Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / PredicateSimplifier.cpp
blobf9427bb6936d4612730e43b96eee4a2c7295177e
1 //===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Path-sensitive optimizer. In a branch where x == y, replace uses of
11 // x with y. Permits further optimization, such as the elimination of
12 // the unreachable call:
14 // void test(int *p, int *q)
15 // {
16 // if (p != q)
17 // return;
18 //
19 // if (*p != *q)
20 // foo(); // unreachable
21 // }
23 //===----------------------------------------------------------------------===//
25 // The InequalityGraph focusses on four properties; equals, not equals,
26 // less-than and less-than-or-equals-to. The greater-than forms are also held
27 // just to allow walking from a lesser node to a greater one. These properties
28 // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
30 // These relationships define a graph between values of the same type. Each
31 // Value is stored in a map table that retrieves the associated Node. This
32 // is how EQ relationships are stored; the map contains pointers from equal
33 // Value to the same node. The node contains a most canonical Value* form
34 // and the list of known relationships with other nodes.
36 // If two nodes are known to be inequal, then they will contain pointers to
37 // each other with an "NE" relationship. If node getNode(%x) is less than
38 // getNode(%y), then the %x node will contain <%y, GT> and %y will contain
39 // <%x, LT>. This allows us to tie nodes together into a graph like this:
41 // %a < %b < %c < %d
43 // with four nodes representing the properties. The InequalityGraph provides
44 // querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
45 // To find a relationship, we start with one of the nodes any binary search
46 // through its list to find where the relationships with the second node start.
47 // Then we iterate through those to find the first relationship that dominates
48 // our context node.
50 // To create these properties, we wait until a branch or switch instruction
51 // implies that a particular value is true (or false). The VRPSolver is
52 // responsible for analyzing the variable and seeing what new inferences
53 // can be made from each property. For example:
55 // %P = icmp ne i32* %ptr, null
56 // %a = and i1 %P, %Q
57 // br i1 %a label %cond_true, label %cond_false
59 // For the true branch, the VRPSolver will start with %a EQ true and look at
60 // the definition of %a and find that it can infer that %P and %Q are both
61 // true. From %P being true, it can infer that %ptr NE null. For the false
62 // branch it can't infer anything from the "and" instruction.
64 // Besides branches, we can also infer properties from instruction that may
65 // have undefined behaviour in certain cases. For example, the dividend of
66 // a division may never be zero. After the division instruction, we may assume
67 // that the dividend is not equal to zero.
69 //===----------------------------------------------------------------------===//
71 // The ValueRanges class stores the known integer bounds of a Value. When we
72 // encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
73 // %b = [0, 254].
75 // It never stores an empty range, because that means that the code is
76 // unreachable. It never stores a single-element range since that's an equality
77 // relationship and better stored in the InequalityGraph, nor an empty range
78 // since that is better stored in UnreachableBlocks.
80 //===----------------------------------------------------------------------===//
82 #define DEBUG_TYPE "predsimplify"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Constants.h"
85 #include "llvm/DerivedTypes.h"
86 #include "llvm/Instructions.h"
87 #include "llvm/Pass.h"
88 #include "llvm/ADT/DepthFirstIterator.h"
89 #include "llvm/ADT/SetOperations.h"
90 #include "llvm/ADT/SetVector.h"
91 #include "llvm/ADT/Statistic.h"
92 #include "llvm/ADT/STLExtras.h"
93 #include "llvm/Analysis/Dominators.h"
94 #include "llvm/Assembly/Writer.h"
95 #include "llvm/Support/CFG.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/ConstantRange.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/InstVisitor.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetData.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <algorithm>
104 #include <deque>
105 #include <stack>
106 using namespace llvm;
108 STATISTIC(NumVarsReplaced, "Number of argument substitutions");
109 STATISTIC(NumInstruction , "Number of instructions removed");
110 STATISTIC(NumSimple , "Number of simple replacements");
111 STATISTIC(NumBlocks , "Number of blocks marked unreachable");
112 STATISTIC(NumSnuggle , "Number of comparisons snuggled");
114 static const ConstantRange empty(1, false);
116 namespace {
117 class DomTreeDFS {
118 public:
119 class Node {
120 friend class DomTreeDFS;
121 public:
122 typedef std::vector<Node *>::iterator iterator;
123 typedef std::vector<Node *>::const_iterator const_iterator;
125 unsigned getDFSNumIn() const { return DFSin; }
126 unsigned getDFSNumOut() const { return DFSout; }
128 BasicBlock *getBlock() const { return BB; }
130 iterator begin() { return Children.begin(); }
131 iterator end() { return Children.end(); }
133 const_iterator begin() const { return Children.begin(); }
134 const_iterator end() const { return Children.end(); }
136 bool dominates(const Node *N) const {
137 return DFSin <= N->DFSin && DFSout >= N->DFSout;
140 bool DominatedBy(const Node *N) const {
141 return N->dominates(this);
144 /// Sorts by the number of descendants. With this, you can iterate
145 /// through a sorted list and the first matching entry is the most
146 /// specific match for your basic block. The order provided is stable;
147 /// DomTreeDFS::Nodes with the same number of descendants are sorted by
148 /// DFS in number.
149 bool operator<(const Node &N) const {
150 unsigned spread = DFSout - DFSin;
151 unsigned N_spread = N.DFSout - N.DFSin;
152 if (spread == N_spread) return DFSin < N.DFSin;
153 return spread < N_spread;
155 bool operator>(const Node &N) const { return N < *this; }
157 private:
158 unsigned DFSin, DFSout;
159 BasicBlock *BB;
161 std::vector<Node *> Children;
164 // XXX: this may be slow. Instead of using "new" for each node, consider
165 // putting them in a vector to keep them contiguous.
166 explicit DomTreeDFS(DominatorTree *DT) {
167 std::stack<std::pair<Node *, DomTreeNode *> > S;
169 Entry = new Node;
170 Entry->BB = DT->getRootNode()->getBlock();
171 S.push(std::make_pair(Entry, DT->getRootNode()));
173 NodeMap[Entry->BB] = Entry;
175 while (!S.empty()) {
176 std::pair<Node *, DomTreeNode *> &Pair = S.top();
177 Node *N = Pair.first;
178 DomTreeNode *DTNode = Pair.second;
179 S.pop();
181 for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
182 I != E; ++I) {
183 Node *NewNode = new Node;
184 NewNode->BB = (*I)->getBlock();
185 N->Children.push_back(NewNode);
186 S.push(std::make_pair(NewNode, *I));
188 NodeMap[NewNode->BB] = NewNode;
192 renumber();
194 #ifndef NDEBUG
195 DEBUG(dump());
196 #endif
199 #ifndef NDEBUG
200 virtual
201 #endif
202 ~DomTreeDFS() {
203 std::stack<Node *> S;
205 S.push(Entry);
206 while (!S.empty()) {
207 Node *N = S.top(); S.pop();
209 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
210 S.push(*I);
212 delete N;
216 /// getRootNode - This returns the entry node for the CFG of the function.
217 Node *getRootNode() const { return Entry; }
219 /// getNodeForBlock - return the node for the specified basic block.
220 Node *getNodeForBlock(BasicBlock *BB) const {
221 if (!NodeMap.count(BB)) return 0;
222 return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
225 /// dominates - returns true if the basic block for I1 dominates that of
226 /// the basic block for I2. If the instructions belong to the same basic
227 /// block, the instruction first instruction sequentially in the block is
228 /// considered dominating.
229 bool dominates(Instruction *I1, Instruction *I2) {
230 BasicBlock *BB1 = I1->getParent(),
231 *BB2 = I2->getParent();
232 if (BB1 == BB2) {
233 if (isa<TerminatorInst>(I1)) return false;
234 if (isa<TerminatorInst>(I2)) return true;
235 if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
236 if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
238 for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
239 I != E; ++I) {
240 if (&*I == I1) return true;
241 else if (&*I == I2) return false;
243 assert(!"Instructions not found in parent BasicBlock?");
244 } else {
245 Node *Node1 = getNodeForBlock(BB1),
246 *Node2 = getNodeForBlock(BB2);
247 return Node1 && Node2 && Node1->dominates(Node2);
249 return false; // Not reached
252 private:
253 /// renumber - calculates the depth first search numberings and applies
254 /// them onto the nodes.
255 void renumber() {
256 std::stack<std::pair<Node *, Node::iterator> > S;
257 unsigned n = 0;
259 Entry->DFSin = ++n;
260 S.push(std::make_pair(Entry, Entry->begin()));
262 while (!S.empty()) {
263 std::pair<Node *, Node::iterator> &Pair = S.top();
264 Node *N = Pair.first;
265 Node::iterator &I = Pair.second;
267 if (I == N->end()) {
268 N->DFSout = ++n;
269 S.pop();
270 } else {
271 Node *Next = *I++;
272 Next->DFSin = ++n;
273 S.push(std::make_pair(Next, Next->begin()));
278 #ifndef NDEBUG
279 virtual void dump() const {
280 dump(*cerr.stream());
283 void dump(std::ostream &os) const {
284 os << "Predicate simplifier DomTreeDFS: \n";
285 dump(Entry, 0, os);
286 os << "\n\n";
289 void dump(Node *N, int depth, std::ostream &os) const {
290 ++depth;
291 for (int i = 0; i < depth; ++i) { os << " "; }
292 os << "[" << depth << "] ";
294 os << N->getBlock()->getNameStr() << " (" << N->getDFSNumIn()
295 << ", " << N->getDFSNumOut() << ")\n";
297 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
298 dump(*I, depth, os);
300 #endif
302 Node *Entry;
303 std::map<BasicBlock *, Node *> NodeMap;
306 // SLT SGT ULT UGT EQ
307 // 0 1 0 1 0 -- GT 10
308 // 0 1 0 1 1 -- GE 11
309 // 0 1 1 0 0 -- SGTULT 12
310 // 0 1 1 0 1 -- SGEULE 13
311 // 0 1 1 1 0 -- SGT 14
312 // 0 1 1 1 1 -- SGE 15
313 // 1 0 0 1 0 -- SLTUGT 18
314 // 1 0 0 1 1 -- SLEUGE 19
315 // 1 0 1 0 0 -- LT 20
316 // 1 0 1 0 1 -- LE 21
317 // 1 0 1 1 0 -- SLT 22
318 // 1 0 1 1 1 -- SLE 23
319 // 1 1 0 1 0 -- UGT 26
320 // 1 1 0 1 1 -- UGE 27
321 // 1 1 1 0 0 -- ULT 28
322 // 1 1 1 0 1 -- ULE 29
323 // 1 1 1 1 0 -- NE 30
324 enum LatticeBits {
325 EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
327 enum LatticeVal {
328 GT = SGT_BIT | UGT_BIT,
329 GE = GT | EQ_BIT,
330 LT = SLT_BIT | ULT_BIT,
331 LE = LT | EQ_BIT,
332 NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
333 SGTULT = SGT_BIT | ULT_BIT,
334 SGEULE = SGTULT | EQ_BIT,
335 SLTUGT = SLT_BIT | UGT_BIT,
336 SLEUGE = SLTUGT | EQ_BIT,
337 ULT = SLT_BIT | SGT_BIT | ULT_BIT,
338 UGT = SLT_BIT | SGT_BIT | UGT_BIT,
339 SLT = SLT_BIT | ULT_BIT | UGT_BIT,
340 SGT = SGT_BIT | ULT_BIT | UGT_BIT,
341 SLE = SLT | EQ_BIT,
342 SGE = SGT | EQ_BIT,
343 ULE = ULT | EQ_BIT,
344 UGE = UGT | EQ_BIT
347 #ifndef NDEBUG
348 /// validPredicate - determines whether a given value is actually a lattice
349 /// value. Only used in assertions or debugging.
350 static bool validPredicate(LatticeVal LV) {
351 switch (LV) {
352 case GT: case GE: case LT: case LE: case NE:
353 case SGTULT: case SGT: case SGEULE:
354 case SLTUGT: case SLT: case SLEUGE:
355 case ULT: case UGT:
356 case SLE: case SGE: case ULE: case UGE:
357 return true;
358 default:
359 return false;
362 #endif
364 /// reversePredicate - reverse the direction of the inequality
365 static LatticeVal reversePredicate(LatticeVal LV) {
366 unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
368 if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
369 reverse |= (SLT_BIT|SGT_BIT);
371 if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
372 reverse |= (ULT_BIT|UGT_BIT);
374 LatticeVal Rev = static_cast<LatticeVal>(reverse);
375 assert(validPredicate(Rev) && "Failed reversing predicate.");
376 return Rev;
379 /// ValueNumbering stores the scope-specific value numbers for a given Value.
380 class VISIBILITY_HIDDEN ValueNumbering {
382 /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
383 /// includes the comparison operators necessary to allow you to store it
384 /// in a sorted vector.
385 class VISIBILITY_HIDDEN VNPair {
386 public:
387 Value *V;
388 unsigned index;
389 DomTreeDFS::Node *Subtree;
391 VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
392 : V(V), index(index), Subtree(Subtree) {}
394 bool operator==(const VNPair &RHS) const {
395 return V == RHS.V && Subtree == RHS.Subtree;
398 bool operator<(const VNPair &RHS) const {
399 if (V != RHS.V) return V < RHS.V;
400 return *Subtree < *RHS.Subtree;
403 bool operator<(Value *RHS) const {
404 return V < RHS;
407 bool operator>(Value *RHS) const {
408 return V > RHS;
411 friend bool operator<(Value *RHS, const VNPair &pair) {
412 return pair.operator>(RHS);
416 typedef std::vector<VNPair> VNMapType;
417 VNMapType VNMap;
419 /// The canonical choice for value number at index.
420 std::vector<Value *> Values;
422 DomTreeDFS *DTDFS;
424 public:
425 #ifndef NDEBUG
426 virtual ~ValueNumbering() {}
427 virtual void dump() {
428 dump(*cerr.stream());
431 void dump(std::ostream &os) {
432 for (unsigned i = 1; i <= Values.size(); ++i) {
433 os << i << " = ";
434 WriteAsOperand(os, Values[i-1]);
435 os << " {";
436 for (unsigned j = 0; j < VNMap.size(); ++j) {
437 if (VNMap[j].index == i) {
438 WriteAsOperand(os, VNMap[j].V);
439 os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
442 os << "}\n";
445 #endif
447 /// compare - returns true if V1 is a better canonical value than V2.
448 bool compare(Value *V1, Value *V2) const {
449 if (isa<Constant>(V1))
450 return !isa<Constant>(V2);
451 else if (isa<Constant>(V2))
452 return false;
453 else if (isa<Argument>(V1))
454 return !isa<Argument>(V2);
455 else if (isa<Argument>(V2))
456 return false;
458 Instruction *I1 = dyn_cast<Instruction>(V1);
459 Instruction *I2 = dyn_cast<Instruction>(V2);
461 if (!I1 || !I2)
462 return V1->getNumUses() < V2->getNumUses();
464 return DTDFS->dominates(I1, I2);
467 ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
469 /// valueNumber - finds the value number for V under the Subtree. If
470 /// there is no value number, returns zero.
471 unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
472 if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
473 || V->getType() == Type::VoidTy) return 0;
475 VNMapType::iterator E = VNMap.end();
476 VNPair pair(V, 0, Subtree);
477 VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
478 while (I != E && I->V == V) {
479 if (I->Subtree->dominates(Subtree))
480 return I->index;
481 ++I;
483 return 0;
486 /// getOrInsertVN - always returns a value number, creating it if necessary.
487 unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
488 if (unsigned n = valueNumber(V, Subtree))
489 return n;
490 else
491 return newVN(V);
494 /// newVN - creates a new value number. Value V must not already have a
495 /// value number assigned.
496 unsigned newVN(Value *V) {
497 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
498 "Bad Value for value numbering.");
499 assert(V->getType() != Type::VoidTy && "Won't value number a void value");
501 Values.push_back(V);
503 VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
504 VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
505 assert((I == VNMap.end() || value(I->index) != V) &&
506 "Attempt to create a duplicate value number.");
507 VNMap.insert(I, pair);
509 return Values.size();
512 /// value - returns the Value associated with a value number.
513 Value *value(unsigned index) const {
514 assert(index != 0 && "Zero index is reserved for not found.");
515 assert(index <= Values.size() && "Index out of range.");
516 return Values[index-1];
519 /// canonicalize - return a Value that is equal to V under Subtree.
520 Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
521 if (isa<Constant>(V)) return V;
523 if (unsigned n = valueNumber(V, Subtree))
524 return value(n);
525 else
526 return V;
529 /// addEquality - adds that value V belongs to the set of equivalent
530 /// values defined by value number n under Subtree.
531 void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
532 assert(canonicalize(value(n), Subtree) == value(n) &&
533 "Node's 'canonical' choice isn't best within this subtree.");
535 // Suppose that we are given "%x -> node #1 (%y)". The problem is that
536 // we may already have "%z -> node #2 (%x)" somewhere above us in the
537 // graph. We need to find those edges and add "%z -> node #1 (%y)"
538 // to keep the lookups canonical.
540 std::vector<Value *> ToRepoint(1, V);
542 if (unsigned Conflict = valueNumber(V, Subtree)) {
543 for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
544 I != E; ++I) {
545 if (I->index == Conflict && I->Subtree->dominates(Subtree))
546 ToRepoint.push_back(I->V);
550 for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
551 VE = ToRepoint.end(); VI != VE; ++VI) {
552 Value *V = *VI;
554 VNPair pair(V, n, Subtree);
555 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
556 VNMapType::iterator I = std::lower_bound(B, E, pair);
557 if (I != E && I->V == V && I->Subtree == Subtree)
558 I->index = n; // Update best choice
559 else
560 VNMap.insert(I, pair); // New Value
562 // XXX: we currently don't have to worry about updating values with
563 // more specific Subtrees, but we will need to for PHI node support.
565 #ifndef NDEBUG
566 Value *V_n = value(n);
567 if (isa<Constant>(V) && isa<Constant>(V_n)) {
568 assert(V == V_n && "Constant equals different constant?");
570 #endif
574 /// remove - removes all references to value V.
575 void remove(Value *V) {
576 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
577 VNPair pair(V, 0, DTDFS->getRootNode());
578 VNMapType::iterator J = std::upper_bound(B, E, pair);
579 VNMapType::iterator I = J;
581 while (I != B && (I == E || I->V == V)) --I;
583 VNMap.erase(I, J);
587 /// The InequalityGraph stores the relationships between values.
588 /// Each Value in the graph is assigned to a Node. Nodes are pointer
589 /// comparable for equality. The caller is expected to maintain the logical
590 /// consistency of the system.
592 /// The InequalityGraph class may invalidate Node*s after any mutator call.
593 /// @brief The InequalityGraph stores the relationships between values.
594 class VISIBILITY_HIDDEN InequalityGraph {
595 ValueNumbering &VN;
596 DomTreeDFS::Node *TreeRoot;
598 InequalityGraph(); // DO NOT IMPLEMENT
599 InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
600 public:
601 InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
602 : VN(VN), TreeRoot(TreeRoot) {}
604 class Node;
606 /// An Edge is contained inside a Node making one end of the edge implicit
607 /// and contains a pointer to the other end. The edge contains a lattice
608 /// value specifying the relationship and an DomTreeDFS::Node specifying
609 /// the root in the dominator tree to which this edge applies.
610 class VISIBILITY_HIDDEN Edge {
611 public:
612 Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
613 : To(T), LV(V), Subtree(ST) {}
615 unsigned To;
616 LatticeVal LV;
617 DomTreeDFS::Node *Subtree;
619 bool operator<(const Edge &edge) const {
620 if (To != edge.To) return To < edge.To;
621 return *Subtree < *edge.Subtree;
624 bool operator<(unsigned to) const {
625 return To < to;
628 bool operator>(unsigned to) const {
629 return To > to;
632 friend bool operator<(unsigned to, const Edge &edge) {
633 return edge.operator>(to);
637 /// A single node in the InequalityGraph. This stores the canonical Value
638 /// for the node, as well as the relationships with the neighbours.
640 /// @brief A single node in the InequalityGraph.
641 class VISIBILITY_HIDDEN Node {
642 friend class InequalityGraph;
644 typedef SmallVector<Edge, 4> RelationsType;
645 RelationsType Relations;
647 // TODO: can this idea improve performance?
648 //friend class std::vector<Node>;
649 //Node(Node &N) { RelationsType.swap(N.RelationsType); }
651 public:
652 typedef RelationsType::iterator iterator;
653 typedef RelationsType::const_iterator const_iterator;
655 #ifndef NDEBUG
656 virtual ~Node() {}
657 virtual void dump() const {
658 dump(*cerr.stream());
660 private:
661 void dump(std::ostream &os) const {
662 static const std::string names[32] =
663 { "000000", "000001", "000002", "000003", "000004", "000005",
664 "000006", "000007", "000008", "000009", " >", " >=",
665 " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
666 " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
667 "000024", "000025", " u>", " u>=", " u<", " u<=",
668 " !=", "000031" };
669 for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
670 os << names[NI->LV] << " " << NI->To
671 << " (" << NI->Subtree->getDFSNumIn() << "), ";
674 public:
675 #endif
677 iterator begin() { return Relations.begin(); }
678 iterator end() { return Relations.end(); }
679 const_iterator begin() const { return Relations.begin(); }
680 const_iterator end() const { return Relations.end(); }
682 iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
683 iterator E = end();
684 for (iterator I = std::lower_bound(begin(), E, n);
685 I != E && I->To == n; ++I) {
686 if (Subtree->DominatedBy(I->Subtree))
687 return I;
689 return E;
692 const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
693 const_iterator E = end();
694 for (const_iterator I = std::lower_bound(begin(), E, n);
695 I != E && I->To == n; ++I) {
696 if (Subtree->DominatedBy(I->Subtree))
697 return I;
699 return E;
702 /// update - updates the lattice value for a given node, creating a new
703 /// entry if one doesn't exist. The new lattice value must not be
704 /// inconsistent with any previously existing value.
705 void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
706 assert(validPredicate(R) && "Invalid predicate.");
708 Edge edge(n, R, Subtree);
709 iterator B = begin(), E = end();
710 iterator I = std::lower_bound(B, E, edge);
712 iterator J = I;
713 while (J != E && J->To == n) {
714 if (Subtree->DominatedBy(J->Subtree))
715 break;
716 ++J;
719 if (J != E && J->To == n) {
720 edge.LV = static_cast<LatticeVal>(J->LV & R);
721 assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
723 if (edge.LV == J->LV)
724 return; // This update adds nothing new.
727 if (I != B) {
728 // We also have to tighten any edge beneath our update.
729 for (iterator K = I - 1; K->To == n; --K) {
730 if (K->Subtree->DominatedBy(Subtree)) {
731 LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
732 assert(validPredicate(LV) && "Invalid union of lattice values");
733 K->LV = LV;
735 if (K == B) break;
739 // Insert new edge at Subtree if it isn't already there.
740 if (I == E || I->To != n || Subtree != I->Subtree)
741 Relations.insert(I, edge);
745 private:
747 std::vector<Node> Nodes;
749 public:
750 /// node - returns the node object at a given value number. The pointer
751 /// returned may be invalidated on the next call to node().
752 Node *node(unsigned index) {
753 assert(VN.value(index)); // This triggers the necessary checks.
754 if (Nodes.size() < index) Nodes.resize(index);
755 return &Nodes[index-1];
758 /// isRelatedBy - true iff n1 op n2
759 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
760 LatticeVal LV) {
761 if (n1 == n2) return LV & EQ_BIT;
763 Node *N1 = node(n1);
764 Node::iterator I = N1->find(n2, Subtree), E = N1->end();
765 if (I != E) return (I->LV & LV) == I->LV;
767 return false;
770 // The add* methods assume that your input is logically valid and may
771 // assertion-fail or infinitely loop if you attempt a contradiction.
773 /// addInequality - Sets n1 op n2.
774 /// It is also an error to call this on an inequality that is already true.
775 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
776 LatticeVal LV1) {
777 assert(n1 != n2 && "A node can't be inequal to itself.");
779 if (LV1 != NE)
780 assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
781 "Contradictory inequality.");
783 // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
784 // add %a < %n2 too. This keeps the graph fully connected.
785 if (LV1 != NE) {
786 // Break up the relationship into signed and unsigned comparison parts.
787 // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
788 // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
789 // should have the EQ_BIT iff it's set for both op1 and op2.
791 unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
792 unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
794 for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
795 if (I->LV != NE && I->To != n2) {
797 DomTreeDFS::Node *Local_Subtree = NULL;
798 if (Subtree->DominatedBy(I->Subtree))
799 Local_Subtree = Subtree;
800 else if (I->Subtree->DominatedBy(Subtree))
801 Local_Subtree = I->Subtree;
803 if (Local_Subtree) {
804 unsigned new_relationship = 0;
805 LatticeVal ILV = reversePredicate(I->LV);
806 unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
807 unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
809 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
810 new_relationship |= ILV_s;
811 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
812 new_relationship |= ILV_u;
814 if (new_relationship) {
815 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
816 new_relationship |= (SLT_BIT|SGT_BIT);
817 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
818 new_relationship |= (ULT_BIT|UGT_BIT);
819 if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
820 new_relationship |= EQ_BIT;
822 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
824 node(I->To)->update(n2, NewLV, Local_Subtree);
825 node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
831 for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
832 if (I->LV != NE && I->To != n1) {
833 DomTreeDFS::Node *Local_Subtree = NULL;
834 if (Subtree->DominatedBy(I->Subtree))
835 Local_Subtree = Subtree;
836 else if (I->Subtree->DominatedBy(Subtree))
837 Local_Subtree = I->Subtree;
839 if (Local_Subtree) {
840 unsigned new_relationship = 0;
841 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
842 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
844 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
845 new_relationship |= ILV_s;
847 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
848 new_relationship |= ILV_u;
850 if (new_relationship) {
851 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
852 new_relationship |= (SLT_BIT|SGT_BIT);
853 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
854 new_relationship |= (ULT_BIT|UGT_BIT);
855 if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
856 new_relationship |= EQ_BIT;
858 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
860 node(n1)->update(I->To, NewLV, Local_Subtree);
861 node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
868 node(n1)->update(n2, LV1, Subtree);
869 node(n2)->update(n1, reversePredicate(LV1), Subtree);
872 /// remove - removes a node from the graph by removing all references to
873 /// and from it.
874 void remove(unsigned n) {
875 Node *N = node(n);
876 for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
877 Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
878 do {
879 node(NI->To)->Relations.erase(Iter);
880 Iter = node(NI->To)->find(n, TreeRoot);
881 } while (Iter != node(NI->To)->end());
883 N->Relations.clear();
886 #ifndef NDEBUG
887 virtual ~InequalityGraph() {}
888 virtual void dump() {
889 dump(*cerr.stream());
892 void dump(std::ostream &os) {
893 for (unsigned i = 1; i <= Nodes.size(); ++i) {
894 os << i << " = {";
895 node(i)->dump(os);
896 os << "}\n";
899 #endif
902 class VRPSolver;
904 /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
905 /// in the InequalityGraph.
906 class VISIBILITY_HIDDEN ValueRanges {
907 ValueNumbering &VN;
908 TargetData *TD;
909 LLVMContext *Context;
911 class VISIBILITY_HIDDEN ScopedRange {
912 typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
913 RangeListType;
914 RangeListType RangeList;
916 static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
917 const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
918 return *LHS.first < *RHS.first;
921 public:
922 #ifndef NDEBUG
923 virtual ~ScopedRange() {}
924 virtual void dump() const {
925 dump(*cerr.stream());
928 void dump(std::ostream &os) const {
929 os << "{";
930 for (const_iterator I = begin(), E = end(); I != E; ++I) {
931 os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
933 os << "}";
935 #endif
937 typedef RangeListType::iterator iterator;
938 typedef RangeListType::const_iterator const_iterator;
940 iterator begin() { return RangeList.begin(); }
941 iterator end() { return RangeList.end(); }
942 const_iterator begin() const { return RangeList.begin(); }
943 const_iterator end() const { return RangeList.end(); }
945 iterator find(DomTreeDFS::Node *Subtree) {
946 iterator E = end();
947 iterator I = std::lower_bound(begin(), E,
948 std::make_pair(Subtree, empty), swo);
950 while (I != E && !I->first->dominates(Subtree)) ++I;
951 return I;
954 const_iterator find(DomTreeDFS::Node *Subtree) const {
955 const_iterator E = end();
956 const_iterator I = std::lower_bound(begin(), E,
957 std::make_pair(Subtree, empty), swo);
959 while (I != E && !I->first->dominates(Subtree)) ++I;
960 return I;
963 void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
964 assert(!CR.isEmptySet() && "Empty ConstantRange.");
965 assert(!CR.isSingleElement() && "Refusing to store single element.");
967 iterator E = end();
968 iterator I =
969 std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
971 if (I != end() && I->first == Subtree) {
972 ConstantRange CR2 = I->second.intersectWith(CR);
973 assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
974 "Invalid union of ranges.");
975 I->second = CR2;
976 } else
977 RangeList.insert(I, std::make_pair(Subtree, CR));
981 std::vector<ScopedRange> Ranges;
983 void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
984 if (CR.isFullSet()) return;
985 if (Ranges.size() < n) Ranges.resize(n);
986 Ranges[n-1].update(CR, Subtree);
989 /// create - Creates a ConstantRange that matches the given LatticeVal
990 /// relation with a given integer.
991 ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
992 assert(!CR.isEmptySet() && "Can't deal with empty set.");
994 if (LV == NE)
995 return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE, CR);
997 unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
998 unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
999 bool hasEQ = LV & EQ_BIT;
1001 ConstantRange Range(CR.getBitWidth());
1003 if (LV_s == SGT_BIT) {
1004 Range = Range.intersectWith(ConstantRange::makeICmpRegion(
1005 hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
1006 } else if (LV_s == SLT_BIT) {
1007 Range = Range.intersectWith(ConstantRange::makeICmpRegion(
1008 hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
1011 if (LV_u == UGT_BIT) {
1012 Range = Range.intersectWith(ConstantRange::makeICmpRegion(
1013 hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
1014 } else if (LV_u == ULT_BIT) {
1015 Range = Range.intersectWith(ConstantRange::makeICmpRegion(
1016 hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
1019 return Range;
1022 #ifndef NDEBUG
1023 bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
1024 return V == VN.canonicalize(V, Subtree);
1026 #endif
1028 public:
1030 ValueRanges(ValueNumbering &VN, TargetData *TD, LLVMContext *C) :
1031 VN(VN), TD(TD), Context(C) {}
1033 #ifndef NDEBUG
1034 virtual ~ValueRanges() {}
1036 virtual void dump() const {
1037 dump(*cerr.stream());
1040 void dump(std::ostream &os) const {
1041 for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
1042 os << (i+1) << " = ";
1043 Ranges[i].dump(os);
1044 os << "\n";
1047 #endif
1049 /// range - looks up the ConstantRange associated with a value number.
1050 ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
1051 assert(VN.value(n)); // performs range checks
1053 if (n <= Ranges.size()) {
1054 ScopedRange::iterator I = Ranges[n-1].find(Subtree);
1055 if (I != Ranges[n-1].end()) return I->second;
1058 Value *V = VN.value(n);
1059 ConstantRange CR = range(V);
1060 return CR;
1063 /// range - determine a range from a Value without performing any lookups.
1064 ConstantRange range(Value *V) const {
1065 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1066 return ConstantRange(C->getValue());
1067 else if (isa<ConstantPointerNull>(V))
1068 return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
1069 else
1070 return ConstantRange(typeToWidth(V->getType()));
1073 // typeToWidth - returns the number of bits necessary to store a value of
1074 // this type, or zero if unknown.
1075 uint32_t typeToWidth(const Type *Ty) const {
1076 if (TD)
1077 return TD->getTypeSizeInBits(Ty);
1078 else
1079 return Ty->getPrimitiveSizeInBits();
1082 static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
1083 LatticeVal LV) {
1084 switch (LV) {
1085 default: assert(!"Impossible lattice value!");
1086 case NE:
1087 return CR1.intersectWith(CR2).isEmptySet();
1088 case ULT:
1089 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1090 case ULE:
1091 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1092 case UGT:
1093 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1094 case UGE:
1095 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1096 case SLT:
1097 return CR1.getSignedMax().slt(CR2.getSignedMin());
1098 case SLE:
1099 return CR1.getSignedMax().sle(CR2.getSignedMin());
1100 case SGT:
1101 return CR1.getSignedMin().sgt(CR2.getSignedMax());
1102 case SGE:
1103 return CR1.getSignedMin().sge(CR2.getSignedMax());
1104 case LT:
1105 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
1106 CR1.getSignedMax().slt(CR2.getUnsignedMin());
1107 case LE:
1108 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
1109 CR1.getSignedMax().sle(CR2.getUnsignedMin());
1110 case GT:
1111 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
1112 CR1.getSignedMin().sgt(CR2.getSignedMax());
1113 case GE:
1114 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
1115 CR1.getSignedMin().sge(CR2.getSignedMax());
1116 case SLTUGT:
1117 return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
1118 CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1119 case SLEUGE:
1120 return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
1121 CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1122 case SGTULT:
1123 return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
1124 CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1125 case SGEULE:
1126 return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
1127 CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1131 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1132 LatticeVal LV) {
1133 ConstantRange CR1 = range(n1, Subtree);
1134 ConstantRange CR2 = range(n2, Subtree);
1136 // True iff all values in CR1 are LV to all values in CR2.
1137 return isRelatedBy(CR1, CR2, LV);
1140 void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
1141 VRPSolver *VRP);
1142 void markBlock(VRPSolver *VRP);
1144 void mergeInto(Value **I, unsigned n, unsigned New,
1145 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1146 ConstantRange CR_New = range(New, Subtree);
1147 ConstantRange Merged = CR_New;
1149 for (; n != 0; ++I, --n) {
1150 unsigned i = VN.valueNumber(*I, Subtree);
1151 ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
1152 if (CR_Kill.isFullSet()) continue;
1153 Merged = Merged.intersectWith(CR_Kill);
1156 if (Merged.isFullSet() || Merged == CR_New) return;
1158 applyRange(New, Merged, Subtree, VRP);
1161 void applyRange(unsigned n, const ConstantRange &CR,
1162 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1163 ConstantRange Merged = CR.intersectWith(range(n, Subtree));
1164 if (Merged.isEmptySet()) {
1165 markBlock(VRP);
1166 return;
1169 if (const APInt *I = Merged.getSingleElement()) {
1170 Value *V = VN.value(n); // XXX: redesign worklist.
1171 const Type *Ty = V->getType();
1172 if (Ty->isInteger()) {
1173 addToWorklist(V, ConstantInt::get(*Context, *I),
1174 ICmpInst::ICMP_EQ, VRP);
1175 return;
1176 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1177 assert(*I == 0 && "Pointer is null but not zero?");
1178 addToWorklist(V, ConstantPointerNull::get(PTy),
1179 ICmpInst::ICMP_EQ, VRP);
1180 return;
1184 update(n, Merged, Subtree);
1187 void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1188 VRPSolver *VRP) {
1189 ConstantRange CR1 = range(n1, Subtree);
1190 ConstantRange CR2 = range(n2, Subtree);
1192 uint32_t W = CR1.getBitWidth();
1194 if (const APInt *I = CR1.getSingleElement()) {
1195 if (CR2.isFullSet()) {
1196 ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
1197 applyRange(n2, NewCR2, Subtree, VRP);
1198 } else if (*I == CR2.getLower()) {
1199 APInt NewLower(CR2.getLower() + 1),
1200 NewUpper(CR2.getUpper());
1201 if (NewLower == NewUpper)
1202 NewLower = NewUpper = APInt::getMinValue(W);
1204 ConstantRange NewCR2(NewLower, NewUpper);
1205 applyRange(n2, NewCR2, Subtree, VRP);
1206 } else if (*I == CR2.getUpper() - 1) {
1207 APInt NewLower(CR2.getLower()),
1208 NewUpper(CR2.getUpper() - 1);
1209 if (NewLower == NewUpper)
1210 NewLower = NewUpper = APInt::getMinValue(W);
1212 ConstantRange NewCR2(NewLower, NewUpper);
1213 applyRange(n2, NewCR2, Subtree, VRP);
1217 if (const APInt *I = CR2.getSingleElement()) {
1218 if (CR1.isFullSet()) {
1219 ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
1220 applyRange(n1, NewCR1, Subtree, VRP);
1221 } else if (*I == CR1.getLower()) {
1222 APInt NewLower(CR1.getLower() + 1),
1223 NewUpper(CR1.getUpper());
1224 if (NewLower == NewUpper)
1225 NewLower = NewUpper = APInt::getMinValue(W);
1227 ConstantRange NewCR1(NewLower, NewUpper);
1228 applyRange(n1, NewCR1, Subtree, VRP);
1229 } else if (*I == CR1.getUpper() - 1) {
1230 APInt NewLower(CR1.getLower()),
1231 NewUpper(CR1.getUpper() - 1);
1232 if (NewLower == NewUpper)
1233 NewLower = NewUpper = APInt::getMinValue(W);
1235 ConstantRange NewCR1(NewLower, NewUpper);
1236 applyRange(n1, NewCR1, Subtree, VRP);
1241 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1242 LatticeVal LV, VRPSolver *VRP) {
1243 assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
1245 if (LV == NE) {
1246 addNotEquals(n1, n2, Subtree, VRP);
1247 return;
1250 ConstantRange CR1 = range(n1, Subtree);
1251 ConstantRange CR2 = range(n2, Subtree);
1253 if (!CR1.isSingleElement()) {
1254 ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2));
1255 if (NewCR1 != CR1)
1256 applyRange(n1, NewCR1, Subtree, VRP);
1259 if (!CR2.isSingleElement()) {
1260 ConstantRange NewCR2 = CR2.intersectWith(
1261 create(reversePredicate(LV), CR1));
1262 if (NewCR2 != CR2)
1263 applyRange(n2, NewCR2, Subtree, VRP);
1268 /// UnreachableBlocks keeps tracks of blocks that are for one reason or
1269 /// another discovered to be unreachable. This is used to cull the graph when
1270 /// analyzing instructions, and to mark blocks with the "unreachable"
1271 /// terminator instruction after the function has executed.
1272 class VISIBILITY_HIDDEN UnreachableBlocks {
1273 private:
1274 std::vector<BasicBlock *> DeadBlocks;
1276 public:
1277 /// mark - mark a block as dead
1278 void mark(BasicBlock *BB) {
1279 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1280 std::vector<BasicBlock *>::iterator I =
1281 std::lower_bound(DeadBlocks.begin(), E, BB);
1283 if (I == E || *I != BB) DeadBlocks.insert(I, BB);
1286 /// isDead - returns whether a block is known to be dead already
1287 bool isDead(BasicBlock *BB) {
1288 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1289 std::vector<BasicBlock *>::iterator I =
1290 std::lower_bound(DeadBlocks.begin(), E, BB);
1292 return I != E && *I == BB;
1295 /// kill - replace the dead blocks' terminator with an UnreachableInst.
1296 bool kill() {
1297 bool modified = false;
1298 for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
1299 E = DeadBlocks.end(); I != E; ++I) {
1300 BasicBlock *BB = *I;
1302 DEBUG(errs() << "unreachable block: " << BB->getName() << "\n");
1304 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
1305 SI != SE; ++SI) {
1306 BasicBlock *Succ = *SI;
1307 Succ->removePredecessor(BB);
1310 TerminatorInst *TI = BB->getTerminator();
1311 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1312 TI->eraseFromParent();
1313 new UnreachableInst(BB);
1314 ++NumBlocks;
1315 modified = true;
1317 DeadBlocks.clear();
1318 return modified;
1322 /// VRPSolver keeps track of how changes to one variable affect other
1323 /// variables, and forwards changes along to the InequalityGraph. It
1324 /// also maintains the correct choice for "canonical" in the IG.
1325 /// @brief VRPSolver calculates inferences from a new relationship.
1326 class VISIBILITY_HIDDEN VRPSolver {
1327 private:
1328 friend class ValueRanges;
1330 struct Operation {
1331 Value *LHS, *RHS;
1332 ICmpInst::Predicate Op;
1334 BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
1335 Instruction *ContextInst;
1337 std::deque<Operation> WorkList;
1339 ValueNumbering &VN;
1340 InequalityGraph &IG;
1341 UnreachableBlocks &UB;
1342 ValueRanges &VR;
1343 DomTreeDFS *DTDFS;
1344 DomTreeDFS::Node *Top;
1345 BasicBlock *TopBB;
1346 Instruction *TopInst;
1347 bool &modified;
1348 LLVMContext *Context;
1350 typedef InequalityGraph::Node Node;
1352 // below - true if the Instruction is dominated by the current context
1353 // block or instruction
1354 bool below(Instruction *I) {
1355 BasicBlock *BB = I->getParent();
1356 if (TopInst && TopInst->getParent() == BB) {
1357 if (isa<TerminatorInst>(TopInst)) return false;
1358 if (isa<TerminatorInst>(I)) return true;
1359 if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
1360 if (!isa<PHINode>(TopInst) && isa<PHINode>(I)) return false;
1362 for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
1363 Iter != E; ++Iter) {
1364 if (&*Iter == TopInst) return true;
1365 else if (&*Iter == I) return false;
1367 assert(!"Instructions not found in parent BasicBlock?");
1368 } else {
1369 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1370 if (!Node) return false;
1371 return Top->dominates(Node);
1373 return false; // Not reached
1376 // aboveOrBelow - true if the Instruction either dominates or is dominated
1377 // by the current context block or instruction
1378 bool aboveOrBelow(Instruction *I) {
1379 BasicBlock *BB = I->getParent();
1380 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1381 if (!Node) return false;
1383 return Top == Node || Top->dominates(Node) || Node->dominates(Top);
1386 bool makeEqual(Value *V1, Value *V2) {
1387 DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
1388 DOUT << "context is ";
1389 DEBUG(if (TopInst)
1390 errs() << "I: " << *TopInst << "\n";
1391 else
1392 errs() << "BB: " << TopBB->getName()
1393 << "(" << Top->getDFSNumIn() << ")\n");
1395 assert(V1->getType() == V2->getType() &&
1396 "Can't make two values with different types equal.");
1398 if (V1 == V2) return true;
1400 if (isa<Constant>(V1) && isa<Constant>(V2))
1401 return false;
1403 unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);
1405 if (n1 && n2) {
1406 if (n1 == n2) return true;
1407 if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
1410 if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
1411 if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");
1413 assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");
1415 assert(!isa<Constant>(V2) && "Tried to remove a constant.");
1417 SetVector<unsigned> Remove;
1418 if (n2) Remove.insert(n2);
1420 if (n1 && n2) {
1421 // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
1422 // We can't just merge %x and %y because the relationship with %z would
1423 // be EQ and that's invalid. What we're doing is looking for any nodes
1424 // %z such that %x <= %z and %y >= %z, and vice versa.
1426 Node::iterator end = IG.node(n2)->end();
1428 // Find the intersection between N1 and N2 which is dominated by
1429 // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
1430 // Remove.
1431 for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
1432 I != E; ++I) {
1433 if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
1435 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
1436 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
1437 Node::iterator NI = IG.node(n2)->find(I->To, Top);
1438 if (NI != end) {
1439 LatticeVal NILV = reversePredicate(NI->LV);
1440 unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
1441 unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);
1443 if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
1444 (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
1445 Remove.insert(I->To);
1449 // See if one of the nodes about to be removed is actually a better
1450 // canonical choice than n1.
1451 unsigned orig_n1 = n1;
1452 SetVector<unsigned>::iterator DontRemove = Remove.end();
1453 for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
1454 E = Remove.end(); I != E; ++I) {
1455 unsigned n = *I;
1456 Value *V = VN.value(n);
1457 if (VN.compare(V, V1)) {
1458 V1 = V;
1459 n1 = n;
1460 DontRemove = I;
1463 if (DontRemove != Remove.end()) {
1464 unsigned n = *DontRemove;
1465 Remove.remove(n);
1466 Remove.insert(orig_n1);
1470 // We'd like to allow makeEqual on two values to perform a simple
1471 // substitution without creating nodes in the IG whenever possible.
1473 // The first iteration through this loop operates on V2 before going
1474 // through the Remove list and operating on those too. If all of the
1475 // iterations performed simple replacements then we exit early.
1476 bool mergeIGNode = false;
1477 unsigned i = 0;
1478 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1479 if (i) R = VN.value(Remove[i]); // skip n2.
1481 // Try to replace the whole instruction. If we can, we're done.
1482 Instruction *I2 = dyn_cast<Instruction>(R);
1483 if (I2 && below(I2)) {
1484 std::vector<Instruction *> ToNotify;
1485 for (Value::use_iterator UI = I2->use_begin(), UE = I2->use_end();
1486 UI != UE;) {
1487 Use &TheUse = UI.getUse();
1488 ++UI;
1489 Instruction *I = cast<Instruction>(TheUse.getUser());
1490 ToNotify.push_back(I);
1493 DOUT << "Simply removing " << *I2
1494 << ", replacing with " << *V1 << "\n";
1495 I2->replaceAllUsesWith(V1);
1496 // leave it dead; it'll get erased later.
1497 ++NumInstruction;
1498 modified = true;
1500 for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
1501 IE = ToNotify.end(); II != IE; ++II) {
1502 opsToDef(*II);
1505 continue;
1508 // Otherwise, replace all dominated uses.
1509 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1510 UI != UE;) {
1511 Use &TheUse = UI.getUse();
1512 ++UI;
1513 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1514 if (below(I)) {
1515 TheUse.set(V1);
1516 modified = true;
1517 ++NumVarsReplaced;
1518 opsToDef(I);
1523 // If that killed the instruction, stop here.
1524 if (I2 && isInstructionTriviallyDead(I2)) {
1525 DOUT << "Killed all uses of " << *I2
1526 << ", replacing with " << *V1 << "\n";
1527 continue;
1530 // If we make it to here, then we will need to create a node for N1.
1531 // Otherwise, we can skip out early!
1532 mergeIGNode = true;
1535 if (!isa<Constant>(V1)) {
1536 if (Remove.empty()) {
1537 VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
1538 } else {
1539 std::vector<Value*> RemoveVals;
1540 RemoveVals.reserve(Remove.size());
1542 for (SetVector<unsigned>::iterator I = Remove.begin(),
1543 E = Remove.end(); I != E; ++I) {
1544 Value *V = VN.value(*I);
1545 if (!V->use_empty())
1546 RemoveVals.push_back(V);
1548 VR.mergeInto(&RemoveVals[0], RemoveVals.size(),
1549 VN.getOrInsertVN(V1, Top), Top, this);
1553 if (mergeIGNode) {
1554 // Create N1.
1555 if (!n1) n1 = VN.getOrInsertVN(V1, Top);
1556 IG.node(n1); // Ensure that IG.Nodes won't get resized
1558 // Migrate relationships from removed nodes to N1.
1559 for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
1560 I != E; ++I) {
1561 unsigned n = *I;
1562 for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
1563 NI != NE; ++NI) {
1564 if (NI->Subtree->DominatedBy(Top)) {
1565 if (NI->To == n1) {
1566 assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
1567 continue;
1569 if (Remove.count(NI->To))
1570 continue;
1572 IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
1573 IG.node(n1)->update(NI->To, NI->LV, Top);
1578 // Point V2 (and all items in Remove) to N1.
1579 if (!n2)
1580 VN.addEquality(n1, V2, Top);
1581 else {
1582 for (SetVector<unsigned>::iterator I = Remove.begin(),
1583 E = Remove.end(); I != E; ++I) {
1584 VN.addEquality(n1, VN.value(*I), Top);
1588 // If !Remove.empty() then V2 = Remove[0]->getValue().
1589 // Even when Remove is empty, we still want to process V2.
1590 i = 0;
1591 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1592 if (i) R = VN.value(Remove[i]); // skip n2.
1594 if (Instruction *I2 = dyn_cast<Instruction>(R)) {
1595 if (aboveOrBelow(I2))
1596 defToOps(I2);
1598 for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
1599 UI != UE;) {
1600 Use &TheUse = UI.getUse();
1601 ++UI;
1602 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1603 if (aboveOrBelow(I))
1604 opsToDef(I);
1610 // re-opsToDef all dominated users of V1.
1611 if (Instruction *I = dyn_cast<Instruction>(V1)) {
1612 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1613 UI != UE;) {
1614 Use &TheUse = UI.getUse();
1615 ++UI;
1616 Value *V = TheUse.getUser();
1617 if (!V->use_empty()) {
1618 Instruction *Inst = cast<Instruction>(V);
1619 if (aboveOrBelow(Inst))
1620 opsToDef(Inst);
1625 return true;
1628 /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
1629 /// Requires that the lattice value be valid; does not accept ICMP_EQ.
1630 static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
1631 switch (Pred) {
1632 case ICmpInst::ICMP_EQ:
1633 assert(!"No matching lattice value.");
1634 return static_cast<LatticeVal>(EQ_BIT);
1635 default:
1636 assert(!"Invalid 'icmp' predicate.");
1637 case ICmpInst::ICMP_NE:
1638 return NE;
1639 case ICmpInst::ICMP_UGT:
1640 return UGT;
1641 case ICmpInst::ICMP_UGE:
1642 return UGE;
1643 case ICmpInst::ICMP_ULT:
1644 return ULT;
1645 case ICmpInst::ICMP_ULE:
1646 return ULE;
1647 case ICmpInst::ICMP_SGT:
1648 return SGT;
1649 case ICmpInst::ICMP_SGE:
1650 return SGE;
1651 case ICmpInst::ICMP_SLT:
1652 return SLT;
1653 case ICmpInst::ICMP_SLE:
1654 return SLE;
1658 public:
1659 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1660 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1661 BasicBlock *TopBB)
1662 : VN(VN),
1663 IG(IG),
1664 UB(UB),
1665 VR(VR),
1666 DTDFS(DTDFS),
1667 Top(DTDFS->getNodeForBlock(TopBB)),
1668 TopBB(TopBB),
1669 TopInst(NULL),
1670 modified(modified),
1671 Context(&TopBB->getContext())
1673 assert(Top && "VRPSolver created for unreachable basic block.");
1676 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1677 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1678 Instruction *TopInst)
1679 : VN(VN),
1680 IG(IG),
1681 UB(UB),
1682 VR(VR),
1683 DTDFS(DTDFS),
1684 Top(DTDFS->getNodeForBlock(TopInst->getParent())),
1685 TopBB(TopInst->getParent()),
1686 TopInst(TopInst),
1687 modified(modified),
1688 Context(&TopInst->getContext())
1690 assert(Top && "VRPSolver created for unreachable basic block.");
1691 assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
1694 bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
1695 if (Constant *C1 = dyn_cast<Constant>(V1))
1696 if (Constant *C2 = dyn_cast<Constant>(V2))
1697 return ConstantExpr::getCompare(Pred, C1, C2) ==
1698 ConstantInt::getTrue(*Context);
1700 unsigned n1 = VN.valueNumber(V1, Top);
1701 unsigned n2 = VN.valueNumber(V2, Top);
1703 if (n1 && n2) {
1704 if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
1705 Pred == ICmpInst::ICMP_ULE ||
1706 Pred == ICmpInst::ICMP_UGE ||
1707 Pred == ICmpInst::ICMP_SLE ||
1708 Pred == ICmpInst::ICMP_SGE;
1709 if (Pred == ICmpInst::ICMP_EQ) return false;
1710 if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1711 if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1714 if ((n1 && !n2 && isa<Constant>(V2)) ||
1715 (n2 && !n1 && isa<Constant>(V1))) {
1716 ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
1717 ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
1719 if (Pred == ICmpInst::ICMP_EQ)
1720 return CR1.isSingleElement() &&
1721 CR1.getSingleElement() == CR2.getSingleElement();
1723 return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
1725 if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
1726 return false;
1729 /// add - adds a new property to the work queue
1730 void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
1731 Instruction *I = NULL) {
1732 DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
1733 if (I) DOUT << " context: " << *I;
1734 else DOUT << " default context (" << Top->getDFSNumIn() << ")";
1735 DOUT << "\n";
1737 assert(V1->getType() == V2->getType() &&
1738 "Can't relate two values with different types.");
1740 WorkList.push_back(Operation());
1741 Operation &O = WorkList.back();
1742 O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
1743 O.ContextBB = I ? I->getParent() : TopBB;
1746 /// defToOps - Given an instruction definition that we've learned something
1747 /// new about, find any new relationships between its operands.
1748 void defToOps(Instruction *I) {
1749 Instruction *NewContext = below(I) ? I : TopInst;
1750 Value *Canonical = VN.canonicalize(I, Top);
1752 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1753 const Type *Ty = BO->getType();
1754 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1756 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1757 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1759 // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
1761 switch (BO->getOpcode()) {
1762 case Instruction::And: {
1763 // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
1764 ConstantInt *CI = cast<ConstantInt>(Constant::getAllOnesValue(Ty));
1765 if (Canonical == CI) {
1766 add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
1767 add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
1769 } break;
1770 case Instruction::Or: {
1771 // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
1772 Constant *Zero = Constant::getNullValue(Ty);
1773 if (Canonical == Zero) {
1774 add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
1775 add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
1777 } break;
1778 case Instruction::Xor: {
1779 // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
1780 // "xor i32 %c, %a" EQ %c then %a EQ 0
1781 // "xor i32 %c, %a" NE %c then %a NE 0
1782 // Repeat the above, with order of operands reversed.
1783 Value *LHS = Op0;
1784 Value *RHS = Op1;
1785 if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
1787 if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
1788 if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
1789 add(RHS,
1790 ConstantInt::get(*Context, CI->getValue() ^ Arg->getValue()),
1791 ICmpInst::ICMP_EQ, NewContext);
1794 if (Canonical == LHS) {
1795 if (isa<ConstantInt>(Canonical))
1796 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
1797 NewContext);
1798 } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
1799 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
1800 NewContext);
1802 } break;
1803 default:
1804 break;
1806 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
1807 // "icmp ult i32 %a, %y" EQ true then %a u< y
1808 // etc.
1810 if (Canonical == ConstantInt::getTrue(*Context)) {
1811 add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
1812 NewContext);
1813 } else if (Canonical == ConstantInt::getFalse(*Context)) {
1814 add(IC->getOperand(0), IC->getOperand(1),
1815 ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
1817 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1818 if (I->getType()->isFPOrFPVector()) return;
1820 // Given: "%a = select i1 %x, i32 %b, i32 %c"
1821 // %a EQ %b and %b NE %c then %x EQ true
1822 // %a EQ %c and %b NE %c then %x EQ false
1824 Value *True = SI->getTrueValue();
1825 Value *False = SI->getFalseValue();
1826 if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
1827 if (Canonical == VN.canonicalize(True, Top) ||
1828 isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
1829 add(SI->getCondition(), ConstantInt::getTrue(*Context),
1830 ICmpInst::ICMP_EQ, NewContext);
1831 else if (Canonical == VN.canonicalize(False, Top) ||
1832 isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
1833 add(SI->getCondition(), ConstantInt::getFalse(*Context),
1834 ICmpInst::ICMP_EQ, NewContext);
1836 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1837 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
1838 OE = GEPI->idx_end(); OI != OE; ++OI) {
1839 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
1840 if (!Op || !Op->isZero()) return;
1842 // TODO: The GEPI indices are all zero. Copy from definition to operand,
1843 // jumping the type plane as needed.
1844 if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()),
1845 ICmpInst::ICMP_NE)) {
1846 Value *Ptr = GEPI->getPointerOperand();
1847 add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
1848 NewContext);
1850 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
1851 const Type *SrcTy = CI->getSrcTy();
1853 unsigned ci = VN.getOrInsertVN(CI, Top);
1854 uint32_t W = VR.typeToWidth(SrcTy);
1855 if (!W) return;
1856 ConstantRange CR = VR.range(ci, Top);
1858 if (CR.isFullSet()) return;
1860 switch (CI->getOpcode()) {
1861 default: break;
1862 case Instruction::ZExt:
1863 case Instruction::SExt:
1864 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1865 CR.truncate(W), Top, this);
1866 break;
1867 case Instruction::BitCast:
1868 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1869 CR, Top, this);
1870 break;
1875 /// opsToDef - A new relationship was discovered involving one of this
1876 /// instruction's operands. Find any new relationship involving the
1877 /// definition, or another operand.
1878 void opsToDef(Instruction *I) {
1879 Instruction *NewContext = below(I) ? I : TopInst;
1881 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1882 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1883 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1885 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
1886 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1887 add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
1888 ICmpInst::ICMP_EQ, NewContext);
1889 return;
1892 // "%y = and i1 true, %x" then %x EQ %y
1893 // "%y = or i1 false, %x" then %x EQ %y
1894 // "%x = add i32 %y, 0" then %x EQ %y
1895 // "%x = mul i32 %y, 0" then %x EQ 0
1897 Instruction::BinaryOps Opcode = BO->getOpcode();
1898 const Type *Ty = BO->getType();
1899 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1901 Constant *Zero = Constant::getNullValue(Ty);
1902 Constant *One = ConstantInt::get(Ty, 1);
1903 ConstantInt *AllOnes = cast<ConstantInt>(Constant::getAllOnesValue(Ty));
1905 switch (Opcode) {
1906 default: break;
1907 case Instruction::LShr:
1908 case Instruction::AShr:
1909 case Instruction::Shl:
1910 if (Op1 == Zero) {
1911 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1912 return;
1914 break;
1915 case Instruction::Sub:
1916 if (Op1 == Zero) {
1917 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1918 return;
1920 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1921 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1922 ConstantRange CR = VR.range(n_ci0, Top);
1923 if (!CR.isFullSet()) {
1924 CR.subtract(CI0->getValue());
1925 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1926 VR.applyRange(n_bo, CR, Top, this);
1927 return;
1930 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1931 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
1932 ConstantRange CR = VR.range(n_ci1, Top);
1933 if (!CR.isFullSet()) {
1934 CR.subtract(CI1->getValue());
1935 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1936 VR.applyRange(n_bo, CR, Top, this);
1937 return;
1940 break;
1941 case Instruction::Or:
1942 if (Op0 == AllOnes || Op1 == AllOnes) {
1943 add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
1944 return;
1946 if (Op0 == Zero) {
1947 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1948 return;
1949 } else if (Op1 == Zero) {
1950 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1951 return;
1953 break;
1954 case Instruction::Add:
1955 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1956 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1957 ConstantRange CR = VR.range(n_ci0, Top);
1958 if (!CR.isFullSet()) {
1959 CR.subtract(-CI0->getValue());
1960 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1961 VR.applyRange(n_bo, CR, Top, this);
1962 return;
1965 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1966 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
1967 ConstantRange CR = VR.range(n_ci1, Top);
1968 if (!CR.isFullSet()) {
1969 CR.subtract(-CI1->getValue());
1970 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1971 VR.applyRange(n_bo, CR, Top, this);
1972 return;
1975 // fall-through
1976 case Instruction::Xor:
1977 if (Op0 == Zero) {
1978 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1979 return;
1980 } else if (Op1 == Zero) {
1981 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1982 return;
1984 break;
1985 case Instruction::And:
1986 if (Op0 == AllOnes) {
1987 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1988 return;
1989 } else if (Op1 == AllOnes) {
1990 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1991 return;
1993 if (Op0 == Zero || Op1 == Zero) {
1994 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
1995 return;
1997 break;
1998 case Instruction::Mul:
1999 if (Op0 == Zero || Op1 == Zero) {
2000 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
2001 return;
2003 if (Op0 == One) {
2004 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
2005 return;
2006 } else if (Op1 == One) {
2007 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
2008 return;
2010 break;
2013 // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
2014 // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
2015 // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
2016 // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1
2018 Value *Known = Op0, *Unknown = Op1,
2019 *TheBO = VN.canonicalize(BO, Top);
2020 if (Known != TheBO) std::swap(Known, Unknown);
2021 if (Known == TheBO) {
2022 switch (Opcode) {
2023 default: break;
2024 case Instruction::LShr:
2025 case Instruction::AShr:
2026 case Instruction::Shl:
2027 if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
2028 // otherwise, fall-through.
2029 case Instruction::Sub:
2030 if (Unknown == Op0) break;
2031 // otherwise, fall-through.
2032 case Instruction::Xor:
2033 case Instruction::Add:
2034 add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
2035 break;
2036 case Instruction::UDiv:
2037 case Instruction::SDiv:
2038 if (Unknown == Op1) break;
2039 if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE))
2040 add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
2041 break;
2045 // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
2047 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
2048 // "%a = icmp ult i32 %b, %c" and %b u< %c then %a EQ true
2049 // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
2050 // etc.
2052 Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
2053 Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
2055 ICmpInst::Predicate Pred = IC->getPredicate();
2056 if (isRelatedBy(Op0, Op1, Pred))
2057 add(IC, ConstantInt::getTrue(*Context), ICmpInst::ICMP_EQ, NewContext);
2058 else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
2059 add(IC, ConstantInt::getFalse(*Context),
2060 ICmpInst::ICMP_EQ, NewContext);
2062 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
2063 if (I->getType()->isFPOrFPVector()) return;
2065 // Given: "%a = select i1 %x, i32 %b, i32 %c"
2066 // %x EQ true then %a EQ %b
2067 // %x EQ false then %a EQ %c
2068 // %b EQ %c then %a EQ %b
2070 Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
2071 if (Canonical == ConstantInt::getTrue(*Context)) {
2072 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2073 } else if (Canonical == ConstantInt::getFalse(*Context)) {
2074 add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
2075 } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
2076 VN.canonicalize(SI->getFalseValue(), Top)) {
2077 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2079 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2080 const Type *DestTy = CI->getDestTy();
2081 if (DestTy->isFPOrFPVector()) return;
2083 Value *Op = VN.canonicalize(CI->getOperand(0), Top);
2084 Instruction::CastOps Opcode = CI->getOpcode();
2086 if (Constant *C = dyn_cast<Constant>(Op)) {
2087 add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
2088 ICmpInst::ICMP_EQ, NewContext);
2091 uint32_t W = VR.typeToWidth(DestTy);
2092 unsigned ci = VN.getOrInsertVN(CI, Top);
2093 ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
2095 if (!CR.isFullSet()) {
2096 switch (Opcode) {
2097 default: break;
2098 case Instruction::ZExt:
2099 VR.applyRange(ci, CR.zeroExtend(W), Top, this);
2100 break;
2101 case Instruction::SExt:
2102 VR.applyRange(ci, CR.signExtend(W), Top, this);
2103 break;
2104 case Instruction::Trunc: {
2105 ConstantRange Result = CR.truncate(W);
2106 if (!Result.isFullSet())
2107 VR.applyRange(ci, Result, Top, this);
2108 } break;
2109 case Instruction::BitCast:
2110 VR.applyRange(ci, CR, Top, this);
2111 break;
2112 // TODO: other casts?
2115 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2116 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
2117 OE = GEPI->idx_end(); OI != OE; ++OI) {
2118 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
2119 if (!Op || !Op->isZero()) return;
2121 // TODO: The GEPI indices are all zero. Copy from operand to definition,
2122 // jumping the type plane as needed.
2123 Value *Ptr = GEPI->getPointerOperand();
2124 if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()),
2125 ICmpInst::ICMP_NE)) {
2126 add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
2127 NewContext);
2132 /// solve - process the work queue
2133 void solve() {
2134 //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
2135 while (!WorkList.empty()) {
2136 //DOUT << "WorkList size: " << WorkList.size() << "\n";
2138 Operation &O = WorkList.front();
2139 TopInst = O.ContextInst;
2140 TopBB = O.ContextBB;
2141 Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context
2143 O.LHS = VN.canonicalize(O.LHS, Top);
2144 O.RHS = VN.canonicalize(O.RHS, Top);
2146 assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
2147 assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
2149 DEBUG(errs() << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
2150 if (O.ContextInst)
2151 errs() << " context inst: " << *O.ContextInst;
2152 else
2153 errs() << " context block: " << O.ContextBB->getName();
2154 errs() << "\n";
2156 VN.dump();
2157 IG.dump();
2158 VR.dump(););
2160 // If they're both Constant, skip it. Check for contradiction and mark
2161 // the BB as unreachable if so.
2162 if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
2163 if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
2164 if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
2165 ConstantInt::getFalse(*Context))
2166 UB.mark(TopBB);
2168 WorkList.pop_front();
2169 continue;
2173 if (VN.compare(O.LHS, O.RHS)) {
2174 std::swap(O.LHS, O.RHS);
2175 O.Op = ICmpInst::getSwappedPredicate(O.Op);
2178 if (O.Op == ICmpInst::ICMP_EQ) {
2179 if (!makeEqual(O.RHS, O.LHS))
2180 UB.mark(TopBB);
2181 } else {
2182 LatticeVal LV = cmpInstToLattice(O.Op);
2184 if ((LV & EQ_BIT) &&
2185 isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
2186 if (!makeEqual(O.RHS, O.LHS))
2187 UB.mark(TopBB);
2188 } else {
2189 if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
2190 UB.mark(TopBB);
2191 WorkList.pop_front();
2192 continue;
2195 unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
2196 unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
2198 if (n1 == n2) {
2199 if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
2200 O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
2201 UB.mark(TopBB);
2203 WorkList.pop_front();
2204 continue;
2207 if (VR.isRelatedBy(n1, n2, Top, LV) ||
2208 IG.isRelatedBy(n1, n2, Top, LV)) {
2209 WorkList.pop_front();
2210 continue;
2213 VR.addInequality(n1, n2, Top, LV, this);
2214 if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
2215 LV == NE)
2216 IG.addInequality(n1, n2, Top, LV);
2218 if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
2219 if (aboveOrBelow(I1))
2220 defToOps(I1);
2222 if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
2223 for (Value::use_iterator UI = O.LHS->use_begin(),
2224 UE = O.LHS->use_end(); UI != UE;) {
2225 Use &TheUse = UI.getUse();
2226 ++UI;
2227 Instruction *I = cast<Instruction>(TheUse.getUser());
2228 if (aboveOrBelow(I))
2229 opsToDef(I);
2232 if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
2233 if (aboveOrBelow(I2))
2234 defToOps(I2);
2236 if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
2237 for (Value::use_iterator UI = O.RHS->use_begin(),
2238 UE = O.RHS->use_end(); UI != UE;) {
2239 Use &TheUse = UI.getUse();
2240 ++UI;
2241 Instruction *I = cast<Instruction>(TheUse.getUser());
2242 if (aboveOrBelow(I))
2243 opsToDef(I);
2248 WorkList.pop_front();
2253 void ValueRanges::addToWorklist(Value *V, Constant *C,
2254 ICmpInst::Predicate Pred, VRPSolver *VRP) {
2255 VRP->add(V, C, Pred, VRP->TopInst);
2258 void ValueRanges::markBlock(VRPSolver *VRP) {
2259 VRP->UB.mark(VRP->TopBB);
2262 /// PredicateSimplifier - This class is a simplifier that replaces
2263 /// one equivalent variable with another. It also tracks what
2264 /// can't be equal and will solve setcc instructions when possible.
2265 /// @brief Root of the predicate simplifier optimization.
2266 class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
2267 DomTreeDFS *DTDFS;
2268 bool modified;
2269 ValueNumbering *VN;
2270 InequalityGraph *IG;
2271 UnreachableBlocks UB;
2272 ValueRanges *VR;
2274 std::vector<DomTreeDFS::Node *> WorkList;
2276 LLVMContext *Context;
2277 public:
2278 static char ID; // Pass identification, replacement for typeid
2279 PredicateSimplifier() : FunctionPass(&ID) {}
2281 bool runOnFunction(Function &F);
2283 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2284 AU.addRequiredID(BreakCriticalEdgesID);
2285 AU.addRequired<DominatorTree>();
2286 AU.addRequired<TargetData>();
2287 AU.addPreserved<TargetData>();
2290 private:
2291 /// Forwards - Adds new properties to VRPSolver and uses them to
2292 /// simplify instructions. Because new properties sometimes apply to
2293 /// a transition from one BasicBlock to another, this will use the
2294 /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
2295 /// basic block.
2296 /// @brief Performs abstract execution of the program.
2297 class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
2298 friend class InstVisitor<Forwards>;
2299 PredicateSimplifier *PS;
2300 DomTreeDFS::Node *DTNode;
2302 public:
2303 ValueNumbering &VN;
2304 InequalityGraph &IG;
2305 UnreachableBlocks &UB;
2306 ValueRanges &VR;
2308 Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
2309 : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
2310 VR(*PS->VR) {}
2312 void visitTerminatorInst(TerminatorInst &TI);
2313 void visitBranchInst(BranchInst &BI);
2314 void visitSwitchInst(SwitchInst &SI);
2316 void visitAllocaInst(AllocaInst &AI);
2317 void visitLoadInst(LoadInst &LI);
2318 void visitStoreInst(StoreInst &SI);
2320 void visitSExtInst(SExtInst &SI);
2321 void visitZExtInst(ZExtInst &ZI);
2323 void visitBinaryOperator(BinaryOperator &BO);
2324 void visitICmpInst(ICmpInst &IC);
2327 // Used by terminator instructions to proceed from the current basic
2328 // block to the next. Verifies that "current" dominates "next",
2329 // then calls visitBasicBlock.
2330 void proceedToSuccessors(DomTreeDFS::Node *Current) {
2331 for (DomTreeDFS::Node::iterator I = Current->begin(),
2332 E = Current->end(); I != E; ++I) {
2333 WorkList.push_back(*I);
2337 void proceedToSuccessor(DomTreeDFS::Node *Next) {
2338 WorkList.push_back(Next);
2341 // Visits each instruction in the basic block.
2342 void visitBasicBlock(DomTreeDFS::Node *Node) {
2343 BasicBlock *BB = Node->getBlock();
2344 DEBUG(errs() << "Entering Basic Block: " << BB->getName()
2345 << " (" << Node->getDFSNumIn() << ")\n");
2346 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2347 visitInstruction(I++, Node);
2351 // Tries to simplify each Instruction and add new properties.
2352 void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
2353 DOUT << "Considering instruction " << *I << "\n";
2354 DEBUG(VN->dump());
2355 DEBUG(IG->dump());
2356 DEBUG(VR->dump());
2358 // Sometimes instructions are killed in earlier analysis.
2359 if (isInstructionTriviallyDead(I)) {
2360 ++NumSimple;
2361 modified = true;
2362 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2363 if (VN->value(n) == I) IG->remove(n);
2364 VN->remove(I);
2365 I->eraseFromParent();
2366 return;
2369 #ifndef NDEBUG
2370 // Try to replace the whole instruction.
2371 Value *V = VN->canonicalize(I, DT);
2372 assert(V == I && "Late instruction canonicalization.");
2373 if (V != I) {
2374 modified = true;
2375 ++NumInstruction;
2376 DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
2377 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2378 if (VN->value(n) == I) IG->remove(n);
2379 VN->remove(I);
2380 I->replaceAllUsesWith(V);
2381 I->eraseFromParent();
2382 return;
2385 // Try to substitute operands.
2386 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2387 Value *Oper = I->getOperand(i);
2388 Value *V = VN->canonicalize(Oper, DT);
2389 assert(V == Oper && "Late operand canonicalization.");
2390 if (V != Oper) {
2391 modified = true;
2392 ++NumVarsReplaced;
2393 DOUT << "Resolving " << *I;
2394 I->setOperand(i, V);
2395 DOUT << " into " << *I;
2398 #endif
2400 std::string name = I->getParent()->getName();
2401 DOUT << "push (%" << name << ")\n";
2402 Forwards visit(this, DT);
2403 visit.visit(*I);
2404 DOUT << "pop (%" << name << ")\n";
2408 bool PredicateSimplifier::runOnFunction(Function &F) {
2409 DominatorTree *DT = &getAnalysis<DominatorTree>();
2410 DTDFS = new DomTreeDFS(DT);
2411 TargetData *TD = &getAnalysis<TargetData>();
2412 Context = &F.getContext();
2414 DEBUG(errs() << "Entering Function: " << F.getName() << "\n");
2416 modified = false;
2417 DomTreeDFS::Node *Root = DTDFS->getRootNode();
2418 VN = new ValueNumbering(DTDFS);
2419 IG = new InequalityGraph(*VN, Root);
2420 VR = new ValueRanges(*VN, TD, Context);
2421 WorkList.push_back(Root);
2423 do {
2424 DomTreeDFS::Node *DTNode = WorkList.back();
2425 WorkList.pop_back();
2426 if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
2427 } while (!WorkList.empty());
2429 delete DTDFS;
2430 delete VR;
2431 delete IG;
2432 delete VN;
2434 modified |= UB.kill();
2436 return modified;
2439 void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
2440 PS->proceedToSuccessors(DTNode);
2443 void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
2444 if (BI.isUnconditional()) {
2445 PS->proceedToSuccessors(DTNode);
2446 return;
2449 Value *Condition = BI.getCondition();
2450 BasicBlock *TrueDest = BI.getSuccessor(0);
2451 BasicBlock *FalseDest = BI.getSuccessor(1);
2453 if (isa<Constant>(Condition) || TrueDest == FalseDest) {
2454 PS->proceedToSuccessors(DTNode);
2455 return;
2458 LLVMContext *Context = &BI.getContext();
2460 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2461 I != E; ++I) {
2462 BasicBlock *Dest = (*I)->getBlock();
2463 DEBUG(errs() << "Branch thinking about %" << Dest->getName()
2464 << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n");
2466 if (Dest == TrueDest) {
2467 DEBUG(errs() << "(" << DTNode->getBlock()->getName()
2468 << ") true set:\n");
2469 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2470 VRP.add(ConstantInt::getTrue(*Context), Condition, ICmpInst::ICMP_EQ);
2471 VRP.solve();
2472 DEBUG(VN.dump());
2473 DEBUG(IG.dump());
2474 DEBUG(VR.dump());
2475 } else if (Dest == FalseDest) {
2476 DEBUG(errs() << "(" << DTNode->getBlock()->getName()
2477 << ") false set:\n");
2478 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2479 VRP.add(ConstantInt::getFalse(*Context), Condition, ICmpInst::ICMP_EQ);
2480 VRP.solve();
2481 DEBUG(VN.dump());
2482 DEBUG(IG.dump());
2483 DEBUG(VR.dump());
2486 PS->proceedToSuccessor(*I);
2490 void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
2491 Value *Condition = SI.getCondition();
2493 // Set the EQProperty in each of the cases BBs, and the NEProperties
2494 // in the default BB.
2496 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2497 I != E; ++I) {
2498 BasicBlock *BB = (*I)->getBlock();
2499 DEBUG(errs() << "Switch thinking about BB %" << BB->getName()
2500 << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n");
2502 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
2503 if (BB == SI.getDefaultDest()) {
2504 for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
2505 if (SI.getSuccessor(i) != BB)
2506 VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
2507 VRP.solve();
2508 } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
2509 VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
2510 VRP.solve();
2512 PS->proceedToSuccessor(*I);
2516 void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
2517 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
2518 VRP.add(Constant::getNullValue(AI.getType()),
2519 &AI, ICmpInst::ICMP_NE);
2520 VRP.solve();
2523 void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
2524 Value *Ptr = LI.getPointerOperand();
2525 // avoid "load i8* null" -> null NE null.
2526 if (isa<Constant>(Ptr)) return;
2528 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
2529 VRP.add(Constant::getNullValue(Ptr->getType()),
2530 Ptr, ICmpInst::ICMP_NE);
2531 VRP.solve();
2534 void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
2535 Value *Ptr = SI.getPointerOperand();
2536 if (isa<Constant>(Ptr)) return;
2538 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2539 VRP.add(Constant::getNullValue(Ptr->getType()),
2540 Ptr, ICmpInst::ICMP_NE);
2541 VRP.solve();
2544 void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
2545 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2546 LLVMContext &Context = SI.getContext();
2547 uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
2548 uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
2549 APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
2550 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
2551 VRP.add(ConstantInt::get(Context, Min), &SI, ICmpInst::ICMP_SLE);
2552 VRP.add(ConstantInt::get(Context, Max), &SI, ICmpInst::ICMP_SGE);
2553 VRP.solve();
2556 void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
2557 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
2558 LLVMContext &Context = ZI.getContext();
2559 uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
2560 uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
2561 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
2562 VRP.add(ConstantInt::get(Context, Max), &ZI, ICmpInst::ICMP_UGE);
2563 VRP.solve();
2566 void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
2567 Instruction::BinaryOps ops = BO.getOpcode();
2569 switch (ops) {
2570 default: break;
2571 case Instruction::URem:
2572 case Instruction::SRem:
2573 case Instruction::UDiv:
2574 case Instruction::SDiv: {
2575 Value *Divisor = BO.getOperand(1);
2576 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2577 VRP.add(Constant::getNullValue(Divisor->getType()),
2578 Divisor, ICmpInst::ICMP_NE);
2579 VRP.solve();
2580 break;
2584 switch (ops) {
2585 default: break;
2586 case Instruction::Shl: {
2587 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2588 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2589 VRP.solve();
2590 } break;
2591 case Instruction::AShr: {
2592 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2593 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
2594 VRP.solve();
2595 } break;
2596 case Instruction::LShr:
2597 case Instruction::UDiv: {
2598 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2599 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2600 VRP.solve();
2601 } break;
2602 case Instruction::URem: {
2603 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2604 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2605 VRP.solve();
2606 } break;
2607 case Instruction::And: {
2608 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2609 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2610 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2611 VRP.solve();
2612 } break;
2613 case Instruction::Or: {
2614 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2615 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2616 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
2617 VRP.solve();
2618 } break;
2622 void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
2623 // If possible, squeeze the ICmp predicate into something simpler.
2624 // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
2625 // the predicate to eq.
2627 // XXX: once we do full PHI handling, modifying the instruction in the
2628 // Forwards visitor will cause missed optimizations.
2630 ICmpInst::Predicate Pred = IC.getPredicate();
2632 switch (Pred) {
2633 default: break;
2634 case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
2635 case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
2636 case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
2637 case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
2639 if (Pred != IC.getPredicate()) {
2640 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2641 if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
2642 ICmpInst::ICMP_NE)) {
2643 ++NumSnuggle;
2644 PS->modified = true;
2645 IC.setPredicate(Pred);
2649 Pred = IC.getPredicate();
2651 LLVMContext &Context = IC.getContext();
2653 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
2654 ConstantInt *NextVal = 0;
2655 switch (Pred) {
2656 default: break;
2657 case ICmpInst::ICMP_SLT:
2658 case ICmpInst::ICMP_ULT:
2659 if (Op1->getValue() != 0)
2660 NextVal = ConstantInt::get(Context, Op1->getValue()-1);
2661 break;
2662 case ICmpInst::ICMP_SGT:
2663 case ICmpInst::ICMP_UGT:
2664 if (!Op1->getValue().isAllOnesValue())
2665 NextVal = ConstantInt::get(Context, Op1->getValue()+1);
2666 break;
2669 if (NextVal) {
2670 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2671 if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
2672 ICmpInst::getInversePredicate(Pred))) {
2673 ICmpInst *NewIC = new ICmpInst(&IC, ICmpInst::ICMP_EQ,
2674 IC.getOperand(0), NextVal, "");
2675 NewIC->takeName(&IC);
2676 IC.replaceAllUsesWith(NewIC);
2678 // XXX: prove this isn't necessary
2679 if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
2680 if (VN.value(n) == &IC) IG.remove(n);
2681 VN.remove(&IC);
2683 IC.eraseFromParent();
2684 ++NumSnuggle;
2685 PS->modified = true;
2692 char PredicateSimplifier::ID = 0;
2693 static RegisterPass<PredicateSimplifier>
2694 X("predsimplify", "Predicate Simplifier");
2696 FunctionPass *llvm::createPredicateSimplifierPass() {
2697 return new PredicateSimplifier();