Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / Reassociate.cpp
blobe8bc859517eb2097132c38bbfe7bebe5222265e3
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE...
13 // For example: 4 + (x + 5) -> x + (4 + 5)
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DerivedTypes.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ValueHandle.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/Statistic.h"
39 #include <algorithm>
40 #include <map>
41 using namespace llvm;
43 STATISTIC(NumLinear , "Number of insts linearized");
44 STATISTIC(NumChanged, "Number of insts reassociated");
45 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46 STATISTIC(NumFactor , "Number of multiplies factored");
48 namespace {
49 struct VISIBILITY_HIDDEN ValueEntry {
50 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
59 #ifndef NDEBUG
60 /// PrintOps - Print out the expression identified in the Ops list.
61 ///
62 static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63 Module *M = I->getParent()->getParent()->getParent();
64 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
65 << *Ops[0].Op->getType();
66 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
68 cerr << "," << Ops[i].Rank;
71 #endif
73 namespace {
74 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
75 std::map<BasicBlock*, unsigned> RankMap;
76 std::map<AssertingVH<>, unsigned> ValueRankMap;
77 bool MadeChange;
78 public:
79 static char ID; // Pass identification, replacement for typeid
80 Reassociate() : FunctionPass(&ID) {}
82 bool runOnFunction(Function &F);
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesCFG();
87 private:
88 void BuildRankMap(Function &F);
89 unsigned getRank(Value *V);
90 void ReassociateExpression(BinaryOperator *I);
91 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
92 unsigned Idx = 0);
93 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
94 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95 void LinearizeExpr(BinaryOperator *I);
96 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
97 void ReassociateBB(BasicBlock *BB);
99 void RemoveDeadBinaryOp(Value *V);
103 char Reassociate::ID = 0;
104 static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
106 // Public interface to the Reassociate pass
107 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
109 void Reassociate::RemoveDeadBinaryOp(Value *V) {
110 Instruction *Op = dyn_cast<Instruction>(V);
111 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
112 return;
114 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
115 RemoveDeadBinaryOp(LHS);
116 RemoveDeadBinaryOp(RHS);
120 static bool isUnmovableInstruction(Instruction *I) {
121 if (I->getOpcode() == Instruction::PHI ||
122 I->getOpcode() == Instruction::Alloca ||
123 I->getOpcode() == Instruction::Load ||
124 I->getOpcode() == Instruction::Malloc ||
125 I->getOpcode() == Instruction::Invoke ||
126 (I->getOpcode() == Instruction::Call &&
127 !isa<DbgInfoIntrinsic>(I)) ||
128 I->getOpcode() == Instruction::UDiv ||
129 I->getOpcode() == Instruction::SDiv ||
130 I->getOpcode() == Instruction::FDiv ||
131 I->getOpcode() == Instruction::URem ||
132 I->getOpcode() == Instruction::SRem ||
133 I->getOpcode() == Instruction::FRem)
134 return true;
135 return false;
138 void Reassociate::BuildRankMap(Function &F) {
139 unsigned i = 2;
141 // Assign distinct ranks to function arguments
142 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
143 ValueRankMap[&*I] = ++i;
145 ReversePostOrderTraversal<Function*> RPOT(&F);
146 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
147 E = RPOT.end(); I != E; ++I) {
148 BasicBlock *BB = *I;
149 unsigned BBRank = RankMap[BB] = ++i << 16;
151 // Walk the basic block, adding precomputed ranks for any instructions that
152 // we cannot move. This ensures that the ranks for these instructions are
153 // all different in the block.
154 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
155 if (isUnmovableInstruction(I))
156 ValueRankMap[&*I] = ++BBRank;
160 unsigned Reassociate::getRank(Value *V) {
161 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
163 Instruction *I = dyn_cast<Instruction>(V);
164 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
166 unsigned &CachedRank = ValueRankMap[I];
167 if (CachedRank) return CachedRank; // Rank already known?
169 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
170 // we can reassociate expressions for code motion! Since we do not recurse
171 // for PHI nodes, we cannot have infinite recursion here, because there
172 // cannot be loops in the value graph that do not go through PHI nodes.
173 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
174 for (unsigned i = 0, e = I->getNumOperands();
175 i != e && Rank != MaxRank; ++i)
176 Rank = std::max(Rank, getRank(I->getOperand(i)));
178 // If this is a not or neg instruction, do not count it for rank. This
179 // assures us that X and ~X will have the same rank.
180 if (!I->getType()->isInteger() ||
181 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
182 ++Rank;
184 //DOUT << "Calculated Rank[" << V->getName() << "] = "
185 // << Rank << "\n";
187 return CachedRank = Rank;
190 /// isReassociableOp - Return true if V is an instruction of the specified
191 /// opcode and if it only has one use.
192 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
193 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
194 cast<Instruction>(V)->getOpcode() == Opcode)
195 return cast<BinaryOperator>(V);
196 return 0;
199 /// LowerNegateToMultiply - Replace 0-X with X*-1.
201 static Instruction *LowerNegateToMultiply(Instruction *Neg,
202 std::map<AssertingVH<>, unsigned> &ValueRankMap,
203 LLVMContext &Context) {
204 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
206 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
207 ValueRankMap.erase(Neg);
208 Res->takeName(Neg);
209 Neg->replaceAllUsesWith(Res);
210 Neg->eraseFromParent();
211 return Res;
214 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
215 // Note that if D is also part of the expression tree that we recurse to
216 // linearize it as well. Besides that case, this does not recurse into A,B, or
217 // C.
218 void Reassociate::LinearizeExpr(BinaryOperator *I) {
219 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
220 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
221 assert(isReassociableOp(LHS, I->getOpcode()) &&
222 isReassociableOp(RHS, I->getOpcode()) &&
223 "Not an expression that needs linearization?");
225 DOUT << "Linear" << *LHS << *RHS << *I;
227 // Move the RHS instruction to live immediately before I, avoiding breaking
228 // dominator properties.
229 RHS->moveBefore(I);
231 // Move operands around to do the linearization.
232 I->setOperand(1, RHS->getOperand(0));
233 RHS->setOperand(0, LHS);
234 I->setOperand(0, RHS);
236 ++NumLinear;
237 MadeChange = true;
238 DOUT << "Linearized: " << *I;
240 // If D is part of this expression tree, tail recurse.
241 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
242 LinearizeExpr(I);
246 /// LinearizeExprTree - Given an associative binary expression tree, traverse
247 /// all of the uses putting it into canonical form. This forces a left-linear
248 /// form of the the expression (((a+b)+c)+d), and collects information about the
249 /// rank of the non-tree operands.
251 /// NOTE: These intentionally destroys the expression tree operands (turning
252 /// them into undef values) to reduce #uses of the values. This means that the
253 /// caller MUST use something like RewriteExprTree to put the values back in.
255 void Reassociate::LinearizeExprTree(BinaryOperator *I,
256 std::vector<ValueEntry> &Ops) {
257 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
258 unsigned Opcode = I->getOpcode();
259 LLVMContext &Context = I->getContext();
261 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
262 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
263 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
265 // If this is a multiply expression tree and it contains internal negations,
266 // transform them into multiplies by -1 so they can be reassociated.
267 if (I->getOpcode() == Instruction::Mul) {
268 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
269 LHS = LowerNegateToMultiply(cast<Instruction>(LHS),
270 ValueRankMap, Context);
271 LHSBO = isReassociableOp(LHS, Opcode);
273 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
274 RHS = LowerNegateToMultiply(cast<Instruction>(RHS),
275 ValueRankMap, Context);
276 RHSBO = isReassociableOp(RHS, Opcode);
280 if (!LHSBO) {
281 if (!RHSBO) {
282 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
283 // such, just remember these operands and their rank.
284 Ops.push_back(ValueEntry(getRank(LHS), LHS));
285 Ops.push_back(ValueEntry(getRank(RHS), RHS));
287 // Clear the leaves out.
288 I->setOperand(0, UndefValue::get(I->getType()));
289 I->setOperand(1, UndefValue::get(I->getType()));
290 return;
291 } else {
292 // Turn X+(Y+Z) -> (Y+Z)+X
293 std::swap(LHSBO, RHSBO);
294 std::swap(LHS, RHS);
295 bool Success = !I->swapOperands();
296 assert(Success && "swapOperands failed");
297 Success = false;
298 MadeChange = true;
300 } else if (RHSBO) {
301 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
302 // part of the expression tree.
303 LinearizeExpr(I);
304 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
305 RHS = I->getOperand(1);
306 RHSBO = 0;
309 // Okay, now we know that the LHS is a nested expression and that the RHS is
310 // not. Perform reassociation.
311 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313 // Move LHS right before I to make sure that the tree expression dominates all
314 // values.
315 LHSBO->moveBefore(I);
317 // Linearize the expression tree on the LHS.
318 LinearizeExprTree(LHSBO, Ops);
320 // Remember the RHS operand and its rank.
321 Ops.push_back(ValueEntry(getRank(RHS), RHS));
323 // Clear the RHS leaf out.
324 I->setOperand(1, UndefValue::get(I->getType()));
327 // RewriteExprTree - Now that the operands for this expression tree are
328 // linearized and optimized, emit them in-order. This function is written to be
329 // tail recursive.
330 void Reassociate::RewriteExprTree(BinaryOperator *I,
331 std::vector<ValueEntry> &Ops,
332 unsigned i) {
333 if (i+2 == Ops.size()) {
334 if (I->getOperand(0) != Ops[i].Op ||
335 I->getOperand(1) != Ops[i+1].Op) {
336 Value *OldLHS = I->getOperand(0);
337 DOUT << "RA: " << *I;
338 I->setOperand(0, Ops[i].Op);
339 I->setOperand(1, Ops[i+1].Op);
340 DOUT << "TO: " << *I;
341 MadeChange = true;
342 ++NumChanged;
344 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
345 // delete the extra, now dead, nodes.
346 RemoveDeadBinaryOp(OldLHS);
348 return;
350 assert(i+2 < Ops.size() && "Ops index out of range!");
352 if (I->getOperand(1) != Ops[i].Op) {
353 DOUT << "RA: " << *I;
354 I->setOperand(1, Ops[i].Op);
355 DOUT << "TO: " << *I;
356 MadeChange = true;
357 ++NumChanged;
360 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
361 assert(LHS->getOpcode() == I->getOpcode() &&
362 "Improper expression tree!");
364 // Compactify the tree instructions together with each other to guarantee
365 // that the expression tree is dominated by all of Ops.
366 LHS->moveBefore(I);
367 RewriteExprTree(LHS, Ops, i+1);
372 // NegateValue - Insert instructions before the instruction pointed to by BI,
373 // that computes the negative version of the value specified. The negative
374 // version of the value is returned, and BI is left pointing at the instruction
375 // that should be processed next by the reassociation pass.
377 static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
378 // We are trying to expose opportunity for reassociation. One of the things
379 // that we want to do to achieve this is to push a negation as deep into an
380 // expression chain as possible, to expose the add instructions. In practice,
381 // this means that we turn this:
382 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
383 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
384 // the constants. We assume that instcombine will clean up the mess later if
385 // we introduce tons of unnecessary negation instructions...
387 if (Instruction *I = dyn_cast<Instruction>(V))
388 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
389 // Push the negates through the add.
390 I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
391 I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
393 // We must move the add instruction here, because the neg instructions do
394 // not dominate the old add instruction in general. By moving it, we are
395 // assured that the neg instructions we just inserted dominate the
396 // instruction we are about to insert after them.
398 I->moveBefore(BI);
399 I->setName(I->getName()+".neg");
400 return I;
403 // Insert a 'neg' instruction that subtracts the value from zero to get the
404 // negation.
406 return BinaryOperator::CreateNeg(Context, V, V->getName() + ".neg", BI);
409 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
410 /// X-Y into (X + -Y).
411 static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
412 // If this is a negation, we can't split it up!
413 if (BinaryOperator::isNeg(Sub))
414 return false;
416 // Don't bother to break this up unless either the LHS is an associable add or
417 // subtract or if this is only used by one.
418 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
419 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
420 return true;
421 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
422 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
423 return true;
424 if (Sub->hasOneUse() &&
425 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
426 isReassociableOp(Sub->use_back(), Instruction::Sub)))
427 return true;
429 return false;
432 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
433 /// only used by an add, transform this into (X+(0-Y)) to promote better
434 /// reassociation.
435 static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
436 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
437 // Convert a subtract into an add and a neg instruction... so that sub
438 // instructions can be commuted with other add instructions...
440 // Calculate the negative value of Operand 1 of the sub instruction...
441 // and set it as the RHS of the add instruction we just made...
443 Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
444 Instruction *New =
445 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
446 New->takeName(Sub);
448 // Everyone now refers to the add instruction.
449 ValueRankMap.erase(Sub);
450 Sub->replaceAllUsesWith(New);
451 Sub->eraseFromParent();
453 DOUT << "Negated: " << *New;
454 return New;
457 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
458 /// by one, change this into a multiply by a constant to assist with further
459 /// reassociation.
460 static Instruction *ConvertShiftToMul(Instruction *Shl,
461 std::map<AssertingVH<>, unsigned> &ValueRankMap,
462 LLVMContext &Context) {
463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466 (Shl->hasOneUse() &&
467 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
469 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
470 MulCst =
471 ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
473 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
474 "", Shl);
475 ValueRankMap.erase(Shl);
476 Mul->takeName(Shl);
477 Shl->replaceAllUsesWith(Mul);
478 Shl->eraseFromParent();
479 return Mul;
481 return 0;
484 // Scan backwards and forwards among values with the same rank as element i to
485 // see if X exists. If X does not exist, return i.
486 static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
487 Value *X) {
488 unsigned XRank = Ops[i].Rank;
489 unsigned e = Ops.size();
490 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
491 if (Ops[j].Op == X)
492 return j;
493 // Scan backwards
494 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
495 if (Ops[j].Op == X)
496 return j;
497 return i;
500 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
501 /// and returning the result. Insert the tree before I.
502 static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
503 if (Ops.size() == 1) return Ops.back();
505 Value *V1 = Ops.back();
506 Ops.pop_back();
507 Value *V2 = EmitAddTreeOfValues(I, Ops);
508 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
511 /// RemoveFactorFromExpression - If V is an expression tree that is a
512 /// multiplication sequence, and if this sequence contains a multiply by Factor,
513 /// remove Factor from the tree and return the new tree.
514 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
515 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
516 if (!BO) return 0;
518 std::vector<ValueEntry> Factors;
519 LinearizeExprTree(BO, Factors);
521 bool FoundFactor = false;
522 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
523 if (Factors[i].Op == Factor) {
524 FoundFactor = true;
525 Factors.erase(Factors.begin()+i);
526 break;
528 if (!FoundFactor) {
529 // Make sure to restore the operands to the expression tree.
530 RewriteExprTree(BO, Factors);
531 return 0;
534 if (Factors.size() == 1) return Factors[0].Op;
536 RewriteExprTree(BO, Factors);
537 return BO;
540 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
541 /// add its operands as factors, otherwise add V to the list of factors.
542 static void FindSingleUseMultiplyFactors(Value *V,
543 std::vector<Value*> &Factors) {
544 BinaryOperator *BO;
545 if ((!V->hasOneUse() && !V->use_empty()) ||
546 !(BO = dyn_cast<BinaryOperator>(V)) ||
547 BO->getOpcode() != Instruction::Mul) {
548 Factors.push_back(V);
549 return;
552 // Otherwise, add the LHS and RHS to the list of factors.
553 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
554 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
559 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
560 std::vector<ValueEntry> &Ops) {
561 // Now that we have the linearized expression tree, try to optimize it.
562 // Start by folding any constants that we found.
563 bool IterateOptimization = false;
564 if (Ops.size() == 1) return Ops[0].Op;
566 unsigned Opcode = I->getOpcode();
568 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
569 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
570 Ops.pop_back();
571 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
572 return OptimizeExpression(I, Ops);
575 // Check for destructive annihilation due to a constant being used.
576 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
577 switch (Opcode) {
578 default: break;
579 case Instruction::And:
580 if (CstVal->isZero()) { // ... & 0 -> 0
581 ++NumAnnihil;
582 return CstVal;
583 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
584 Ops.pop_back();
586 break;
587 case Instruction::Mul:
588 if (CstVal->isZero()) { // ... * 0 -> 0
589 ++NumAnnihil;
590 return CstVal;
591 } else if (cast<ConstantInt>(CstVal)->isOne()) {
592 Ops.pop_back(); // ... * 1 -> ...
594 break;
595 case Instruction::Or:
596 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
597 ++NumAnnihil;
598 return CstVal;
600 // FALLTHROUGH!
601 case Instruction::Add:
602 case Instruction::Xor:
603 if (CstVal->isZero()) // ... [|^+] 0 -> ...
604 Ops.pop_back();
605 break;
607 if (Ops.size() == 1) return Ops[0].Op;
609 // Handle destructive annihilation do to identities between elements in the
610 // argument list here.
611 switch (Opcode) {
612 default: break;
613 case Instruction::And:
614 case Instruction::Or:
615 case Instruction::Xor:
616 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
617 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
618 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
619 // First, check for X and ~X in the operand list.
620 assert(i < Ops.size());
621 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
622 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
623 unsigned FoundX = FindInOperandList(Ops, i, X);
624 if (FoundX != i) {
625 if (Opcode == Instruction::And) { // ...&X&~X = 0
626 ++NumAnnihil;
627 return Constant::getNullValue(X->getType());
628 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
629 ++NumAnnihil;
630 return Constant::getAllOnesValue(X->getType());
635 // Next, check for duplicate pairs of values, which we assume are next to
636 // each other, due to our sorting criteria.
637 assert(i < Ops.size());
638 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
639 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
640 // Drop duplicate values.
641 Ops.erase(Ops.begin()+i);
642 --i; --e;
643 IterateOptimization = true;
644 ++NumAnnihil;
645 } else {
646 assert(Opcode == Instruction::Xor);
647 if (e == 2) {
648 ++NumAnnihil;
649 return Constant::getNullValue(Ops[0].Op->getType());
651 // ... X^X -> ...
652 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
653 i -= 1; e -= 2;
654 IterateOptimization = true;
655 ++NumAnnihil;
659 break;
661 case Instruction::Add:
662 // Scan the operand lists looking for X and -X pairs. If we find any, we
663 // can simplify the expression. X+-X == 0.
664 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
665 assert(i < Ops.size());
666 // Check for X and -X in the operand list.
667 if (BinaryOperator::isNeg(Ops[i].Op)) {
668 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
669 unsigned FoundX = FindInOperandList(Ops, i, X);
670 if (FoundX != i) {
671 // Remove X and -X from the operand list.
672 if (Ops.size() == 2) {
673 ++NumAnnihil;
674 return Constant::getNullValue(X->getType());
675 } else {
676 Ops.erase(Ops.begin()+i);
677 if (i < FoundX)
678 --FoundX;
679 else
680 --i; // Need to back up an extra one.
681 Ops.erase(Ops.begin()+FoundX);
682 IterateOptimization = true;
683 ++NumAnnihil;
684 --i; // Revisit element.
685 e -= 2; // Removed two elements.
692 // Scan the operand list, checking to see if there are any common factors
693 // between operands. Consider something like A*A+A*B*C+D. We would like to
694 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
695 // To efficiently find this, we count the number of times a factor occurs
696 // for any ADD operands that are MULs.
697 std::map<Value*, unsigned> FactorOccurrences;
698 unsigned MaxOcc = 0;
699 Value *MaxOccVal = 0;
700 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
701 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
702 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
703 // Compute all of the factors of this added value.
704 std::vector<Value*> Factors;
705 FindSingleUseMultiplyFactors(BOp, Factors);
706 assert(Factors.size() > 1 && "Bad linearize!");
708 // Add one to FactorOccurrences for each unique factor in this op.
709 if (Factors.size() == 2) {
710 unsigned Occ = ++FactorOccurrences[Factors[0]];
711 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
712 if (Factors[0] != Factors[1]) { // Don't double count A*A.
713 Occ = ++FactorOccurrences[Factors[1]];
714 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
716 } else {
717 std::set<Value*> Duplicates;
718 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
719 if (Duplicates.insert(Factors[i]).second) {
720 unsigned Occ = ++FactorOccurrences[Factors[i]];
721 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
729 // If any factor occurred more than one time, we can pull it out.
730 if (MaxOcc > 1) {
731 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
733 // Create a new instruction that uses the MaxOccVal twice. If we don't do
734 // this, we could otherwise run into situations where removing a factor
735 // from an expression will drop a use of maxocc, and this can cause
736 // RemoveFactorFromExpression on successive values to behave differently.
737 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
738 std::vector<Value*> NewMulOps;
739 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
740 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
741 NewMulOps.push_back(V);
742 Ops.erase(Ops.begin()+i);
743 --i; --e;
747 // No need for extra uses anymore.
748 delete DummyInst;
750 unsigned NumAddedValues = NewMulOps.size();
751 Value *V = EmitAddTreeOfValues(I, NewMulOps);
752 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
754 // Now that we have inserted V and its sole use, optimize it. This allows
755 // us to handle cases that require multiple factoring steps, such as this:
756 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
757 if (NumAddedValues > 1)
758 ReassociateExpression(cast<BinaryOperator>(V));
760 ++NumFactor;
762 if (Ops.empty())
763 return V2;
765 // Add the new value to the list of things being added.
766 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
768 // Rewrite the tree so that there is now a use of V.
769 RewriteExprTree(I, Ops);
770 return OptimizeExpression(I, Ops);
772 break;
773 //case Instruction::Mul:
776 if (IterateOptimization)
777 return OptimizeExpression(I, Ops);
778 return 0;
782 /// ReassociateBB - Inspect all of the instructions in this basic block,
783 /// reassociating them as we go.
784 void Reassociate::ReassociateBB(BasicBlock *BB) {
785 LLVMContext &Context = BB->getContext();
787 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
788 Instruction *BI = BBI++;
789 if (BI->getOpcode() == Instruction::Shl &&
790 isa<ConstantInt>(BI->getOperand(1)))
791 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) {
792 MadeChange = true;
793 BI = NI;
796 // Reject cases where it is pointless to do this.
797 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
798 isa<VectorType>(BI->getType()))
799 continue; // Floating point ops are not associative.
801 // If this is a subtract instruction which is not already in negate form,
802 // see if we can convert it to X+-Y.
803 if (BI->getOpcode() == Instruction::Sub) {
804 if (ShouldBreakUpSubtract(Context, BI)) {
805 BI = BreakUpSubtract(Context, BI, ValueRankMap);
806 MadeChange = true;
807 } else if (BinaryOperator::isNeg(BI)) {
808 // Otherwise, this is a negation. See if the operand is a multiply tree
809 // and if this is not an inner node of a multiply tree.
810 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
811 (!BI->hasOneUse() ||
812 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
813 BI = LowerNegateToMultiply(BI, ValueRankMap, Context);
814 MadeChange = true;
819 // If this instruction is a commutative binary operator, process it.
820 if (!BI->isAssociative()) continue;
821 BinaryOperator *I = cast<BinaryOperator>(BI);
823 // If this is an interior node of a reassociable tree, ignore it until we
824 // get to the root of the tree, to avoid N^2 analysis.
825 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
826 continue;
828 // If this is an add tree that is used by a sub instruction, ignore it
829 // until we process the subtract.
830 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
831 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
832 continue;
834 ReassociateExpression(I);
838 void Reassociate::ReassociateExpression(BinaryOperator *I) {
840 // First, walk the expression tree, linearizing the tree, collecting
841 std::vector<ValueEntry> Ops;
842 LinearizeExprTree(I, Ops);
844 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
846 // Now that we have linearized the tree to a list and have gathered all of
847 // the operands and their ranks, sort the operands by their rank. Use a
848 // stable_sort so that values with equal ranks will have their relative
849 // positions maintained (and so the compiler is deterministic). Note that
850 // this sorts so that the highest ranking values end up at the beginning of
851 // the vector.
852 std::stable_sort(Ops.begin(), Ops.end());
854 // OptimizeExpression - Now that we have the expression tree in a convenient
855 // sorted form, optimize it globally if possible.
856 if (Value *V = OptimizeExpression(I, Ops)) {
857 // This expression tree simplified to something that isn't a tree,
858 // eliminate it.
859 DOUT << "Reassoc to scalar: " << *V << "\n";
860 I->replaceAllUsesWith(V);
861 RemoveDeadBinaryOp(I);
862 return;
865 // We want to sink immediates as deeply as possible except in the case where
866 // this is a multiply tree used only by an add, and the immediate is a -1.
867 // In this case we reassociate to put the negation on the outside so that we
868 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
869 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
870 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
871 isa<ConstantInt>(Ops.back().Op) &&
872 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
873 Ops.insert(Ops.begin(), Ops.back());
874 Ops.pop_back();
877 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
879 if (Ops.size() == 1) {
880 // This expression tree simplified to something that isn't a tree,
881 // eliminate it.
882 I->replaceAllUsesWith(Ops[0].Op);
883 RemoveDeadBinaryOp(I);
884 } else {
885 // Now that we ordered and optimized the expressions, splat them back into
886 // the expression tree, removing any unneeded nodes.
887 RewriteExprTree(I, Ops);
892 bool Reassociate::runOnFunction(Function &F) {
893 // Recalculate the rank map for F
894 BuildRankMap(F);
896 MadeChange = false;
897 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
898 ReassociateBB(FI);
900 // We are done with the rank map...
901 RankMap.clear();
902 ValueRankMap.clear();
903 return MadeChange;