1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Support/CallSite.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/InstVisitor.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
51 STATISTIC(NumInstRemoved
, "Number of instructions removed");
52 STATISTIC(NumDeadBlocks
, "Number of basic blocks unreachable");
54 STATISTIC(IPNumInstRemoved
, "Number of instructions removed by IPSCCP");
55 STATISTIC(IPNumDeadBlocks
, "Number of basic blocks unreachable by IPSCCP");
56 STATISTIC(IPNumArgsElimed
,"Number of arguments constant propagated by IPSCCP");
57 STATISTIC(IPNumGlobalConst
, "Number of globals found to be constant by IPSCCP");
60 /// LatticeVal class - This class represents the different lattice values that
61 /// an LLVM value may occupy. It is a simple class with value semantics.
63 class VISIBILITY_HIDDEN LatticeVal
{
65 /// undefined - This LLVM Value has no known value yet.
68 /// constant - This LLVM Value has a specific constant value.
71 /// forcedconstant - This LLVM Value was thought to be undef until
72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
73 /// with another (different) constant, it goes to overdefined, instead of
77 /// overdefined - This instruction is not known to be constant, and we know
80 } LatticeValue
; // The current lattice position
82 Constant
*ConstantVal
; // If Constant value, the current value
84 inline LatticeVal() : LatticeValue(undefined
), ConstantVal(0) {}
86 // markOverdefined - Return true if this is a new status to be in...
87 inline bool markOverdefined() {
88 if (LatticeValue
!= overdefined
) {
89 LatticeValue
= overdefined
;
95 // markConstant - Return true if this is a new status for us.
96 inline bool markConstant(Constant
*V
) {
97 if (LatticeValue
!= constant
) {
98 if (LatticeValue
== undefined
) {
99 LatticeValue
= constant
;
100 assert(V
&& "Marking constant with NULL");
103 assert(LatticeValue
== forcedconstant
&&
104 "Cannot move from overdefined to constant!");
105 // Stay at forcedconstant if the constant is the same.
106 if (V
== ConstantVal
) return false;
108 // Otherwise, we go to overdefined. Assumptions made based on the
109 // forced value are possibly wrong. Assuming this is another constant
110 // could expose a contradiction.
111 LatticeValue
= overdefined
;
115 assert(ConstantVal
== V
&& "Marking constant with different value");
120 inline void markForcedConstant(Constant
*V
) {
121 assert(LatticeValue
== undefined
&& "Can't force a defined value!");
122 LatticeValue
= forcedconstant
;
126 inline bool isUndefined() const { return LatticeValue
== undefined
; }
127 inline bool isConstant() const {
128 return LatticeValue
== constant
|| LatticeValue
== forcedconstant
;
130 inline bool isOverdefined() const { return LatticeValue
== overdefined
; }
132 inline Constant
*getConstant() const {
133 assert(isConstant() && "Cannot get the constant of a non-constant!");
138 //===----------------------------------------------------------------------===//
140 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141 /// Constant Propagation.
143 class SCCPSolver
: public InstVisitor
<SCCPSolver
> {
144 LLVMContext
*Context
;
145 DenseSet
<BasicBlock
*> BBExecutable
;// The basic blocks that are executable
146 std::map
<Value
*, LatticeVal
> ValueState
; // The state each value is in.
148 /// GlobalValue - If we are tracking any values for the contents of a global
149 /// variable, we keep a mapping from the constant accessor to the element of
150 /// the global, to the currently known value. If the value becomes
151 /// overdefined, it's entry is simply removed from this map.
152 DenseMap
<GlobalVariable
*, LatticeVal
> TrackedGlobals
;
154 /// TrackedRetVals - If we are tracking arguments into and the return
155 /// value out of a function, it will have an entry in this map, indicating
156 /// what the known return value for the function is.
157 DenseMap
<Function
*, LatticeVal
> TrackedRetVals
;
159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160 /// that return multiple values.
161 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
> TrackedMultipleRetVals
;
163 // The reason for two worklists is that overdefined is the lowest state
164 // on the lattice, and moving things to overdefined as fast as possible
165 // makes SCCP converge much faster.
166 // By having a separate worklist, we accomplish this because everything
167 // possibly overdefined will become overdefined at the soonest possible
169 SmallVector
<Value
*, 64> OverdefinedInstWorkList
;
170 SmallVector
<Value
*, 64> InstWorkList
;
173 SmallVector
<BasicBlock
*, 64> BBWorkList
; // The BasicBlock work list
175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176 /// overdefined, despite the fact that the PHI node is overdefined.
177 std::multimap
<PHINode
*, Instruction
*> UsersOfOverdefinedPHIs
;
179 /// KnownFeasibleEdges - Entries in this set are edges which have already had
180 /// PHI nodes retriggered.
181 typedef std::pair
<BasicBlock
*, BasicBlock
*> Edge
;
182 DenseSet
<Edge
> KnownFeasibleEdges
;
184 void setContext(LLVMContext
*C
) { Context
= C
; }
186 /// MarkBlockExecutable - This method can be used by clients to mark all of
187 /// the blocks that are known to be intrinsically live in the processed unit.
188 void MarkBlockExecutable(BasicBlock
*BB
) {
189 DEBUG(errs() << "Marking Block Executable: " << BB
->getName() << "\n");
190 BBExecutable
.insert(BB
); // Basic block is executable!
191 BBWorkList
.push_back(BB
); // Add the block to the work list!
194 /// TrackValueOfGlobalVariable - Clients can use this method to
195 /// inform the SCCPSolver that it should track loads and stores to the
196 /// specified global variable if it can. This is only legal to call if
197 /// performing Interprocedural SCCP.
198 void TrackValueOfGlobalVariable(GlobalVariable
*GV
) {
199 const Type
*ElTy
= GV
->getType()->getElementType();
200 if (ElTy
->isFirstClassType()) {
201 LatticeVal
&IV
= TrackedGlobals
[GV
];
202 if (!isa
<UndefValue
>(GV
->getInitializer()))
203 IV
.markConstant(GV
->getInitializer());
207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208 /// and out of the specified function (which cannot have its address taken),
209 /// this method must be called.
210 void AddTrackedFunction(Function
*F
) {
211 assert(F
->hasLocalLinkage() && "Can only track internal functions!");
212 // Add an entry, F -> undef.
213 if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
214 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
215 TrackedMultipleRetVals
.insert(std::make_pair(std::make_pair(F
, i
),
218 TrackedRetVals
.insert(std::make_pair(F
, LatticeVal()));
221 /// Solve - Solve for constants and executable blocks.
225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226 /// that branches on undef values cannot reach any of their successors.
227 /// However, this is not a safe assumption. After we solve dataflow, this
228 /// method should be use to handle this. If this returns true, the solver
230 bool ResolvedUndefsIn(Function
&F
);
232 bool isBlockExecutable(BasicBlock
*BB
) const {
233 return BBExecutable
.count(BB
);
236 /// getValueMapping - Once we have solved for constants, return the mapping of
237 /// LLVM values to LatticeVals.
238 std::map
<Value
*, LatticeVal
> &getValueMapping() {
242 /// getTrackedRetVals - Get the inferred return value map.
244 const DenseMap
<Function
*, LatticeVal
> &getTrackedRetVals() {
245 return TrackedRetVals
;
248 /// getTrackedGlobals - Get and return the set of inferred initializers for
249 /// global variables.
250 const DenseMap
<GlobalVariable
*, LatticeVal
> &getTrackedGlobals() {
251 return TrackedGlobals
;
254 inline void markOverdefined(Value
*V
) {
255 markOverdefined(ValueState
[V
], V
);
259 // markConstant - Make a value be marked as "constant". If the value
260 // is not already a constant, add it to the instruction work list so that
261 // the users of the instruction are updated later.
263 inline void markConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
264 if (IV
.markConstant(C
)) {
265 DEBUG(errs() << "markConstant: " << *C
<< ": " << *V
);
266 InstWorkList
.push_back(V
);
270 inline void markForcedConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
271 IV
.markForcedConstant(C
);
272 DEBUG(errs() << "markForcedConstant: " << *C
<< ": " << *V
);
273 InstWorkList
.push_back(V
);
276 inline void markConstant(Value
*V
, Constant
*C
) {
277 markConstant(ValueState
[V
], V
, C
);
280 // markOverdefined - Make a value be marked as "overdefined". If the
281 // value is not already overdefined, add it to the overdefined instruction
282 // work list so that the users of the instruction are updated later.
283 inline void markOverdefined(LatticeVal
&IV
, Value
*V
) {
284 if (IV
.markOverdefined()) {
285 DEBUG(errs() << "markOverdefined: ";
286 if (Function
*F
= dyn_cast
<Function
>(V
))
287 errs() << "Function '" << F
->getName() << "'\n";
290 // Only instructions go on the work list
291 OverdefinedInstWorkList
.push_back(V
);
295 inline void mergeInValue(LatticeVal
&IV
, Value
*V
, LatticeVal
&MergeWithV
) {
296 if (IV
.isOverdefined() || MergeWithV
.isUndefined())
298 if (MergeWithV
.isOverdefined())
299 markOverdefined(IV
, V
);
300 else if (IV
.isUndefined())
301 markConstant(IV
, V
, MergeWithV
.getConstant());
302 else if (IV
.getConstant() != MergeWithV
.getConstant())
303 markOverdefined(IV
, V
);
306 inline void mergeInValue(Value
*V
, LatticeVal
&MergeWithV
) {
307 return mergeInValue(ValueState
[V
], V
, MergeWithV
);
311 // getValueState - Return the LatticeVal object that corresponds to the value.
312 // This function is necessary because not all values should start out in the
313 // underdefined state... Argument's should be overdefined, and
314 // constants should be marked as constants. If a value is not known to be an
315 // Instruction object, then use this accessor to get its value from the map.
317 inline LatticeVal
&getValueState(Value
*V
) {
318 std::map
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
319 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
321 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
322 if (isa
<UndefValue
>(V
)) {
323 // Nothing to do, remain undefined.
325 LatticeVal
&LV
= ValueState
[C
];
326 LV
.markConstant(C
); // Constants are constant
330 // All others are underdefined by default...
331 return ValueState
[V
];
334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335 // work list if it is not already executable...
337 void markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
338 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
339 return; // This edge is already known to be executable!
341 if (BBExecutable
.count(Dest
)) {
342 DEBUG(errs() << "Marking Edge Executable: " << Source
->getName()
343 << " -> " << Dest
->getName() << "\n");
345 // The destination is already executable, but we just made an edge
346 // feasible that wasn't before. Revisit the PHI nodes in the block
347 // because they have potentially new operands.
348 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
349 visitPHINode(*cast
<PHINode
>(I
));
352 MarkBlockExecutable(Dest
);
356 // getFeasibleSuccessors - Return a vector of booleans to indicate which
357 // successors are reachable from a given terminator instruction.
359 void getFeasibleSuccessors(TerminatorInst
&TI
, SmallVector
<bool, 16> &Succs
);
361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362 // block to the 'To' basic block is currently feasible...
364 bool isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
);
366 // OperandChangedState - This method is invoked on all of the users of an
367 // instruction that was just changed state somehow.... Based on this
368 // information, we need to update the specified user of this instruction.
370 void OperandChangedState(User
*U
) {
371 // Only instructions use other variable values!
372 Instruction
&I
= cast
<Instruction
>(*U
);
373 if (BBExecutable
.count(I
.getParent())) // Inst is executable?
378 friend class InstVisitor
<SCCPSolver
>;
380 // visit implementations - Something changed in this instruction... Either an
381 // operand made a transition, or the instruction is newly executable. Change
382 // the value type of I to reflect these changes if appropriate.
384 void visitPHINode(PHINode
&I
);
387 void visitReturnInst(ReturnInst
&I
);
388 void visitTerminatorInst(TerminatorInst
&TI
);
390 void visitCastInst(CastInst
&I
);
391 void visitSelectInst(SelectInst
&I
);
392 void visitBinaryOperator(Instruction
&I
);
393 void visitCmpInst(CmpInst
&I
);
394 void visitExtractElementInst(ExtractElementInst
&I
);
395 void visitInsertElementInst(InsertElementInst
&I
);
396 void visitShuffleVectorInst(ShuffleVectorInst
&I
);
397 void visitExtractValueInst(ExtractValueInst
&EVI
);
398 void visitInsertValueInst(InsertValueInst
&IVI
);
400 // Instructions that cannot be folded away...
401 void visitStoreInst (Instruction
&I
);
402 void visitLoadInst (LoadInst
&I
);
403 void visitGetElementPtrInst(GetElementPtrInst
&I
);
404 void visitCallInst (CallInst
&I
) { visitCallSite(CallSite::get(&I
)); }
405 void visitInvokeInst (InvokeInst
&II
) {
406 visitCallSite(CallSite::get(&II
));
407 visitTerminatorInst(II
);
409 void visitCallSite (CallSite CS
);
410 void visitUnwindInst (TerminatorInst
&I
) { /*returns void*/ }
411 void visitUnreachableInst(TerminatorInst
&I
) { /*returns void*/ }
412 void visitAllocationInst(Instruction
&I
) { markOverdefined(&I
); }
413 void visitVANextInst (Instruction
&I
) { markOverdefined(&I
); }
414 void visitVAArgInst (Instruction
&I
) { markOverdefined(&I
); }
415 void visitFreeInst (Instruction
&I
) { /*returns void*/ }
417 void visitInstruction(Instruction
&I
) {
418 // If a new instruction is added to LLVM that we don't handle...
419 cerr
<< "SCCP: Don't know how to handle: " << I
;
420 markOverdefined(&I
); // Just in case
424 } // end anonymous namespace
427 // getFeasibleSuccessors - Return a vector of booleans to indicate which
428 // successors are reachable from a given terminator instruction.
430 void SCCPSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
431 SmallVector
<bool, 16> &Succs
) {
432 Succs
.resize(TI
.getNumSuccessors());
433 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
434 if (BI
->isUnconditional()) {
437 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
438 if (BCValue
.isOverdefined() ||
439 (BCValue
.isConstant() && !isa
<ConstantInt
>(BCValue
.getConstant()))) {
440 // Overdefined condition variables, and branches on unfoldable constant
441 // conditions, mean the branch could go either way.
442 Succs
[0] = Succs
[1] = true;
443 } else if (BCValue
.isConstant()) {
444 // Constant condition variables mean the branch can only go a single way
445 Succs
[BCValue
.getConstant() == ConstantInt::getFalse(*Context
)] = true;
448 } else if (isa
<InvokeInst
>(&TI
)) {
449 // Invoke instructions successors are always executable.
450 Succs
[0] = Succs
[1] = true;
451 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&TI
)) {
452 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
453 if (SCValue
.isOverdefined() || // Overdefined condition?
454 (SCValue
.isConstant() && !isa
<ConstantInt
>(SCValue
.getConstant()))) {
455 // All destinations are executable!
456 Succs
.assign(TI
.getNumSuccessors(), true);
457 } else if (SCValue
.isConstant())
458 Succs
[SI
->findCaseValue(cast
<ConstantInt
>(SCValue
.getConstant()))] = true;
460 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
465 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
466 // block to the 'To' basic block is currently feasible...
468 bool SCCPSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
) {
469 assert(BBExecutable
.count(To
) && "Dest should always be alive!");
471 // Make sure the source basic block is executable!!
472 if (!BBExecutable
.count(From
)) return false;
474 // Check to make sure this edge itself is actually feasible now...
475 TerminatorInst
*TI
= From
->getTerminator();
476 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
477 if (BI
->isUnconditional())
480 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
481 if (BCValue
.isOverdefined()) {
482 // Overdefined condition variables mean the branch could go either way.
484 } else if (BCValue
.isConstant()) {
485 // Not branching on an evaluatable constant?
486 if (!isa
<ConstantInt
>(BCValue
.getConstant())) return true;
488 // Constant condition variables mean the branch can only go a single way
489 return BI
->getSuccessor(BCValue
.getConstant() ==
490 ConstantInt::getFalse(*Context
)) == To
;
494 } else if (isa
<InvokeInst
>(TI
)) {
495 // Invoke instructions successors are always executable.
497 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
498 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
499 if (SCValue
.isOverdefined()) { // Overdefined condition?
500 // All destinations are executable!
502 } else if (SCValue
.isConstant()) {
503 Constant
*CPV
= SCValue
.getConstant();
504 if (!isa
<ConstantInt
>(CPV
))
505 return true; // not a foldable constant?
507 // Make sure to skip the "default value" which isn't a value
508 for (unsigned i
= 1, E
= SI
->getNumSuccessors(); i
!= E
; ++i
)
509 if (SI
->getSuccessorValue(i
) == CPV
) // Found the taken branch...
510 return SI
->getSuccessor(i
) == To
;
512 // Constant value not equal to any of the branches... must execute
513 // default branch then...
514 return SI
->getDefaultDest() == To
;
519 cerr
<< "Unknown terminator instruction: " << *TI
;
525 // visit Implementations - Something changed in this instruction... Either an
526 // operand made a transition, or the instruction is newly executable. Change
527 // the value type of I to reflect these changes if appropriate. This method
528 // makes sure to do the following actions:
530 // 1. If a phi node merges two constants in, and has conflicting value coming
531 // from different branches, or if the PHI node merges in an overdefined
532 // value, then the PHI node becomes overdefined.
533 // 2. If a phi node merges only constants in, and they all agree on value, the
534 // PHI node becomes a constant value equal to that.
535 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
536 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
537 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
538 // 6. If a conditional branch has a value that is constant, make the selected
539 // destination executable
540 // 7. If a conditional branch has a value that is overdefined, make all
541 // successors executable.
543 void SCCPSolver::visitPHINode(PHINode
&PN
) {
544 LatticeVal
&PNIV
= getValueState(&PN
);
545 if (PNIV
.isOverdefined()) {
546 // There may be instructions using this PHI node that are not overdefined
547 // themselves. If so, make sure that they know that the PHI node operand
549 std::multimap
<PHINode
*, Instruction
*>::iterator I
, E
;
550 tie(I
, E
) = UsersOfOverdefinedPHIs
.equal_range(&PN
);
552 SmallVector
<Instruction
*, 16> Users
;
553 for (; I
!= E
; ++I
) Users
.push_back(I
->second
);
554 while (!Users
.empty()) {
559 return; // Quick exit
562 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
563 // and slow us down a lot. Just mark them overdefined.
564 if (PN
.getNumIncomingValues() > 64) {
565 markOverdefined(PNIV
, &PN
);
569 // Look at all of the executable operands of the PHI node. If any of them
570 // are overdefined, the PHI becomes overdefined as well. If they are all
571 // constant, and they agree with each other, the PHI becomes the identical
572 // constant. If they are constant and don't agree, the PHI is overdefined.
573 // If there are no executable operands, the PHI remains undefined.
575 Constant
*OperandVal
= 0;
576 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
577 LatticeVal
&IV
= getValueState(PN
.getIncomingValue(i
));
578 if (IV
.isUndefined()) continue; // Doesn't influence PHI node.
580 if (isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent())) {
581 if (IV
.isOverdefined()) { // PHI node becomes overdefined!
582 markOverdefined(&PN
);
586 if (OperandVal
== 0) { // Grab the first value...
587 OperandVal
= IV
.getConstant();
588 } else { // Another value is being merged in!
589 // There is already a reachable operand. If we conflict with it,
590 // then the PHI node becomes overdefined. If we agree with it, we
593 // Check to see if there are two different constants merging...
594 if (IV
.getConstant() != OperandVal
) {
595 // Yes there is. This means the PHI node is not constant.
596 // You must be overdefined poor PHI.
598 markOverdefined(&PN
); // The PHI node now becomes overdefined
599 return; // I'm done analyzing you
605 // If we exited the loop, this means that the PHI node only has constant
606 // arguments that agree with each other(and OperandVal is the constant) or
607 // OperandVal is null because there are no defined incoming arguments. If
608 // this is the case, the PHI remains undefined.
611 markConstant(&PN
, OperandVal
); // Acquire operand value
614 void SCCPSolver::visitReturnInst(ReturnInst
&I
) {
615 if (I
.getNumOperands() == 0) return; // Ret void
617 Function
*F
= I
.getParent()->getParent();
618 // If we are tracking the return value of this function, merge it in.
619 if (!F
->hasLocalLinkage())
622 if (!TrackedRetVals
.empty() && I
.getNumOperands() == 1) {
623 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
=
624 TrackedRetVals
.find(F
);
625 if (TFRVI
!= TrackedRetVals
.end() &&
626 !TFRVI
->second
.isOverdefined()) {
627 LatticeVal
&IV
= getValueState(I
.getOperand(0));
628 mergeInValue(TFRVI
->second
, F
, IV
);
633 // Handle functions that return multiple values.
634 if (!TrackedMultipleRetVals
.empty() && I
.getNumOperands() > 1) {
635 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
636 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
637 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, i
));
638 if (It
== TrackedMultipleRetVals
.end()) break;
639 mergeInValue(It
->second
, F
, getValueState(I
.getOperand(i
)));
641 } else if (!TrackedMultipleRetVals
.empty() &&
642 I
.getNumOperands() == 1 &&
643 isa
<StructType
>(I
.getOperand(0)->getType())) {
644 for (unsigned i
= 0, e
= I
.getOperand(0)->getType()->getNumContainedTypes();
646 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
647 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, i
));
648 if (It
== TrackedMultipleRetVals
.end()) break;
649 if (Value
*Val
= FindInsertedValue(I
.getOperand(0), i
, I
.getContext()))
650 mergeInValue(It
->second
, F
, getValueState(Val
));
655 void SCCPSolver::visitTerminatorInst(TerminatorInst
&TI
) {
656 SmallVector
<bool, 16> SuccFeasible
;
657 getFeasibleSuccessors(TI
, SuccFeasible
);
659 BasicBlock
*BB
= TI
.getParent();
661 // Mark all feasible successors executable...
662 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
664 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
667 void SCCPSolver::visitCastInst(CastInst
&I
) {
668 Value
*V
= I
.getOperand(0);
669 LatticeVal
&VState
= getValueState(V
);
670 if (VState
.isOverdefined()) // Inherit overdefinedness of operand
672 else if (VState
.isConstant()) // Propagate constant value
673 markConstant(&I
, ConstantExpr::getCast(I
.getOpcode(),
674 VState
.getConstant(), I
.getType()));
677 void SCCPSolver::visitExtractValueInst(ExtractValueInst
&EVI
) {
678 Value
*Aggr
= EVI
.getAggregateOperand();
680 // If the operand to the extractvalue is an undef, the result is undef.
681 if (isa
<UndefValue
>(Aggr
))
684 // Currently only handle single-index extractvalues.
685 if (EVI
.getNumIndices() != 1) {
686 markOverdefined(&EVI
);
691 if (CallInst
*CI
= dyn_cast
<CallInst
>(Aggr
))
692 F
= CI
->getCalledFunction();
693 else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Aggr
))
694 F
= II
->getCalledFunction();
696 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
698 if (F
== 0 || TrackedMultipleRetVals
.empty()) {
699 markOverdefined(&EVI
);
703 // See if we are tracking the result of the callee. If not tracking this
704 // function (for example, it is a declaration) just move to overdefined.
705 if (!TrackedMultipleRetVals
.count(std::make_pair(F
, *EVI
.idx_begin()))) {
706 markOverdefined(&EVI
);
710 // Otherwise, the value will be merged in here as a result of CallSite
714 void SCCPSolver::visitInsertValueInst(InsertValueInst
&IVI
) {
715 Value
*Aggr
= IVI
.getAggregateOperand();
716 Value
*Val
= IVI
.getInsertedValueOperand();
718 // If the operands to the insertvalue are undef, the result is undef.
719 if (isa
<UndefValue
>(Aggr
) && isa
<UndefValue
>(Val
))
722 // Currently only handle single-index insertvalues.
723 if (IVI
.getNumIndices() != 1) {
724 markOverdefined(&IVI
);
728 // Currently only handle insertvalue instructions that are in a single-use
729 // chain that builds up a return value.
730 for (const InsertValueInst
*TmpIVI
= &IVI
; ; ) {
731 if (!TmpIVI
->hasOneUse()) {
732 markOverdefined(&IVI
);
735 const Value
*V
= *TmpIVI
->use_begin();
736 if (isa
<ReturnInst
>(V
))
738 TmpIVI
= dyn_cast
<InsertValueInst
>(V
);
740 markOverdefined(&IVI
);
745 // See if we are tracking the result of the callee.
746 Function
*F
= IVI
.getParent()->getParent();
747 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
748 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, *IVI
.idx_begin()));
750 // Merge in the inserted member value.
751 if (It
!= TrackedMultipleRetVals
.end())
752 mergeInValue(It
->second
, F
, getValueState(Val
));
754 // Mark the aggregate result of the IVI overdefined; any tracking that we do
755 // will be done on the individual member values.
756 markOverdefined(&IVI
);
759 void SCCPSolver::visitSelectInst(SelectInst
&I
) {
760 LatticeVal
&CondValue
= getValueState(I
.getCondition());
761 if (CondValue
.isUndefined())
763 if (CondValue
.isConstant()) {
764 if (ConstantInt
*CondCB
= dyn_cast
<ConstantInt
>(CondValue
.getConstant())){
765 mergeInValue(&I
, getValueState(CondCB
->getZExtValue() ? I
.getTrueValue()
766 : I
.getFalseValue()));
771 // Otherwise, the condition is overdefined or a constant we can't evaluate.
772 // See if we can produce something better than overdefined based on the T/F
774 LatticeVal
&TVal
= getValueState(I
.getTrueValue());
775 LatticeVal
&FVal
= getValueState(I
.getFalseValue());
777 // select ?, C, C -> C.
778 if (TVal
.isConstant() && FVal
.isConstant() &&
779 TVal
.getConstant() == FVal
.getConstant()) {
780 markConstant(&I
, FVal
.getConstant());
784 if (TVal
.isUndefined()) { // select ?, undef, X -> X.
785 mergeInValue(&I
, FVal
);
786 } else if (FVal
.isUndefined()) { // select ?, X, undef -> X.
787 mergeInValue(&I
, TVal
);
793 // Handle BinaryOperators and Shift Instructions...
794 void SCCPSolver::visitBinaryOperator(Instruction
&I
) {
795 LatticeVal
&IV
= ValueState
[&I
];
796 if (IV
.isOverdefined()) return;
798 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
799 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
801 if (V1State
.isOverdefined() || V2State
.isOverdefined()) {
802 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
803 // operand is overdefined.
804 if (I
.getOpcode() == Instruction::And
|| I
.getOpcode() == Instruction::Or
) {
805 LatticeVal
*NonOverdefVal
= 0;
806 if (!V1State
.isOverdefined()) {
807 NonOverdefVal
= &V1State
;
808 } else if (!V2State
.isOverdefined()) {
809 NonOverdefVal
= &V2State
;
813 if (NonOverdefVal
->isUndefined()) {
814 // Could annihilate value.
815 if (I
.getOpcode() == Instruction::And
)
816 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
817 else if (const VectorType
*PT
= dyn_cast
<VectorType
>(I
.getType()))
818 markConstant(IV
, &I
, Constant::getAllOnesValue(PT
));
821 Constant::getAllOnesValue(I
.getType()));
824 if (I
.getOpcode() == Instruction::And
) {
825 if (NonOverdefVal
->getConstant()->isNullValue()) {
826 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
827 return; // X and 0 = 0
830 if (ConstantInt
*CI
=
831 dyn_cast
<ConstantInt
>(NonOverdefVal
->getConstant()))
832 if (CI
->isAllOnesValue()) {
833 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
834 return; // X or -1 = -1
842 // If both operands are PHI nodes, it is possible that this instruction has
843 // a constant value, despite the fact that the PHI node doesn't. Check for
844 // this condition now.
845 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
846 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
847 if (PN1
->getParent() == PN2
->getParent()) {
848 // Since the two PHI nodes are in the same basic block, they must have
849 // entries for the same predecessors. Walk the predecessor list, and
850 // if all of the incoming values are constants, and the result of
851 // evaluating this expression with all incoming value pairs is the
852 // same, then this expression is a constant even though the PHI node
853 // is not a constant!
855 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
856 LatticeVal
&In1
= getValueState(PN1
->getIncomingValue(i
));
857 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
859 getValueState(PN2
->getIncomingValueForBlock(InBlock
));
861 if (In1
.isOverdefined() || In2
.isOverdefined()) {
862 Result
.markOverdefined();
863 break; // Cannot fold this operation over the PHI nodes!
864 } else if (In1
.isConstant() && In2
.isConstant()) {
866 ConstantExpr::get(I
.getOpcode(), In1
.getConstant(),
868 if (Result
.isUndefined())
869 Result
.markConstant(V
);
870 else if (Result
.isConstant() && Result
.getConstant() != V
) {
871 Result
.markOverdefined();
877 // If we found a constant value here, then we know the instruction is
878 // constant despite the fact that the PHI nodes are overdefined.
879 if (Result
.isConstant()) {
880 markConstant(IV
, &I
, Result
.getConstant());
881 // Remember that this instruction is virtually using the PHI node
883 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN1
, &I
));
884 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN2
, &I
));
886 } else if (Result
.isUndefined()) {
890 // Okay, this really is overdefined now. Since we might have
891 // speculatively thought that this was not overdefined before, and
892 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
893 // make sure to clean out any entries that we put there, for
895 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
896 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN1
);
898 if (It
->second
== &I
) {
899 UsersOfOverdefinedPHIs
.erase(It
++);
903 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN2
);
905 if (It
->second
== &I
) {
906 UsersOfOverdefinedPHIs
.erase(It
++);
912 markOverdefined(IV
, &I
);
913 } else if (V1State
.isConstant() && V2State
.isConstant()) {
915 ConstantExpr::get(I
.getOpcode(), V1State
.getConstant(),
916 V2State
.getConstant()));
920 // Handle ICmpInst instruction...
921 void SCCPSolver::visitCmpInst(CmpInst
&I
) {
922 LatticeVal
&IV
= ValueState
[&I
];
923 if (IV
.isOverdefined()) return;
925 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
926 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
928 if (V1State
.isOverdefined() || V2State
.isOverdefined()) {
929 // If both operands are PHI nodes, it is possible that this instruction has
930 // a constant value, despite the fact that the PHI node doesn't. Check for
931 // this condition now.
932 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
933 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
934 if (PN1
->getParent() == PN2
->getParent()) {
935 // Since the two PHI nodes are in the same basic block, they must have
936 // entries for the same predecessors. Walk the predecessor list, and
937 // if all of the incoming values are constants, and the result of
938 // evaluating this expression with all incoming value pairs is the
939 // same, then this expression is a constant even though the PHI node
940 // is not a constant!
942 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
943 LatticeVal
&In1
= getValueState(PN1
->getIncomingValue(i
));
944 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
946 getValueState(PN2
->getIncomingValueForBlock(InBlock
));
948 if (In1
.isOverdefined() || In2
.isOverdefined()) {
949 Result
.markOverdefined();
950 break; // Cannot fold this operation over the PHI nodes!
951 } else if (In1
.isConstant() && In2
.isConstant()) {
952 Constant
*V
= ConstantExpr::getCompare(I
.getPredicate(),
955 if (Result
.isUndefined())
956 Result
.markConstant(V
);
957 else if (Result
.isConstant() && Result
.getConstant() != V
) {
958 Result
.markOverdefined();
964 // If we found a constant value here, then we know the instruction is
965 // constant despite the fact that the PHI nodes are overdefined.
966 if (Result
.isConstant()) {
967 markConstant(IV
, &I
, Result
.getConstant());
968 // Remember that this instruction is virtually using the PHI node
970 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN1
, &I
));
971 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN2
, &I
));
973 } else if (Result
.isUndefined()) {
977 // Okay, this really is overdefined now. Since we might have
978 // speculatively thought that this was not overdefined before, and
979 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
980 // make sure to clean out any entries that we put there, for
982 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
983 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN1
);
985 if (It
->second
== &I
) {
986 UsersOfOverdefinedPHIs
.erase(It
++);
990 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN2
);
992 if (It
->second
== &I
) {
993 UsersOfOverdefinedPHIs
.erase(It
++);
999 markOverdefined(IV
, &I
);
1000 } else if (V1State
.isConstant() && V2State
.isConstant()) {
1001 markConstant(IV
, &I
, ConstantExpr::getCompare(I
.getPredicate(),
1002 V1State
.getConstant(),
1003 V2State
.getConstant()));
1007 void SCCPSolver::visitExtractElementInst(ExtractElementInst
&I
) {
1008 // FIXME : SCCP does not handle vectors properly.
1009 markOverdefined(&I
);
1013 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1014 LatticeVal
&IdxState
= getValueState(I
.getOperand(1));
1016 if (ValState
.isOverdefined() || IdxState
.isOverdefined())
1017 markOverdefined(&I
);
1018 else if(ValState
.isConstant() && IdxState
.isConstant())
1019 markConstant(&I
, ConstantExpr::getExtractElement(ValState
.getConstant(),
1020 IdxState
.getConstant()));
1024 void SCCPSolver::visitInsertElementInst(InsertElementInst
&I
) {
1025 // FIXME : SCCP does not handle vectors properly.
1026 markOverdefined(&I
);
1029 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1030 LatticeVal
&EltState
= getValueState(I
.getOperand(1));
1031 LatticeVal
&IdxState
= getValueState(I
.getOperand(2));
1033 if (ValState
.isOverdefined() || EltState
.isOverdefined() ||
1034 IdxState
.isOverdefined())
1035 markOverdefined(&I
);
1036 else if(ValState
.isConstant() && EltState
.isConstant() &&
1037 IdxState
.isConstant())
1038 markConstant(&I
, ConstantExpr::getInsertElement(ValState
.getConstant(),
1039 EltState
.getConstant(),
1040 IdxState
.getConstant()));
1041 else if (ValState
.isUndefined() && EltState
.isConstant() &&
1042 IdxState
.isConstant())
1043 markConstant(&I
,ConstantExpr::getInsertElement(UndefValue::get(I
.getType()),
1044 EltState
.getConstant(),
1045 IdxState
.getConstant()));
1049 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst
&I
) {
1050 // FIXME : SCCP does not handle vectors properly.
1051 markOverdefined(&I
);
1054 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
1055 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
1056 LatticeVal
&MaskState
= getValueState(I
.getOperand(2));
1058 if (MaskState
.isUndefined() ||
1059 (V1State
.isUndefined() && V2State
.isUndefined()))
1060 return; // Undefined output if mask or both inputs undefined.
1062 if (V1State
.isOverdefined() || V2State
.isOverdefined() ||
1063 MaskState
.isOverdefined()) {
1064 markOverdefined(&I
);
1066 // A mix of constant/undef inputs.
1067 Constant
*V1
= V1State
.isConstant() ?
1068 V1State
.getConstant() : UndefValue::get(I
.getType());
1069 Constant
*V2
= V2State
.isConstant() ?
1070 V2State
.getConstant() : UndefValue::get(I
.getType());
1071 Constant
*Mask
= MaskState
.isConstant() ?
1072 MaskState
.getConstant() : UndefValue::get(I
.getOperand(2)->getType());
1073 markConstant(&I
, ConstantExpr::getShuffleVector(V1
, V2
, Mask
));
1078 // Handle getelementptr instructions... if all operands are constants then we
1079 // can turn this into a getelementptr ConstantExpr.
1081 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst
&I
) {
1082 LatticeVal
&IV
= ValueState
[&I
];
1083 if (IV
.isOverdefined()) return;
1085 SmallVector
<Constant
*, 8> Operands
;
1086 Operands
.reserve(I
.getNumOperands());
1088 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1089 LatticeVal
&State
= getValueState(I
.getOperand(i
));
1090 if (State
.isUndefined())
1091 return; // Operands are not resolved yet...
1092 else if (State
.isOverdefined()) {
1093 markOverdefined(IV
, &I
);
1096 assert(State
.isConstant() && "Unknown state!");
1097 Operands
.push_back(State
.getConstant());
1100 Constant
*Ptr
= Operands
[0];
1101 Operands
.erase(Operands
.begin()); // Erase the pointer from idx list...
1103 markConstant(IV
, &I
, ConstantExpr::getGetElementPtr(Ptr
, &Operands
[0],
1107 void SCCPSolver::visitStoreInst(Instruction
&SI
) {
1108 if (TrackedGlobals
.empty() || !isa
<GlobalVariable
>(SI
.getOperand(1)))
1110 GlobalVariable
*GV
= cast
<GlobalVariable
>(SI
.getOperand(1));
1111 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator I
= TrackedGlobals
.find(GV
);
1112 if (I
== TrackedGlobals
.end() || I
->second
.isOverdefined()) return;
1114 // Get the value we are storing into the global.
1115 LatticeVal
&PtrVal
= getValueState(SI
.getOperand(0));
1117 mergeInValue(I
->second
, GV
, PtrVal
);
1118 if (I
->second
.isOverdefined())
1119 TrackedGlobals
.erase(I
); // No need to keep tracking this!
1123 // Handle load instructions. If the operand is a constant pointer to a constant
1124 // global, we can replace the load with the loaded constant value!
1125 void SCCPSolver::visitLoadInst(LoadInst
&I
) {
1126 LatticeVal
&IV
= ValueState
[&I
];
1127 if (IV
.isOverdefined()) return;
1129 LatticeVal
&PtrVal
= getValueState(I
.getOperand(0));
1130 if (PtrVal
.isUndefined()) return; // The pointer is not resolved yet!
1131 if (PtrVal
.isConstant() && !I
.isVolatile()) {
1132 Value
*Ptr
= PtrVal
.getConstant();
1133 // TODO: Consider a target hook for valid address spaces for this xform.
1134 if (isa
<ConstantPointerNull
>(Ptr
) &&
1135 cast
<PointerType
>(Ptr
->getType())->getAddressSpace() == 0) {
1136 // load null -> null
1137 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
1141 // Transform load (constant global) into the value loaded.
1142 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
1143 if (GV
->isConstant()) {
1144 if (GV
->hasDefinitiveInitializer()) {
1145 markConstant(IV
, &I
, GV
->getInitializer());
1148 } else if (!TrackedGlobals
.empty()) {
1149 // If we are tracking this global, merge in the known value for it.
1150 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator It
=
1151 TrackedGlobals
.find(GV
);
1152 if (It
!= TrackedGlobals
.end()) {
1153 mergeInValue(IV
, &I
, It
->second
);
1159 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1160 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
1161 if (CE
->getOpcode() == Instruction::GetElementPtr
)
1162 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
1163 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
1165 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
,
1167 markConstant(IV
, &I
, V
);
1172 // Otherwise we cannot say for certain what value this load will produce.
1174 markOverdefined(IV
, &I
);
1177 void SCCPSolver::visitCallSite(CallSite CS
) {
1178 Function
*F
= CS
.getCalledFunction();
1179 Instruction
*I
= CS
.getInstruction();
1181 // The common case is that we aren't tracking the callee, either because we
1182 // are not doing interprocedural analysis or the callee is indirect, or is
1183 // external. Handle these cases first.
1184 if (F
== 0 || !F
->hasLocalLinkage()) {
1186 // Void return and not tracking callee, just bail.
1187 if (I
->getType() == Type::VoidTy
) return;
1189 // Otherwise, if we have a single return value case, and if the function is
1190 // a declaration, maybe we can constant fold it.
1191 if (!isa
<StructType
>(I
->getType()) && F
&& F
->isDeclaration() &&
1192 canConstantFoldCallTo(F
)) {
1194 SmallVector
<Constant
*, 8> Operands
;
1195 for (CallSite::arg_iterator AI
= CS
.arg_begin(), E
= CS
.arg_end();
1197 LatticeVal
&State
= getValueState(*AI
);
1198 if (State
.isUndefined())
1199 return; // Operands are not resolved yet.
1200 else if (State
.isOverdefined()) {
1204 assert(State
.isConstant() && "Unknown state!");
1205 Operands
.push_back(State
.getConstant());
1208 // If we can constant fold this, mark the result of the call as a
1210 if (Constant
*C
= ConstantFoldCall(F
, Operands
.data(), Operands
.size())) {
1216 // Otherwise, we don't know anything about this call, mark it overdefined.
1221 // If this is a single/zero retval case, see if we're tracking the function.
1222 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
= TrackedRetVals
.find(F
);
1223 if (TFRVI
!= TrackedRetVals
.end()) {
1224 // If so, propagate the return value of the callee into this call result.
1225 mergeInValue(I
, TFRVI
->second
);
1226 } else if (isa
<StructType
>(I
->getType())) {
1227 // Check to see if we're tracking this callee, if not, handle it in the
1228 // common path above.
1229 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
1230 TMRVI
= TrackedMultipleRetVals
.find(std::make_pair(F
, 0));
1231 if (TMRVI
== TrackedMultipleRetVals
.end())
1232 goto CallOverdefined
;
1234 // If we are tracking this callee, propagate the return values of the call
1235 // into this call site. We do this by walking all the uses. Single-index
1236 // ExtractValueInst uses can be tracked; anything more complicated is
1237 // currently handled conservatively.
1238 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1240 if (ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(*UI
)) {
1241 if (EVI
->getNumIndices() == 1) {
1243 TrackedMultipleRetVals
[std::make_pair(F
, *EVI
->idx_begin())]);
1247 // The aggregate value is used in a way not handled here. Assume nothing.
1248 markOverdefined(*UI
);
1251 // Otherwise we're not tracking this callee, so handle it in the
1252 // common path above.
1253 goto CallOverdefined
;
1256 // Finally, if this is the first call to the function hit, mark its entry
1257 // block executable.
1258 if (!BBExecutable
.count(F
->begin()))
1259 MarkBlockExecutable(F
->begin());
1261 // Propagate information from this call site into the callee.
1262 CallSite::arg_iterator CAI
= CS
.arg_begin();
1263 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1264 AI
!= E
; ++AI
, ++CAI
) {
1265 LatticeVal
&IV
= ValueState
[AI
];
1266 if (!IV
.isOverdefined())
1267 mergeInValue(IV
, AI
, getValueState(*CAI
));
1272 void SCCPSolver::Solve() {
1273 // Process the work lists until they are empty!
1274 while (!BBWorkList
.empty() || !InstWorkList
.empty() ||
1275 !OverdefinedInstWorkList
.empty()) {
1276 // Process the instruction work list...
1277 while (!OverdefinedInstWorkList
.empty()) {
1278 Value
*I
= OverdefinedInstWorkList
.back();
1279 OverdefinedInstWorkList
.pop_back();
1281 DEBUG(errs() << "\nPopped off OI-WL: " << *I
);
1283 // "I" got into the work list because it either made the transition from
1284 // bottom to constant
1286 // Anything on this worklist that is overdefined need not be visited
1287 // since all of its users will have already been marked as overdefined
1288 // Update all of the users of this instruction's value...
1290 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1292 OperandChangedState(*UI
);
1294 // Process the instruction work list...
1295 while (!InstWorkList
.empty()) {
1296 Value
*I
= InstWorkList
.back();
1297 InstWorkList
.pop_back();
1299 DEBUG(errs() << "\nPopped off I-WL: " << *I
);
1301 // "I" got into the work list because it either made the transition from
1302 // bottom to constant
1304 // Anything on this worklist that is overdefined need not be visited
1305 // since all of its users will have already been marked as overdefined.
1306 // Update all of the users of this instruction's value...
1308 if (!getValueState(I
).isOverdefined())
1309 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1311 OperandChangedState(*UI
);
1314 // Process the basic block work list...
1315 while (!BBWorkList
.empty()) {
1316 BasicBlock
*BB
= BBWorkList
.back();
1317 BBWorkList
.pop_back();
1319 DEBUG(errs() << "\nPopped off BBWL: " << *BB
);
1321 // Notify all instructions in this basic block that they are newly
1328 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1329 /// that branches on undef values cannot reach any of their successors.
1330 /// However, this is not a safe assumption. After we solve dataflow, this
1331 /// method should be use to handle this. If this returns true, the solver
1332 /// should be rerun.
1334 /// This method handles this by finding an unresolved branch and marking it one
1335 /// of the edges from the block as being feasible, even though the condition
1336 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1337 /// CFG and only slightly pessimizes the analysis results (by marking one,
1338 /// potentially infeasible, edge feasible). This cannot usefully modify the
1339 /// constraints on the condition of the branch, as that would impact other users
1342 /// This scan also checks for values that use undefs, whose results are actually
1343 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1344 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1345 /// even if X isn't defined.
1346 bool SCCPSolver::ResolvedUndefsIn(Function
&F
) {
1347 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1348 if (!BBExecutable
.count(BB
))
1351 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1352 // Look for instructions which produce undef values.
1353 if (I
->getType() == Type::VoidTy
) continue;
1355 LatticeVal
&LV
= getValueState(I
);
1356 if (!LV
.isUndefined()) continue;
1358 // Get the lattice values of the first two operands for use below.
1359 LatticeVal
&Op0LV
= getValueState(I
->getOperand(0));
1361 if (I
->getNumOperands() == 2) {
1362 // If this is a two-operand instruction, and if both operands are
1363 // undefs, the result stays undef.
1364 Op1LV
= getValueState(I
->getOperand(1));
1365 if (Op0LV
.isUndefined() && Op1LV
.isUndefined())
1369 // If this is an instructions whose result is defined even if the input is
1370 // not fully defined, propagate the information.
1371 const Type
*ITy
= I
->getType();
1372 switch (I
->getOpcode()) {
1373 default: break; // Leave the instruction as an undef.
1374 case Instruction::ZExt
:
1375 // After a zero extend, we know the top part is zero. SExt doesn't have
1376 // to be handled here, because we don't know whether the top part is 1's
1378 assert(Op0LV
.isUndefined());
1379 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1381 case Instruction::Mul
:
1382 case Instruction::And
:
1383 // undef * X -> 0. X could be zero.
1384 // undef & X -> 0. X could be zero.
1385 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1388 case Instruction::Or
:
1389 // undef | X -> -1. X could be -1.
1390 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(ITy
))
1391 markForcedConstant(LV
, I
,
1392 Constant::getAllOnesValue(PTy
));
1394 markForcedConstant(LV
, I
, Constant::getAllOnesValue(ITy
));
1397 case Instruction::SDiv
:
1398 case Instruction::UDiv
:
1399 case Instruction::SRem
:
1400 case Instruction::URem
:
1401 // X / undef -> undef. No change.
1402 // X % undef -> undef. No change.
1403 if (Op1LV
.isUndefined()) break;
1405 // undef / X -> 0. X could be maxint.
1406 // undef % X -> 0. X could be 1.
1407 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1410 case Instruction::AShr
:
1411 // undef >>s X -> undef. No change.
1412 if (Op0LV
.isUndefined()) break;
1414 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1415 if (Op0LV
.isConstant())
1416 markForcedConstant(LV
, I
, Op0LV
.getConstant());
1418 markOverdefined(LV
, I
);
1420 case Instruction::LShr
:
1421 case Instruction::Shl
:
1422 // undef >> X -> undef. No change.
1423 // undef << X -> undef. No change.
1424 if (Op0LV
.isUndefined()) break;
1426 // X >> undef -> 0. X could be 0.
1427 // X << undef -> 0. X could be 0.
1428 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1430 case Instruction::Select
:
1431 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1432 if (Op0LV
.isUndefined()) {
1433 if (!Op1LV
.isConstant()) // Pick the constant one if there is any.
1434 Op1LV
= getValueState(I
->getOperand(2));
1435 } else if (Op1LV
.isUndefined()) {
1436 // c ? undef : undef -> undef. No change.
1437 Op1LV
= getValueState(I
->getOperand(2));
1438 if (Op1LV
.isUndefined())
1440 // Otherwise, c ? undef : x -> x.
1442 // Leave Op1LV as Operand(1)'s LatticeValue.
1445 if (Op1LV
.isConstant())
1446 markForcedConstant(LV
, I
, Op1LV
.getConstant());
1448 markOverdefined(LV
, I
);
1450 case Instruction::Call
:
1451 // If a call has an undef result, it is because it is constant foldable
1452 // but one of the inputs was undef. Just force the result to
1454 markOverdefined(LV
, I
);
1459 TerminatorInst
*TI
= BB
->getTerminator();
1460 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1461 if (!BI
->isConditional()) continue;
1462 if (!getValueState(BI
->getCondition()).isUndefined())
1464 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
1465 if (SI
->getNumSuccessors()<2) // no cases
1467 if (!getValueState(SI
->getCondition()).isUndefined())
1473 // If the edge to the second successor isn't thought to be feasible yet,
1474 // mark it so now. We pick the second one so that this goes to some
1475 // enumerated value in a switch instead of going to the default destination.
1476 if (KnownFeasibleEdges
.count(Edge(BB
, TI
->getSuccessor(1))))
1479 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1480 // and return. This will make other blocks reachable, which will allow new
1481 // values to be discovered and existing ones to be moved in the lattice.
1482 markEdgeExecutable(BB
, TI
->getSuccessor(1));
1484 // This must be a conditional branch of switch on undef. At this point,
1485 // force the old terminator to branch to the first successor. This is
1486 // required because we are now influencing the dataflow of the function with
1487 // the assumption that this edge is taken. If we leave the branch condition
1488 // as undef, then further analysis could think the undef went another way
1489 // leading to an inconsistent set of conclusions.
1490 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1491 BI
->setCondition(ConstantInt::getFalse(*Context
));
1493 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
1494 SI
->setCondition(SI
->getCaseValue(1));
1505 //===--------------------------------------------------------------------===//
1507 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1508 /// Sparse Conditional Constant Propagator.
1510 struct VISIBILITY_HIDDEN SCCP
: public FunctionPass
{
1511 static char ID
; // Pass identification, replacement for typeid
1512 SCCP() : FunctionPass(&ID
) {}
1514 // runOnFunction - Run the Sparse Conditional Constant Propagation
1515 // algorithm, and return true if the function was modified.
1517 bool runOnFunction(Function
&F
);
1519 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1520 AU
.setPreservesCFG();
1523 } // end anonymous namespace
1526 static RegisterPass
<SCCP
>
1527 X("sccp", "Sparse Conditional Constant Propagation");
1529 // createSCCPPass - This is the public interface to this file...
1530 FunctionPass
*llvm::createSCCPPass() {
1535 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1536 // and return true if the function was modified.
1538 bool SCCP::runOnFunction(Function
&F
) {
1539 DEBUG(errs() << "SCCP on function '" << F
.getName() << "'\n");
1541 Solver
.setContext(&F
.getContext());
1543 // Mark the first block of the function as being executable.
1544 Solver
.MarkBlockExecutable(F
.begin());
1546 // Mark all arguments to the function as being overdefined.
1547 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end(); AI
!= E
;++AI
)
1548 Solver
.markOverdefined(AI
);
1550 // Solve for constants.
1551 bool ResolvedUndefs
= true;
1552 while (ResolvedUndefs
) {
1554 DEBUG(errs() << "RESOLVING UNDEFs\n");
1555 ResolvedUndefs
= Solver
.ResolvedUndefsIn(F
);
1558 bool MadeChanges
= false;
1560 // If we decided that there are basic blocks that are dead in this function,
1561 // delete their contents now. Note that we cannot actually delete the blocks,
1562 // as we cannot modify the CFG of the function.
1564 SmallVector
<Instruction
*, 512> Insts
;
1565 std::map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1567 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
1568 if (!Solver
.isBlockExecutable(BB
)) {
1569 DEBUG(errs() << " BasicBlock Dead:" << *BB
);
1572 // Delete the instructions backwards, as it has a reduced likelihood of
1573 // having to update as many def-use and use-def chains.
1574 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->getTerminator();
1577 while (!Insts
.empty()) {
1578 Instruction
*I
= Insts
.back();
1580 if (!I
->use_empty())
1581 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1582 BB
->getInstList().erase(I
);
1587 // Iterate over all of the instructions in a function, replacing them with
1588 // constants if we have found them to be of constant values.
1590 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1591 Instruction
*Inst
= BI
++;
1592 if (Inst
->getType() == Type::VoidTy
||
1593 isa
<TerminatorInst
>(Inst
))
1596 LatticeVal
&IV
= Values
[Inst
];
1597 if (!IV
.isConstant() && !IV
.isUndefined())
1600 Constant
*Const
= IV
.isConstant()
1601 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1602 DEBUG(errs() << " Constant: " << *Const
<< " = " << *Inst
);
1604 // Replaces all of the uses of a variable with uses of the constant.
1605 Inst
->replaceAllUsesWith(Const
);
1607 // Delete the instruction.
1608 Inst
->eraseFromParent();
1610 // Hey, we just changed something!
1620 //===--------------------------------------------------------------------===//
1622 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1623 /// Constant Propagation.
1625 struct VISIBILITY_HIDDEN IPSCCP
: public ModulePass
{
1627 IPSCCP() : ModulePass(&ID
) {}
1628 bool runOnModule(Module
&M
);
1630 } // end anonymous namespace
1632 char IPSCCP::ID
= 0;
1633 static RegisterPass
<IPSCCP
>
1634 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1636 // createIPSCCPPass - This is the public interface to this file...
1637 ModulePass
*llvm::createIPSCCPPass() {
1638 return new IPSCCP();
1642 static bool AddressIsTaken(GlobalValue
*GV
) {
1643 // Delete any dead constantexpr klingons.
1644 GV
->removeDeadConstantUsers();
1646 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end();
1648 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
1649 if (SI
->getOperand(0) == GV
|| SI
->isVolatile())
1650 return true; // Storing addr of GV.
1651 } else if (isa
<InvokeInst
>(*UI
) || isa
<CallInst
>(*UI
)) {
1652 // Make sure we are calling the function, not passing the address.
1653 CallSite CS
= CallSite::get(cast
<Instruction
>(*UI
));
1654 if (CS
.hasArgument(GV
))
1656 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
1657 if (LI
->isVolatile())
1665 bool IPSCCP::runOnModule(Module
&M
) {
1666 LLVMContext
*Context
= &M
.getContext();
1669 Solver
.setContext(Context
);
1671 // Loop over all functions, marking arguments to those with their addresses
1672 // taken or that are external as overdefined.
1674 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1675 if (!F
->hasLocalLinkage() || AddressIsTaken(F
)) {
1676 if (!F
->isDeclaration())
1677 Solver
.MarkBlockExecutable(F
->begin());
1678 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1680 Solver
.markOverdefined(AI
);
1682 Solver
.AddTrackedFunction(F
);
1685 // Loop over global variables. We inform the solver about any internal global
1686 // variables that do not have their 'addresses taken'. If they don't have
1687 // their addresses taken, we can propagate constants through them.
1688 for (Module::global_iterator G
= M
.global_begin(), E
= M
.global_end();
1690 if (!G
->isConstant() && G
->hasLocalLinkage() && !AddressIsTaken(G
))
1691 Solver
.TrackValueOfGlobalVariable(G
);
1693 // Solve for constants.
1694 bool ResolvedUndefs
= true;
1695 while (ResolvedUndefs
) {
1698 DEBUG(errs() << "RESOLVING UNDEFS\n");
1699 ResolvedUndefs
= false;
1700 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1701 ResolvedUndefs
|= Solver
.ResolvedUndefsIn(*F
);
1704 bool MadeChanges
= false;
1706 // Iterate over all of the instructions in the module, replacing them with
1707 // constants if we have found them to be of constant values.
1709 SmallVector
<Instruction
*, 512> Insts
;
1710 SmallVector
<BasicBlock
*, 512> BlocksToErase
;
1711 std::map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1713 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
1714 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1716 if (!AI
->use_empty()) {
1717 LatticeVal
&IV
= Values
[AI
];
1718 if (IV
.isConstant() || IV
.isUndefined()) {
1719 Constant
*CST
= IV
.isConstant() ?
1720 IV
.getConstant() : UndefValue::get(AI
->getType());
1721 DEBUG(errs() << "*** Arg " << *AI
<< " = " << *CST
<<"\n");
1723 // Replaces all of the uses of a variable with uses of the
1725 AI
->replaceAllUsesWith(CST
);
1730 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1731 if (!Solver
.isBlockExecutable(BB
)) {
1732 DEBUG(errs() << " BasicBlock Dead:" << *BB
);
1735 // Delete the instructions backwards, as it has a reduced likelihood of
1736 // having to update as many def-use and use-def chains.
1737 TerminatorInst
*TI
= BB
->getTerminator();
1738 for (BasicBlock::iterator I
= BB
->begin(), E
= TI
; I
!= E
; ++I
)
1741 while (!Insts
.empty()) {
1742 Instruction
*I
= Insts
.back();
1744 if (!I
->use_empty())
1745 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1746 BB
->getInstList().erase(I
);
1751 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
1752 BasicBlock
*Succ
= TI
->getSuccessor(i
);
1753 if (!Succ
->empty() && isa
<PHINode
>(Succ
->begin()))
1754 TI
->getSuccessor(i
)->removePredecessor(BB
);
1756 if (!TI
->use_empty())
1757 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
1758 BB
->getInstList().erase(TI
);
1760 if (&*BB
!= &F
->front())
1761 BlocksToErase
.push_back(BB
);
1763 new UnreachableInst(BB
);
1766 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1767 Instruction
*Inst
= BI
++;
1768 if (Inst
->getType() == Type::VoidTy
)
1771 LatticeVal
&IV
= Values
[Inst
];
1772 if (!IV
.isConstant() && !IV
.isUndefined())
1775 Constant
*Const
= IV
.isConstant()
1776 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1777 DEBUG(errs() << " Constant: " << *Const
<< " = " << *Inst
);
1779 // Replaces all of the uses of a variable with uses of the
1781 Inst
->replaceAllUsesWith(Const
);
1783 // Delete the instruction.
1784 if (!isa
<CallInst
>(Inst
) && !isa
<TerminatorInst
>(Inst
))
1785 Inst
->eraseFromParent();
1787 // Hey, we just changed something!
1793 // Now that all instructions in the function are constant folded, erase dead
1794 // blocks, because we can now use ConstantFoldTerminator to get rid of
1796 for (unsigned i
= 0, e
= BlocksToErase
.size(); i
!= e
; ++i
) {
1797 // If there are any PHI nodes in this successor, drop entries for BB now.
1798 BasicBlock
*DeadBB
= BlocksToErase
[i
];
1799 while (!DeadBB
->use_empty()) {
1800 Instruction
*I
= cast
<Instruction
>(DeadBB
->use_back());
1801 bool Folded
= ConstantFoldTerminator(I
->getParent());
1803 // The constant folder may not have been able to fold the terminator
1804 // if this is a branch or switch on undef. Fold it manually as a
1805 // branch to the first successor.
1807 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1808 assert(BI
->isConditional() && isa
<UndefValue
>(BI
->getCondition()) &&
1809 "Branch should be foldable!");
1810 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(I
)) {
1811 assert(isa
<UndefValue
>(SI
->getCondition()) && "Switch should fold");
1813 llvm_unreachable("Didn't fold away reference to block!");
1817 // Make this an uncond branch to the first successor.
1818 TerminatorInst
*TI
= I
->getParent()->getTerminator();
1819 BranchInst::Create(TI
->getSuccessor(0), TI
);
1821 // Remove entries in successor phi nodes to remove edges.
1822 for (unsigned i
= 1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
1823 TI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
1825 // Remove the old terminator.
1826 TI
->eraseFromParent();
1830 // Finally, delete the basic block.
1831 F
->getBasicBlockList().erase(DeadBB
);
1833 BlocksToErase
.clear();
1836 // If we inferred constant or undef return values for a function, we replaced
1837 // all call uses with the inferred value. This means we don't need to bother
1838 // actually returning anything from the function. Replace all return
1839 // instructions with return undef.
1840 // TODO: Process multiple value ret instructions also.
1841 const DenseMap
<Function
*, LatticeVal
> &RV
= Solver
.getTrackedRetVals();
1842 for (DenseMap
<Function
*, LatticeVal
>::const_iterator I
= RV
.begin(),
1843 E
= RV
.end(); I
!= E
; ++I
)
1844 if (!I
->second
.isOverdefined() &&
1845 I
->first
->getReturnType() != Type::VoidTy
) {
1846 Function
*F
= I
->first
;
1847 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1848 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
1849 if (!isa
<UndefValue
>(RI
->getOperand(0)))
1850 RI
->setOperand(0, UndefValue::get(F
->getReturnType()));
1853 // If we infered constant or undef values for globals variables, we can delete
1854 // the global and any stores that remain to it.
1855 const DenseMap
<GlobalVariable
*, LatticeVal
> &TG
= Solver
.getTrackedGlobals();
1856 for (DenseMap
<GlobalVariable
*, LatticeVal
>::const_iterator I
= TG
.begin(),
1857 E
= TG
.end(); I
!= E
; ++I
) {
1858 GlobalVariable
*GV
= I
->first
;
1859 assert(!I
->second
.isOverdefined() &&
1860 "Overdefined values should have been taken out of the map!");
1861 DEBUG(errs() << "Found that GV '" << GV
->getName() << "' is constant!\n");
1862 while (!GV
->use_empty()) {
1863 StoreInst
*SI
= cast
<StoreInst
>(GV
->use_back());
1864 SI
->eraseFromParent();
1866 M
.getGlobalList().erase(GV
);