1 //===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Path-sensitive optimizer. In a branch where x == y, replace uses of
11 // x with y. Permits further optimization, such as the elimination of
12 // the unreachable call:
14 // void test(int *p, int *q)
20 // foo(); // unreachable
23 //===----------------------------------------------------------------------===//
25 // The InequalityGraph focusses on four properties; equals, not equals,
26 // less-than and less-than-or-equals-to. The greater-than forms are also held
27 // just to allow walking from a lesser node to a greater one. These properties
28 // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
30 // These relationships define a graph between values of the same type. Each
31 // Value is stored in a map table that retrieves the associated Node. This
32 // is how EQ relationships are stored; the map contains pointers from equal
33 // Value to the same node. The node contains a most canonical Value* form
34 // and the list of known relationships with other nodes.
36 // If two nodes are known to be inequal, then they will contain pointers to
37 // each other with an "NE" relationship. If node getNode(%x) is less than
38 // getNode(%y), then the %x node will contain <%y, GT> and %y will contain
39 // <%x, LT>. This allows us to tie nodes together into a graph like this:
43 // with four nodes representing the properties. The InequalityGraph provides
44 // querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
45 // To find a relationship, we start with one of the nodes any binary search
46 // through its list to find where the relationships with the second node start.
47 // Then we iterate through those to find the first relationship that dominates
50 // To create these properties, we wait until a branch or switch instruction
51 // implies that a particular value is true (or false). The VRPSolver is
52 // responsible for analyzing the variable and seeing what new inferences
53 // can be made from each property. For example:
55 // %P = icmp ne i32* %ptr, null
57 // br i1 %a label %cond_true, label %cond_false
59 // For the true branch, the VRPSolver will start with %a EQ true and look at
60 // the definition of %a and find that it can infer that %P and %Q are both
61 // true. From %P being true, it can infer that %ptr NE null. For the false
62 // branch it can't infer anything from the "and" instruction.
64 // Besides branches, we can also infer properties from instruction that may
65 // have undefined behaviour in certain cases. For example, the dividend of
66 // a division may never be zero. After the division instruction, we may assume
67 // that the dividend is not equal to zero.
69 //===----------------------------------------------------------------------===//
71 // The ValueRanges class stores the known integer bounds of a Value. When we
72 // encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
75 // It never stores an empty range, because that means that the code is
76 // unreachable. It never stores a single-element range since that's an equality
77 // relationship and better stored in the InequalityGraph, nor an empty range
78 // since that is better stored in UnreachableBlocks.
80 //===----------------------------------------------------------------------===//
82 #define DEBUG_TYPE "predsimplify"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Constants.h"
85 #include "llvm/DerivedTypes.h"
86 #include "llvm/Instructions.h"
87 #include "llvm/Pass.h"
88 #include "llvm/ADT/DepthFirstIterator.h"
89 #include "llvm/ADT/SetOperations.h"
90 #include "llvm/ADT/SetVector.h"
91 #include "llvm/ADT/Statistic.h"
92 #include "llvm/ADT/STLExtras.h"
93 #include "llvm/Analysis/Dominators.h"
94 #include "llvm/Assembly/Writer.h"
95 #include "llvm/Support/CFG.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/ConstantRange.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/InstVisitor.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/Target/TargetData.h"
102 #include "llvm/Transforms/Utils/Local.h"
106 using namespace llvm
;
108 STATISTIC(NumVarsReplaced
, "Number of argument substitutions");
109 STATISTIC(NumInstruction
, "Number of instructions removed");
110 STATISTIC(NumSimple
, "Number of simple replacements");
111 STATISTIC(NumBlocks
, "Number of blocks marked unreachable");
112 STATISTIC(NumSnuggle
, "Number of comparisons snuggled");
114 static const ConstantRange
empty(1, false);
120 friend class DomTreeDFS
;
122 typedef std::vector
<Node
*>::iterator iterator
;
123 typedef std::vector
<Node
*>::const_iterator const_iterator
;
125 unsigned getDFSNumIn() const { return DFSin
; }
126 unsigned getDFSNumOut() const { return DFSout
; }
128 BasicBlock
*getBlock() const { return BB
; }
130 iterator
begin() { return Children
.begin(); }
131 iterator
end() { return Children
.end(); }
133 const_iterator
begin() const { return Children
.begin(); }
134 const_iterator
end() const { return Children
.end(); }
136 bool dominates(const Node
*N
) const {
137 return DFSin
<= N
->DFSin
&& DFSout
>= N
->DFSout
;
140 bool DominatedBy(const Node
*N
) const {
141 return N
->dominates(this);
144 /// Sorts by the number of descendants. With this, you can iterate
145 /// through a sorted list and the first matching entry is the most
146 /// specific match for your basic block. The order provided is stable;
147 /// DomTreeDFS::Nodes with the same number of descendants are sorted by
149 bool operator<(const Node
&N
) const {
150 unsigned spread
= DFSout
- DFSin
;
151 unsigned N_spread
= N
.DFSout
- N
.DFSin
;
152 if (spread
== N_spread
) return DFSin
< N
.DFSin
;
153 return spread
< N_spread
;
155 bool operator>(const Node
&N
) const { return N
< *this; }
158 unsigned DFSin
, DFSout
;
161 std::vector
<Node
*> Children
;
164 // XXX: this may be slow. Instead of using "new" for each node, consider
165 // putting them in a vector to keep them contiguous.
166 explicit DomTreeDFS(DominatorTree
*DT
) {
167 std::stack
<std::pair
<Node
*, DomTreeNode
*> > S
;
170 Entry
->BB
= DT
->getRootNode()->getBlock();
171 S
.push(std::make_pair(Entry
, DT
->getRootNode()));
173 NodeMap
[Entry
->BB
] = Entry
;
176 std::pair
<Node
*, DomTreeNode
*> &Pair
= S
.top();
177 Node
*N
= Pair
.first
;
178 DomTreeNode
*DTNode
= Pair
.second
;
181 for (DomTreeNode::iterator I
= DTNode
->begin(), E
= DTNode
->end();
183 Node
*NewNode
= new Node
;
184 NewNode
->BB
= (*I
)->getBlock();
185 N
->Children
.push_back(NewNode
);
186 S
.push(std::make_pair(NewNode
, *I
));
188 NodeMap
[NewNode
->BB
] = NewNode
;
203 std::stack
<Node
*> S
;
207 Node
*N
= S
.top(); S
.pop();
209 for (Node::iterator I
= N
->begin(), E
= N
->end(); I
!= E
; ++I
)
216 /// getRootNode - This returns the entry node for the CFG of the function.
217 Node
*getRootNode() const { return Entry
; }
219 /// getNodeForBlock - return the node for the specified basic block.
220 Node
*getNodeForBlock(BasicBlock
*BB
) const {
221 if (!NodeMap
.count(BB
)) return 0;
222 return const_cast<DomTreeDFS
*>(this)->NodeMap
[BB
];
225 /// dominates - returns true if the basic block for I1 dominates that of
226 /// the basic block for I2. If the instructions belong to the same basic
227 /// block, the instruction first instruction sequentially in the block is
228 /// considered dominating.
229 bool dominates(Instruction
*I1
, Instruction
*I2
) {
230 BasicBlock
*BB1
= I1
->getParent(),
231 *BB2
= I2
->getParent();
233 if (isa
<TerminatorInst
>(I1
)) return false;
234 if (isa
<TerminatorInst
>(I2
)) return true;
235 if ( isa
<PHINode
>(I1
) && !isa
<PHINode
>(I2
)) return true;
236 if (!isa
<PHINode
>(I1
) && isa
<PHINode
>(I2
)) return false;
238 for (BasicBlock::const_iterator I
= BB2
->begin(), E
= BB2
->end();
240 if (&*I
== I1
) return true;
241 else if (&*I
== I2
) return false;
243 assert(!"Instructions not found in parent BasicBlock?");
245 Node
*Node1
= getNodeForBlock(BB1
),
246 *Node2
= getNodeForBlock(BB2
);
247 return Node1
&& Node2
&& Node1
->dominates(Node2
);
249 return false; // Not reached
253 /// renumber - calculates the depth first search numberings and applies
254 /// them onto the nodes.
256 std::stack
<std::pair
<Node
*, Node::iterator
> > S
;
260 S
.push(std::make_pair(Entry
, Entry
->begin()));
263 std::pair
<Node
*, Node::iterator
> &Pair
= S
.top();
264 Node
*N
= Pair
.first
;
265 Node::iterator
&I
= Pair
.second
;
273 S
.push(std::make_pair(Next
, Next
->begin()));
279 virtual void dump() const {
280 dump(*cerr
.stream());
283 void dump(std::ostream
&os
) const {
284 os
<< "Predicate simplifier DomTreeDFS: \n";
289 void dump(Node
*N
, int depth
, std::ostream
&os
) const {
291 for (int i
= 0; i
< depth
; ++i
) { os
<< " "; }
292 os
<< "[" << depth
<< "] ";
294 os
<< N
->getBlock()->getNameStr() << " (" << N
->getDFSNumIn()
295 << ", " << N
->getDFSNumOut() << ")\n";
297 for (Node::iterator I
= N
->begin(), E
= N
->end(); I
!= E
; ++I
)
303 std::map
<BasicBlock
*, Node
*> NodeMap
;
306 // SLT SGT ULT UGT EQ
307 // 0 1 0 1 0 -- GT 10
308 // 0 1 0 1 1 -- GE 11
309 // 0 1 1 0 0 -- SGTULT 12
310 // 0 1 1 0 1 -- SGEULE 13
311 // 0 1 1 1 0 -- SGT 14
312 // 0 1 1 1 1 -- SGE 15
313 // 1 0 0 1 0 -- SLTUGT 18
314 // 1 0 0 1 1 -- SLEUGE 19
315 // 1 0 1 0 0 -- LT 20
316 // 1 0 1 0 1 -- LE 21
317 // 1 0 1 1 0 -- SLT 22
318 // 1 0 1 1 1 -- SLE 23
319 // 1 1 0 1 0 -- UGT 26
320 // 1 1 0 1 1 -- UGE 27
321 // 1 1 1 0 0 -- ULT 28
322 // 1 1 1 0 1 -- ULE 29
323 // 1 1 1 1 0 -- NE 30
325 EQ_BIT
= 1, UGT_BIT
= 2, ULT_BIT
= 4, SGT_BIT
= 8, SLT_BIT
= 16
328 GT
= SGT_BIT
| UGT_BIT
,
330 LT
= SLT_BIT
| ULT_BIT
,
332 NE
= SLT_BIT
| SGT_BIT
| ULT_BIT
| UGT_BIT
,
333 SGTULT
= SGT_BIT
| ULT_BIT
,
334 SGEULE
= SGTULT
| EQ_BIT
,
335 SLTUGT
= SLT_BIT
| UGT_BIT
,
336 SLEUGE
= SLTUGT
| EQ_BIT
,
337 ULT
= SLT_BIT
| SGT_BIT
| ULT_BIT
,
338 UGT
= SLT_BIT
| SGT_BIT
| UGT_BIT
,
339 SLT
= SLT_BIT
| ULT_BIT
| UGT_BIT
,
340 SGT
= SGT_BIT
| ULT_BIT
| UGT_BIT
,
348 /// validPredicate - determines whether a given value is actually a lattice
349 /// value. Only used in assertions or debugging.
350 static bool validPredicate(LatticeVal LV
) {
352 case GT
: case GE
: case LT
: case LE
: case NE
:
353 case SGTULT
: case SGT
: case SGEULE
:
354 case SLTUGT
: case SLT
: case SLEUGE
:
356 case SLE
: case SGE
: case ULE
: case UGE
:
364 /// reversePredicate - reverse the direction of the inequality
365 static LatticeVal
reversePredicate(LatticeVal LV
) {
366 unsigned reverse
= LV
^ (SLT_BIT
|SGT_BIT
|ULT_BIT
|UGT_BIT
); //preserve EQ_BIT
368 if ((reverse
& (SLT_BIT
|SGT_BIT
)) == 0)
369 reverse
|= (SLT_BIT
|SGT_BIT
);
371 if ((reverse
& (ULT_BIT
|UGT_BIT
)) == 0)
372 reverse
|= (ULT_BIT
|UGT_BIT
);
374 LatticeVal Rev
= static_cast<LatticeVal
>(reverse
);
375 assert(validPredicate(Rev
) && "Failed reversing predicate.");
379 /// ValueNumbering stores the scope-specific value numbers for a given Value.
380 class VISIBILITY_HIDDEN ValueNumbering
{
382 /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
383 /// includes the comparison operators necessary to allow you to store it
384 /// in a sorted vector.
385 class VISIBILITY_HIDDEN VNPair
{
389 DomTreeDFS::Node
*Subtree
;
391 VNPair(Value
*V
, unsigned index
, DomTreeDFS::Node
*Subtree
)
392 : V(V
), index(index
), Subtree(Subtree
) {}
394 bool operator==(const VNPair
&RHS
) const {
395 return V
== RHS
.V
&& Subtree
== RHS
.Subtree
;
398 bool operator<(const VNPair
&RHS
) const {
399 if (V
!= RHS
.V
) return V
< RHS
.V
;
400 return *Subtree
< *RHS
.Subtree
;
403 bool operator<(Value
*RHS
) const {
407 bool operator>(Value
*RHS
) const {
411 friend bool operator<(Value
*RHS
, const VNPair
&pair
) {
412 return pair
.operator>(RHS
);
416 typedef std::vector
<VNPair
> VNMapType
;
419 /// The canonical choice for value number at index.
420 std::vector
<Value
*> Values
;
426 virtual ~ValueNumbering() {}
427 virtual void dump() {
428 dump(*cerr
.stream());
431 void dump(std::ostream
&os
) {
432 for (unsigned i
= 1; i
<= Values
.size(); ++i
) {
434 WriteAsOperand(os
, Values
[i
-1]);
436 for (unsigned j
= 0; j
< VNMap
.size(); ++j
) {
437 if (VNMap
[j
].index
== i
) {
438 WriteAsOperand(os
, VNMap
[j
].V
);
439 os
<< " (" << VNMap
[j
].Subtree
->getDFSNumIn() << ") ";
447 /// compare - returns true if V1 is a better canonical value than V2.
448 bool compare(Value
*V1
, Value
*V2
) const {
449 if (isa
<Constant
>(V1
))
450 return !isa
<Constant
>(V2
);
451 else if (isa
<Constant
>(V2
))
453 else if (isa
<Argument
>(V1
))
454 return !isa
<Argument
>(V2
);
455 else if (isa
<Argument
>(V2
))
458 Instruction
*I1
= dyn_cast
<Instruction
>(V1
);
459 Instruction
*I2
= dyn_cast
<Instruction
>(V2
);
462 return V1
->getNumUses() < V2
->getNumUses();
464 return DTDFS
->dominates(I1
, I2
);
467 ValueNumbering(DomTreeDFS
*DTDFS
) : DTDFS(DTDFS
) {}
469 /// valueNumber - finds the value number for V under the Subtree. If
470 /// there is no value number, returns zero.
471 unsigned valueNumber(Value
*V
, DomTreeDFS::Node
*Subtree
) {
472 if (!(isa
<Constant
>(V
) || isa
<Argument
>(V
) || isa
<Instruction
>(V
))
473 || V
->getType() == Type::VoidTy
) return 0;
475 VNMapType::iterator E
= VNMap
.end();
476 VNPair
pair(V
, 0, Subtree
);
477 VNMapType::iterator I
= std::lower_bound(VNMap
.begin(), E
, pair
);
478 while (I
!= E
&& I
->V
== V
) {
479 if (I
->Subtree
->dominates(Subtree
))
486 /// getOrInsertVN - always returns a value number, creating it if necessary.
487 unsigned getOrInsertVN(Value
*V
, DomTreeDFS::Node
*Subtree
) {
488 if (unsigned n
= valueNumber(V
, Subtree
))
494 /// newVN - creates a new value number. Value V must not already have a
495 /// value number assigned.
496 unsigned newVN(Value
*V
) {
497 assert((isa
<Constant
>(V
) || isa
<Argument
>(V
) || isa
<Instruction
>(V
)) &&
498 "Bad Value for value numbering.");
499 assert(V
->getType() != Type::VoidTy
&& "Won't value number a void value");
503 VNPair pair
= VNPair(V
, Values
.size(), DTDFS
->getRootNode());
504 VNMapType::iterator I
= std::lower_bound(VNMap
.begin(), VNMap
.end(), pair
);
505 assert((I
== VNMap
.end() || value(I
->index
) != V
) &&
506 "Attempt to create a duplicate value number.");
507 VNMap
.insert(I
, pair
);
509 return Values
.size();
512 /// value - returns the Value associated with a value number.
513 Value
*value(unsigned index
) const {
514 assert(index
!= 0 && "Zero index is reserved for not found.");
515 assert(index
<= Values
.size() && "Index out of range.");
516 return Values
[index
-1];
519 /// canonicalize - return a Value that is equal to V under Subtree.
520 Value
*canonicalize(Value
*V
, DomTreeDFS::Node
*Subtree
) {
521 if (isa
<Constant
>(V
)) return V
;
523 if (unsigned n
= valueNumber(V
, Subtree
))
529 /// addEquality - adds that value V belongs to the set of equivalent
530 /// values defined by value number n under Subtree.
531 void addEquality(unsigned n
, Value
*V
, DomTreeDFS::Node
*Subtree
) {
532 assert(canonicalize(value(n
), Subtree
) == value(n
) &&
533 "Node's 'canonical' choice isn't best within this subtree.");
535 // Suppose that we are given "%x -> node #1 (%y)". The problem is that
536 // we may already have "%z -> node #2 (%x)" somewhere above us in the
537 // graph. We need to find those edges and add "%z -> node #1 (%y)"
538 // to keep the lookups canonical.
540 std::vector
<Value
*> ToRepoint(1, V
);
542 if (unsigned Conflict
= valueNumber(V
, Subtree
)) {
543 for (VNMapType::iterator I
= VNMap
.begin(), E
= VNMap
.end();
545 if (I
->index
== Conflict
&& I
->Subtree
->dominates(Subtree
))
546 ToRepoint
.push_back(I
->V
);
550 for (std::vector
<Value
*>::iterator VI
= ToRepoint
.begin(),
551 VE
= ToRepoint
.end(); VI
!= VE
; ++VI
) {
554 VNPair
pair(V
, n
, Subtree
);
555 VNMapType::iterator B
= VNMap
.begin(), E
= VNMap
.end();
556 VNMapType::iterator I
= std::lower_bound(B
, E
, pair
);
557 if (I
!= E
&& I
->V
== V
&& I
->Subtree
== Subtree
)
558 I
->index
= n
; // Update best choice
560 VNMap
.insert(I
, pair
); // New Value
562 // XXX: we currently don't have to worry about updating values with
563 // more specific Subtrees, but we will need to for PHI node support.
566 Value
*V_n
= value(n
);
567 if (isa
<Constant
>(V
) && isa
<Constant
>(V_n
)) {
568 assert(V
== V_n
&& "Constant equals different constant?");
574 /// remove - removes all references to value V.
575 void remove(Value
*V
) {
576 VNMapType::iterator B
= VNMap
.begin(), E
= VNMap
.end();
577 VNPair
pair(V
, 0, DTDFS
->getRootNode());
578 VNMapType::iterator J
= std::upper_bound(B
, E
, pair
);
579 VNMapType::iterator I
= J
;
581 while (I
!= B
&& (I
== E
|| I
->V
== V
)) --I
;
587 /// The InequalityGraph stores the relationships between values.
588 /// Each Value in the graph is assigned to a Node. Nodes are pointer
589 /// comparable for equality. The caller is expected to maintain the logical
590 /// consistency of the system.
592 /// The InequalityGraph class may invalidate Node*s after any mutator call.
593 /// @brief The InequalityGraph stores the relationships between values.
594 class VISIBILITY_HIDDEN InequalityGraph
{
596 DomTreeDFS::Node
*TreeRoot
;
598 InequalityGraph(); // DO NOT IMPLEMENT
599 InequalityGraph(InequalityGraph
&); // DO NOT IMPLEMENT
601 InequalityGraph(ValueNumbering
&VN
, DomTreeDFS::Node
*TreeRoot
)
602 : VN(VN
), TreeRoot(TreeRoot
) {}
606 /// An Edge is contained inside a Node making one end of the edge implicit
607 /// and contains a pointer to the other end. The edge contains a lattice
608 /// value specifying the relationship and an DomTreeDFS::Node specifying
609 /// the root in the dominator tree to which this edge applies.
610 class VISIBILITY_HIDDEN Edge
{
612 Edge(unsigned T
, LatticeVal V
, DomTreeDFS::Node
*ST
)
613 : To(T
), LV(V
), Subtree(ST
) {}
617 DomTreeDFS::Node
*Subtree
;
619 bool operator<(const Edge
&edge
) const {
620 if (To
!= edge
.To
) return To
< edge
.To
;
621 return *Subtree
< *edge
.Subtree
;
624 bool operator<(unsigned to
) const {
628 bool operator>(unsigned to
) const {
632 friend bool operator<(unsigned to
, const Edge
&edge
) {
633 return edge
.operator>(to
);
637 /// A single node in the InequalityGraph. This stores the canonical Value
638 /// for the node, as well as the relationships with the neighbours.
640 /// @brief A single node in the InequalityGraph.
641 class VISIBILITY_HIDDEN Node
{
642 friend class InequalityGraph
;
644 typedef SmallVector
<Edge
, 4> RelationsType
;
645 RelationsType Relations
;
647 // TODO: can this idea improve performance?
648 //friend class std::vector<Node>;
649 //Node(Node &N) { RelationsType.swap(N.RelationsType); }
652 typedef RelationsType::iterator iterator
;
653 typedef RelationsType::const_iterator const_iterator
;
657 virtual void dump() const {
658 dump(*cerr
.stream());
661 void dump(std::ostream
&os
) const {
662 static const std::string names
[32] =
663 { "000000", "000001", "000002", "000003", "000004", "000005",
664 "000006", "000007", "000008", "000009", " >", " >=",
665 " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
666 " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
667 "000024", "000025", " u>", " u>=", " u<", " u<=",
669 for (Node::const_iterator NI
= begin(), NE
= end(); NI
!= NE
; ++NI
) {
670 os
<< names
[NI
->LV
] << " " << NI
->To
671 << " (" << NI
->Subtree
->getDFSNumIn() << "), ";
677 iterator
begin() { return Relations
.begin(); }
678 iterator
end() { return Relations
.end(); }
679 const_iterator
begin() const { return Relations
.begin(); }
680 const_iterator
end() const { return Relations
.end(); }
682 iterator
find(unsigned n
, DomTreeDFS::Node
*Subtree
) {
684 for (iterator I
= std::lower_bound(begin(), E
, n
);
685 I
!= E
&& I
->To
== n
; ++I
) {
686 if (Subtree
->DominatedBy(I
->Subtree
))
692 const_iterator
find(unsigned n
, DomTreeDFS::Node
*Subtree
) const {
693 const_iterator E
= end();
694 for (const_iterator I
= std::lower_bound(begin(), E
, n
);
695 I
!= E
&& I
->To
== n
; ++I
) {
696 if (Subtree
->DominatedBy(I
->Subtree
))
702 /// update - updates the lattice value for a given node, creating a new
703 /// entry if one doesn't exist. The new lattice value must not be
704 /// inconsistent with any previously existing value.
705 void update(unsigned n
, LatticeVal R
, DomTreeDFS::Node
*Subtree
) {
706 assert(validPredicate(R
) && "Invalid predicate.");
708 Edge
edge(n
, R
, Subtree
);
709 iterator B
= begin(), E
= end();
710 iterator I
= std::lower_bound(B
, E
, edge
);
713 while (J
!= E
&& J
->To
== n
) {
714 if (Subtree
->DominatedBy(J
->Subtree
))
719 if (J
!= E
&& J
->To
== n
) {
720 edge
.LV
= static_cast<LatticeVal
>(J
->LV
& R
);
721 assert(validPredicate(edge
.LV
) && "Invalid union of lattice values.");
723 if (edge
.LV
== J
->LV
)
724 return; // This update adds nothing new.
728 // We also have to tighten any edge beneath our update.
729 for (iterator K
= I
- 1; K
->To
== n
; --K
) {
730 if (K
->Subtree
->DominatedBy(Subtree
)) {
731 LatticeVal LV
= static_cast<LatticeVal
>(K
->LV
& edge
.LV
);
732 assert(validPredicate(LV
) && "Invalid union of lattice values");
739 // Insert new edge at Subtree if it isn't already there.
740 if (I
== E
|| I
->To
!= n
|| Subtree
!= I
->Subtree
)
741 Relations
.insert(I
, edge
);
747 std::vector
<Node
> Nodes
;
750 /// node - returns the node object at a given value number. The pointer
751 /// returned may be invalidated on the next call to node().
752 Node
*node(unsigned index
) {
753 assert(VN
.value(index
)); // This triggers the necessary checks.
754 if (Nodes
.size() < index
) Nodes
.resize(index
);
755 return &Nodes
[index
-1];
758 /// isRelatedBy - true iff n1 op n2
759 bool isRelatedBy(unsigned n1
, unsigned n2
, DomTreeDFS::Node
*Subtree
,
761 if (n1
== n2
) return LV
& EQ_BIT
;
764 Node::iterator I
= N1
->find(n2
, Subtree
), E
= N1
->end();
765 if (I
!= E
) return (I
->LV
& LV
) == I
->LV
;
770 // The add* methods assume that your input is logically valid and may
771 // assertion-fail or infinitely loop if you attempt a contradiction.
773 /// addInequality - Sets n1 op n2.
774 /// It is also an error to call this on an inequality that is already true.
775 void addInequality(unsigned n1
, unsigned n2
, DomTreeDFS::Node
*Subtree
,
777 assert(n1
!= n2
&& "A node can't be inequal to itself.");
780 assert(!isRelatedBy(n1
, n2
, Subtree
, reversePredicate(LV1
)) &&
781 "Contradictory inequality.");
783 // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
784 // add %a < %n2 too. This keeps the graph fully connected.
786 // Break up the relationship into signed and unsigned comparison parts.
787 // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
788 // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
789 // should have the EQ_BIT iff it's set for both op1 and op2.
791 unsigned LV1_s
= LV1
& (SLT_BIT
|SGT_BIT
);
792 unsigned LV1_u
= LV1
& (ULT_BIT
|UGT_BIT
);
794 for (Node::iterator I
= node(n1
)->begin(), E
= node(n1
)->end(); I
!= E
; ++I
) {
795 if (I
->LV
!= NE
&& I
->To
!= n2
) {
797 DomTreeDFS::Node
*Local_Subtree
= NULL
;
798 if (Subtree
->DominatedBy(I
->Subtree
))
799 Local_Subtree
= Subtree
;
800 else if (I
->Subtree
->DominatedBy(Subtree
))
801 Local_Subtree
= I
->Subtree
;
804 unsigned new_relationship
= 0;
805 LatticeVal ILV
= reversePredicate(I
->LV
);
806 unsigned ILV_s
= ILV
& (SLT_BIT
|SGT_BIT
);
807 unsigned ILV_u
= ILV
& (ULT_BIT
|UGT_BIT
);
809 if (LV1_s
!= (SLT_BIT
|SGT_BIT
) && ILV_s
== LV1_s
)
810 new_relationship
|= ILV_s
;
811 if (LV1_u
!= (ULT_BIT
|UGT_BIT
) && ILV_u
== LV1_u
)
812 new_relationship
|= ILV_u
;
814 if (new_relationship
) {
815 if ((new_relationship
& (SLT_BIT
|SGT_BIT
)) == 0)
816 new_relationship
|= (SLT_BIT
|SGT_BIT
);
817 if ((new_relationship
& (ULT_BIT
|UGT_BIT
)) == 0)
818 new_relationship
|= (ULT_BIT
|UGT_BIT
);
819 if ((LV1
& EQ_BIT
) && (ILV
& EQ_BIT
))
820 new_relationship
|= EQ_BIT
;
822 LatticeVal NewLV
= static_cast<LatticeVal
>(new_relationship
);
824 node(I
->To
)->update(n2
, NewLV
, Local_Subtree
);
825 node(n2
)->update(I
->To
, reversePredicate(NewLV
), Local_Subtree
);
831 for (Node::iterator I
= node(n2
)->begin(), E
= node(n2
)->end(); I
!= E
; ++I
) {
832 if (I
->LV
!= NE
&& I
->To
!= n1
) {
833 DomTreeDFS::Node
*Local_Subtree
= NULL
;
834 if (Subtree
->DominatedBy(I
->Subtree
))
835 Local_Subtree
= Subtree
;
836 else if (I
->Subtree
->DominatedBy(Subtree
))
837 Local_Subtree
= I
->Subtree
;
840 unsigned new_relationship
= 0;
841 unsigned ILV_s
= I
->LV
& (SLT_BIT
|SGT_BIT
);
842 unsigned ILV_u
= I
->LV
& (ULT_BIT
|UGT_BIT
);
844 if (LV1_s
!= (SLT_BIT
|SGT_BIT
) && ILV_s
== LV1_s
)
845 new_relationship
|= ILV_s
;
847 if (LV1_u
!= (ULT_BIT
|UGT_BIT
) && ILV_u
== LV1_u
)
848 new_relationship
|= ILV_u
;
850 if (new_relationship
) {
851 if ((new_relationship
& (SLT_BIT
|SGT_BIT
)) == 0)
852 new_relationship
|= (SLT_BIT
|SGT_BIT
);
853 if ((new_relationship
& (ULT_BIT
|UGT_BIT
)) == 0)
854 new_relationship
|= (ULT_BIT
|UGT_BIT
);
855 if ((LV1
& EQ_BIT
) && (I
->LV
& EQ_BIT
))
856 new_relationship
|= EQ_BIT
;
858 LatticeVal NewLV
= static_cast<LatticeVal
>(new_relationship
);
860 node(n1
)->update(I
->To
, NewLV
, Local_Subtree
);
861 node(I
->To
)->update(n1
, reversePredicate(NewLV
), Local_Subtree
);
868 node(n1
)->update(n2
, LV1
, Subtree
);
869 node(n2
)->update(n1
, reversePredicate(LV1
), Subtree
);
872 /// remove - removes a node from the graph by removing all references to
874 void remove(unsigned n
) {
876 for (Node::iterator NI
= N
->begin(), NE
= N
->end(); NI
!= NE
; ++NI
) {
877 Node::iterator Iter
= node(NI
->To
)->find(n
, TreeRoot
);
879 node(NI
->To
)->Relations
.erase(Iter
);
880 Iter
= node(NI
->To
)->find(n
, TreeRoot
);
881 } while (Iter
!= node(NI
->To
)->end());
883 N
->Relations
.clear();
887 virtual ~InequalityGraph() {}
888 virtual void dump() {
889 dump(*cerr
.stream());
892 void dump(std::ostream
&os
) {
893 for (unsigned i
= 1; i
<= Nodes
.size(); ++i
) {
904 /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
905 /// in the InequalityGraph.
906 class VISIBILITY_HIDDEN ValueRanges
{
909 LLVMContext
*Context
;
911 class VISIBILITY_HIDDEN ScopedRange
{
912 typedef std::vector
<std::pair
<DomTreeDFS::Node
*, ConstantRange
> >
914 RangeListType RangeList
;
916 static bool swo(const std::pair
<DomTreeDFS::Node
*, ConstantRange
> &LHS
,
917 const std::pair
<DomTreeDFS::Node
*, ConstantRange
> &RHS
) {
918 return *LHS
.first
< *RHS
.first
;
923 virtual ~ScopedRange() {}
924 virtual void dump() const {
925 dump(*cerr
.stream());
928 void dump(std::ostream
&os
) const {
930 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
931 os
<< &I
->second
<< " (" << I
->first
->getDFSNumIn() << "), ";
937 typedef RangeListType::iterator iterator
;
938 typedef RangeListType::const_iterator const_iterator
;
940 iterator
begin() { return RangeList
.begin(); }
941 iterator
end() { return RangeList
.end(); }
942 const_iterator
begin() const { return RangeList
.begin(); }
943 const_iterator
end() const { return RangeList
.end(); }
945 iterator
find(DomTreeDFS::Node
*Subtree
) {
947 iterator I
= std::lower_bound(begin(), E
,
948 std::make_pair(Subtree
, empty
), swo
);
950 while (I
!= E
&& !I
->first
->dominates(Subtree
)) ++I
;
954 const_iterator
find(DomTreeDFS::Node
*Subtree
) const {
955 const_iterator E
= end();
956 const_iterator I
= std::lower_bound(begin(), E
,
957 std::make_pair(Subtree
, empty
), swo
);
959 while (I
!= E
&& !I
->first
->dominates(Subtree
)) ++I
;
963 void update(const ConstantRange
&CR
, DomTreeDFS::Node
*Subtree
) {
964 assert(!CR
.isEmptySet() && "Empty ConstantRange.");
965 assert(!CR
.isSingleElement() && "Refusing to store single element.");
969 std::lower_bound(begin(), E
, std::make_pair(Subtree
, empty
), swo
);
971 if (I
!= end() && I
->first
== Subtree
) {
972 ConstantRange CR2
= I
->second
.intersectWith(CR
);
973 assert(!CR2
.isEmptySet() && !CR2
.isSingleElement() &&
974 "Invalid union of ranges.");
977 RangeList
.insert(I
, std::make_pair(Subtree
, CR
));
981 std::vector
<ScopedRange
> Ranges
;
983 void update(unsigned n
, const ConstantRange
&CR
, DomTreeDFS::Node
*Subtree
){
984 if (CR
.isFullSet()) return;
985 if (Ranges
.size() < n
) Ranges
.resize(n
);
986 Ranges
[n
-1].update(CR
, Subtree
);
989 /// create - Creates a ConstantRange that matches the given LatticeVal
990 /// relation with a given integer.
991 ConstantRange
create(LatticeVal LV
, const ConstantRange
&CR
) {
992 assert(!CR
.isEmptySet() && "Can't deal with empty set.");
995 return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE
, CR
);
997 unsigned LV_s
= LV
& (SGT_BIT
|SLT_BIT
);
998 unsigned LV_u
= LV
& (UGT_BIT
|ULT_BIT
);
999 bool hasEQ
= LV
& EQ_BIT
;
1001 ConstantRange
Range(CR
.getBitWidth());
1003 if (LV_s
== SGT_BIT
) {
1004 Range
= Range
.intersectWith(ConstantRange::makeICmpRegion(
1005 hasEQ
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_SGT
, CR
));
1006 } else if (LV_s
== SLT_BIT
) {
1007 Range
= Range
.intersectWith(ConstantRange::makeICmpRegion(
1008 hasEQ
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_SLT
, CR
));
1011 if (LV_u
== UGT_BIT
) {
1012 Range
= Range
.intersectWith(ConstantRange::makeICmpRegion(
1013 hasEQ
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_UGT
, CR
));
1014 } else if (LV_u
== ULT_BIT
) {
1015 Range
= Range
.intersectWith(ConstantRange::makeICmpRegion(
1016 hasEQ
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT
, CR
));
1023 bool isCanonical(Value
*V
, DomTreeDFS::Node
*Subtree
) {
1024 return V
== VN
.canonicalize(V
, Subtree
);
1030 ValueRanges(ValueNumbering
&VN
, TargetData
*TD
, LLVMContext
*C
) :
1031 VN(VN
), TD(TD
), Context(C
) {}
1034 virtual ~ValueRanges() {}
1036 virtual void dump() const {
1037 dump(*cerr
.stream());
1040 void dump(std::ostream
&os
) const {
1041 for (unsigned i
= 0, e
= Ranges
.size(); i
!= e
; ++i
) {
1042 os
<< (i
+1) << " = ";
1049 /// range - looks up the ConstantRange associated with a value number.
1050 ConstantRange
range(unsigned n
, DomTreeDFS::Node
*Subtree
) {
1051 assert(VN
.value(n
)); // performs range checks
1053 if (n
<= Ranges
.size()) {
1054 ScopedRange::iterator I
= Ranges
[n
-1].find(Subtree
);
1055 if (I
!= Ranges
[n
-1].end()) return I
->second
;
1058 Value
*V
= VN
.value(n
);
1059 ConstantRange CR
= range(V
);
1063 /// range - determine a range from a Value without performing any lookups.
1064 ConstantRange
range(Value
*V
) const {
1065 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
1066 return ConstantRange(C
->getValue());
1067 else if (isa
<ConstantPointerNull
>(V
))
1068 return ConstantRange(APInt::getNullValue(typeToWidth(V
->getType())));
1070 return ConstantRange(typeToWidth(V
->getType()));
1073 // typeToWidth - returns the number of bits necessary to store a value of
1074 // this type, or zero if unknown.
1075 uint32_t typeToWidth(const Type
*Ty
) const {
1077 return TD
->getTypeSizeInBits(Ty
);
1079 return Ty
->getPrimitiveSizeInBits();
1082 static bool isRelatedBy(const ConstantRange
&CR1
, const ConstantRange
&CR2
,
1085 default: assert(!"Impossible lattice value!");
1087 return CR1
.intersectWith(CR2
).isEmptySet();
1089 return CR1
.getUnsignedMax().ult(CR2
.getUnsignedMin());
1091 return CR1
.getUnsignedMax().ule(CR2
.getUnsignedMin());
1093 return CR1
.getUnsignedMin().ugt(CR2
.getUnsignedMax());
1095 return CR1
.getUnsignedMin().uge(CR2
.getUnsignedMax());
1097 return CR1
.getSignedMax().slt(CR2
.getSignedMin());
1099 return CR1
.getSignedMax().sle(CR2
.getSignedMin());
1101 return CR1
.getSignedMin().sgt(CR2
.getSignedMax());
1103 return CR1
.getSignedMin().sge(CR2
.getSignedMax());
1105 return CR1
.getUnsignedMax().ult(CR2
.getUnsignedMin()) &&
1106 CR1
.getSignedMax().slt(CR2
.getUnsignedMin());
1108 return CR1
.getUnsignedMax().ule(CR2
.getUnsignedMin()) &&
1109 CR1
.getSignedMax().sle(CR2
.getUnsignedMin());
1111 return CR1
.getUnsignedMin().ugt(CR2
.getUnsignedMax()) &&
1112 CR1
.getSignedMin().sgt(CR2
.getSignedMax());
1114 return CR1
.getUnsignedMin().uge(CR2
.getUnsignedMax()) &&
1115 CR1
.getSignedMin().sge(CR2
.getSignedMax());
1117 return CR1
.getSignedMax().slt(CR2
.getSignedMin()) &&
1118 CR1
.getUnsignedMin().ugt(CR2
.getUnsignedMax());
1120 return CR1
.getSignedMax().sle(CR2
.getSignedMin()) &&
1121 CR1
.getUnsignedMin().uge(CR2
.getUnsignedMax());
1123 return CR1
.getSignedMin().sgt(CR2
.getSignedMax()) &&
1124 CR1
.getUnsignedMax().ult(CR2
.getUnsignedMin());
1126 return CR1
.getSignedMin().sge(CR2
.getSignedMax()) &&
1127 CR1
.getUnsignedMax().ule(CR2
.getUnsignedMin());
1131 bool isRelatedBy(unsigned n1
, unsigned n2
, DomTreeDFS::Node
*Subtree
,
1133 ConstantRange CR1
= range(n1
, Subtree
);
1134 ConstantRange CR2
= range(n2
, Subtree
);
1136 // True iff all values in CR1 are LV to all values in CR2.
1137 return isRelatedBy(CR1
, CR2
, LV
);
1140 void addToWorklist(Value
*V
, Constant
*C
, ICmpInst::Predicate Pred
,
1142 void markBlock(VRPSolver
*VRP
);
1144 void mergeInto(Value
**I
, unsigned n
, unsigned New
,
1145 DomTreeDFS::Node
*Subtree
, VRPSolver
*VRP
) {
1146 ConstantRange CR_New
= range(New
, Subtree
);
1147 ConstantRange Merged
= CR_New
;
1149 for (; n
!= 0; ++I
, --n
) {
1150 unsigned i
= VN
.valueNumber(*I
, Subtree
);
1151 ConstantRange CR_Kill
= i
? range(i
, Subtree
) : range(*I
);
1152 if (CR_Kill
.isFullSet()) continue;
1153 Merged
= Merged
.intersectWith(CR_Kill
);
1156 if (Merged
.isFullSet() || Merged
== CR_New
) return;
1158 applyRange(New
, Merged
, Subtree
, VRP
);
1161 void applyRange(unsigned n
, const ConstantRange
&CR
,
1162 DomTreeDFS::Node
*Subtree
, VRPSolver
*VRP
) {
1163 ConstantRange Merged
= CR
.intersectWith(range(n
, Subtree
));
1164 if (Merged
.isEmptySet()) {
1169 if (const APInt
*I
= Merged
.getSingleElement()) {
1170 Value
*V
= VN
.value(n
); // XXX: redesign worklist.
1171 const Type
*Ty
= V
->getType();
1172 if (Ty
->isInteger()) {
1173 addToWorklist(V
, ConstantInt::get(*Context
, *I
),
1174 ICmpInst::ICMP_EQ
, VRP
);
1176 } else if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
1177 assert(*I
== 0 && "Pointer is null but not zero?");
1178 addToWorklist(V
, ConstantPointerNull::get(PTy
),
1179 ICmpInst::ICMP_EQ
, VRP
);
1184 update(n
, Merged
, Subtree
);
1187 void addNotEquals(unsigned n1
, unsigned n2
, DomTreeDFS::Node
*Subtree
,
1189 ConstantRange CR1
= range(n1
, Subtree
);
1190 ConstantRange CR2
= range(n2
, Subtree
);
1192 uint32_t W
= CR1
.getBitWidth();
1194 if (const APInt
*I
= CR1
.getSingleElement()) {
1195 if (CR2
.isFullSet()) {
1196 ConstantRange
NewCR2(CR1
.getUpper(), CR1
.getLower());
1197 applyRange(n2
, NewCR2
, Subtree
, VRP
);
1198 } else if (*I
== CR2
.getLower()) {
1199 APInt
NewLower(CR2
.getLower() + 1),
1200 NewUpper(CR2
.getUpper());
1201 if (NewLower
== NewUpper
)
1202 NewLower
= NewUpper
= APInt::getMinValue(W
);
1204 ConstantRange
NewCR2(NewLower
, NewUpper
);
1205 applyRange(n2
, NewCR2
, Subtree
, VRP
);
1206 } else if (*I
== CR2
.getUpper() - 1) {
1207 APInt
NewLower(CR2
.getLower()),
1208 NewUpper(CR2
.getUpper() - 1);
1209 if (NewLower
== NewUpper
)
1210 NewLower
= NewUpper
= APInt::getMinValue(W
);
1212 ConstantRange
NewCR2(NewLower
, NewUpper
);
1213 applyRange(n2
, NewCR2
, Subtree
, VRP
);
1217 if (const APInt
*I
= CR2
.getSingleElement()) {
1218 if (CR1
.isFullSet()) {
1219 ConstantRange
NewCR1(CR2
.getUpper(), CR2
.getLower());
1220 applyRange(n1
, NewCR1
, Subtree
, VRP
);
1221 } else if (*I
== CR1
.getLower()) {
1222 APInt
NewLower(CR1
.getLower() + 1),
1223 NewUpper(CR1
.getUpper());
1224 if (NewLower
== NewUpper
)
1225 NewLower
= NewUpper
= APInt::getMinValue(W
);
1227 ConstantRange
NewCR1(NewLower
, NewUpper
);
1228 applyRange(n1
, NewCR1
, Subtree
, VRP
);
1229 } else if (*I
== CR1
.getUpper() - 1) {
1230 APInt
NewLower(CR1
.getLower()),
1231 NewUpper(CR1
.getUpper() - 1);
1232 if (NewLower
== NewUpper
)
1233 NewLower
= NewUpper
= APInt::getMinValue(W
);
1235 ConstantRange
NewCR1(NewLower
, NewUpper
);
1236 applyRange(n1
, NewCR1
, Subtree
, VRP
);
1241 void addInequality(unsigned n1
, unsigned n2
, DomTreeDFS::Node
*Subtree
,
1242 LatticeVal LV
, VRPSolver
*VRP
) {
1243 assert(!isRelatedBy(n1
, n2
, Subtree
, LV
) && "Asked to do useless work.");
1246 addNotEquals(n1
, n2
, Subtree
, VRP
);
1250 ConstantRange CR1
= range(n1
, Subtree
);
1251 ConstantRange CR2
= range(n2
, Subtree
);
1253 if (!CR1
.isSingleElement()) {
1254 ConstantRange NewCR1
= CR1
.intersectWith(create(LV
, CR2
));
1256 applyRange(n1
, NewCR1
, Subtree
, VRP
);
1259 if (!CR2
.isSingleElement()) {
1260 ConstantRange NewCR2
= CR2
.intersectWith(
1261 create(reversePredicate(LV
), CR1
));
1263 applyRange(n2
, NewCR2
, Subtree
, VRP
);
1268 /// UnreachableBlocks keeps tracks of blocks that are for one reason or
1269 /// another discovered to be unreachable. This is used to cull the graph when
1270 /// analyzing instructions, and to mark blocks with the "unreachable"
1271 /// terminator instruction after the function has executed.
1272 class VISIBILITY_HIDDEN UnreachableBlocks
{
1274 std::vector
<BasicBlock
*> DeadBlocks
;
1277 /// mark - mark a block as dead
1278 void mark(BasicBlock
*BB
) {
1279 std::vector
<BasicBlock
*>::iterator E
= DeadBlocks
.end();
1280 std::vector
<BasicBlock
*>::iterator I
=
1281 std::lower_bound(DeadBlocks
.begin(), E
, BB
);
1283 if (I
== E
|| *I
!= BB
) DeadBlocks
.insert(I
, BB
);
1286 /// isDead - returns whether a block is known to be dead already
1287 bool isDead(BasicBlock
*BB
) {
1288 std::vector
<BasicBlock
*>::iterator E
= DeadBlocks
.end();
1289 std::vector
<BasicBlock
*>::iterator I
=
1290 std::lower_bound(DeadBlocks
.begin(), E
, BB
);
1292 return I
!= E
&& *I
== BB
;
1295 /// kill - replace the dead blocks' terminator with an UnreachableInst.
1297 bool modified
= false;
1298 for (std::vector
<BasicBlock
*>::iterator I
= DeadBlocks
.begin(),
1299 E
= DeadBlocks
.end(); I
!= E
; ++I
) {
1300 BasicBlock
*BB
= *I
;
1302 DEBUG(errs() << "unreachable block: " << BB
->getName() << "\n");
1304 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
1306 BasicBlock
*Succ
= *SI
;
1307 Succ
->removePredecessor(BB
);
1310 TerminatorInst
*TI
= BB
->getTerminator();
1311 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
1312 TI
->eraseFromParent();
1313 new UnreachableInst(BB
);
1322 /// VRPSolver keeps track of how changes to one variable affect other
1323 /// variables, and forwards changes along to the InequalityGraph. It
1324 /// also maintains the correct choice for "canonical" in the IG.
1325 /// @brief VRPSolver calculates inferences from a new relationship.
1326 class VISIBILITY_HIDDEN VRPSolver
{
1328 friend class ValueRanges
;
1332 ICmpInst::Predicate Op
;
1334 BasicBlock
*ContextBB
; // XXX use a DomTreeDFS::Node instead
1335 Instruction
*ContextInst
;
1337 std::deque
<Operation
> WorkList
;
1340 InequalityGraph
&IG
;
1341 UnreachableBlocks
&UB
;
1344 DomTreeDFS::Node
*Top
;
1346 Instruction
*TopInst
;
1348 LLVMContext
*Context
;
1350 typedef InequalityGraph::Node Node
;
1352 // below - true if the Instruction is dominated by the current context
1353 // block or instruction
1354 bool below(Instruction
*I
) {
1355 BasicBlock
*BB
= I
->getParent();
1356 if (TopInst
&& TopInst
->getParent() == BB
) {
1357 if (isa
<TerminatorInst
>(TopInst
)) return false;
1358 if (isa
<TerminatorInst
>(I
)) return true;
1359 if ( isa
<PHINode
>(TopInst
) && !isa
<PHINode
>(I
)) return true;
1360 if (!isa
<PHINode
>(TopInst
) && isa
<PHINode
>(I
)) return false;
1362 for (BasicBlock::const_iterator Iter
= BB
->begin(), E
= BB
->end();
1363 Iter
!= E
; ++Iter
) {
1364 if (&*Iter
== TopInst
) return true;
1365 else if (&*Iter
== I
) return false;
1367 assert(!"Instructions not found in parent BasicBlock?");
1369 DomTreeDFS::Node
*Node
= DTDFS
->getNodeForBlock(BB
);
1370 if (!Node
) return false;
1371 return Top
->dominates(Node
);
1373 return false; // Not reached
1376 // aboveOrBelow - true if the Instruction either dominates or is dominated
1377 // by the current context block or instruction
1378 bool aboveOrBelow(Instruction
*I
) {
1379 BasicBlock
*BB
= I
->getParent();
1380 DomTreeDFS::Node
*Node
= DTDFS
->getNodeForBlock(BB
);
1381 if (!Node
) return false;
1383 return Top
== Node
|| Top
->dominates(Node
) || Node
->dominates(Top
);
1386 bool makeEqual(Value
*V1
, Value
*V2
) {
1387 DOUT
<< "makeEqual(" << *V1
<< ", " << *V2
<< ")\n";
1388 DOUT
<< "context is ";
1390 errs() << "I: " << *TopInst
<< "\n";
1392 errs() << "BB: " << TopBB
->getName()
1393 << "(" << Top
->getDFSNumIn() << ")\n");
1395 assert(V1
->getType() == V2
->getType() &&
1396 "Can't make two values with different types equal.");
1398 if (V1
== V2
) return true;
1400 if (isa
<Constant
>(V1
) && isa
<Constant
>(V2
))
1403 unsigned n1
= VN
.valueNumber(V1
, Top
), n2
= VN
.valueNumber(V2
, Top
);
1406 if (n1
== n2
) return true;
1407 if (IG
.isRelatedBy(n1
, n2
, Top
, NE
)) return false;
1410 if (n1
) assert(V1
== VN
.value(n1
) && "Value isn't canonical.");
1411 if (n2
) assert(V2
== VN
.value(n2
) && "Value isn't canonical.");
1413 assert(!VN
.compare(V2
, V1
) && "Please order parameters to makeEqual.");
1415 assert(!isa
<Constant
>(V2
) && "Tried to remove a constant.");
1417 SetVector
<unsigned> Remove
;
1418 if (n2
) Remove
.insert(n2
);
1421 // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
1422 // We can't just merge %x and %y because the relationship with %z would
1423 // be EQ and that's invalid. What we're doing is looking for any nodes
1424 // %z such that %x <= %z and %y >= %z, and vice versa.
1426 Node::iterator end
= IG
.node(n2
)->end();
1428 // Find the intersection between N1 and N2 which is dominated by
1429 // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
1431 for (Node::iterator I
= IG
.node(n1
)->begin(), E
= IG
.node(n1
)->end();
1433 if (!(I
->LV
& EQ_BIT
) || !Top
->DominatedBy(I
->Subtree
)) continue;
1435 unsigned ILV_s
= I
->LV
& (SLT_BIT
|SGT_BIT
);
1436 unsigned ILV_u
= I
->LV
& (ULT_BIT
|UGT_BIT
);
1437 Node::iterator NI
= IG
.node(n2
)->find(I
->To
, Top
);
1439 LatticeVal NILV
= reversePredicate(NI
->LV
);
1440 unsigned NILV_s
= NILV
& (SLT_BIT
|SGT_BIT
);
1441 unsigned NILV_u
= NILV
& (ULT_BIT
|UGT_BIT
);
1443 if ((ILV_s
!= (SLT_BIT
|SGT_BIT
) && ILV_s
== NILV_s
) ||
1444 (ILV_u
!= (ULT_BIT
|UGT_BIT
) && ILV_u
== NILV_u
))
1445 Remove
.insert(I
->To
);
1449 // See if one of the nodes about to be removed is actually a better
1450 // canonical choice than n1.
1451 unsigned orig_n1
= n1
;
1452 SetVector
<unsigned>::iterator DontRemove
= Remove
.end();
1453 for (SetVector
<unsigned>::iterator I
= Remove
.begin()+1 /* skip n2 */,
1454 E
= Remove
.end(); I
!= E
; ++I
) {
1456 Value
*V
= VN
.value(n
);
1457 if (VN
.compare(V
, V1
)) {
1463 if (DontRemove
!= Remove
.end()) {
1464 unsigned n
= *DontRemove
;
1466 Remove
.insert(orig_n1
);
1470 // We'd like to allow makeEqual on two values to perform a simple
1471 // substitution without creating nodes in the IG whenever possible.
1473 // The first iteration through this loop operates on V2 before going
1474 // through the Remove list and operating on those too. If all of the
1475 // iterations performed simple replacements then we exit early.
1476 bool mergeIGNode
= false;
1478 for (Value
*R
= V2
; i
== 0 || i
< Remove
.size(); ++i
) {
1479 if (i
) R
= VN
.value(Remove
[i
]); // skip n2.
1481 // Try to replace the whole instruction. If we can, we're done.
1482 Instruction
*I2
= dyn_cast
<Instruction
>(R
);
1483 if (I2
&& below(I2
)) {
1484 std::vector
<Instruction
*> ToNotify
;
1485 for (Value::use_iterator UI
= I2
->use_begin(), UE
= I2
->use_end();
1487 Use
&TheUse
= UI
.getUse();
1489 Instruction
*I
= cast
<Instruction
>(TheUse
.getUser());
1490 ToNotify
.push_back(I
);
1493 DOUT
<< "Simply removing " << *I2
1494 << ", replacing with " << *V1
<< "\n";
1495 I2
->replaceAllUsesWith(V1
);
1496 // leave it dead; it'll get erased later.
1500 for (std::vector
<Instruction
*>::iterator II
= ToNotify
.begin(),
1501 IE
= ToNotify
.end(); II
!= IE
; ++II
) {
1508 // Otherwise, replace all dominated uses.
1509 for (Value::use_iterator UI
= R
->use_begin(), UE
= R
->use_end();
1511 Use
&TheUse
= UI
.getUse();
1513 if (Instruction
*I
= dyn_cast
<Instruction
>(TheUse
.getUser())) {
1523 // If that killed the instruction, stop here.
1524 if (I2
&& isInstructionTriviallyDead(I2
)) {
1525 DOUT
<< "Killed all uses of " << *I2
1526 << ", replacing with " << *V1
<< "\n";
1530 // If we make it to here, then we will need to create a node for N1.
1531 // Otherwise, we can skip out early!
1535 if (!isa
<Constant
>(V1
)) {
1536 if (Remove
.empty()) {
1537 VR
.mergeInto(&V2
, 1, VN
.getOrInsertVN(V1
, Top
), Top
, this);
1539 std::vector
<Value
*> RemoveVals
;
1540 RemoveVals
.reserve(Remove
.size());
1542 for (SetVector
<unsigned>::iterator I
= Remove
.begin(),
1543 E
= Remove
.end(); I
!= E
; ++I
) {
1544 Value
*V
= VN
.value(*I
);
1545 if (!V
->use_empty())
1546 RemoveVals
.push_back(V
);
1548 VR
.mergeInto(&RemoveVals
[0], RemoveVals
.size(),
1549 VN
.getOrInsertVN(V1
, Top
), Top
, this);
1555 if (!n1
) n1
= VN
.getOrInsertVN(V1
, Top
);
1556 IG
.node(n1
); // Ensure that IG.Nodes won't get resized
1558 // Migrate relationships from removed nodes to N1.
1559 for (SetVector
<unsigned>::iterator I
= Remove
.begin(), E
= Remove
.end();
1562 for (Node::iterator NI
= IG
.node(n
)->begin(), NE
= IG
.node(n
)->end();
1564 if (NI
->Subtree
->DominatedBy(Top
)) {
1566 assert((NI
->LV
& EQ_BIT
) && "Node inequal to itself.");
1569 if (Remove
.count(NI
->To
))
1572 IG
.node(NI
->To
)->update(n1
, reversePredicate(NI
->LV
), Top
);
1573 IG
.node(n1
)->update(NI
->To
, NI
->LV
, Top
);
1578 // Point V2 (and all items in Remove) to N1.
1580 VN
.addEquality(n1
, V2
, Top
);
1582 for (SetVector
<unsigned>::iterator I
= Remove
.begin(),
1583 E
= Remove
.end(); I
!= E
; ++I
) {
1584 VN
.addEquality(n1
, VN
.value(*I
), Top
);
1588 // If !Remove.empty() then V2 = Remove[0]->getValue().
1589 // Even when Remove is empty, we still want to process V2.
1591 for (Value
*R
= V2
; i
== 0 || i
< Remove
.size(); ++i
) {
1592 if (i
) R
= VN
.value(Remove
[i
]); // skip n2.
1594 if (Instruction
*I2
= dyn_cast
<Instruction
>(R
)) {
1595 if (aboveOrBelow(I2
))
1598 for (Value::use_iterator UI
= V2
->use_begin(), UE
= V2
->use_end();
1600 Use
&TheUse
= UI
.getUse();
1602 if (Instruction
*I
= dyn_cast
<Instruction
>(TheUse
.getUser())) {
1603 if (aboveOrBelow(I
))
1610 // re-opsToDef all dominated users of V1.
1611 if (Instruction
*I
= dyn_cast
<Instruction
>(V1
)) {
1612 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
1614 Use
&TheUse
= UI
.getUse();
1616 Value
*V
= TheUse
.getUser();
1617 if (!V
->use_empty()) {
1618 Instruction
*Inst
= cast
<Instruction
>(V
);
1619 if (aboveOrBelow(Inst
))
1628 /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
1629 /// Requires that the lattice value be valid; does not accept ICMP_EQ.
1630 static LatticeVal
cmpInstToLattice(ICmpInst::Predicate Pred
) {
1632 case ICmpInst::ICMP_EQ
:
1633 assert(!"No matching lattice value.");
1634 return static_cast<LatticeVal
>(EQ_BIT
);
1636 assert(!"Invalid 'icmp' predicate.");
1637 case ICmpInst::ICMP_NE
:
1639 case ICmpInst::ICMP_UGT
:
1641 case ICmpInst::ICMP_UGE
:
1643 case ICmpInst::ICMP_ULT
:
1645 case ICmpInst::ICMP_ULE
:
1647 case ICmpInst::ICMP_SGT
:
1649 case ICmpInst::ICMP_SGE
:
1651 case ICmpInst::ICMP_SLT
:
1653 case ICmpInst::ICMP_SLE
:
1659 VRPSolver(ValueNumbering
&VN
, InequalityGraph
&IG
, UnreachableBlocks
&UB
,
1660 ValueRanges
&VR
, DomTreeDFS
*DTDFS
, bool &modified
,
1667 Top(DTDFS
->getNodeForBlock(TopBB
)),
1671 Context(&TopBB
->getContext())
1673 assert(Top
&& "VRPSolver created for unreachable basic block.");
1676 VRPSolver(ValueNumbering
&VN
, InequalityGraph
&IG
, UnreachableBlocks
&UB
,
1677 ValueRanges
&VR
, DomTreeDFS
*DTDFS
, bool &modified
,
1678 Instruction
*TopInst
)
1684 Top(DTDFS
->getNodeForBlock(TopInst
->getParent())),
1685 TopBB(TopInst
->getParent()),
1688 Context(&TopInst
->getContext())
1690 assert(Top
&& "VRPSolver created for unreachable basic block.");
1691 assert(Top
->getBlock() == TopInst
->getParent() && "Context mismatch.");
1694 bool isRelatedBy(Value
*V1
, Value
*V2
, ICmpInst::Predicate Pred
) const {
1695 if (Constant
*C1
= dyn_cast
<Constant
>(V1
))
1696 if (Constant
*C2
= dyn_cast
<Constant
>(V2
))
1697 return ConstantExpr::getCompare(Pred
, C1
, C2
) ==
1698 ConstantInt::getTrue(*Context
);
1700 unsigned n1
= VN
.valueNumber(V1
, Top
);
1701 unsigned n2
= VN
.valueNumber(V2
, Top
);
1704 if (n1
== n2
) return Pred
== ICmpInst::ICMP_EQ
||
1705 Pred
== ICmpInst::ICMP_ULE
||
1706 Pred
== ICmpInst::ICMP_UGE
||
1707 Pred
== ICmpInst::ICMP_SLE
||
1708 Pred
== ICmpInst::ICMP_SGE
;
1709 if (Pred
== ICmpInst::ICMP_EQ
) return false;
1710 if (IG
.isRelatedBy(n1
, n2
, Top
, cmpInstToLattice(Pred
))) return true;
1711 if (VR
.isRelatedBy(n1
, n2
, Top
, cmpInstToLattice(Pred
))) return true;
1714 if ((n1
&& !n2
&& isa
<Constant
>(V2
)) ||
1715 (n2
&& !n1
&& isa
<Constant
>(V1
))) {
1716 ConstantRange CR1
= n1
? VR
.range(n1
, Top
) : VR
.range(V1
);
1717 ConstantRange CR2
= n2
? VR
.range(n2
, Top
) : VR
.range(V2
);
1719 if (Pred
== ICmpInst::ICMP_EQ
)
1720 return CR1
.isSingleElement() &&
1721 CR1
.getSingleElement() == CR2
.getSingleElement();
1723 return VR
.isRelatedBy(CR1
, CR2
, cmpInstToLattice(Pred
));
1725 if (Pred
== ICmpInst::ICMP_EQ
) return V1
== V2
;
1729 /// add - adds a new property to the work queue
1730 void add(Value
*V1
, Value
*V2
, ICmpInst::Predicate Pred
,
1731 Instruction
*I
= NULL
) {
1732 DOUT
<< "adding " << *V1
<< " " << Pred
<< " " << *V2
;
1733 if (I
) DOUT
<< " context: " << *I
;
1734 else DOUT
<< " default context (" << Top
->getDFSNumIn() << ")";
1737 assert(V1
->getType() == V2
->getType() &&
1738 "Can't relate two values with different types.");
1740 WorkList
.push_back(Operation());
1741 Operation
&O
= WorkList
.back();
1742 O
.LHS
= V1
, O
.RHS
= V2
, O
.Op
= Pred
, O
.ContextInst
= I
;
1743 O
.ContextBB
= I
? I
->getParent() : TopBB
;
1746 /// defToOps - Given an instruction definition that we've learned something
1747 /// new about, find any new relationships between its operands.
1748 void defToOps(Instruction
*I
) {
1749 Instruction
*NewContext
= below(I
) ? I
: TopInst
;
1750 Value
*Canonical
= VN
.canonicalize(I
, Top
);
1752 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1753 const Type
*Ty
= BO
->getType();
1754 assert(!Ty
->isFPOrFPVector() && "Float in work queue!");
1756 Value
*Op0
= VN
.canonicalize(BO
->getOperand(0), Top
);
1757 Value
*Op1
= VN
.canonicalize(BO
->getOperand(1), Top
);
1759 // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
1761 switch (BO
->getOpcode()) {
1762 case Instruction::And
: {
1763 // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
1764 ConstantInt
*CI
= cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
));
1765 if (Canonical
== CI
) {
1766 add(CI
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1767 add(CI
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
1770 case Instruction::Or
: {
1771 // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
1772 Constant
*Zero
= Constant::getNullValue(Ty
);
1773 if (Canonical
== Zero
) {
1774 add(Zero
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1775 add(Zero
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
1778 case Instruction::Xor
: {
1779 // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
1780 // "xor i32 %c, %a" EQ %c then %a EQ 0
1781 // "xor i32 %c, %a" NE %c then %a NE 0
1782 // Repeat the above, with order of operands reversed.
1785 if (!isa
<Constant
>(LHS
)) std::swap(LHS
, RHS
);
1787 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Canonical
)) {
1788 if (ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(LHS
)) {
1790 ConstantInt::get(*Context
, CI
->getValue() ^ Arg
->getValue()),
1791 ICmpInst::ICMP_EQ
, NewContext
);
1794 if (Canonical
== LHS
) {
1795 if (isa
<ConstantInt
>(Canonical
))
1796 add(RHS
, Constant::getNullValue(Ty
), ICmpInst::ICMP_EQ
,
1798 } else if (isRelatedBy(LHS
, Canonical
, ICmpInst::ICMP_NE
)) {
1799 add(RHS
, Constant::getNullValue(Ty
), ICmpInst::ICMP_NE
,
1806 } else if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(I
)) {
1807 // "icmp ult i32 %a, %y" EQ true then %a u< y
1810 if (Canonical
== ConstantInt::getTrue(*Context
)) {
1811 add(IC
->getOperand(0), IC
->getOperand(1), IC
->getPredicate(),
1813 } else if (Canonical
== ConstantInt::getFalse(*Context
)) {
1814 add(IC
->getOperand(0), IC
->getOperand(1),
1815 ICmpInst::getInversePredicate(IC
->getPredicate()), NewContext
);
1817 } else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
1818 if (I
->getType()->isFPOrFPVector()) return;
1820 // Given: "%a = select i1 %x, i32 %b, i32 %c"
1821 // %a EQ %b and %b NE %c then %x EQ true
1822 // %a EQ %c and %b NE %c then %x EQ false
1824 Value
*True
= SI
->getTrueValue();
1825 Value
*False
= SI
->getFalseValue();
1826 if (isRelatedBy(True
, False
, ICmpInst::ICMP_NE
)) {
1827 if (Canonical
== VN
.canonicalize(True
, Top
) ||
1828 isRelatedBy(Canonical
, False
, ICmpInst::ICMP_NE
))
1829 add(SI
->getCondition(), ConstantInt::getTrue(*Context
),
1830 ICmpInst::ICMP_EQ
, NewContext
);
1831 else if (Canonical
== VN
.canonicalize(False
, Top
) ||
1832 isRelatedBy(Canonical
, True
, ICmpInst::ICMP_NE
))
1833 add(SI
->getCondition(), ConstantInt::getFalse(*Context
),
1834 ICmpInst::ICMP_EQ
, NewContext
);
1836 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
1837 for (GetElementPtrInst::op_iterator OI
= GEPI
->idx_begin(),
1838 OE
= GEPI
->idx_end(); OI
!= OE
; ++OI
) {
1839 ConstantInt
*Op
= dyn_cast
<ConstantInt
>(VN
.canonicalize(*OI
, Top
));
1840 if (!Op
|| !Op
->isZero()) return;
1842 // TODO: The GEPI indices are all zero. Copy from definition to operand,
1843 // jumping the type plane as needed.
1844 if (isRelatedBy(GEPI
, Constant::getNullValue(GEPI
->getType()),
1845 ICmpInst::ICMP_NE
)) {
1846 Value
*Ptr
= GEPI
->getPointerOperand();
1847 add(Ptr
, Constant::getNullValue(Ptr
->getType()), ICmpInst::ICMP_NE
,
1850 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
1851 const Type
*SrcTy
= CI
->getSrcTy();
1853 unsigned ci
= VN
.getOrInsertVN(CI
, Top
);
1854 uint32_t W
= VR
.typeToWidth(SrcTy
);
1856 ConstantRange CR
= VR
.range(ci
, Top
);
1858 if (CR
.isFullSet()) return;
1860 switch (CI
->getOpcode()) {
1862 case Instruction::ZExt
:
1863 case Instruction::SExt
:
1864 VR
.applyRange(VN
.getOrInsertVN(CI
->getOperand(0), Top
),
1865 CR
.truncate(W
), Top
, this);
1867 case Instruction::BitCast
:
1868 VR
.applyRange(VN
.getOrInsertVN(CI
->getOperand(0), Top
),
1875 /// opsToDef - A new relationship was discovered involving one of this
1876 /// instruction's operands. Find any new relationship involving the
1877 /// definition, or another operand.
1878 void opsToDef(Instruction
*I
) {
1879 Instruction
*NewContext
= below(I
) ? I
: TopInst
;
1881 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1882 Value
*Op0
= VN
.canonicalize(BO
->getOperand(0), Top
);
1883 Value
*Op1
= VN
.canonicalize(BO
->getOperand(1), Top
);
1885 if (ConstantInt
*CI0
= dyn_cast
<ConstantInt
>(Op0
))
1886 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(Op1
)) {
1887 add(BO
, ConstantExpr::get(BO
->getOpcode(), CI0
, CI1
),
1888 ICmpInst::ICMP_EQ
, NewContext
);
1892 // "%y = and i1 true, %x" then %x EQ %y
1893 // "%y = or i1 false, %x" then %x EQ %y
1894 // "%x = add i32 %y, 0" then %x EQ %y
1895 // "%x = mul i32 %y, 0" then %x EQ 0
1897 Instruction::BinaryOps Opcode
= BO
->getOpcode();
1898 const Type
*Ty
= BO
->getType();
1899 assert(!Ty
->isFPOrFPVector() && "Float in work queue!");
1901 Constant
*Zero
= Constant::getNullValue(Ty
);
1902 Constant
*One
= ConstantInt::get(Ty
, 1);
1903 ConstantInt
*AllOnes
= cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
));
1907 case Instruction::LShr
:
1908 case Instruction::AShr
:
1909 case Instruction::Shl
:
1911 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1915 case Instruction::Sub
:
1917 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1920 if (ConstantInt
*CI0
= dyn_cast
<ConstantInt
>(Op0
)) {
1921 unsigned n_ci0
= VN
.getOrInsertVN(Op1
, Top
);
1922 ConstantRange CR
= VR
.range(n_ci0
, Top
);
1923 if (!CR
.isFullSet()) {
1924 CR
.subtract(CI0
->getValue());
1925 unsigned n_bo
= VN
.getOrInsertVN(BO
, Top
);
1926 VR
.applyRange(n_bo
, CR
, Top
, this);
1930 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(Op1
)) {
1931 unsigned n_ci1
= VN
.getOrInsertVN(Op0
, Top
);
1932 ConstantRange CR
= VR
.range(n_ci1
, Top
);
1933 if (!CR
.isFullSet()) {
1934 CR
.subtract(CI1
->getValue());
1935 unsigned n_bo
= VN
.getOrInsertVN(BO
, Top
);
1936 VR
.applyRange(n_bo
, CR
, Top
, this);
1941 case Instruction::Or
:
1942 if (Op0
== AllOnes
|| Op1
== AllOnes
) {
1943 add(BO
, AllOnes
, ICmpInst::ICMP_EQ
, NewContext
);
1947 add(BO
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
1949 } else if (Op1
== Zero
) {
1950 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1954 case Instruction::Add
:
1955 if (ConstantInt
*CI0
= dyn_cast
<ConstantInt
>(Op0
)) {
1956 unsigned n_ci0
= VN
.getOrInsertVN(Op1
, Top
);
1957 ConstantRange CR
= VR
.range(n_ci0
, Top
);
1958 if (!CR
.isFullSet()) {
1959 CR
.subtract(-CI0
->getValue());
1960 unsigned n_bo
= VN
.getOrInsertVN(BO
, Top
);
1961 VR
.applyRange(n_bo
, CR
, Top
, this);
1965 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(Op1
)) {
1966 unsigned n_ci1
= VN
.getOrInsertVN(Op0
, Top
);
1967 ConstantRange CR
= VR
.range(n_ci1
, Top
);
1968 if (!CR
.isFullSet()) {
1969 CR
.subtract(-CI1
->getValue());
1970 unsigned n_bo
= VN
.getOrInsertVN(BO
, Top
);
1971 VR
.applyRange(n_bo
, CR
, Top
, this);
1976 case Instruction::Xor
:
1978 add(BO
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
1980 } else if (Op1
== Zero
) {
1981 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1985 case Instruction::And
:
1986 if (Op0
== AllOnes
) {
1987 add(BO
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
1989 } else if (Op1
== AllOnes
) {
1990 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
1993 if (Op0
== Zero
|| Op1
== Zero
) {
1994 add(BO
, Zero
, ICmpInst::ICMP_EQ
, NewContext
);
1998 case Instruction::Mul
:
1999 if (Op0
== Zero
|| Op1
== Zero
) {
2000 add(BO
, Zero
, ICmpInst::ICMP_EQ
, NewContext
);
2004 add(BO
, Op1
, ICmpInst::ICMP_EQ
, NewContext
);
2006 } else if (Op1
== One
) {
2007 add(BO
, Op0
, ICmpInst::ICMP_EQ
, NewContext
);
2013 // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
2014 // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
2015 // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
2016 // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1
2018 Value
*Known
= Op0
, *Unknown
= Op1
,
2019 *TheBO
= VN
.canonicalize(BO
, Top
);
2020 if (Known
!= TheBO
) std::swap(Known
, Unknown
);
2021 if (Known
== TheBO
) {
2024 case Instruction::LShr
:
2025 case Instruction::AShr
:
2026 case Instruction::Shl
:
2027 if (!isRelatedBy(Known
, Zero
, ICmpInst::ICMP_NE
)) break;
2028 // otherwise, fall-through.
2029 case Instruction::Sub
:
2030 if (Unknown
== Op0
) break;
2031 // otherwise, fall-through.
2032 case Instruction::Xor
:
2033 case Instruction::Add
:
2034 add(Unknown
, Zero
, ICmpInst::ICMP_EQ
, NewContext
);
2036 case Instruction::UDiv
:
2037 case Instruction::SDiv
:
2038 if (Unknown
== Op1
) break;
2039 if (isRelatedBy(Known
, Zero
, ICmpInst::ICMP_NE
))
2040 add(Unknown
, One
, ICmpInst::ICMP_EQ
, NewContext
);
2045 // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
2047 } else if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(I
)) {
2048 // "%a = icmp ult i32 %b, %c" and %b u< %c then %a EQ true
2049 // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
2052 Value
*Op0
= VN
.canonicalize(IC
->getOperand(0), Top
);
2053 Value
*Op1
= VN
.canonicalize(IC
->getOperand(1), Top
);
2055 ICmpInst::Predicate Pred
= IC
->getPredicate();
2056 if (isRelatedBy(Op0
, Op1
, Pred
))
2057 add(IC
, ConstantInt::getTrue(*Context
), ICmpInst::ICMP_EQ
, NewContext
);
2058 else if (isRelatedBy(Op0
, Op1
, ICmpInst::getInversePredicate(Pred
)))
2059 add(IC
, ConstantInt::getFalse(*Context
),
2060 ICmpInst::ICMP_EQ
, NewContext
);
2062 } else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
2063 if (I
->getType()->isFPOrFPVector()) return;
2065 // Given: "%a = select i1 %x, i32 %b, i32 %c"
2066 // %x EQ true then %a EQ %b
2067 // %x EQ false then %a EQ %c
2068 // %b EQ %c then %a EQ %b
2070 Value
*Canonical
= VN
.canonicalize(SI
->getCondition(), Top
);
2071 if (Canonical
== ConstantInt::getTrue(*Context
)) {
2072 add(SI
, SI
->getTrueValue(), ICmpInst::ICMP_EQ
, NewContext
);
2073 } else if (Canonical
== ConstantInt::getFalse(*Context
)) {
2074 add(SI
, SI
->getFalseValue(), ICmpInst::ICMP_EQ
, NewContext
);
2075 } else if (VN
.canonicalize(SI
->getTrueValue(), Top
) ==
2076 VN
.canonicalize(SI
->getFalseValue(), Top
)) {
2077 add(SI
, SI
->getTrueValue(), ICmpInst::ICMP_EQ
, NewContext
);
2079 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
2080 const Type
*DestTy
= CI
->getDestTy();
2081 if (DestTy
->isFPOrFPVector()) return;
2083 Value
*Op
= VN
.canonicalize(CI
->getOperand(0), Top
);
2084 Instruction::CastOps Opcode
= CI
->getOpcode();
2086 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
2087 add(CI
, ConstantExpr::getCast(Opcode
, C
, DestTy
),
2088 ICmpInst::ICMP_EQ
, NewContext
);
2091 uint32_t W
= VR
.typeToWidth(DestTy
);
2092 unsigned ci
= VN
.getOrInsertVN(CI
, Top
);
2093 ConstantRange CR
= VR
.range(VN
.getOrInsertVN(Op
, Top
), Top
);
2095 if (!CR
.isFullSet()) {
2098 case Instruction::ZExt
:
2099 VR
.applyRange(ci
, CR
.zeroExtend(W
), Top
, this);
2101 case Instruction::SExt
:
2102 VR
.applyRange(ci
, CR
.signExtend(W
), Top
, this);
2104 case Instruction::Trunc
: {
2105 ConstantRange Result
= CR
.truncate(W
);
2106 if (!Result
.isFullSet())
2107 VR
.applyRange(ci
, Result
, Top
, this);
2109 case Instruction::BitCast
:
2110 VR
.applyRange(ci
, CR
, Top
, this);
2112 // TODO: other casts?
2115 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
2116 for (GetElementPtrInst::op_iterator OI
= GEPI
->idx_begin(),
2117 OE
= GEPI
->idx_end(); OI
!= OE
; ++OI
) {
2118 ConstantInt
*Op
= dyn_cast
<ConstantInt
>(VN
.canonicalize(*OI
, Top
));
2119 if (!Op
|| !Op
->isZero()) return;
2121 // TODO: The GEPI indices are all zero. Copy from operand to definition,
2122 // jumping the type plane as needed.
2123 Value
*Ptr
= GEPI
->getPointerOperand();
2124 if (isRelatedBy(Ptr
, Constant::getNullValue(Ptr
->getType()),
2125 ICmpInst::ICMP_NE
)) {
2126 add(GEPI
, Constant::getNullValue(GEPI
->getType()), ICmpInst::ICMP_NE
,
2132 /// solve - process the work queue
2134 //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
2135 while (!WorkList
.empty()) {
2136 //DOUT << "WorkList size: " << WorkList.size() << "\n";
2138 Operation
&O
= WorkList
.front();
2139 TopInst
= O
.ContextInst
;
2140 TopBB
= O
.ContextBB
;
2141 Top
= DTDFS
->getNodeForBlock(TopBB
); // XXX move this into Context
2143 O
.LHS
= VN
.canonicalize(O
.LHS
, Top
);
2144 O
.RHS
= VN
.canonicalize(O
.RHS
, Top
);
2146 assert(O
.LHS
== VN
.canonicalize(O
.LHS
, Top
) && "Canonicalize isn't.");
2147 assert(O
.RHS
== VN
.canonicalize(O
.RHS
, Top
) && "Canonicalize isn't.");
2149 DEBUG(errs() << "solving " << *O
.LHS
<< " " << O
.Op
<< " " << *O
.RHS
;
2151 errs() << " context inst: " << *O
.ContextInst
;
2153 errs() << " context block: " << O
.ContextBB
->getName();
2160 // If they're both Constant, skip it. Check for contradiction and mark
2161 // the BB as unreachable if so.
2162 if (Constant
*CI_L
= dyn_cast
<Constant
>(O
.LHS
)) {
2163 if (Constant
*CI_R
= dyn_cast
<Constant
>(O
.RHS
)) {
2164 if (ConstantExpr::getCompare(O
.Op
, CI_L
, CI_R
) ==
2165 ConstantInt::getFalse(*Context
))
2168 WorkList
.pop_front();
2173 if (VN
.compare(O
.LHS
, O
.RHS
)) {
2174 std::swap(O
.LHS
, O
.RHS
);
2175 O
.Op
= ICmpInst::getSwappedPredicate(O
.Op
);
2178 if (O
.Op
== ICmpInst::ICMP_EQ
) {
2179 if (!makeEqual(O
.RHS
, O
.LHS
))
2182 LatticeVal LV
= cmpInstToLattice(O
.Op
);
2184 if ((LV
& EQ_BIT
) &&
2185 isRelatedBy(O
.LHS
, O
.RHS
, ICmpInst::getSwappedPredicate(O
.Op
))) {
2186 if (!makeEqual(O
.RHS
, O
.LHS
))
2189 if (isRelatedBy(O
.LHS
, O
.RHS
, ICmpInst::getInversePredicate(O
.Op
))){
2191 WorkList
.pop_front();
2195 unsigned n1
= VN
.getOrInsertVN(O
.LHS
, Top
);
2196 unsigned n2
= VN
.getOrInsertVN(O
.RHS
, Top
);
2199 if (O
.Op
!= ICmpInst::ICMP_UGE
&& O
.Op
!= ICmpInst::ICMP_ULE
&&
2200 O
.Op
!= ICmpInst::ICMP_SGE
&& O
.Op
!= ICmpInst::ICMP_SLE
)
2203 WorkList
.pop_front();
2207 if (VR
.isRelatedBy(n1
, n2
, Top
, LV
) ||
2208 IG
.isRelatedBy(n1
, n2
, Top
, LV
)) {
2209 WorkList
.pop_front();
2213 VR
.addInequality(n1
, n2
, Top
, LV
, this);
2214 if ((!isa
<ConstantInt
>(O
.RHS
) && !isa
<ConstantInt
>(O
.LHS
)) ||
2216 IG
.addInequality(n1
, n2
, Top
, LV
);
2218 if (Instruction
*I1
= dyn_cast
<Instruction
>(O
.LHS
)) {
2219 if (aboveOrBelow(I1
))
2222 if (isa
<Instruction
>(O
.LHS
) || isa
<Argument
>(O
.LHS
)) {
2223 for (Value::use_iterator UI
= O
.LHS
->use_begin(),
2224 UE
= O
.LHS
->use_end(); UI
!= UE
;) {
2225 Use
&TheUse
= UI
.getUse();
2227 Instruction
*I
= cast
<Instruction
>(TheUse
.getUser());
2228 if (aboveOrBelow(I
))
2232 if (Instruction
*I2
= dyn_cast
<Instruction
>(O
.RHS
)) {
2233 if (aboveOrBelow(I2
))
2236 if (isa
<Instruction
>(O
.RHS
) || isa
<Argument
>(O
.RHS
)) {
2237 for (Value::use_iterator UI
= O
.RHS
->use_begin(),
2238 UE
= O
.RHS
->use_end(); UI
!= UE
;) {
2239 Use
&TheUse
= UI
.getUse();
2241 Instruction
*I
= cast
<Instruction
>(TheUse
.getUser());
2242 if (aboveOrBelow(I
))
2248 WorkList
.pop_front();
2253 void ValueRanges::addToWorklist(Value
*V
, Constant
*C
,
2254 ICmpInst::Predicate Pred
, VRPSolver
*VRP
) {
2255 VRP
->add(V
, C
, Pred
, VRP
->TopInst
);
2258 void ValueRanges::markBlock(VRPSolver
*VRP
) {
2259 VRP
->UB
.mark(VRP
->TopBB
);
2262 /// PredicateSimplifier - This class is a simplifier that replaces
2263 /// one equivalent variable with another. It also tracks what
2264 /// can't be equal and will solve setcc instructions when possible.
2265 /// @brief Root of the predicate simplifier optimization.
2266 class VISIBILITY_HIDDEN PredicateSimplifier
: public FunctionPass
{
2270 InequalityGraph
*IG
;
2271 UnreachableBlocks UB
;
2274 std::vector
<DomTreeDFS::Node
*> WorkList
;
2276 LLVMContext
*Context
;
2278 static char ID
; // Pass identification, replacement for typeid
2279 PredicateSimplifier() : FunctionPass(&ID
) {}
2281 bool runOnFunction(Function
&F
);
2283 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
2284 AU
.addRequiredID(BreakCriticalEdgesID
);
2285 AU
.addRequired
<DominatorTree
>();
2286 AU
.addRequired
<TargetData
>();
2287 AU
.addPreserved
<TargetData
>();
2291 /// Forwards - Adds new properties to VRPSolver and uses them to
2292 /// simplify instructions. Because new properties sometimes apply to
2293 /// a transition from one BasicBlock to another, this will use the
2294 /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
2296 /// @brief Performs abstract execution of the program.
2297 class VISIBILITY_HIDDEN Forwards
: public InstVisitor
<Forwards
> {
2298 friend class InstVisitor
<Forwards
>;
2299 PredicateSimplifier
*PS
;
2300 DomTreeDFS::Node
*DTNode
;
2304 InequalityGraph
&IG
;
2305 UnreachableBlocks
&UB
;
2308 Forwards(PredicateSimplifier
*PS
, DomTreeDFS::Node
*DTNode
)
2309 : PS(PS
), DTNode(DTNode
), VN(*PS
->VN
), IG(*PS
->IG
), UB(PS
->UB
),
2312 void visitTerminatorInst(TerminatorInst
&TI
);
2313 void visitBranchInst(BranchInst
&BI
);
2314 void visitSwitchInst(SwitchInst
&SI
);
2316 void visitAllocaInst(AllocaInst
&AI
);
2317 void visitLoadInst(LoadInst
&LI
);
2318 void visitStoreInst(StoreInst
&SI
);
2320 void visitSExtInst(SExtInst
&SI
);
2321 void visitZExtInst(ZExtInst
&ZI
);
2323 void visitBinaryOperator(BinaryOperator
&BO
);
2324 void visitICmpInst(ICmpInst
&IC
);
2327 // Used by terminator instructions to proceed from the current basic
2328 // block to the next. Verifies that "current" dominates "next",
2329 // then calls visitBasicBlock.
2330 void proceedToSuccessors(DomTreeDFS::Node
*Current
) {
2331 for (DomTreeDFS::Node::iterator I
= Current
->begin(),
2332 E
= Current
->end(); I
!= E
; ++I
) {
2333 WorkList
.push_back(*I
);
2337 void proceedToSuccessor(DomTreeDFS::Node
*Next
) {
2338 WorkList
.push_back(Next
);
2341 // Visits each instruction in the basic block.
2342 void visitBasicBlock(DomTreeDFS::Node
*Node
) {
2343 BasicBlock
*BB
= Node
->getBlock();
2344 DEBUG(errs() << "Entering Basic Block: " << BB
->getName()
2345 << " (" << Node
->getDFSNumIn() << ")\n");
2346 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;) {
2347 visitInstruction(I
++, Node
);
2351 // Tries to simplify each Instruction and add new properties.
2352 void visitInstruction(Instruction
*I
, DomTreeDFS::Node
*DT
) {
2353 DOUT
<< "Considering instruction " << *I
<< "\n";
2358 // Sometimes instructions are killed in earlier analysis.
2359 if (isInstructionTriviallyDead(I
)) {
2362 if (unsigned n
= VN
->valueNumber(I
, DTDFS
->getRootNode()))
2363 if (VN
->value(n
) == I
) IG
->remove(n
);
2365 I
->eraseFromParent();
2370 // Try to replace the whole instruction.
2371 Value
*V
= VN
->canonicalize(I
, DT
);
2372 assert(V
== I
&& "Late instruction canonicalization.");
2376 DOUT
<< "Removing " << *I
<< ", replacing with " << *V
<< "\n";
2377 if (unsigned n
= VN
->valueNumber(I
, DTDFS
->getRootNode()))
2378 if (VN
->value(n
) == I
) IG
->remove(n
);
2380 I
->replaceAllUsesWith(V
);
2381 I
->eraseFromParent();
2385 // Try to substitute operands.
2386 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
2387 Value
*Oper
= I
->getOperand(i
);
2388 Value
*V
= VN
->canonicalize(Oper
, DT
);
2389 assert(V
== Oper
&& "Late operand canonicalization.");
2393 DOUT
<< "Resolving " << *I
;
2394 I
->setOperand(i
, V
);
2395 DOUT
<< " into " << *I
;
2400 std::string name
= I
->getParent()->getName();
2401 DOUT
<< "push (%" << name
<< ")\n";
2402 Forwards
visit(this, DT
);
2404 DOUT
<< "pop (%" << name
<< ")\n";
2408 bool PredicateSimplifier::runOnFunction(Function
&F
) {
2409 DominatorTree
*DT
= &getAnalysis
<DominatorTree
>();
2410 DTDFS
= new DomTreeDFS(DT
);
2411 TargetData
*TD
= &getAnalysis
<TargetData
>();
2412 Context
= &F
.getContext();
2414 DEBUG(errs() << "Entering Function: " << F
.getName() << "\n");
2417 DomTreeDFS::Node
*Root
= DTDFS
->getRootNode();
2418 VN
= new ValueNumbering(DTDFS
);
2419 IG
= new InequalityGraph(*VN
, Root
);
2420 VR
= new ValueRanges(*VN
, TD
, Context
);
2421 WorkList
.push_back(Root
);
2424 DomTreeDFS::Node
*DTNode
= WorkList
.back();
2425 WorkList
.pop_back();
2426 if (!UB
.isDead(DTNode
->getBlock())) visitBasicBlock(DTNode
);
2427 } while (!WorkList
.empty());
2434 modified
|= UB
.kill();
2439 void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst
&TI
) {
2440 PS
->proceedToSuccessors(DTNode
);
2443 void PredicateSimplifier::Forwards::visitBranchInst(BranchInst
&BI
) {
2444 if (BI
.isUnconditional()) {
2445 PS
->proceedToSuccessors(DTNode
);
2449 Value
*Condition
= BI
.getCondition();
2450 BasicBlock
*TrueDest
= BI
.getSuccessor(0);
2451 BasicBlock
*FalseDest
= BI
.getSuccessor(1);
2453 if (isa
<Constant
>(Condition
) || TrueDest
== FalseDest
) {
2454 PS
->proceedToSuccessors(DTNode
);
2458 LLVMContext
*Context
= &BI
.getContext();
2460 for (DomTreeDFS::Node::iterator I
= DTNode
->begin(), E
= DTNode
->end();
2462 BasicBlock
*Dest
= (*I
)->getBlock();
2463 DEBUG(errs() << "Branch thinking about %" << Dest
->getName()
2464 << "(" << PS
->DTDFS
->getNodeForBlock(Dest
)->getDFSNumIn() << ")\n");
2466 if (Dest
== TrueDest
) {
2467 DEBUG(errs() << "(" << DTNode
->getBlock()->getName()
2468 << ") true set:\n");
2469 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, Dest
);
2470 VRP
.add(ConstantInt::getTrue(*Context
), Condition
, ICmpInst::ICMP_EQ
);
2475 } else if (Dest
== FalseDest
) {
2476 DEBUG(errs() << "(" << DTNode
->getBlock()->getName()
2477 << ") false set:\n");
2478 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, Dest
);
2479 VRP
.add(ConstantInt::getFalse(*Context
), Condition
, ICmpInst::ICMP_EQ
);
2486 PS
->proceedToSuccessor(*I
);
2490 void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst
&SI
) {
2491 Value
*Condition
= SI
.getCondition();
2493 // Set the EQProperty in each of the cases BBs, and the NEProperties
2494 // in the default BB.
2496 for (DomTreeDFS::Node::iterator I
= DTNode
->begin(), E
= DTNode
->end();
2498 BasicBlock
*BB
= (*I
)->getBlock();
2499 DEBUG(errs() << "Switch thinking about BB %" << BB
->getName()
2500 << "(" << PS
->DTDFS
->getNodeForBlock(BB
)->getDFSNumIn() << ")\n");
2502 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, BB
);
2503 if (BB
== SI
.getDefaultDest()) {
2504 for (unsigned i
= 1, e
= SI
.getNumCases(); i
< e
; ++i
)
2505 if (SI
.getSuccessor(i
) != BB
)
2506 VRP
.add(Condition
, SI
.getCaseValue(i
), ICmpInst::ICMP_NE
);
2508 } else if (ConstantInt
*CI
= SI
.findCaseDest(BB
)) {
2509 VRP
.add(Condition
, CI
, ICmpInst::ICMP_EQ
);
2512 PS
->proceedToSuccessor(*I
);
2516 void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst
&AI
) {
2517 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &AI
);
2518 VRP
.add(Constant::getNullValue(AI
.getType()),
2519 &AI
, ICmpInst::ICMP_NE
);
2523 void PredicateSimplifier::Forwards::visitLoadInst(LoadInst
&LI
) {
2524 Value
*Ptr
= LI
.getPointerOperand();
2525 // avoid "load i8* null" -> null NE null.
2526 if (isa
<Constant
>(Ptr
)) return;
2528 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &LI
);
2529 VRP
.add(Constant::getNullValue(Ptr
->getType()),
2530 Ptr
, ICmpInst::ICMP_NE
);
2534 void PredicateSimplifier::Forwards::visitStoreInst(StoreInst
&SI
) {
2535 Value
*Ptr
= SI
.getPointerOperand();
2536 if (isa
<Constant
>(Ptr
)) return;
2538 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &SI
);
2539 VRP
.add(Constant::getNullValue(Ptr
->getType()),
2540 Ptr
, ICmpInst::ICMP_NE
);
2544 void PredicateSimplifier::Forwards::visitSExtInst(SExtInst
&SI
) {
2545 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &SI
);
2546 LLVMContext
&Context
= SI
.getContext();
2547 uint32_t SrcBitWidth
= cast
<IntegerType
>(SI
.getSrcTy())->getBitWidth();
2548 uint32_t DstBitWidth
= cast
<IntegerType
>(SI
.getDestTy())->getBitWidth();
2549 APInt
Min(APInt::getHighBitsSet(DstBitWidth
, DstBitWidth
-SrcBitWidth
+1));
2550 APInt
Max(APInt::getLowBitsSet(DstBitWidth
, SrcBitWidth
-1));
2551 VRP
.add(ConstantInt::get(Context
, Min
), &SI
, ICmpInst::ICMP_SLE
);
2552 VRP
.add(ConstantInt::get(Context
, Max
), &SI
, ICmpInst::ICMP_SGE
);
2556 void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst
&ZI
) {
2557 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &ZI
);
2558 LLVMContext
&Context
= ZI
.getContext();
2559 uint32_t SrcBitWidth
= cast
<IntegerType
>(ZI
.getSrcTy())->getBitWidth();
2560 uint32_t DstBitWidth
= cast
<IntegerType
>(ZI
.getDestTy())->getBitWidth();
2561 APInt
Max(APInt::getLowBitsSet(DstBitWidth
, SrcBitWidth
));
2562 VRP
.add(ConstantInt::get(Context
, Max
), &ZI
, ICmpInst::ICMP_UGE
);
2566 void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator
&BO
) {
2567 Instruction::BinaryOps ops
= BO
.getOpcode();
2571 case Instruction::URem
:
2572 case Instruction::SRem
:
2573 case Instruction::UDiv
:
2574 case Instruction::SDiv
: {
2575 Value
*Divisor
= BO
.getOperand(1);
2576 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2577 VRP
.add(Constant::getNullValue(Divisor
->getType()),
2578 Divisor
, ICmpInst::ICMP_NE
);
2586 case Instruction::Shl
: {
2587 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2588 VRP
.add(&BO
, BO
.getOperand(0), ICmpInst::ICMP_UGE
);
2591 case Instruction::AShr
: {
2592 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2593 VRP
.add(&BO
, BO
.getOperand(0), ICmpInst::ICMP_SLE
);
2596 case Instruction::LShr
:
2597 case Instruction::UDiv
: {
2598 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2599 VRP
.add(&BO
, BO
.getOperand(0), ICmpInst::ICMP_ULE
);
2602 case Instruction::URem
: {
2603 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2604 VRP
.add(&BO
, BO
.getOperand(1), ICmpInst::ICMP_ULE
);
2607 case Instruction::And
: {
2608 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2609 VRP
.add(&BO
, BO
.getOperand(0), ICmpInst::ICMP_ULE
);
2610 VRP
.add(&BO
, BO
.getOperand(1), ICmpInst::ICMP_ULE
);
2613 case Instruction::Or
: {
2614 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &BO
);
2615 VRP
.add(&BO
, BO
.getOperand(0), ICmpInst::ICMP_UGE
);
2616 VRP
.add(&BO
, BO
.getOperand(1), ICmpInst::ICMP_UGE
);
2622 void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst
&IC
) {
2623 // If possible, squeeze the ICmp predicate into something simpler.
2624 // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
2625 // the predicate to eq.
2627 // XXX: once we do full PHI handling, modifying the instruction in the
2628 // Forwards visitor will cause missed optimizations.
2630 ICmpInst::Predicate Pred
= IC
.getPredicate();
2634 case ICmpInst::ICMP_ULE
: Pred
= ICmpInst::ICMP_ULT
; break;
2635 case ICmpInst::ICMP_UGE
: Pred
= ICmpInst::ICMP_UGT
; break;
2636 case ICmpInst::ICMP_SLE
: Pred
= ICmpInst::ICMP_SLT
; break;
2637 case ICmpInst::ICMP_SGE
: Pred
= ICmpInst::ICMP_SGT
; break;
2639 if (Pred
!= IC
.getPredicate()) {
2640 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &IC
);
2641 if (VRP
.isRelatedBy(IC
.getOperand(1), IC
.getOperand(0),
2642 ICmpInst::ICMP_NE
)) {
2644 PS
->modified
= true;
2645 IC
.setPredicate(Pred
);
2649 Pred
= IC
.getPredicate();
2651 LLVMContext
&Context
= IC
.getContext();
2653 if (ConstantInt
*Op1
= dyn_cast
<ConstantInt
>(IC
.getOperand(1))) {
2654 ConstantInt
*NextVal
= 0;
2657 case ICmpInst::ICMP_SLT
:
2658 case ICmpInst::ICMP_ULT
:
2659 if (Op1
->getValue() != 0)
2660 NextVal
= ConstantInt::get(Context
, Op1
->getValue()-1);
2662 case ICmpInst::ICMP_SGT
:
2663 case ICmpInst::ICMP_UGT
:
2664 if (!Op1
->getValue().isAllOnesValue())
2665 NextVal
= ConstantInt::get(Context
, Op1
->getValue()+1);
2670 VRPSolver
VRP(VN
, IG
, UB
, VR
, PS
->DTDFS
, PS
->modified
, &IC
);
2671 if (VRP
.isRelatedBy(IC
.getOperand(0), NextVal
,
2672 ICmpInst::getInversePredicate(Pred
))) {
2673 ICmpInst
*NewIC
= new ICmpInst(&IC
, ICmpInst::ICMP_EQ
,
2674 IC
.getOperand(0), NextVal
, "");
2675 NewIC
->takeName(&IC
);
2676 IC
.replaceAllUsesWith(NewIC
);
2678 // XXX: prove this isn't necessary
2679 if (unsigned n
= VN
.valueNumber(&IC
, PS
->DTDFS
->getRootNode()))
2680 if (VN
.value(n
) == &IC
) IG
.remove(n
);
2683 IC
.eraseFromParent();
2685 PS
->modified
= true;
2692 char PredicateSimplifier::ID
= 0;
2693 static RegisterPass
<PredicateSimplifier
>
2694 X("predsimplify", "Predicate Simplifier");
2696 FunctionPass
*llvm::createPredicateSimplifierPass() {
2697 return new PredicateSimplifier();