Now that the body of the loop uses the allocas instead of the original
737 // memory locations, insert code to copy the alloca value back into the
738 // original memory location on all exits from the loop. Note that we only
739 // want to insert one copy of the code in each exit block, though the loop may
740 // exit to the same block more than once.
742 SmallPtrSet
<BasicBlock
*, 16> ProcessedBlocks
;
744 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
745 CurLoop
->getExitBlocks(ExitBlocks
);
746 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
747 if (!ProcessedBlocks
.insert(ExitBlocks
[i
]))
750 // Copy all of the allocas into their memory locations.
751 BasicBlock::iterator BI
= ExitBlocks
[i
]->getFirstNonPHI();
752 Instruction
*InsertPos
= BI
;
754 for (unsigned i
= 0, e
= PromotedValues
.size(); i
!= e
; ++i
) {
755 // Load from the alloca.
756 LoadInst
*LI
= new LoadInst(PromotedValues
[i
].first
, "", InsertPos
);
758 // If this is a pointer type, update alias info appropriately.
759 if (isa
<PointerType
>(LI
->getType()))
760 CurAST
->copyValue(PointerValueNumbers
[PVN
++], LI
);
762 // Store into the memory we promoted.
763 new StoreInst(LI
, PromotedValues
[i
].second
, InsertPos
);
767 // Now that we have done the deed, use the mem2reg functionality to promote
768 // all of the new allocas we just created into real SSA registers.
770 std::vector
<AllocaInst
*> PromotedAllocas
;
771 PromotedAllocas
.reserve(PromotedValues
.size());
772 for (unsigned i
= 0, e
= PromotedValues
.size(); i
!= e
; ++i
)
773 PromotedAllocas
.push_back(PromotedValues
[i
].first
);
774 PromoteMemToReg(PromotedAllocas
, *DT
, *DF
, Preheader
->getContext(), CurAST
);
777 /// FindPromotableValuesInLoop - Check the current loop for stores to definite
778 /// pointers, which are not loaded and stored through may aliases and are safe
779 /// for promotion. If these are found, create an alloca for the value, add it
780 /// to the PromotedValues list, and keep track of the mapping from value to
782 void LICM::FindPromotableValuesInLoop(
783 std::vector
<std::pair
<AllocaInst
*, Value
*> > &PromotedValues
,
784 std::map
<Value
*, AllocaInst
*> &ValueToAllocaMap
) {
785 Instruction
*FnStart
= CurLoop
->getHeader()->getParent()->begin()->begin();
787 // Loop over all of the alias sets in the tracker object.
788 for (AliasSetTracker::iterator I
= CurAST
->begin(), E
= CurAST
->end();
791 // We can promote this alias set if it has a store, if it is a "Must" alias
792 // set, if the pointer is loop invariant, and if we are not eliminating any
793 // volatile loads or stores.
794 if (AS
.isForwardingAliasSet() || !AS
.isMod() || !AS
.isMustAlias() ||
795 AS
.isVolatile() || !CurLoop
->isLoopInvariant(AS
.begin()->getValue()))
798 assert(!AS
.empty() &&
799 "Must alias set should have at least one pointer element in it!");
800 Value
*V
= AS
.begin()->getValue();
802 // Check that all of the pointers in the alias set have the same type. We
803 // cannot (yet) promote a memory location that is loaded and stored in
806 bool PointerOk
= true;
807 for (AliasSet::iterator I
= AS
.begin(), E
= AS
.end(); I
!= E
; ++I
)
808 if (V
->getType() != I
->getValue()->getType()) {
816 // It isn't safe to promote a load/store from the loop if the load/store is
817 // conditional. For example, turning:
819 // for () { if (c) *P += 1; }
823 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
825 // is not safe, because *P may only be valid to access if 'c' is true.
827 // It is safe to promote P if all uses are direct load/stores and if at
828 // least one is guaranteed to be executed.
829 bool GuaranteedToExecute
= false;
830 bool InvalidInst
= false;
831 for (Value::use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
833 // Ignore instructions not in this loop.
834 Instruction
*Use
= dyn_cast
<Instruction
>(*UI
);
835 if (!Use
|| !CurLoop
->contains(Use
->getParent()))
838 if (!isa
<LoadInst
>(Use
) && !isa
<StoreInst
>(Use
)) {
843 if (!GuaranteedToExecute
)
844 GuaranteedToExecute
= isSafeToExecuteUnconditionally(*Use
);
847 // If there is an non-load/store instruction in the loop, we can't promote
848 // it. If there isn't a guaranteed-to-execute instruction, we can't
850 if (InvalidInst
|| !GuaranteedToExecute
)
853 const Type
*Ty
= cast
<PointerType
>(V
->getType())->getElementType();
854 AllocaInst
*AI
= new AllocaInst(Ty
, 0, V
->getName()+".tmp", FnStart
);
855 PromotedValues
.push_back(std::make_pair(AI
, V
));
857 // Update the AST and alias analysis.
858 CurAST
->copyValue(V
, AI
);
860 for (AliasSet::iterator I
= AS
.begin(), E
= AS
.end(); I
!= E
; ++I
)
861 ValueToAllocaMap
.insert(std::make_pair(I
->getValue(), AI
));
863 DOUT
<< "LICM: Promoting value: " << *V
<< "\n";
867 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
868 void LICM::cloneBasicBlockAnalysis(BasicBlock
*From
, BasicBlock
*To
, Loop
*L
) {
869 AliasSetTracker
*AST
= LoopToAliasMap
[L
];
873 AST
->copyValue(From
, To
);
876 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
878 void LICM::deleteAnalysisValue(Value
*V
, Loop
*L
) {
879 AliasSetTracker
*AST
= LoopToAliasMap
[L
];