Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
blob224a13664832a94075a31d96c8ebf28b607b1a07
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Target/TargetData.h"
28 #include <list>
29 using namespace llvm;
31 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
34 /// isBytewiseValue - If the specified value can be set by repeating the same
35 /// byte in memory, return the i8 value that it is represented with. This is
36 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
37 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
38 /// byte store (e.g. i16 0x1234), return null.
39 static Value *isBytewiseValue(Value *V, LLVMContext& Context) {
40 // All byte-wide stores are splatable, even of arbitrary variables.
41 if (V->getType() == Type::Int8Ty) return V;
43 // Constant float and double values can be handled as integer values if the
44 // corresponding integer value is "byteable". An important case is 0.0.
45 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
46 if (CFP->getType() == Type::FloatTy)
47 V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);
48 if (CFP->getType() == Type::DoubleTy)
49 V = ConstantExpr::getBitCast(CFP, Type::Int64Ty);
50 // Don't handle long double formats, which have strange constraints.
53 // We can handle constant integers that are power of two in size and a
54 // multiple of 8 bits.
55 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
56 unsigned Width = CI->getBitWidth();
57 if (isPowerOf2_32(Width) && Width > 8) {
58 // We can handle this value if the recursive binary decomposition is the
59 // same at all levels.
60 APInt Val = CI->getValue();
61 APInt Val2;
62 while (Val.getBitWidth() != 8) {
63 unsigned NextWidth = Val.getBitWidth()/2;
64 Val2 = Val.lshr(NextWidth);
65 Val2.trunc(Val.getBitWidth()/2);
66 Val.trunc(Val.getBitWidth()/2);
68 // If the top/bottom halves aren't the same, reject it.
69 if (Val != Val2)
70 return 0;
72 return ConstantInt::get(Context, Val);
76 // Conceptually, we could handle things like:
77 // %a = zext i8 %X to i16
78 // %b = shl i16 %a, 8
79 // %c = or i16 %a, %b
80 // but until there is an example that actually needs this, it doesn't seem
81 // worth worrying about.
82 return 0;
85 static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
86 bool &VariableIdxFound, TargetData &TD) {
87 // Skip over the first indices.
88 gep_type_iterator GTI = gep_type_begin(GEP);
89 for (unsigned i = 1; i != Idx; ++i, ++GTI)
90 /*skip along*/;
92 // Compute the offset implied by the rest of the indices.
93 int64_t Offset = 0;
94 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
95 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
96 if (OpC == 0)
97 return VariableIdxFound = true;
98 if (OpC->isZero()) continue; // No offset.
100 // Handle struct indices, which add their field offset to the pointer.
101 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
102 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
103 continue;
106 // Otherwise, we have a sequential type like an array or vector. Multiply
107 // the index by the ElementSize.
108 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
109 Offset += Size*OpC->getSExtValue();
112 return Offset;
115 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
116 /// constant offset, and return that constant offset. For example, Ptr1 might
117 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
118 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
119 TargetData &TD) {
120 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
121 // base. After that base, they may have some number of common (and
122 // potentially variable) indices. After that they handle some constant
123 // offset, which determines their offset from each other. At this point, we
124 // handle no other case.
125 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
126 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
127 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
128 return false;
130 // Skip any common indices and track the GEP types.
131 unsigned Idx = 1;
132 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
133 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
134 break;
136 bool VariableIdxFound = false;
137 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
138 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
139 if (VariableIdxFound) return false;
141 Offset = Offset2-Offset1;
142 return true;
146 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
147 /// This allows us to analyze stores like:
148 /// store 0 -> P+1
149 /// store 0 -> P+0
150 /// store 0 -> P+3
151 /// store 0 -> P+2
152 /// which sometimes happens with stores to arrays of structs etc. When we see
153 /// the first store, we make a range [1, 2). The second store extends the range
154 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
155 /// two ranges into [0, 3) which is memset'able.
156 namespace {
157 struct MemsetRange {
158 // Start/End - A semi range that describes the span that this range covers.
159 // The range is closed at the start and open at the end: [Start, End).
160 int64_t Start, End;
162 /// StartPtr - The getelementptr instruction that points to the start of the
163 /// range.
164 Value *StartPtr;
166 /// Alignment - The known alignment of the first store.
167 unsigned Alignment;
169 /// TheStores - The actual stores that make up this range.
170 SmallVector<StoreInst*, 16> TheStores;
172 bool isProfitableToUseMemset(const TargetData &TD) const;
175 } // end anon namespace
177 bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
178 // If we found more than 8 stores to merge or 64 bytes, use memset.
179 if (TheStores.size() >= 8 || End-Start >= 64) return true;
181 // Assume that the code generator is capable of merging pairs of stores
182 // together if it wants to.
183 if (TheStores.size() <= 2) return false;
185 // If we have fewer than 8 stores, it can still be worthwhile to do this.
186 // For example, merging 4 i8 stores into an i32 store is useful almost always.
187 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
188 // memset will be split into 2 32-bit stores anyway) and doing so can
189 // pessimize the llvm optimizer.
191 // Since we don't have perfect knowledge here, make some assumptions: assume
192 // the maximum GPR width is the same size as the pointer size and assume that
193 // this width can be stored. If so, check to see whether we will end up
194 // actually reducing the number of stores used.
195 unsigned Bytes = unsigned(End-Start);
196 unsigned NumPointerStores = Bytes/TD.getPointerSize();
198 // Assume the remaining bytes if any are done a byte at a time.
199 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
201 // If we will reduce the # stores (according to this heuristic), do the
202 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
203 // etc.
204 return TheStores.size() > NumPointerStores+NumByteStores;
208 namespace {
209 class MemsetRanges {
210 /// Ranges - A sorted list of the memset ranges. We use std::list here
211 /// because each element is relatively large and expensive to copy.
212 std::list<MemsetRange> Ranges;
213 typedef std::list<MemsetRange>::iterator range_iterator;
214 TargetData &TD;
215 public:
216 MemsetRanges(TargetData &td) : TD(td) {}
218 typedef std::list<MemsetRange>::const_iterator const_iterator;
219 const_iterator begin() const { return Ranges.begin(); }
220 const_iterator end() const { return Ranges.end(); }
221 bool empty() const { return Ranges.empty(); }
223 void addStore(int64_t OffsetFromFirst, StoreInst *SI);
226 } // end anon namespace
229 /// addStore - Add a new store to the MemsetRanges data structure. This adds a
230 /// new range for the specified store at the specified offset, merging into
231 /// existing ranges as appropriate.
232 void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
233 int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
235 // Do a linear search of the ranges to see if this can be joined and/or to
236 // find the insertion point in the list. We keep the ranges sorted for
237 // simplicity here. This is a linear search of a linked list, which is ugly,
238 // however the number of ranges is limited, so this won't get crazy slow.
239 range_iterator I = Ranges.begin(), E = Ranges.end();
241 while (I != E && Start > I->End)
242 ++I;
244 // We now know that I == E, in which case we didn't find anything to merge
245 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
246 // to insert a new range. Handle this now.
247 if (I == E || End < I->Start) {
248 MemsetRange &R = *Ranges.insert(I, MemsetRange());
249 R.Start = Start;
250 R.End = End;
251 R.StartPtr = SI->getPointerOperand();
252 R.Alignment = SI->getAlignment();
253 R.TheStores.push_back(SI);
254 return;
257 // This store overlaps with I, add it.
258 I->TheStores.push_back(SI);
260 // At this point, we may have an interval that completely contains our store.
261 // If so, just add it to the interval and return.
262 if (I->Start <= Start && I->End >= End)
263 return;
265 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
266 // but is not entirely contained within the range.
268 // See if the range extends the start of the range. In this case, it couldn't
269 // possibly cause it to join the prior range, because otherwise we would have
270 // stopped on *it*.
271 if (Start < I->Start) {
272 I->Start = Start;
273 I->StartPtr = SI->getPointerOperand();
276 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
277 // is in or right at the end of I), and that End >= I->Start. Extend I out to
278 // End.
279 if (End > I->End) {
280 I->End = End;
281 range_iterator NextI = I;
282 while (++NextI != E && End >= NextI->Start) {
283 // Merge the range in.
284 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
285 if (NextI->End > I->End)
286 I->End = NextI->End;
287 Ranges.erase(NextI);
288 NextI = I;
293 //===----------------------------------------------------------------------===//
294 // MemCpyOpt Pass
295 //===----------------------------------------------------------------------===//
297 namespace {
299 class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass {
300 bool runOnFunction(Function &F);
301 public:
302 static char ID; // Pass identification, replacement for typeid
303 MemCpyOpt() : FunctionPass(&ID) {}
305 private:
306 // This transformation requires dominator postdominator info
307 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
308 AU.setPreservesCFG();
309 AU.addRequired<DominatorTree>();
310 AU.addRequired<MemoryDependenceAnalysis>();
311 AU.addRequired<AliasAnalysis>();
312 AU.addRequired<TargetData>();
313 AU.addPreserved<AliasAnalysis>();
314 AU.addPreserved<MemoryDependenceAnalysis>();
315 AU.addPreserved<TargetData>();
318 // Helper fuctions
319 bool processStore(StoreInst *SI, BasicBlock::iterator& BBI);
320 bool processMemCpy(MemCpyInst* M);
321 bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C);
322 bool iterateOnFunction(Function &F);
325 char MemCpyOpt::ID = 0;
328 // createMemCpyOptPass - The public interface to this file...
329 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
331 static RegisterPass<MemCpyOpt> X("memcpyopt",
332 "MemCpy Optimization");
336 /// processStore - When GVN is scanning forward over instructions, we look for
337 /// some other patterns to fold away. In particular, this looks for stores to
338 /// neighboring locations of memory. If it sees enough consequtive ones
339 /// (currently 4) it attempts to merge them together into a memcpy/memset.
340 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) {
341 if (SI->isVolatile()) return false;
343 // There are two cases that are interesting for this code to handle: memcpy
344 // and memset. Right now we only handle memset.
346 // Ensure that the value being stored is something that can be memset'able a
347 // byte at a time like "0" or "-1" or any width, as well as things like
348 // 0xA0A0A0A0 and 0.0.
349 Value *ByteVal = isBytewiseValue(SI->getOperand(0), SI->getContext());
350 if (!ByteVal)
351 return false;
353 TargetData &TD = getAnalysis<TargetData>();
354 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
355 Module *M = SI->getParent()->getParent()->getParent();
357 // Okay, so we now have a single store that can be splatable. Scan to find
358 // all subsequent stores of the same value to offset from the same pointer.
359 // Join these together into ranges, so we can decide whether contiguous blocks
360 // are stored.
361 MemsetRanges Ranges(TD);
363 Value *StartPtr = SI->getPointerOperand();
365 BasicBlock::iterator BI = SI;
366 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
367 if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
368 // If the call is readnone, ignore it, otherwise bail out. We don't even
369 // allow readonly here because we don't want something like:
370 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
371 if (AA.getModRefBehavior(CallSite::get(BI)) ==
372 AliasAnalysis::DoesNotAccessMemory)
373 continue;
375 // TODO: If this is a memset, try to join it in.
377 break;
378 } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
379 break;
381 // If this is a non-store instruction it is fine, ignore it.
382 StoreInst *NextStore = dyn_cast<StoreInst>(BI);
383 if (NextStore == 0) continue;
385 // If this is a store, see if we can merge it in.
386 if (NextStore->isVolatile()) break;
388 // Check to see if this stored value is of the same byte-splattable value.
389 if (ByteVal != isBytewiseValue(NextStore->getOperand(0),
390 NextStore->getContext()))
391 break;
393 // Check to see if this store is to a constant offset from the start ptr.
394 int64_t Offset;
395 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
396 break;
398 Ranges.addStore(Offset, NextStore);
401 // If we have no ranges, then we just had a single store with nothing that
402 // could be merged in. This is a very common case of course.
403 if (Ranges.empty())
404 return false;
406 // If we had at least one store that could be merged in, add the starting
407 // store as well. We try to avoid this unless there is at least something
408 // interesting as a small compile-time optimization.
409 Ranges.addStore(0, SI);
412 Function *MemSetF = 0;
414 // Now that we have full information about ranges, loop over the ranges and
415 // emit memset's for anything big enough to be worthwhile.
416 bool MadeChange = false;
417 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
418 I != E; ++I) {
419 const MemsetRange &Range = *I;
421 if (Range.TheStores.size() == 1) continue;
423 // If it is profitable to lower this range to memset, do so now.
424 if (!Range.isProfitableToUseMemset(TD))
425 continue;
427 // Otherwise, we do want to transform this! Create a new memset. We put
428 // the memset right before the first instruction that isn't part of this
429 // memset block. This ensure that the memset is dominated by any addressing
430 // instruction needed by the start of the block.
431 BasicBlock::iterator InsertPt = BI;
433 if (MemSetF == 0) {
434 const Type *Tys[] = {Type::Int64Ty};
435 MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset,
436 Tys, 1);
439 // Get the starting pointer of the block.
440 StartPtr = Range.StartPtr;
442 // Cast the start ptr to be i8* as memset requires.
443 const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty);
444 if (StartPtr->getType() != i8Ptr)
445 StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
446 InsertPt);
448 Value *Ops[] = {
449 StartPtr, ByteVal, // Start, value
450 // size
451 ConstantInt::get(Type::Int64Ty, Range.End-Range.Start),
452 // align
453 ConstantInt::get(Type::Int32Ty, Range.Alignment)
455 Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt);
456 DEBUG(cerr << "Replace stores:\n";
457 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
458 cerr << *Range.TheStores[i];
459 cerr << "With: " << *C); C=C;
461 // Don't invalidate the iterator
462 BBI = BI;
464 // Zap all the stores.
465 for (SmallVector<StoreInst*, 16>::const_iterator SI = Range.TheStores.begin(),
466 SE = Range.TheStores.end(); SI != SE; ++SI)
467 (*SI)->eraseFromParent();
468 ++NumMemSetInfer;
469 MadeChange = true;
472 return MadeChange;
476 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
477 /// and checks for the possibility of a call slot optimization by having
478 /// the call write its result directly into the destination of the memcpy.
479 bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
480 // The general transformation to keep in mind is
482 // call @func(..., src, ...)
483 // memcpy(dest, src, ...)
485 // ->
487 // memcpy(dest, src, ...)
488 // call @func(..., dest, ...)
490 // Since moving the memcpy is technically awkward, we additionally check that
491 // src only holds uninitialized values at the moment of the call, meaning that
492 // the memcpy can be discarded rather than moved.
494 // Deliberately get the source and destination with bitcasts stripped away,
495 // because we'll need to do type comparisons based on the underlying type.
496 Value* cpyDest = cpy->getDest();
497 Value* cpySrc = cpy->getSource();
498 CallSite CS = CallSite::get(C);
500 // We need to be able to reason about the size of the memcpy, so we require
501 // that it be a constant.
502 ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
503 if (!cpyLength)
504 return false;
506 // Require that src be an alloca. This simplifies the reasoning considerably.
507 AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
508 if (!srcAlloca)
509 return false;
511 // Check that all of src is copied to dest.
512 TargetData& TD = getAnalysis<TargetData>();
514 ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
515 if (!srcArraySize)
516 return false;
518 uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
519 srcArraySize->getZExtValue();
521 if (cpyLength->getZExtValue() < srcSize)
522 return false;
524 // Check that accessing the first srcSize bytes of dest will not cause a
525 // trap. Otherwise the transform is invalid since it might cause a trap
526 // to occur earlier than it otherwise would.
527 if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
528 // The destination is an alloca. Check it is larger than srcSize.
529 ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
530 if (!destArraySize)
531 return false;
533 uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
534 destArraySize->getZExtValue();
536 if (destSize < srcSize)
537 return false;
538 } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
539 // If the destination is an sret parameter then only accesses that are
540 // outside of the returned struct type can trap.
541 if (!A->hasStructRetAttr())
542 return false;
544 const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
545 uint64_t destSize = TD.getTypeAllocSize(StructTy);
547 if (destSize < srcSize)
548 return false;
549 } else {
550 return false;
553 // Check that src is not accessed except via the call and the memcpy. This
554 // guarantees that it holds only undefined values when passed in (so the final
555 // memcpy can be dropped), that it is not read or written between the call and
556 // the memcpy, and that writing beyond the end of it is undefined.
557 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
558 srcAlloca->use_end());
559 while (!srcUseList.empty()) {
560 User* UI = srcUseList.back();
561 srcUseList.pop_back();
563 if (isa<BitCastInst>(UI)) {
564 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
565 I != E; ++I)
566 srcUseList.push_back(*I);
567 } else if (GetElementPtrInst* G = dyn_cast<GetElementPtrInst>(UI)) {
568 if (G->hasAllZeroIndices())
569 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
570 I != E; ++I)
571 srcUseList.push_back(*I);
572 else
573 return false;
574 } else if (UI != C && UI != cpy) {
575 return false;
579 // Since we're changing the parameter to the callsite, we need to make sure
580 // that what would be the new parameter dominates the callsite.
581 DominatorTree& DT = getAnalysis<DominatorTree>();
582 if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
583 if (!DT.dominates(cpyDestInst, C))
584 return false;
586 // In addition to knowing that the call does not access src in some
587 // unexpected manner, for example via a global, which we deduce from
588 // the use analysis, we also need to know that it does not sneakily
589 // access dest. We rely on AA to figure this out for us.
590 AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
591 if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
592 AliasAnalysis::NoModRef)
593 return false;
595 // All the checks have passed, so do the transformation.
596 bool changedArgument = false;
597 for (unsigned i = 0; i < CS.arg_size(); ++i)
598 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
599 if (cpySrc->getType() != cpyDest->getType())
600 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
601 cpyDest->getName(), C);
602 changedArgument = true;
603 if (CS.getArgument(i)->getType() != cpyDest->getType())
604 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
605 CS.getArgument(i)->getType(), cpyDest->getName(), C));
606 else
607 CS.setArgument(i, cpyDest);
610 if (!changedArgument)
611 return false;
613 // Drop any cached information about the call, because we may have changed
614 // its dependence information by changing its parameter.
615 MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
616 MD.removeInstruction(C);
618 // Remove the memcpy
619 MD.removeInstruction(cpy);
620 cpy->eraseFromParent();
621 NumMemCpyInstr++;
623 return true;
626 /// processMemCpy - perform simplication of memcpy's. If we have memcpy A which
627 /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
628 /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
629 /// This allows later passes to remove the first memcpy altogether.
630 bool MemCpyOpt::processMemCpy(MemCpyInst* M) {
631 MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
633 // The are two possible optimizations we can do for memcpy:
634 // a) memcpy-memcpy xform which exposes redundance for DSE
635 // b) call-memcpy xform for return slot optimization
636 MemDepResult dep = MD.getDependency(M);
637 if (!dep.isClobber())
638 return false;
639 if (!isa<MemCpyInst>(dep.getInst())) {
640 if (CallInst* C = dyn_cast<CallInst>(dep.getInst()))
641 return performCallSlotOptzn(M, C);
642 return false;
645 MemCpyInst* MDep = cast<MemCpyInst>(dep.getInst());
647 // We can only transforms memcpy's where the dest of one is the source of the
648 // other
649 if (M->getSource() != MDep->getDest())
650 return false;
652 // Second, the length of the memcpy's must be the same, or the preceeding one
653 // must be larger than the following one.
654 ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
655 ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
656 if (!C1 || !C2)
657 return false;
659 uint64_t DepSize = C1->getValue().getZExtValue();
660 uint64_t CpySize = C2->getValue().getZExtValue();
662 if (DepSize < CpySize)
663 return false;
665 // Finally, we have to make sure that the dest of the second does not
666 // alias the source of the first
667 AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
668 if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
669 AliasAnalysis::NoAlias)
670 return false;
671 else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
672 AliasAnalysis::NoAlias)
673 return false;
674 else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
675 != AliasAnalysis::NoAlias)
676 return false;
678 // If all checks passed, then we can transform these memcpy's
679 const Type *Tys[1];
680 Tys[0] = M->getLength()->getType();
681 Function* MemCpyFun = Intrinsic::getDeclaration(
682 M->getParent()->getParent()->getParent(),
683 M->getIntrinsicID(), Tys, 1);
685 Value *Args[4] = {
686 M->getRawDest(), MDep->getRawSource(), M->getLength(), M->getAlignmentCst()
689 CallInst* C = CallInst::Create(MemCpyFun, Args, Args+4, "", M);
692 // If C and M don't interfere, then this is a valid transformation. If they
693 // did, this would mean that the two sources overlap, which would be bad.
694 if (MD.getDependency(C) == dep) {
695 MD.removeInstruction(M);
696 M->eraseFromParent();
697 NumMemCpyInstr++;
698 return true;
701 // Otherwise, there was no point in doing this, so we remove the call we
702 // inserted and act like nothing happened.
703 MD.removeInstruction(C);
704 C->eraseFromParent();
705 return false;
708 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
709 // function.
711 bool MemCpyOpt::runOnFunction(Function& F) {
713 bool changed = false;
714 bool shouldContinue = true;
716 while (shouldContinue) {
717 shouldContinue = iterateOnFunction(F);
718 changed |= shouldContinue;
721 return changed;
725 // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
726 bool MemCpyOpt::iterateOnFunction(Function &F) {
727 bool changed_function = false;
729 // Walk all instruction in the function
730 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
731 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
732 BI != BE;) {
733 // Avoid invalidating the iterator
734 Instruction* I = BI++;
736 if (StoreInst *SI = dyn_cast<StoreInst>(I))
737 changed_function |= processStore(SI, BI);
738 else if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
739 changed_function |= processMemCpy(M);
744 return changed_function;