1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE...
13 // For example: 4 + (x + 5) -> x + (4 + 5)
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DerivedTypes.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ValueHandle.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/Statistic.h"
43 STATISTIC(NumLinear
, "Number of insts linearized");
44 STATISTIC(NumChanged
, "Number of insts reassociated");
45 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
46 STATISTIC(NumFactor
, "Number of multiplies factored");
49 struct VISIBILITY_HIDDEN ValueEntry
{
52 ValueEntry(unsigned R
, Value
*O
) : Rank(R
), Op(O
) {}
54 inline bool operator<(const ValueEntry
&LHS
, const ValueEntry
&RHS
) {
55 return LHS
.Rank
> RHS
.Rank
; // Sort so that highest rank goes to start.
60 /// PrintOps - Print out the expression identified in the Ops list.
62 static void PrintOps(Instruction
*I
, const std::vector
<ValueEntry
> &Ops
) {
63 Module
*M
= I
->getParent()->getParent()->getParent();
64 cerr
<< Instruction::getOpcodeName(I
->getOpcode()) << " "
65 << *Ops
[0].Op
->getType();
66 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
67 WriteAsOperand(*cerr
.stream() << " ", Ops
[i
].Op
, false, M
);
68 cerr
<< "," << Ops
[i
].Rank
;
74 class VISIBILITY_HIDDEN Reassociate
: public FunctionPass
{
75 std::map
<BasicBlock
*, unsigned> RankMap
;
76 std::map
<AssertingVH
<>, unsigned> ValueRankMap
;
79 static char ID
; // Pass identification, replacement for typeid
80 Reassociate() : FunctionPass(&ID
) {}
82 bool runOnFunction(Function
&F
);
84 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
88 void BuildRankMap(Function
&F
);
89 unsigned getRank(Value
*V
);
90 void ReassociateExpression(BinaryOperator
*I
);
91 void RewriteExprTree(BinaryOperator
*I
, std::vector
<ValueEntry
> &Ops
,
93 Value
*OptimizeExpression(BinaryOperator
*I
, std::vector
<ValueEntry
> &Ops
);
94 void LinearizeExprTree(BinaryOperator
*I
, std::vector
<ValueEntry
> &Ops
);
95 void LinearizeExpr(BinaryOperator
*I
);
96 Value
*RemoveFactorFromExpression(Value
*V
, Value
*Factor
);
97 void ReassociateBB(BasicBlock
*BB
);
99 void RemoveDeadBinaryOp(Value
*V
);
103 char Reassociate::ID
= 0;
104 static RegisterPass
<Reassociate
> X("reassociate", "Reassociate expressions");
106 // Public interface to the Reassociate pass
107 FunctionPass
*llvm::createReassociatePass() { return new Reassociate(); }
109 void Reassociate::RemoveDeadBinaryOp(Value
*V
) {
110 Instruction
*Op
= dyn_cast
<Instruction
>(V
);
111 if (!Op
|| !isa
<BinaryOperator
>(Op
) || !isa
<CmpInst
>(Op
) || !Op
->use_empty())
114 Value
*LHS
= Op
->getOperand(0), *RHS
= Op
->getOperand(1);
115 RemoveDeadBinaryOp(LHS
);
116 RemoveDeadBinaryOp(RHS
);
120 static bool isUnmovableInstruction(Instruction
*I
) {
121 if (I
->getOpcode() == Instruction::PHI
||
122 I
->getOpcode() == Instruction::Alloca
||
123 I
->getOpcode() == Instruction::Load
||
124 I
->getOpcode() == Instruction::Malloc
||
125 I
->getOpcode() == Instruction::Invoke
||
126 (I
->getOpcode() == Instruction::Call
&&
127 !isa
<DbgInfoIntrinsic
>(I
)) ||
128 I
->getOpcode() == Instruction::UDiv
||
129 I
->getOpcode() == Instruction::SDiv
||
130 I
->getOpcode() == Instruction::FDiv
||
131 I
->getOpcode() == Instruction::URem
||
132 I
->getOpcode() == Instruction::SRem
||
133 I
->getOpcode() == Instruction::FRem
)
138 void Reassociate::BuildRankMap(Function
&F
) {
141 // Assign distinct ranks to function arguments
142 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
; ++I
)
143 ValueRankMap
[&*I
] = ++i
;
145 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
146 for (ReversePostOrderTraversal
<Function
*>::rpo_iterator I
= RPOT
.begin(),
147 E
= RPOT
.end(); I
!= E
; ++I
) {
149 unsigned BBRank
= RankMap
[BB
] = ++i
<< 16;
151 // Walk the basic block, adding precomputed ranks for any instructions that
152 // we cannot move. This ensures that the ranks for these instructions are
153 // all different in the block.
154 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
155 if (isUnmovableInstruction(I
))
156 ValueRankMap
[&*I
] = ++BBRank
;
160 unsigned Reassociate::getRank(Value
*V
) {
161 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument...
163 Instruction
*I
= dyn_cast
<Instruction
>(V
);
164 if (I
== 0) return 0; // Otherwise it's a global or constant, rank 0.
166 unsigned &CachedRank
= ValueRankMap
[I
];
167 if (CachedRank
) return CachedRank
; // Rank already known?
169 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
170 // we can reassociate expressions for code motion! Since we do not recurse
171 // for PHI nodes, we cannot have infinite recursion here, because there
172 // cannot be loops in the value graph that do not go through PHI nodes.
173 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
174 for (unsigned i
= 0, e
= I
->getNumOperands();
175 i
!= e
&& Rank
!= MaxRank
; ++i
)
176 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
178 // If this is a not or neg instruction, do not count it for rank. This
179 // assures us that X and ~X will have the same rank.
180 if (!I
->getType()->isInteger() ||
181 (!BinaryOperator::isNot(I
) && !BinaryOperator::isNeg(I
)))
184 //DOUT << "Calculated Rank[" << V->getName() << "] = "
187 return CachedRank
= Rank
;
190 /// isReassociableOp - Return true if V is an instruction of the specified
191 /// opcode and if it only has one use.
192 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
193 if ((V
->hasOneUse() || V
->use_empty()) && isa
<Instruction
>(V
) &&
194 cast
<Instruction
>(V
)->getOpcode() == Opcode
)
195 return cast
<BinaryOperator
>(V
);
199 /// LowerNegateToMultiply - Replace 0-X with X*-1.
201 static Instruction
*LowerNegateToMultiply(Instruction
*Neg
,
202 std::map
<AssertingVH
<>, unsigned> &ValueRankMap
,
203 LLVMContext
&Context
) {
204 Constant
*Cst
= Constant::getAllOnesValue(Neg
->getType());
206 Instruction
*Res
= BinaryOperator::CreateMul(Neg
->getOperand(1), Cst
, "",Neg
);
207 ValueRankMap
.erase(Neg
);
209 Neg
->replaceAllUsesWith(Res
);
210 Neg
->eraseFromParent();
214 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
215 // Note that if D is also part of the expression tree that we recurse to
216 // linearize it as well. Besides that case, this does not recurse into A,B, or
218 void Reassociate::LinearizeExpr(BinaryOperator
*I
) {
219 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
220 BinaryOperator
*RHS
= cast
<BinaryOperator
>(I
->getOperand(1));
221 assert(isReassociableOp(LHS
, I
->getOpcode()) &&
222 isReassociableOp(RHS
, I
->getOpcode()) &&
223 "Not an expression that needs linearization?");
225 DOUT
<< "Linear" << *LHS
<< *RHS
<< *I
;
227 // Move the RHS instruction to live immediately before I, avoiding breaking
228 // dominator properties.
231 // Move operands around to do the linearization.
232 I
->setOperand(1, RHS
->getOperand(0));
233 RHS
->setOperand(0, LHS
);
234 I
->setOperand(0, RHS
);
238 DOUT
<< "Linearized: " << *I
;
240 // If D is part of this expression tree, tail recurse.
241 if (isReassociableOp(I
->getOperand(1), I
->getOpcode()))
246 /// LinearizeExprTree - Given an associative binary expression tree, traverse
247 /// all of the uses putting it into canonical form. This forces a left-linear
248 /// form of the the expression (((a+b)+c)+d), and collects information about the
249 /// rank of the non-tree operands.
251 /// NOTE: These intentionally destroys the expression tree operands (turning
252 /// them into undef values) to reduce #uses of the values. This means that the
253 /// caller MUST use something like RewriteExprTree to put the values back in.
255 void Reassociate::LinearizeExprTree(BinaryOperator
*I
,
256 std::vector
<ValueEntry
> &Ops
) {
257 Value
*LHS
= I
->getOperand(0), *RHS
= I
->getOperand(1);
258 unsigned Opcode
= I
->getOpcode();
259 LLVMContext
&Context
= I
->getContext();
261 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
262 BinaryOperator
*LHSBO
= isReassociableOp(LHS
, Opcode
);
263 BinaryOperator
*RHSBO
= isReassociableOp(RHS
, Opcode
);
265 // If this is a multiply expression tree and it contains internal negations,
266 // transform them into multiplies by -1 so they can be reassociated.
267 if (I
->getOpcode() == Instruction::Mul
) {
268 if (!LHSBO
&& LHS
->hasOneUse() && BinaryOperator::isNeg(LHS
)) {
269 LHS
= LowerNegateToMultiply(cast
<Instruction
>(LHS
),
270 ValueRankMap
, Context
);
271 LHSBO
= isReassociableOp(LHS
, Opcode
);
273 if (!RHSBO
&& RHS
->hasOneUse() && BinaryOperator::isNeg(RHS
)) {
274 RHS
= LowerNegateToMultiply(cast
<Instruction
>(RHS
),
275 ValueRankMap
, Context
);
276 RHSBO
= isReassociableOp(RHS
, Opcode
);
282 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
283 // such, just remember these operands and their rank.
284 Ops
.push_back(ValueEntry(getRank(LHS
), LHS
));
285 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
287 // Clear the leaves out.
288 I
->setOperand(0, UndefValue::get(I
->getType()));
289 I
->setOperand(1, UndefValue::get(I
->getType()));
292 // Turn X+(Y+Z) -> (Y+Z)+X
293 std::swap(LHSBO
, RHSBO
);
295 bool Success
= !I
->swapOperands();
296 assert(Success
&& "swapOperands failed");
301 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
302 // part of the expression tree.
304 LHS
= LHSBO
= cast
<BinaryOperator
>(I
->getOperand(0));
305 RHS
= I
->getOperand(1);
309 // Okay, now we know that the LHS is a nested expression and that the RHS is
310 // not. Perform reassociation.
311 assert(!isReassociableOp(RHS
, Opcode
) && "LinearizeExpr failed!");
313 // Move LHS right before I to make sure that the tree expression dominates all
315 LHSBO
->moveBefore(I
);
317 // Linearize the expression tree on the LHS.
318 LinearizeExprTree(LHSBO
, Ops
);
320 // Remember the RHS operand and its rank.
321 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
323 // Clear the RHS leaf out.
324 I
->setOperand(1, UndefValue::get(I
->getType()));
327 // RewriteExprTree - Now that the operands for this expression tree are
328 // linearized and optimized, emit them in-order. This function is written to be
330 void Reassociate::RewriteExprTree(BinaryOperator
*I
,
331 std::vector
<ValueEntry
> &Ops
,
333 if (i
+2 == Ops
.size()) {
334 if (I
->getOperand(0) != Ops
[i
].Op
||
335 I
->getOperand(1) != Ops
[i
+1].Op
) {
336 Value
*OldLHS
= I
->getOperand(0);
337 DOUT
<< "RA: " << *I
;
338 I
->setOperand(0, Ops
[i
].Op
);
339 I
->setOperand(1, Ops
[i
+1].Op
);
340 DOUT
<< "TO: " << *I
;
344 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
345 // delete the extra, now dead, nodes.
346 RemoveDeadBinaryOp(OldLHS
);
350 assert(i
+2 < Ops
.size() && "Ops index out of range!");
352 if (I
->getOperand(1) != Ops
[i
].Op
) {
353 DOUT
<< "RA: " << *I
;
354 I
->setOperand(1, Ops
[i
].Op
);
355 DOUT
<< "TO: " << *I
;
360 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
361 assert(LHS
->getOpcode() == I
->getOpcode() &&
362 "Improper expression tree!");
364 // Compactify the tree instructions together with each other to guarantee
365 // that the expression tree is dominated by all of Ops.
367 RewriteExprTree(LHS
, Ops
, i
+1);
372 // NegateValue - Insert instructions before the instruction pointed to by BI,
373 // that computes the negative version of the value specified. The negative
374 // version of the value is returned, and BI is left pointing at the instruction
375 // that should be processed next by the reassociation pass.
377 static Value
*NegateValue(LLVMContext
&Context
, Value
*V
, Instruction
*BI
) {
378 // We are trying to expose opportunity for reassociation. One of the things
379 // that we want to do to achieve this is to push a negation as deep into an
380 // expression chain as possible, to expose the add instructions. In practice,
381 // this means that we turn this:
382 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
383 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
384 // the constants. We assume that instcombine will clean up the mess later if
385 // we introduce tons of unnecessary negation instructions...
387 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
388 if (I
->getOpcode() == Instruction::Add
&& I
->hasOneUse()) {
389 // Push the negates through the add.
390 I
->setOperand(0, NegateValue(Context
, I
->getOperand(0), BI
));
391 I
->setOperand(1, NegateValue(Context
, I
->getOperand(1), BI
));
393 // We must move the add instruction here, because the neg instructions do
394 // not dominate the old add instruction in general. By moving it, we are
395 // assured that the neg instructions we just inserted dominate the
396 // instruction we are about to insert after them.
399 I
->setName(I
->getName()+".neg");
403 // Insert a 'neg' instruction that subtracts the value from zero to get the
406 return BinaryOperator::CreateNeg(Context
, V
, V
->getName() + ".neg", BI
);
409 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
410 /// X-Y into (X + -Y).
411 static bool ShouldBreakUpSubtract(LLVMContext
&Context
, Instruction
*Sub
) {
412 // If this is a negation, we can't split it up!
413 if (BinaryOperator::isNeg(Sub
))
416 // Don't bother to break this up unless either the LHS is an associable add or
417 // subtract or if this is only used by one.
418 if (isReassociableOp(Sub
->getOperand(0), Instruction::Add
) ||
419 isReassociableOp(Sub
->getOperand(0), Instruction::Sub
))
421 if (isReassociableOp(Sub
->getOperand(1), Instruction::Add
) ||
422 isReassociableOp(Sub
->getOperand(1), Instruction::Sub
))
424 if (Sub
->hasOneUse() &&
425 (isReassociableOp(Sub
->use_back(), Instruction::Add
) ||
426 isReassociableOp(Sub
->use_back(), Instruction::Sub
)))
432 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
433 /// only used by an add, transform this into (X+(0-Y)) to promote better
435 static Instruction
*BreakUpSubtract(LLVMContext
&Context
, Instruction
*Sub
,
436 std::map
<AssertingVH
<>, unsigned> &ValueRankMap
) {
437 // Convert a subtract into an add and a neg instruction... so that sub
438 // instructions can be commuted with other add instructions...
440 // Calculate the negative value of Operand 1 of the sub instruction...
441 // and set it as the RHS of the add instruction we just made...
443 Value
*NegVal
= NegateValue(Context
, Sub
->getOperand(1), Sub
);
445 BinaryOperator::CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
);
448 // Everyone now refers to the add instruction.
449 ValueRankMap
.erase(Sub
);
450 Sub
->replaceAllUsesWith(New
);
451 Sub
->eraseFromParent();
453 DOUT
<< "Negated: " << *New
;
457 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
458 /// by one, change this into a multiply by a constant to assist with further
460 static Instruction
*ConvertShiftToMul(Instruction
*Shl
,
461 std::map
<AssertingVH
<>, unsigned> &ValueRankMap
,
462 LLVMContext
&Context
) {
463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl
->getOperand(0), Instruction::Mul
) ||
467 (isReassociableOp(Shl
->use_back(), Instruction::Mul
) ||
468 isReassociableOp(Shl
->use_back(), Instruction::Add
)))) {
469 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
471 ConstantExpr::getShl(MulCst
, cast
<Constant
>(Shl
->getOperand(1)));
473 Instruction
*Mul
= BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
,
475 ValueRankMap
.erase(Shl
);
477 Shl
->replaceAllUsesWith(Mul
);
478 Shl
->eraseFromParent();
484 // Scan backwards and forwards among values with the same rank as element i to
485 // see if X exists. If X does not exist, return i.
486 static unsigned FindInOperandList(std::vector
<ValueEntry
> &Ops
, unsigned i
,
488 unsigned XRank
= Ops
[i
].Rank
;
489 unsigned e
= Ops
.size();
490 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
)
494 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
)
500 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
501 /// and returning the result. Insert the tree before I.
502 static Value
*EmitAddTreeOfValues(Instruction
*I
, std::vector
<Value
*> &Ops
) {
503 if (Ops
.size() == 1) return Ops
.back();
505 Value
*V1
= Ops
.back();
507 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
508 return BinaryOperator::CreateAdd(V2
, V1
, "tmp", I
);
511 /// RemoveFactorFromExpression - If V is an expression tree that is a
512 /// multiplication sequence, and if this sequence contains a multiply by Factor,
513 /// remove Factor from the tree and return the new tree.
514 Value
*Reassociate::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
515 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
);
518 std::vector
<ValueEntry
> Factors
;
519 LinearizeExprTree(BO
, Factors
);
521 bool FoundFactor
= false;
522 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
523 if (Factors
[i
].Op
== Factor
) {
525 Factors
.erase(Factors
.begin()+i
);
529 // Make sure to restore the operands to the expression tree.
530 RewriteExprTree(BO
, Factors
);
534 if (Factors
.size() == 1) return Factors
[0].Op
;
536 RewriteExprTree(BO
, Factors
);
540 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
541 /// add its operands as factors, otherwise add V to the list of factors.
542 static void FindSingleUseMultiplyFactors(Value
*V
,
543 std::vector
<Value
*> &Factors
) {
545 if ((!V
->hasOneUse() && !V
->use_empty()) ||
546 !(BO
= dyn_cast
<BinaryOperator
>(V
)) ||
547 BO
->getOpcode() != Instruction::Mul
) {
548 Factors
.push_back(V
);
552 // Otherwise, add the LHS and RHS to the list of factors.
553 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
);
554 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
);
559 Value
*Reassociate::OptimizeExpression(BinaryOperator
*I
,
560 std::vector
<ValueEntry
> &Ops
) {
561 // Now that we have the linearized expression tree, try to optimize it.
562 // Start by folding any constants that we found.
563 bool IterateOptimization
= false;
564 if (Ops
.size() == 1) return Ops
[0].Op
;
566 unsigned Opcode
= I
->getOpcode();
568 if (Constant
*V1
= dyn_cast
<Constant
>(Ops
[Ops
.size()-2].Op
))
569 if (Constant
*V2
= dyn_cast
<Constant
>(Ops
.back().Op
)) {
571 Ops
.back().Op
= ConstantExpr::get(Opcode
, V1
, V2
);
572 return OptimizeExpression(I
, Ops
);
575 // Check for destructive annihilation due to a constant being used.
576 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(Ops
.back().Op
))
579 case Instruction::And
:
580 if (CstVal
->isZero()) { // ... & 0 -> 0
583 } else if (CstVal
->isAllOnesValue()) { // ... & -1 -> ...
587 case Instruction::Mul
:
588 if (CstVal
->isZero()) { // ... * 0 -> 0
591 } else if (cast
<ConstantInt
>(CstVal
)->isOne()) {
592 Ops
.pop_back(); // ... * 1 -> ...
595 case Instruction::Or
:
596 if (CstVal
->isAllOnesValue()) { // ... | -1 -> -1
601 case Instruction::Add
:
602 case Instruction::Xor
:
603 if (CstVal
->isZero()) // ... [|^+] 0 -> ...
607 if (Ops
.size() == 1) return Ops
[0].Op
;
609 // Handle destructive annihilation do to identities between elements in the
610 // argument list here.
613 case Instruction::And
:
614 case Instruction::Or
:
615 case Instruction::Xor
:
616 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
617 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
618 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
619 // First, check for X and ~X in the operand list.
620 assert(i
< Ops
.size());
621 if (BinaryOperator::isNot(Ops
[i
].Op
)) { // Cannot occur for ^.
622 Value
*X
= BinaryOperator::getNotArgument(Ops
[i
].Op
);
623 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
625 if (Opcode
== Instruction::And
) { // ...&X&~X = 0
627 return Constant::getNullValue(X
->getType());
628 } else if (Opcode
== Instruction::Or
) { // ...|X|~X = -1
630 return Constant::getAllOnesValue(X
->getType());
635 // Next, check for duplicate pairs of values, which we assume are next to
636 // each other, due to our sorting criteria.
637 assert(i
< Ops
.size());
638 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
639 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
640 // Drop duplicate values.
641 Ops
.erase(Ops
.begin()+i
);
643 IterateOptimization
= true;
646 assert(Opcode
== Instruction::Xor
);
649 return Constant::getNullValue(Ops
[0].Op
->getType());
652 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
654 IterateOptimization
= true;
661 case Instruction::Add
:
662 // Scan the operand lists looking for X and -X pairs. If we find any, we
663 // can simplify the expression. X+-X == 0.
664 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
665 assert(i
< Ops
.size());
666 // Check for X and -X in the operand list.
667 if (BinaryOperator::isNeg(Ops
[i
].Op
)) {
668 Value
*X
= BinaryOperator::getNegArgument(Ops
[i
].Op
);
669 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
671 // Remove X and -X from the operand list.
672 if (Ops
.size() == 2) {
674 return Constant::getNullValue(X
->getType());
676 Ops
.erase(Ops
.begin()+i
);
680 --i
; // Need to back up an extra one.
681 Ops
.erase(Ops
.begin()+FoundX
);
682 IterateOptimization
= true;
684 --i
; // Revisit element.
685 e
-= 2; // Removed two elements.
692 // Scan the operand list, checking to see if there are any common factors
693 // between operands. Consider something like A*A+A*B*C+D. We would like to
694 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
695 // To efficiently find this, we count the number of times a factor occurs
696 // for any ADD operands that are MULs.
697 std::map
<Value
*, unsigned> FactorOccurrences
;
699 Value
*MaxOccVal
= 0;
700 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
701 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(Ops
[i
].Op
)) {
702 if (BOp
->getOpcode() == Instruction::Mul
&& BOp
->use_empty()) {
703 // Compute all of the factors of this added value.
704 std::vector
<Value
*> Factors
;
705 FindSingleUseMultiplyFactors(BOp
, Factors
);
706 assert(Factors
.size() > 1 && "Bad linearize!");
708 // Add one to FactorOccurrences for each unique factor in this op.
709 if (Factors
.size() == 2) {
710 unsigned Occ
= ++FactorOccurrences
[Factors
[0]];
711 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factors
[0]; }
712 if (Factors
[0] != Factors
[1]) { // Don't double count A*A.
713 Occ
= ++FactorOccurrences
[Factors
[1]];
714 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factors
[1]; }
717 std::set
<Value
*> Duplicates
;
718 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
719 if (Duplicates
.insert(Factors
[i
]).second
) {
720 unsigned Occ
= ++FactorOccurrences
[Factors
[i
]];
721 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factors
[i
]; }
729 // If any factor occurred more than one time, we can pull it out.
731 DOUT
<< "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
<< "\n";
733 // Create a new instruction that uses the MaxOccVal twice. If we don't do
734 // this, we could otherwise run into situations where removing a factor
735 // from an expression will drop a use of maxocc, and this can cause
736 // RemoveFactorFromExpression on successive values to behave differently.
737 Instruction
*DummyInst
= BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
);
738 std::vector
<Value
*> NewMulOps
;
739 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
740 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
741 NewMulOps
.push_back(V
);
742 Ops
.erase(Ops
.begin()+i
);
747 // No need for extra uses anymore.
750 unsigned NumAddedValues
= NewMulOps
.size();
751 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
752 Value
*V2
= BinaryOperator::CreateMul(V
, MaxOccVal
, "tmp", I
);
754 // Now that we have inserted V and its sole use, optimize it. This allows
755 // us to handle cases that require multiple factoring steps, such as this:
756 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
757 if (NumAddedValues
> 1)
758 ReassociateExpression(cast
<BinaryOperator
>(V
));
765 // Add the new value to the list of things being added.
766 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
768 // Rewrite the tree so that there is now a use of V.
769 RewriteExprTree(I
, Ops
);
770 return OptimizeExpression(I
, Ops
);
773 //case Instruction::Mul:
776 if (IterateOptimization
)
777 return OptimizeExpression(I
, Ops
);
782 /// ReassociateBB - Inspect all of the instructions in this basic block,
783 /// reassociating them as we go.
784 void Reassociate::ReassociateBB(BasicBlock
*BB
) {
785 LLVMContext
&Context
= BB
->getContext();
787 for (BasicBlock::iterator BBI
= BB
->begin(); BBI
!= BB
->end(); ) {
788 Instruction
*BI
= BBI
++;
789 if (BI
->getOpcode() == Instruction::Shl
&&
790 isa
<ConstantInt
>(BI
->getOperand(1)))
791 if (Instruction
*NI
= ConvertShiftToMul(BI
, ValueRankMap
, Context
)) {
796 // Reject cases where it is pointless to do this.
797 if (!isa
<BinaryOperator
>(BI
) || BI
->getType()->isFloatingPoint() ||
798 isa
<VectorType
>(BI
->getType()))
799 continue; // Floating point ops are not associative.
801 // If this is a subtract instruction which is not already in negate form,
802 // see if we can convert it to X+-Y.
803 if (BI
->getOpcode() == Instruction::Sub
) {
804 if (ShouldBreakUpSubtract(Context
, BI
)) {
805 BI
= BreakUpSubtract(Context
, BI
, ValueRankMap
);
807 } else if (BinaryOperator::isNeg(BI
)) {
808 // Otherwise, this is a negation. See if the operand is a multiply tree
809 // and if this is not an inner node of a multiply tree.
810 if (isReassociableOp(BI
->getOperand(1), Instruction::Mul
) &&
812 !isReassociableOp(BI
->use_back(), Instruction::Mul
))) {
813 BI
= LowerNegateToMultiply(BI
, ValueRankMap
, Context
);
819 // If this instruction is a commutative binary operator, process it.
820 if (!BI
->isAssociative()) continue;
821 BinaryOperator
*I
= cast
<BinaryOperator
>(BI
);
823 // If this is an interior node of a reassociable tree, ignore it until we
824 // get to the root of the tree, to avoid N^2 analysis.
825 if (I
->hasOneUse() && isReassociableOp(I
->use_back(), I
->getOpcode()))
828 // If this is an add tree that is used by a sub instruction, ignore it
829 // until we process the subtract.
830 if (I
->hasOneUse() && I
->getOpcode() == Instruction::Add
&&
831 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Sub
)
834 ReassociateExpression(I
);
838 void Reassociate::ReassociateExpression(BinaryOperator
*I
) {
840 // First, walk the expression tree, linearizing the tree, collecting
841 std::vector
<ValueEntry
> Ops
;
842 LinearizeExprTree(I
, Ops
);
844 DOUT
<< "RAIn:\t"; DEBUG(PrintOps(I
, Ops
)); DOUT
<< "\n";
846 // Now that we have linearized the tree to a list and have gathered all of
847 // the operands and their ranks, sort the operands by their rank. Use a
848 // stable_sort so that values with equal ranks will have their relative
849 // positions maintained (and so the compiler is deterministic). Note that
850 // this sorts so that the highest ranking values end up at the beginning of
852 std::stable_sort(Ops
.begin(), Ops
.end());
854 // OptimizeExpression - Now that we have the expression tree in a convenient
855 // sorted form, optimize it globally if possible.
856 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
857 // This expression tree simplified to something that isn't a tree,
859 DOUT
<< "Reassoc to scalar: " << *V
<< "\n";
860 I
->replaceAllUsesWith(V
);
861 RemoveDeadBinaryOp(I
);
865 // We want to sink immediates as deeply as possible except in the case where
866 // this is a multiply tree used only by an add, and the immediate is a -1.
867 // In this case we reassociate to put the negation on the outside so that we
868 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
869 if (I
->getOpcode() == Instruction::Mul
&& I
->hasOneUse() &&
870 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Add
&&
871 isa
<ConstantInt
>(Ops
.back().Op
) &&
872 cast
<ConstantInt
>(Ops
.back().Op
)->isAllOnesValue()) {
873 Ops
.insert(Ops
.begin(), Ops
.back());
877 DOUT
<< "RAOut:\t"; DEBUG(PrintOps(I
, Ops
)); DOUT
<< "\n";
879 if (Ops
.size() == 1) {
880 // This expression tree simplified to something that isn't a tree,
882 I
->replaceAllUsesWith(Ops
[0].Op
);
883 RemoveDeadBinaryOp(I
);
885 // Now that we ordered and optimized the expressions, splat them back into
886 // the expression tree, removing any unneeded nodes.
887 RewriteExprTree(I
, Ops
);
892 bool Reassociate::runOnFunction(Function
&F
) {
893 // Recalculate the rank map for F
897 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
; ++FI
)
900 // We are done with the rank map...
902 ValueRankMap
.clear();