1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Target/TargetData.h"
31 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
32 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
34 /// isBytewiseValue - If the specified value can be set by repeating the same
35 /// byte in memory, return the i8 value that it is represented with. This is
36 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
37 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
38 /// byte store (e.g. i16 0x1234), return null.
39 static Value
*isBytewiseValue(Value
*V
, LLVMContext
& Context
) {
40 // All byte-wide stores are splatable, even of arbitrary variables.
41 if (V
->getType() == Type::Int8Ty
) return V
;
43 // Constant float and double values can be handled as integer values if the
44 // corresponding integer value is "byteable". An important case is 0.0.
45 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
46 if (CFP
->getType() == Type::FloatTy
)
47 V
= ConstantExpr::getBitCast(CFP
, Type::Int32Ty
);
48 if (CFP
->getType() == Type::DoubleTy
)
49 V
= ConstantExpr::getBitCast(CFP
, Type::Int64Ty
);
50 // Don't handle long double formats, which have strange constraints.
53 // We can handle constant integers that are power of two in size and a
54 // multiple of 8 bits.
55 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
56 unsigned Width
= CI
->getBitWidth();
57 if (isPowerOf2_32(Width
) && Width
> 8) {
58 // We can handle this value if the recursive binary decomposition is the
59 // same at all levels.
60 APInt Val
= CI
->getValue();
62 while (Val
.getBitWidth() != 8) {
63 unsigned NextWidth
= Val
.getBitWidth()/2;
64 Val2
= Val
.lshr(NextWidth
);
65 Val2
.trunc(Val
.getBitWidth()/2);
66 Val
.trunc(Val
.getBitWidth()/2);
68 // If the top/bottom halves aren't the same, reject it.
72 return ConstantInt::get(Context
, Val
);
76 // Conceptually, we could handle things like:
77 // %a = zext i8 %X to i16
80 // but until there is an example that actually needs this, it doesn't seem
81 // worth worrying about.
85 static int64_t GetOffsetFromIndex(const GetElementPtrInst
*GEP
, unsigned Idx
,
86 bool &VariableIdxFound
, TargetData
&TD
) {
87 // Skip over the first indices.
88 gep_type_iterator GTI
= gep_type_begin(GEP
);
89 for (unsigned i
= 1; i
!= Idx
; ++i
, ++GTI
)
92 // Compute the offset implied by the rest of the indices.
94 for (unsigned i
= Idx
, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
95 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
97 return VariableIdxFound
= true;
98 if (OpC
->isZero()) continue; // No offset.
100 // Handle struct indices, which add their field offset to the pointer.
101 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
102 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
106 // Otherwise, we have a sequential type like an array or vector. Multiply
107 // the index by the ElementSize.
108 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
109 Offset
+= Size
*OpC
->getSExtValue();
115 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
116 /// constant offset, and return that constant offset. For example, Ptr1 might
117 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
118 static bool IsPointerOffset(Value
*Ptr1
, Value
*Ptr2
, int64_t &Offset
,
120 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
121 // base. After that base, they may have some number of common (and
122 // potentially variable) indices. After that they handle some constant
123 // offset, which determines their offset from each other. At this point, we
124 // handle no other case.
125 GetElementPtrInst
*GEP1
= dyn_cast
<GetElementPtrInst
>(Ptr1
);
126 GetElementPtrInst
*GEP2
= dyn_cast
<GetElementPtrInst
>(Ptr2
);
127 if (!GEP1
|| !GEP2
|| GEP1
->getOperand(0) != GEP2
->getOperand(0))
130 // Skip any common indices and track the GEP types.
132 for (; Idx
!= GEP1
->getNumOperands() && Idx
!= GEP2
->getNumOperands(); ++Idx
)
133 if (GEP1
->getOperand(Idx
) != GEP2
->getOperand(Idx
))
136 bool VariableIdxFound
= false;
137 int64_t Offset1
= GetOffsetFromIndex(GEP1
, Idx
, VariableIdxFound
, TD
);
138 int64_t Offset2
= GetOffsetFromIndex(GEP2
, Idx
, VariableIdxFound
, TD
);
139 if (VariableIdxFound
) return false;
141 Offset
= Offset2
-Offset1
;
146 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
147 /// This allows us to analyze stores like:
152 /// which sometimes happens with stores to arrays of structs etc. When we see
153 /// the first store, we make a range [1, 2). The second store extends the range
154 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
155 /// two ranges into [0, 3) which is memset'able.
158 // Start/End - A semi range that describes the span that this range covers.
159 // The range is closed at the start and open at the end: [Start, End).
162 /// StartPtr - The getelementptr instruction that points to the start of the
166 /// Alignment - The known alignment of the first store.
169 /// TheStores - The actual stores that make up this range.
170 SmallVector
<StoreInst
*, 16> TheStores
;
172 bool isProfitableToUseMemset(const TargetData
&TD
) const;
175 } // end anon namespace
177 bool MemsetRange::isProfitableToUseMemset(const TargetData
&TD
) const {
178 // If we found more than 8 stores to merge or 64 bytes, use memset.
179 if (TheStores
.size() >= 8 || End
-Start
>= 64) return true;
181 // Assume that the code generator is capable of merging pairs of stores
182 // together if it wants to.
183 if (TheStores
.size() <= 2) return false;
185 // If we have fewer than 8 stores, it can still be worthwhile to do this.
186 // For example, merging 4 i8 stores into an i32 store is useful almost always.
187 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
188 // memset will be split into 2 32-bit stores anyway) and doing so can
189 // pessimize the llvm optimizer.
191 // Since we don't have perfect knowledge here, make some assumptions: assume
192 // the maximum GPR width is the same size as the pointer size and assume that
193 // this width can be stored. If so, check to see whether we will end up
194 // actually reducing the number of stores used.
195 unsigned Bytes
= unsigned(End
-Start
);
196 unsigned NumPointerStores
= Bytes
/TD
.getPointerSize();
198 // Assume the remaining bytes if any are done a byte at a time.
199 unsigned NumByteStores
= Bytes
- NumPointerStores
*TD
.getPointerSize();
201 // If we will reduce the # stores (according to this heuristic), do the
202 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
204 return TheStores
.size() > NumPointerStores
+NumByteStores
;
210 /// Ranges - A sorted list of the memset ranges. We use std::list here
211 /// because each element is relatively large and expensive to copy.
212 std::list
<MemsetRange
> Ranges
;
213 typedef std::list
<MemsetRange
>::iterator range_iterator
;
216 MemsetRanges(TargetData
&td
) : TD(td
) {}
218 typedef std::list
<MemsetRange
>::const_iterator const_iterator
;
219 const_iterator
begin() const { return Ranges
.begin(); }
220 const_iterator
end() const { return Ranges
.end(); }
221 bool empty() const { return Ranges
.empty(); }
223 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
);
226 } // end anon namespace
229 /// addStore - Add a new store to the MemsetRanges data structure. This adds a
230 /// new range for the specified store at the specified offset, merging into
231 /// existing ranges as appropriate.
232 void MemsetRanges::addStore(int64_t Start
, StoreInst
*SI
) {
233 int64_t End
= Start
+TD
.getTypeStoreSize(SI
->getOperand(0)->getType());
235 // Do a linear search of the ranges to see if this can be joined and/or to
236 // find the insertion point in the list. We keep the ranges sorted for
237 // simplicity here. This is a linear search of a linked list, which is ugly,
238 // however the number of ranges is limited, so this won't get crazy slow.
239 range_iterator I
= Ranges
.begin(), E
= Ranges
.end();
241 while (I
!= E
&& Start
> I
->End
)
244 // We now know that I == E, in which case we didn't find anything to merge
245 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
246 // to insert a new range. Handle this now.
247 if (I
== E
|| End
< I
->Start
) {
248 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
251 R
.StartPtr
= SI
->getPointerOperand();
252 R
.Alignment
= SI
->getAlignment();
253 R
.TheStores
.push_back(SI
);
257 // This store overlaps with I, add it.
258 I
->TheStores
.push_back(SI
);
260 // At this point, we may have an interval that completely contains our store.
261 // If so, just add it to the interval and return.
262 if (I
->Start
<= Start
&& I
->End
>= End
)
265 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
266 // but is not entirely contained within the range.
268 // See if the range extends the start of the range. In this case, it couldn't
269 // possibly cause it to join the prior range, because otherwise we would have
271 if (Start
< I
->Start
) {
273 I
->StartPtr
= SI
->getPointerOperand();
276 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
277 // is in or right at the end of I), and that End >= I->Start. Extend I out to
281 range_iterator NextI
= I
;
282 while (++NextI
!= E
&& End
>= NextI
->Start
) {
283 // Merge the range in.
284 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
285 if (NextI
->End
> I
->End
)
293 //===----------------------------------------------------------------------===//
295 //===----------------------------------------------------------------------===//
299 class VISIBILITY_HIDDEN MemCpyOpt
: public FunctionPass
{
300 bool runOnFunction(Function
&F
);
302 static char ID
; // Pass identification, replacement for typeid
303 MemCpyOpt() : FunctionPass(&ID
) {}
306 // This transformation requires dominator postdominator info
307 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
308 AU
.setPreservesCFG();
309 AU
.addRequired
<DominatorTree
>();
310 AU
.addRequired
<MemoryDependenceAnalysis
>();
311 AU
.addRequired
<AliasAnalysis
>();
312 AU
.addRequired
<TargetData
>();
313 AU
.addPreserved
<AliasAnalysis
>();
314 AU
.addPreserved
<MemoryDependenceAnalysis
>();
315 AU
.addPreserved
<TargetData
>();
319 bool processStore(StoreInst
*SI
, BasicBlock::iterator
& BBI
);
320 bool processMemCpy(MemCpyInst
* M
);
321 bool performCallSlotOptzn(MemCpyInst
* cpy
, CallInst
* C
);
322 bool iterateOnFunction(Function
&F
);
325 char MemCpyOpt::ID
= 0;
328 // createMemCpyOptPass - The public interface to this file...
329 FunctionPass
*llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
331 static RegisterPass
<MemCpyOpt
> X("memcpyopt",
332 "MemCpy Optimization");
336 /// processStore - When GVN is scanning forward over instructions, we look for
337 /// some other patterns to fold away. In particular, this looks for stores to
338 /// neighboring locations of memory. If it sees enough consequtive ones
339 /// (currently 4) it attempts to merge them together into a memcpy/memset.
340 bool MemCpyOpt::processStore(StoreInst
*SI
, BasicBlock::iterator
& BBI
) {
341 if (SI
->isVolatile()) return false;
343 // There are two cases that are interesting for this code to handle: memcpy
344 // and memset. Right now we only handle memset.
346 // Ensure that the value being stored is something that can be memset'able a
347 // byte at a time like "0" or "-1" or any width, as well as things like
348 // 0xA0A0A0A0 and 0.0.
349 Value
*ByteVal
= isBytewiseValue(SI
->getOperand(0), SI
->getContext());
353 TargetData
&TD
= getAnalysis
<TargetData
>();
354 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
355 Module
*M
= SI
->getParent()->getParent()->getParent();
357 // Okay, so we now have a single store that can be splatable. Scan to find
358 // all subsequent stores of the same value to offset from the same pointer.
359 // Join these together into ranges, so we can decide whether contiguous blocks
361 MemsetRanges
Ranges(TD
);
363 Value
*StartPtr
= SI
->getPointerOperand();
365 BasicBlock::iterator BI
= SI
;
366 for (++BI
; !isa
<TerminatorInst
>(BI
); ++BI
) {
367 if (isa
<CallInst
>(BI
) || isa
<InvokeInst
>(BI
)) {
368 // If the call is readnone, ignore it, otherwise bail out. We don't even
369 // allow readonly here because we don't want something like:
370 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
371 if (AA
.getModRefBehavior(CallSite::get(BI
)) ==
372 AliasAnalysis::DoesNotAccessMemory
)
375 // TODO: If this is a memset, try to join it in.
378 } else if (isa
<VAArgInst
>(BI
) || isa
<LoadInst
>(BI
))
381 // If this is a non-store instruction it is fine, ignore it.
382 StoreInst
*NextStore
= dyn_cast
<StoreInst
>(BI
);
383 if (NextStore
== 0) continue;
385 // If this is a store, see if we can merge it in.
386 if (NextStore
->isVolatile()) break;
388 // Check to see if this stored value is of the same byte-splattable value.
389 if (ByteVal
!= isBytewiseValue(NextStore
->getOperand(0),
390 NextStore
->getContext()))
393 // Check to see if this store is to a constant offset from the start ptr.
395 if (!IsPointerOffset(StartPtr
, NextStore
->getPointerOperand(), Offset
, TD
))
398 Ranges
.addStore(Offset
, NextStore
);
401 // If we have no ranges, then we just had a single store with nothing that
402 // could be merged in. This is a very common case of course.
406 // If we had at least one store that could be merged in, add the starting
407 // store as well. We try to avoid this unless there is at least something
408 // interesting as a small compile-time optimization.
409 Ranges
.addStore(0, SI
);
412 Function
*MemSetF
= 0;
414 // Now that we have full information about ranges, loop over the ranges and
415 // emit memset's for anything big enough to be worthwhile.
416 bool MadeChange
= false;
417 for (MemsetRanges::const_iterator I
= Ranges
.begin(), E
= Ranges
.end();
419 const MemsetRange
&Range
= *I
;
421 if (Range
.TheStores
.size() == 1) continue;
423 // If it is profitable to lower this range to memset, do so now.
424 if (!Range
.isProfitableToUseMemset(TD
))
427 // Otherwise, we do want to transform this! Create a new memset. We put
428 // the memset right before the first instruction that isn't part of this
429 // memset block. This ensure that the memset is dominated by any addressing
430 // instruction needed by the start of the block.
431 BasicBlock::iterator InsertPt
= BI
;
434 const Type
*Tys
[] = {Type::Int64Ty
};
435 MemSetF
= Intrinsic::getDeclaration(M
, Intrinsic::memset
,
439 // Get the starting pointer of the block.
440 StartPtr
= Range
.StartPtr
;
442 // Cast the start ptr to be i8* as memset requires.
443 const Type
*i8Ptr
= PointerType::getUnqual(Type::Int8Ty
);
444 if (StartPtr
->getType() != i8Ptr
)
445 StartPtr
= new BitCastInst(StartPtr
, i8Ptr
, StartPtr
->getName(),
449 StartPtr
, ByteVal
, // Start, value
451 ConstantInt::get(Type::Int64Ty
, Range
.End
-Range
.Start
),
453 ConstantInt::get(Type::Int32Ty
, Range
.Alignment
)
455 Value
*C
= CallInst::Create(MemSetF
, Ops
, Ops
+4, "", InsertPt
);
456 DEBUG(cerr
<< "Replace stores:\n";
457 for (unsigned i
= 0, e
= Range
.TheStores
.size(); i
!= e
; ++i
)
458 cerr
<< *Range
.TheStores
[i
];
459 cerr
<< "With: " << *C
); C
=C
;
461 // Don't invalidate the iterator
464 // Zap all the stores.
465 for (SmallVector
<StoreInst
*, 16>::const_iterator SI
= Range
.TheStores
.begin(),
466 SE
= Range
.TheStores
.end(); SI
!= SE
; ++SI
)
467 (*SI
)->eraseFromParent();
476 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
477 /// and checks for the possibility of a call slot optimization by having
478 /// the call write its result directly into the destination of the memcpy.
479 bool MemCpyOpt::performCallSlotOptzn(MemCpyInst
*cpy
, CallInst
*C
) {
480 // The general transformation to keep in mind is
482 // call @func(..., src, ...)
483 // memcpy(dest, src, ...)
487 // memcpy(dest, src, ...)
488 // call @func(..., dest, ...)
490 // Since moving the memcpy is technically awkward, we additionally check that
491 // src only holds uninitialized values at the moment of the call, meaning that
492 // the memcpy can be discarded rather than moved.
494 // Deliberately get the source and destination with bitcasts stripped away,
495 // because we'll need to do type comparisons based on the underlying type.
496 Value
* cpyDest
= cpy
->getDest();
497 Value
* cpySrc
= cpy
->getSource();
498 CallSite CS
= CallSite::get(C
);
500 // We need to be able to reason about the size of the memcpy, so we require
501 // that it be a constant.
502 ConstantInt
* cpyLength
= dyn_cast
<ConstantInt
>(cpy
->getLength());
506 // Require that src be an alloca. This simplifies the reasoning considerably.
507 AllocaInst
* srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
511 // Check that all of src is copied to dest.
512 TargetData
& TD
= getAnalysis
<TargetData
>();
514 ConstantInt
* srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
518 uint64_t srcSize
= TD
.getTypeAllocSize(srcAlloca
->getAllocatedType()) *
519 srcArraySize
->getZExtValue();
521 if (cpyLength
->getZExtValue() < srcSize
)
524 // Check that accessing the first srcSize bytes of dest will not cause a
525 // trap. Otherwise the transform is invalid since it might cause a trap
526 // to occur earlier than it otherwise would.
527 if (AllocaInst
* A
= dyn_cast
<AllocaInst
>(cpyDest
)) {
528 // The destination is an alloca. Check it is larger than srcSize.
529 ConstantInt
* destArraySize
= dyn_cast
<ConstantInt
>(A
->getArraySize());
533 uint64_t destSize
= TD
.getTypeAllocSize(A
->getAllocatedType()) *
534 destArraySize
->getZExtValue();
536 if (destSize
< srcSize
)
538 } else if (Argument
* A
= dyn_cast
<Argument
>(cpyDest
)) {
539 // If the destination is an sret parameter then only accesses that are
540 // outside of the returned struct type can trap.
541 if (!A
->hasStructRetAttr())
544 const Type
* StructTy
= cast
<PointerType
>(A
->getType())->getElementType();
545 uint64_t destSize
= TD
.getTypeAllocSize(StructTy
);
547 if (destSize
< srcSize
)
553 // Check that src is not accessed except via the call and the memcpy. This
554 // guarantees that it holds only undefined values when passed in (so the final
555 // memcpy can be dropped), that it is not read or written between the call and
556 // the memcpy, and that writing beyond the end of it is undefined.
557 SmallVector
<User
*, 8> srcUseList(srcAlloca
->use_begin(),
558 srcAlloca
->use_end());
559 while (!srcUseList
.empty()) {
560 User
* UI
= srcUseList
.back();
561 srcUseList
.pop_back();
563 if (isa
<BitCastInst
>(UI
)) {
564 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
566 srcUseList
.push_back(*I
);
567 } else if (GetElementPtrInst
* G
= dyn_cast
<GetElementPtrInst
>(UI
)) {
568 if (G
->hasAllZeroIndices())
569 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
571 srcUseList
.push_back(*I
);
574 } else if (UI
!= C
&& UI
!= cpy
) {
579 // Since we're changing the parameter to the callsite, we need to make sure
580 // that what would be the new parameter dominates the callsite.
581 DominatorTree
& DT
= getAnalysis
<DominatorTree
>();
582 if (Instruction
* cpyDestInst
= dyn_cast
<Instruction
>(cpyDest
))
583 if (!DT
.dominates(cpyDestInst
, C
))
586 // In addition to knowing that the call does not access src in some
587 // unexpected manner, for example via a global, which we deduce from
588 // the use analysis, we also need to know that it does not sneakily
589 // access dest. We rely on AA to figure this out for us.
590 AliasAnalysis
& AA
= getAnalysis
<AliasAnalysis
>();
591 if (AA
.getModRefInfo(C
, cpy
->getRawDest(), srcSize
) !=
592 AliasAnalysis::NoModRef
)
595 // All the checks have passed, so do the transformation.
596 bool changedArgument
= false;
597 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
598 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
) {
599 if (cpySrc
->getType() != cpyDest
->getType())
600 cpyDest
= CastInst::CreatePointerCast(cpyDest
, cpySrc
->getType(),
601 cpyDest
->getName(), C
);
602 changedArgument
= true;
603 if (CS
.getArgument(i
)->getType() != cpyDest
->getType())
604 CS
.setArgument(i
, CastInst::CreatePointerCast(cpyDest
,
605 CS
.getArgument(i
)->getType(), cpyDest
->getName(), C
));
607 CS
.setArgument(i
, cpyDest
);
610 if (!changedArgument
)
613 // Drop any cached information about the call, because we may have changed
614 // its dependence information by changing its parameter.
615 MemoryDependenceAnalysis
& MD
= getAnalysis
<MemoryDependenceAnalysis
>();
616 MD
.removeInstruction(C
);
619 MD
.removeInstruction(cpy
);
620 cpy
->eraseFromParent();
626 /// processMemCpy - perform simplication of memcpy's. If we have memcpy A which
627 /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
628 /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
629 /// This allows later passes to remove the first memcpy altogether.
630 bool MemCpyOpt::processMemCpy(MemCpyInst
* M
) {
631 MemoryDependenceAnalysis
& MD
= getAnalysis
<MemoryDependenceAnalysis
>();
633 // The are two possible optimizations we can do for memcpy:
634 // a) memcpy-memcpy xform which exposes redundance for DSE
635 // b) call-memcpy xform for return slot optimization
636 MemDepResult dep
= MD
.getDependency(M
);
637 if (!dep
.isClobber())
639 if (!isa
<MemCpyInst
>(dep
.getInst())) {
640 if (CallInst
* C
= dyn_cast
<CallInst
>(dep
.getInst()))
641 return performCallSlotOptzn(M
, C
);
645 MemCpyInst
* MDep
= cast
<MemCpyInst
>(dep
.getInst());
647 // We can only transforms memcpy's where the dest of one is the source of the
649 if (M
->getSource() != MDep
->getDest())
652 // Second, the length of the memcpy's must be the same, or the preceeding one
653 // must be larger than the following one.
654 ConstantInt
* C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
655 ConstantInt
* C2
= dyn_cast
<ConstantInt
>(M
->getLength());
659 uint64_t DepSize
= C1
->getValue().getZExtValue();
660 uint64_t CpySize
= C2
->getValue().getZExtValue();
662 if (DepSize
< CpySize
)
665 // Finally, we have to make sure that the dest of the second does not
666 // alias the source of the first
667 AliasAnalysis
& AA
= getAnalysis
<AliasAnalysis
>();
668 if (AA
.alias(M
->getRawDest(), CpySize
, MDep
->getRawSource(), DepSize
) !=
669 AliasAnalysis::NoAlias
)
671 else if (AA
.alias(M
->getRawDest(), CpySize
, M
->getRawSource(), CpySize
) !=
672 AliasAnalysis::NoAlias
)
674 else if (AA
.alias(MDep
->getRawDest(), DepSize
, MDep
->getRawSource(), DepSize
)
675 != AliasAnalysis::NoAlias
)
678 // If all checks passed, then we can transform these memcpy's
680 Tys
[0] = M
->getLength()->getType();
681 Function
* MemCpyFun
= Intrinsic::getDeclaration(
682 M
->getParent()->getParent()->getParent(),
683 M
->getIntrinsicID(), Tys
, 1);
686 M
->getRawDest(), MDep
->getRawSource(), M
->getLength(), M
->getAlignmentCst()
689 CallInst
* C
= CallInst::Create(MemCpyFun
, Args
, Args
+4, "", M
);
692 // If C and M don't interfere, then this is a valid transformation. If they
693 // did, this would mean that the two sources overlap, which would be bad.
694 if (MD
.getDependency(C
) == dep
) {
695 MD
.removeInstruction(M
);
696 M
->eraseFromParent();
701 // Otherwise, there was no point in doing this, so we remove the call we
702 // inserted and act like nothing happened.
703 MD
.removeInstruction(C
);
704 C
->eraseFromParent();
708 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
711 bool MemCpyOpt::runOnFunction(Function
& F
) {
713 bool changed
= false;
714 bool shouldContinue
= true;
716 while (shouldContinue
) {
717 shouldContinue
= iterateOnFunction(F
);
718 changed
|= shouldContinue
;
725 // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
726 bool MemCpyOpt::iterateOnFunction(Function
&F
) {
727 bool changed_function
= false;
729 // Walk all instruction in the function
730 for (Function::iterator BB
= F
.begin(), BBE
= F
.end(); BB
!= BBE
; ++BB
) {
731 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end();
733 // Avoid invalidating the iterator
734 Instruction
* I
= BI
++;
736 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
737 changed_function
|= processStore(SI
, BI
);
738 else if (MemCpyInst
* M
= dyn_cast
<MemCpyInst
>(I
)) {
739 changed_function
|= processMemCpy(M
);
744 return changed_function
;