Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / SCCP.cpp
blob80629329b2a7fc90e12d548daeebfa57e65e09be
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
18 // Notice that:
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Support/CallSite.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/InstVisitor.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include <algorithm>
48 #include <map>
49 using namespace llvm;
51 STATISTIC(NumInstRemoved, "Number of instructions removed");
52 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
54 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
55 STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
56 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
57 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
59 namespace {
60 /// LatticeVal class - This class represents the different lattice values that
61 /// an LLVM value may occupy. It is a simple class with value semantics.
62 ///
63 class VISIBILITY_HIDDEN LatticeVal {
64 enum {
65 /// undefined - This LLVM Value has no known value yet.
66 undefined,
68 /// constant - This LLVM Value has a specific constant value.
69 constant,
71 /// forcedconstant - This LLVM Value was thought to be undef until
72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
73 /// with another (different) constant, it goes to overdefined, instead of
74 /// asserting.
75 forcedconstant,
77 /// overdefined - This instruction is not known to be constant, and we know
78 /// it has a value.
79 overdefined
80 } LatticeValue; // The current lattice position
82 Constant *ConstantVal; // If Constant value, the current value
83 public:
84 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
86 // markOverdefined - Return true if this is a new status to be in...
87 inline bool markOverdefined() {
88 if (LatticeValue != overdefined) {
89 LatticeValue = overdefined;
90 return true;
92 return false;
95 // markConstant - Return true if this is a new status for us.
96 inline bool markConstant(Constant *V) {
97 if (LatticeValue != constant) {
98 if (LatticeValue == undefined) {
99 LatticeValue = constant;
100 assert(V && "Marking constant with NULL");
101 ConstantVal = V;
102 } else {
103 assert(LatticeValue == forcedconstant &&
104 "Cannot move from overdefined to constant!");
105 // Stay at forcedconstant if the constant is the same.
106 if (V == ConstantVal) return false;
108 // Otherwise, we go to overdefined. Assumptions made based on the
109 // forced value are possibly wrong. Assuming this is another constant
110 // could expose a contradiction.
111 LatticeValue = overdefined;
113 return true;
114 } else {
115 assert(ConstantVal == V && "Marking constant with different value");
117 return false;
120 inline void markForcedConstant(Constant *V) {
121 assert(LatticeValue == undefined && "Can't force a defined value!");
122 LatticeValue = forcedconstant;
123 ConstantVal = V;
126 inline bool isUndefined() const { return LatticeValue == undefined; }
127 inline bool isConstant() const {
128 return LatticeValue == constant || LatticeValue == forcedconstant;
130 inline bool isOverdefined() const { return LatticeValue == overdefined; }
132 inline Constant *getConstant() const {
133 assert(isConstant() && "Cannot get the constant of a non-constant!");
134 return ConstantVal;
138 //===----------------------------------------------------------------------===//
140 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141 /// Constant Propagation.
143 class SCCPSolver : public InstVisitor<SCCPSolver> {
144 LLVMContext *Context;
145 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
146 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
148 /// GlobalValue - If we are tracking any values for the contents of a global
149 /// variable, we keep a mapping from the constant accessor to the element of
150 /// the global, to the currently known value. If the value becomes
151 /// overdefined, it's entry is simply removed from this map.
152 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
154 /// TrackedRetVals - If we are tracking arguments into and the return
155 /// value out of a function, it will have an entry in this map, indicating
156 /// what the known return value for the function is.
157 DenseMap<Function*, LatticeVal> TrackedRetVals;
159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160 /// that return multiple values.
161 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
163 // The reason for two worklists is that overdefined is the lowest state
164 // on the lattice, and moving things to overdefined as fast as possible
165 // makes SCCP converge much faster.
166 // By having a separate worklist, we accomplish this because everything
167 // possibly overdefined will become overdefined at the soonest possible
168 // point.
169 SmallVector<Value*, 64> OverdefinedInstWorkList;
170 SmallVector<Value*, 64> InstWorkList;
173 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176 /// overdefined, despite the fact that the PHI node is overdefined.
177 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
179 /// KnownFeasibleEdges - Entries in this set are edges which have already had
180 /// PHI nodes retriggered.
181 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
182 DenseSet<Edge> KnownFeasibleEdges;
183 public:
184 void setContext(LLVMContext *C) { Context = C; }
186 /// MarkBlockExecutable - This method can be used by clients to mark all of
187 /// the blocks that are known to be intrinsically live in the processed unit.
188 void MarkBlockExecutable(BasicBlock *BB) {
189 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
190 BBExecutable.insert(BB); // Basic block is executable!
191 BBWorkList.push_back(BB); // Add the block to the work list!
194 /// TrackValueOfGlobalVariable - Clients can use this method to
195 /// inform the SCCPSolver that it should track loads and stores to the
196 /// specified global variable if it can. This is only legal to call if
197 /// performing Interprocedural SCCP.
198 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
199 const Type *ElTy = GV->getType()->getElementType();
200 if (ElTy->isFirstClassType()) {
201 LatticeVal &IV = TrackedGlobals[GV];
202 if (!isa<UndefValue>(GV->getInitializer()))
203 IV.markConstant(GV->getInitializer());
207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208 /// and out of the specified function (which cannot have its address taken),
209 /// this method must be called.
210 void AddTrackedFunction(Function *F) {
211 assert(F->hasLocalLinkage() && "Can only track internal functions!");
212 // Add an entry, F -> undef.
213 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
215 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
216 LatticeVal()));
217 } else
218 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
221 /// Solve - Solve for constants and executable blocks.
223 void Solve();
225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226 /// that branches on undef values cannot reach any of their successors.
227 /// However, this is not a safe assumption. After we solve dataflow, this
228 /// method should be use to handle this. If this returns true, the solver
229 /// should be rerun.
230 bool ResolvedUndefsIn(Function &F);
232 bool isBlockExecutable(BasicBlock *BB) const {
233 return BBExecutable.count(BB);
236 /// getValueMapping - Once we have solved for constants, return the mapping of
237 /// LLVM values to LatticeVals.
238 std::map<Value*, LatticeVal> &getValueMapping() {
239 return ValueState;
242 /// getTrackedRetVals - Get the inferred return value map.
244 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
245 return TrackedRetVals;
248 /// getTrackedGlobals - Get and return the set of inferred initializers for
249 /// global variables.
250 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
251 return TrackedGlobals;
254 inline void markOverdefined(Value *V) {
255 markOverdefined(ValueState[V], V);
258 private:
259 // markConstant - Make a value be marked as "constant". If the value
260 // is not already a constant, add it to the instruction work list so that
261 // the users of the instruction are updated later.
263 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
264 if (IV.markConstant(C)) {
265 DEBUG(errs() << "markConstant: " << *C << ": " << *V);
266 InstWorkList.push_back(V);
270 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
271 IV.markForcedConstant(C);
272 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V);
273 InstWorkList.push_back(V);
276 inline void markConstant(Value *V, Constant *C) {
277 markConstant(ValueState[V], V, C);
280 // markOverdefined - Make a value be marked as "overdefined". If the
281 // value is not already overdefined, add it to the overdefined instruction
282 // work list so that the users of the instruction are updated later.
283 inline void markOverdefined(LatticeVal &IV, Value *V) {
284 if (IV.markOverdefined()) {
285 DEBUG(errs() << "markOverdefined: ";
286 if (Function *F = dyn_cast<Function>(V))
287 errs() << "Function '" << F->getName() << "'\n";
288 else
289 errs() << *V);
290 // Only instructions go on the work list
291 OverdefinedInstWorkList.push_back(V);
295 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
296 if (IV.isOverdefined() || MergeWithV.isUndefined())
297 return; // Noop.
298 if (MergeWithV.isOverdefined())
299 markOverdefined(IV, V);
300 else if (IV.isUndefined())
301 markConstant(IV, V, MergeWithV.getConstant());
302 else if (IV.getConstant() != MergeWithV.getConstant())
303 markOverdefined(IV, V);
306 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
307 return mergeInValue(ValueState[V], V, MergeWithV);
311 // getValueState - Return the LatticeVal object that corresponds to the value.
312 // This function is necessary because not all values should start out in the
313 // underdefined state... Argument's should be overdefined, and
314 // constants should be marked as constants. If a value is not known to be an
315 // Instruction object, then use this accessor to get its value from the map.
317 inline LatticeVal &getValueState(Value *V) {
318 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
319 if (I != ValueState.end()) return I->second; // Common case, in the map
321 if (Constant *C = dyn_cast<Constant>(V)) {
322 if (isa<UndefValue>(V)) {
323 // Nothing to do, remain undefined.
324 } else {
325 LatticeVal &LV = ValueState[C];
326 LV.markConstant(C); // Constants are constant
327 return LV;
330 // All others are underdefined by default...
331 return ValueState[V];
334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335 // work list if it is not already executable...
337 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
338 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
339 return; // This edge is already known to be executable!
341 if (BBExecutable.count(Dest)) {
342 DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
343 << " -> " << Dest->getName() << "\n");
345 // The destination is already executable, but we just made an edge
346 // feasible that wasn't before. Revisit the PHI nodes in the block
347 // because they have potentially new operands.
348 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
349 visitPHINode(*cast<PHINode>(I));
351 } else {
352 MarkBlockExecutable(Dest);
356 // getFeasibleSuccessors - Return a vector of booleans to indicate which
357 // successors are reachable from a given terminator instruction.
359 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362 // block to the 'To' basic block is currently feasible...
364 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
366 // OperandChangedState - This method is invoked on all of the users of an
367 // instruction that was just changed state somehow.... Based on this
368 // information, we need to update the specified user of this instruction.
370 void OperandChangedState(User *U) {
371 // Only instructions use other variable values!
372 Instruction &I = cast<Instruction>(*U);
373 if (BBExecutable.count(I.getParent())) // Inst is executable?
374 visit(I);
377 private:
378 friend class InstVisitor<SCCPSolver>;
380 // visit implementations - Something changed in this instruction... Either an
381 // operand made a transition, or the instruction is newly executable. Change
382 // the value type of I to reflect these changes if appropriate.
384 void visitPHINode(PHINode &I);
386 // Terminators
387 void visitReturnInst(ReturnInst &I);
388 void visitTerminatorInst(TerminatorInst &TI);
390 void visitCastInst(CastInst &I);
391 void visitSelectInst(SelectInst &I);
392 void visitBinaryOperator(Instruction &I);
393 void visitCmpInst(CmpInst &I);
394 void visitExtractElementInst(ExtractElementInst &I);
395 void visitInsertElementInst(InsertElementInst &I);
396 void visitShuffleVectorInst(ShuffleVectorInst &I);
397 void visitExtractValueInst(ExtractValueInst &EVI);
398 void visitInsertValueInst(InsertValueInst &IVI);
400 // Instructions that cannot be folded away...
401 void visitStoreInst (Instruction &I);
402 void visitLoadInst (LoadInst &I);
403 void visitGetElementPtrInst(GetElementPtrInst &I);
404 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
405 void visitInvokeInst (InvokeInst &II) {
406 visitCallSite(CallSite::get(&II));
407 visitTerminatorInst(II);
409 void visitCallSite (CallSite CS);
410 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
411 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
412 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
413 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
414 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
415 void visitFreeInst (Instruction &I) { /*returns void*/ }
417 void visitInstruction(Instruction &I) {
418 // If a new instruction is added to LLVM that we don't handle...
419 cerr << "SCCP: Don't know how to handle: " << I;
420 markOverdefined(&I); // Just in case
424 } // end anonymous namespace
427 // getFeasibleSuccessors - Return a vector of booleans to indicate which
428 // successors are reachable from a given terminator instruction.
430 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
431 SmallVector<bool, 16> &Succs) {
432 Succs.resize(TI.getNumSuccessors());
433 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
434 if (BI->isUnconditional()) {
435 Succs[0] = true;
436 } else {
437 LatticeVal &BCValue = getValueState(BI->getCondition());
438 if (BCValue.isOverdefined() ||
439 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
440 // Overdefined condition variables, and branches on unfoldable constant
441 // conditions, mean the branch could go either way.
442 Succs[0] = Succs[1] = true;
443 } else if (BCValue.isConstant()) {
444 // Constant condition variables mean the branch can only go a single way
445 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
448 } else if (isa<InvokeInst>(&TI)) {
449 // Invoke instructions successors are always executable.
450 Succs[0] = Succs[1] = true;
451 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
452 LatticeVal &SCValue = getValueState(SI->getCondition());
453 if (SCValue.isOverdefined() || // Overdefined condition?
454 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
455 // All destinations are executable!
456 Succs.assign(TI.getNumSuccessors(), true);
457 } else if (SCValue.isConstant())
458 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
459 } else {
460 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
465 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
466 // block to the 'To' basic block is currently feasible...
468 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
469 assert(BBExecutable.count(To) && "Dest should always be alive!");
471 // Make sure the source basic block is executable!!
472 if (!BBExecutable.count(From)) return false;
474 // Check to make sure this edge itself is actually feasible now...
475 TerminatorInst *TI = From->getTerminator();
476 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
477 if (BI->isUnconditional())
478 return true;
479 else {
480 LatticeVal &BCValue = getValueState(BI->getCondition());
481 if (BCValue.isOverdefined()) {
482 // Overdefined condition variables mean the branch could go either way.
483 return true;
484 } else if (BCValue.isConstant()) {
485 // Not branching on an evaluatable constant?
486 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
488 // Constant condition variables mean the branch can only go a single way
489 return BI->getSuccessor(BCValue.getConstant() ==
490 ConstantInt::getFalse(*Context)) == To;
492 return false;
494 } else if (isa<InvokeInst>(TI)) {
495 // Invoke instructions successors are always executable.
496 return true;
497 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
498 LatticeVal &SCValue = getValueState(SI->getCondition());
499 if (SCValue.isOverdefined()) { // Overdefined condition?
500 // All destinations are executable!
501 return true;
502 } else if (SCValue.isConstant()) {
503 Constant *CPV = SCValue.getConstant();
504 if (!isa<ConstantInt>(CPV))
505 return true; // not a foldable constant?
507 // Make sure to skip the "default value" which isn't a value
508 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
509 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
510 return SI->getSuccessor(i) == To;
512 // Constant value not equal to any of the branches... must execute
513 // default branch then...
514 return SI->getDefaultDest() == To;
516 return false;
517 } else {
518 #ifndef NDEBUG
519 cerr << "Unknown terminator instruction: " << *TI;
520 #endif
521 llvm_unreachable(0);
525 // visit Implementations - Something changed in this instruction... Either an
526 // operand made a transition, or the instruction is newly executable. Change
527 // the value type of I to reflect these changes if appropriate. This method
528 // makes sure to do the following actions:
530 // 1. If a phi node merges two constants in, and has conflicting value coming
531 // from different branches, or if the PHI node merges in an overdefined
532 // value, then the PHI node becomes overdefined.
533 // 2. If a phi node merges only constants in, and they all agree on value, the
534 // PHI node becomes a constant value equal to that.
535 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
536 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
537 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
538 // 6. If a conditional branch has a value that is constant, make the selected
539 // destination executable
540 // 7. If a conditional branch has a value that is overdefined, make all
541 // successors executable.
543 void SCCPSolver::visitPHINode(PHINode &PN) {
544 LatticeVal &PNIV = getValueState(&PN);
545 if (PNIV.isOverdefined()) {
546 // There may be instructions using this PHI node that are not overdefined
547 // themselves. If so, make sure that they know that the PHI node operand
548 // changed.
549 std::multimap<PHINode*, Instruction*>::iterator I, E;
550 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
551 if (I != E) {
552 SmallVector<Instruction*, 16> Users;
553 for (; I != E; ++I) Users.push_back(I->second);
554 while (!Users.empty()) {
555 visit(Users.back());
556 Users.pop_back();
559 return; // Quick exit
562 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
563 // and slow us down a lot. Just mark them overdefined.
564 if (PN.getNumIncomingValues() > 64) {
565 markOverdefined(PNIV, &PN);
566 return;
569 // Look at all of the executable operands of the PHI node. If any of them
570 // are overdefined, the PHI becomes overdefined as well. If they are all
571 // constant, and they agree with each other, the PHI becomes the identical
572 // constant. If they are constant and don't agree, the PHI is overdefined.
573 // If there are no executable operands, the PHI remains undefined.
575 Constant *OperandVal = 0;
576 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
577 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
578 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
580 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
581 if (IV.isOverdefined()) { // PHI node becomes overdefined!
582 markOverdefined(&PN);
583 return;
586 if (OperandVal == 0) { // Grab the first value...
587 OperandVal = IV.getConstant();
588 } else { // Another value is being merged in!
589 // There is already a reachable operand. If we conflict with it,
590 // then the PHI node becomes overdefined. If we agree with it, we
591 // can continue on.
593 // Check to see if there are two different constants merging...
594 if (IV.getConstant() != OperandVal) {
595 // Yes there is. This means the PHI node is not constant.
596 // You must be overdefined poor PHI.
598 markOverdefined(&PN); // The PHI node now becomes overdefined
599 return; // I'm done analyzing you
605 // If we exited the loop, this means that the PHI node only has constant
606 // arguments that agree with each other(and OperandVal is the constant) or
607 // OperandVal is null because there are no defined incoming arguments. If
608 // this is the case, the PHI remains undefined.
610 if (OperandVal)
611 markConstant(&PN, OperandVal); // Acquire operand value
614 void SCCPSolver::visitReturnInst(ReturnInst &I) {
615 if (I.getNumOperands() == 0) return; // Ret void
617 Function *F = I.getParent()->getParent();
618 // If we are tracking the return value of this function, merge it in.
619 if (!F->hasLocalLinkage())
620 return;
622 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
623 DenseMap<Function*, LatticeVal>::iterator TFRVI =
624 TrackedRetVals.find(F);
625 if (TFRVI != TrackedRetVals.end() &&
626 !TFRVI->second.isOverdefined()) {
627 LatticeVal &IV = getValueState(I.getOperand(0));
628 mergeInValue(TFRVI->second, F, IV);
629 return;
633 // Handle functions that return multiple values.
634 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
635 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
636 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
637 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
638 if (It == TrackedMultipleRetVals.end()) break;
639 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
641 } else if (!TrackedMultipleRetVals.empty() &&
642 I.getNumOperands() == 1 &&
643 isa<StructType>(I.getOperand(0)->getType())) {
644 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
645 i != e; ++i) {
646 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
647 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
648 if (It == TrackedMultipleRetVals.end()) break;
649 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
650 mergeInValue(It->second, F, getValueState(Val));
655 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
656 SmallVector<bool, 16> SuccFeasible;
657 getFeasibleSuccessors(TI, SuccFeasible);
659 BasicBlock *BB = TI.getParent();
661 // Mark all feasible successors executable...
662 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
663 if (SuccFeasible[i])
664 markEdgeExecutable(BB, TI.getSuccessor(i));
667 void SCCPSolver::visitCastInst(CastInst &I) {
668 Value *V = I.getOperand(0);
669 LatticeVal &VState = getValueState(V);
670 if (VState.isOverdefined()) // Inherit overdefinedness of operand
671 markOverdefined(&I);
672 else if (VState.isConstant()) // Propagate constant value
673 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
674 VState.getConstant(), I.getType()));
677 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
678 Value *Aggr = EVI.getAggregateOperand();
680 // If the operand to the extractvalue is an undef, the result is undef.
681 if (isa<UndefValue>(Aggr))
682 return;
684 // Currently only handle single-index extractvalues.
685 if (EVI.getNumIndices() != 1) {
686 markOverdefined(&EVI);
687 return;
690 Function *F = 0;
691 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
692 F = CI->getCalledFunction();
693 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
694 F = II->getCalledFunction();
696 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
697 // result back!
698 if (F == 0 || TrackedMultipleRetVals.empty()) {
699 markOverdefined(&EVI);
700 return;
703 // See if we are tracking the result of the callee. If not tracking this
704 // function (for example, it is a declaration) just move to overdefined.
705 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
706 markOverdefined(&EVI);
707 return;
710 // Otherwise, the value will be merged in here as a result of CallSite
711 // handling.
714 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
715 Value *Aggr = IVI.getAggregateOperand();
716 Value *Val = IVI.getInsertedValueOperand();
718 // If the operands to the insertvalue are undef, the result is undef.
719 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
720 return;
722 // Currently only handle single-index insertvalues.
723 if (IVI.getNumIndices() != 1) {
724 markOverdefined(&IVI);
725 return;
728 // Currently only handle insertvalue instructions that are in a single-use
729 // chain that builds up a return value.
730 for (const InsertValueInst *TmpIVI = &IVI; ; ) {
731 if (!TmpIVI->hasOneUse()) {
732 markOverdefined(&IVI);
733 return;
735 const Value *V = *TmpIVI->use_begin();
736 if (isa<ReturnInst>(V))
737 break;
738 TmpIVI = dyn_cast<InsertValueInst>(V);
739 if (!TmpIVI) {
740 markOverdefined(&IVI);
741 return;
745 // See if we are tracking the result of the callee.
746 Function *F = IVI.getParent()->getParent();
747 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
748 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
750 // Merge in the inserted member value.
751 if (It != TrackedMultipleRetVals.end())
752 mergeInValue(It->second, F, getValueState(Val));
754 // Mark the aggregate result of the IVI overdefined; any tracking that we do
755 // will be done on the individual member values.
756 markOverdefined(&IVI);
759 void SCCPSolver::visitSelectInst(SelectInst &I) {
760 LatticeVal &CondValue = getValueState(I.getCondition());
761 if (CondValue.isUndefined())
762 return;
763 if (CondValue.isConstant()) {
764 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
765 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
766 : I.getFalseValue()));
767 return;
771 // Otherwise, the condition is overdefined or a constant we can't evaluate.
772 // See if we can produce something better than overdefined based on the T/F
773 // value.
774 LatticeVal &TVal = getValueState(I.getTrueValue());
775 LatticeVal &FVal = getValueState(I.getFalseValue());
777 // select ?, C, C -> C.
778 if (TVal.isConstant() && FVal.isConstant() &&
779 TVal.getConstant() == FVal.getConstant()) {
780 markConstant(&I, FVal.getConstant());
781 return;
784 if (TVal.isUndefined()) { // select ?, undef, X -> X.
785 mergeInValue(&I, FVal);
786 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
787 mergeInValue(&I, TVal);
788 } else {
789 markOverdefined(&I);
793 // Handle BinaryOperators and Shift Instructions...
794 void SCCPSolver::visitBinaryOperator(Instruction &I) {
795 LatticeVal &IV = ValueState[&I];
796 if (IV.isOverdefined()) return;
798 LatticeVal &V1State = getValueState(I.getOperand(0));
799 LatticeVal &V2State = getValueState(I.getOperand(1));
801 if (V1State.isOverdefined() || V2State.isOverdefined()) {
802 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
803 // operand is overdefined.
804 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
805 LatticeVal *NonOverdefVal = 0;
806 if (!V1State.isOverdefined()) {
807 NonOverdefVal = &V1State;
808 } else if (!V2State.isOverdefined()) {
809 NonOverdefVal = &V2State;
812 if (NonOverdefVal) {
813 if (NonOverdefVal->isUndefined()) {
814 // Could annihilate value.
815 if (I.getOpcode() == Instruction::And)
816 markConstant(IV, &I, Constant::getNullValue(I.getType()));
817 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
818 markConstant(IV, &I, Constant::getAllOnesValue(PT));
819 else
820 markConstant(IV, &I,
821 Constant::getAllOnesValue(I.getType()));
822 return;
823 } else {
824 if (I.getOpcode() == Instruction::And) {
825 if (NonOverdefVal->getConstant()->isNullValue()) {
826 markConstant(IV, &I, NonOverdefVal->getConstant());
827 return; // X and 0 = 0
829 } else {
830 if (ConstantInt *CI =
831 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
832 if (CI->isAllOnesValue()) {
833 markConstant(IV, &I, NonOverdefVal->getConstant());
834 return; // X or -1 = -1
842 // If both operands are PHI nodes, it is possible that this instruction has
843 // a constant value, despite the fact that the PHI node doesn't. Check for
844 // this condition now.
845 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
846 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
847 if (PN1->getParent() == PN2->getParent()) {
848 // Since the two PHI nodes are in the same basic block, they must have
849 // entries for the same predecessors. Walk the predecessor list, and
850 // if all of the incoming values are constants, and the result of
851 // evaluating this expression with all incoming value pairs is the
852 // same, then this expression is a constant even though the PHI node
853 // is not a constant!
854 LatticeVal Result;
855 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
856 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
857 BasicBlock *InBlock = PN1->getIncomingBlock(i);
858 LatticeVal &In2 =
859 getValueState(PN2->getIncomingValueForBlock(InBlock));
861 if (In1.isOverdefined() || In2.isOverdefined()) {
862 Result.markOverdefined();
863 break; // Cannot fold this operation over the PHI nodes!
864 } else if (In1.isConstant() && In2.isConstant()) {
865 Constant *V =
866 ConstantExpr::get(I.getOpcode(), In1.getConstant(),
867 In2.getConstant());
868 if (Result.isUndefined())
869 Result.markConstant(V);
870 else if (Result.isConstant() && Result.getConstant() != V) {
871 Result.markOverdefined();
872 break;
877 // If we found a constant value here, then we know the instruction is
878 // constant despite the fact that the PHI nodes are overdefined.
879 if (Result.isConstant()) {
880 markConstant(IV, &I, Result.getConstant());
881 // Remember that this instruction is virtually using the PHI node
882 // operands.
883 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
884 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
885 return;
886 } else if (Result.isUndefined()) {
887 return;
890 // Okay, this really is overdefined now. Since we might have
891 // speculatively thought that this was not overdefined before, and
892 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
893 // make sure to clean out any entries that we put there, for
894 // efficiency.
895 std::multimap<PHINode*, Instruction*>::iterator It, E;
896 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
897 while (It != E) {
898 if (It->second == &I) {
899 UsersOfOverdefinedPHIs.erase(It++);
900 } else
901 ++It;
903 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
904 while (It != E) {
905 if (It->second == &I) {
906 UsersOfOverdefinedPHIs.erase(It++);
907 } else
908 ++It;
912 markOverdefined(IV, &I);
913 } else if (V1State.isConstant() && V2State.isConstant()) {
914 markConstant(IV, &I,
915 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
916 V2State.getConstant()));
920 // Handle ICmpInst instruction...
921 void SCCPSolver::visitCmpInst(CmpInst &I) {
922 LatticeVal &IV = ValueState[&I];
923 if (IV.isOverdefined()) return;
925 LatticeVal &V1State = getValueState(I.getOperand(0));
926 LatticeVal &V2State = getValueState(I.getOperand(1));
928 if (V1State.isOverdefined() || V2State.isOverdefined()) {
929 // If both operands are PHI nodes, it is possible that this instruction has
930 // a constant value, despite the fact that the PHI node doesn't. Check for
931 // this condition now.
932 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
933 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
934 if (PN1->getParent() == PN2->getParent()) {
935 // Since the two PHI nodes are in the same basic block, they must have
936 // entries for the same predecessors. Walk the predecessor list, and
937 // if all of the incoming values are constants, and the result of
938 // evaluating this expression with all incoming value pairs is the
939 // same, then this expression is a constant even though the PHI node
940 // is not a constant!
941 LatticeVal Result;
942 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
943 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
944 BasicBlock *InBlock = PN1->getIncomingBlock(i);
945 LatticeVal &In2 =
946 getValueState(PN2->getIncomingValueForBlock(InBlock));
948 if (In1.isOverdefined() || In2.isOverdefined()) {
949 Result.markOverdefined();
950 break; // Cannot fold this operation over the PHI nodes!
951 } else if (In1.isConstant() && In2.isConstant()) {
952 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
953 In1.getConstant(),
954 In2.getConstant());
955 if (Result.isUndefined())
956 Result.markConstant(V);
957 else if (Result.isConstant() && Result.getConstant() != V) {
958 Result.markOverdefined();
959 break;
964 // If we found a constant value here, then we know the instruction is
965 // constant despite the fact that the PHI nodes are overdefined.
966 if (Result.isConstant()) {
967 markConstant(IV, &I, Result.getConstant());
968 // Remember that this instruction is virtually using the PHI node
969 // operands.
970 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
971 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
972 return;
973 } else if (Result.isUndefined()) {
974 return;
977 // Okay, this really is overdefined now. Since we might have
978 // speculatively thought that this was not overdefined before, and
979 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
980 // make sure to clean out any entries that we put there, for
981 // efficiency.
982 std::multimap<PHINode*, Instruction*>::iterator It, E;
983 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
984 while (It != E) {
985 if (It->second == &I) {
986 UsersOfOverdefinedPHIs.erase(It++);
987 } else
988 ++It;
990 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
991 while (It != E) {
992 if (It->second == &I) {
993 UsersOfOverdefinedPHIs.erase(It++);
994 } else
995 ++It;
999 markOverdefined(IV, &I);
1000 } else if (V1State.isConstant() && V2State.isConstant()) {
1001 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1002 V1State.getConstant(),
1003 V2State.getConstant()));
1007 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1008 // FIXME : SCCP does not handle vectors properly.
1009 markOverdefined(&I);
1010 return;
1012 #if 0
1013 LatticeVal &ValState = getValueState(I.getOperand(0));
1014 LatticeVal &IdxState = getValueState(I.getOperand(1));
1016 if (ValState.isOverdefined() || IdxState.isOverdefined())
1017 markOverdefined(&I);
1018 else if(ValState.isConstant() && IdxState.isConstant())
1019 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1020 IdxState.getConstant()));
1021 #endif
1024 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1025 // FIXME : SCCP does not handle vectors properly.
1026 markOverdefined(&I);
1027 return;
1028 #if 0
1029 LatticeVal &ValState = getValueState(I.getOperand(0));
1030 LatticeVal &EltState = getValueState(I.getOperand(1));
1031 LatticeVal &IdxState = getValueState(I.getOperand(2));
1033 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1034 IdxState.isOverdefined())
1035 markOverdefined(&I);
1036 else if(ValState.isConstant() && EltState.isConstant() &&
1037 IdxState.isConstant())
1038 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1039 EltState.getConstant(),
1040 IdxState.getConstant()));
1041 else if (ValState.isUndefined() && EltState.isConstant() &&
1042 IdxState.isConstant())
1043 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1044 EltState.getConstant(),
1045 IdxState.getConstant()));
1046 #endif
1049 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1050 // FIXME : SCCP does not handle vectors properly.
1051 markOverdefined(&I);
1052 return;
1053 #if 0
1054 LatticeVal &V1State = getValueState(I.getOperand(0));
1055 LatticeVal &V2State = getValueState(I.getOperand(1));
1056 LatticeVal &MaskState = getValueState(I.getOperand(2));
1058 if (MaskState.isUndefined() ||
1059 (V1State.isUndefined() && V2State.isUndefined()))
1060 return; // Undefined output if mask or both inputs undefined.
1062 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1063 MaskState.isOverdefined()) {
1064 markOverdefined(&I);
1065 } else {
1066 // A mix of constant/undef inputs.
1067 Constant *V1 = V1State.isConstant() ?
1068 V1State.getConstant() : UndefValue::get(I.getType());
1069 Constant *V2 = V2State.isConstant() ?
1070 V2State.getConstant() : UndefValue::get(I.getType());
1071 Constant *Mask = MaskState.isConstant() ?
1072 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1073 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1075 #endif
1078 // Handle getelementptr instructions... if all operands are constants then we
1079 // can turn this into a getelementptr ConstantExpr.
1081 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1082 LatticeVal &IV = ValueState[&I];
1083 if (IV.isOverdefined()) return;
1085 SmallVector<Constant*, 8> Operands;
1086 Operands.reserve(I.getNumOperands());
1088 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1089 LatticeVal &State = getValueState(I.getOperand(i));
1090 if (State.isUndefined())
1091 return; // Operands are not resolved yet...
1092 else if (State.isOverdefined()) {
1093 markOverdefined(IV, &I);
1094 return;
1096 assert(State.isConstant() && "Unknown state!");
1097 Operands.push_back(State.getConstant());
1100 Constant *Ptr = Operands[0];
1101 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1103 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1104 Operands.size()));
1107 void SCCPSolver::visitStoreInst(Instruction &SI) {
1108 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1109 return;
1110 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1111 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1112 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1114 // Get the value we are storing into the global.
1115 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1117 mergeInValue(I->second, GV, PtrVal);
1118 if (I->second.isOverdefined())
1119 TrackedGlobals.erase(I); // No need to keep tracking this!
1123 // Handle load instructions. If the operand is a constant pointer to a constant
1124 // global, we can replace the load with the loaded constant value!
1125 void SCCPSolver::visitLoadInst(LoadInst &I) {
1126 LatticeVal &IV = ValueState[&I];
1127 if (IV.isOverdefined()) return;
1129 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1130 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1131 if (PtrVal.isConstant() && !I.isVolatile()) {
1132 Value *Ptr = PtrVal.getConstant();
1133 // TODO: Consider a target hook for valid address spaces for this xform.
1134 if (isa<ConstantPointerNull>(Ptr) &&
1135 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1136 // load null -> null
1137 markConstant(IV, &I, Constant::getNullValue(I.getType()));
1138 return;
1141 // Transform load (constant global) into the value loaded.
1142 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1143 if (GV->isConstant()) {
1144 if (GV->hasDefinitiveInitializer()) {
1145 markConstant(IV, &I, GV->getInitializer());
1146 return;
1148 } else if (!TrackedGlobals.empty()) {
1149 // If we are tracking this global, merge in the known value for it.
1150 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1151 TrackedGlobals.find(GV);
1152 if (It != TrackedGlobals.end()) {
1153 mergeInValue(IV, &I, It->second);
1154 return;
1159 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1161 if (CE->getOpcode() == Instruction::GetElementPtr)
1162 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1163 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1164 if (Constant *V =
1165 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1166 *Context)) {
1167 markConstant(IV, &I, V);
1168 return;
1172 // Otherwise we cannot say for certain what value this load will produce.
1173 // Bail out.
1174 markOverdefined(IV, &I);
1177 void SCCPSolver::visitCallSite(CallSite CS) {
1178 Function *F = CS.getCalledFunction();
1179 Instruction *I = CS.getInstruction();
1181 // The common case is that we aren't tracking the callee, either because we
1182 // are not doing interprocedural analysis or the callee is indirect, or is
1183 // external. Handle these cases first.
1184 if (F == 0 || !F->hasLocalLinkage()) {
1185 CallOverdefined:
1186 // Void return and not tracking callee, just bail.
1187 if (I->getType() == Type::VoidTy) return;
1189 // Otherwise, if we have a single return value case, and if the function is
1190 // a declaration, maybe we can constant fold it.
1191 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1192 canConstantFoldCallTo(F)) {
1194 SmallVector<Constant*, 8> Operands;
1195 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1196 AI != E; ++AI) {
1197 LatticeVal &State = getValueState(*AI);
1198 if (State.isUndefined())
1199 return; // Operands are not resolved yet.
1200 else if (State.isOverdefined()) {
1201 markOverdefined(I);
1202 return;
1204 assert(State.isConstant() && "Unknown state!");
1205 Operands.push_back(State.getConstant());
1208 // If we can constant fold this, mark the result of the call as a
1209 // constant.
1210 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1211 markConstant(I, C);
1212 return;
1216 // Otherwise, we don't know anything about this call, mark it overdefined.
1217 markOverdefined(I);
1218 return;
1221 // If this is a single/zero retval case, see if we're tracking the function.
1222 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1223 if (TFRVI != TrackedRetVals.end()) {
1224 // If so, propagate the return value of the callee into this call result.
1225 mergeInValue(I, TFRVI->second);
1226 } else if (isa<StructType>(I->getType())) {
1227 // Check to see if we're tracking this callee, if not, handle it in the
1228 // common path above.
1229 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1230 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1231 if (TMRVI == TrackedMultipleRetVals.end())
1232 goto CallOverdefined;
1234 // If we are tracking this callee, propagate the return values of the call
1235 // into this call site. We do this by walking all the uses. Single-index
1236 // ExtractValueInst uses can be tracked; anything more complicated is
1237 // currently handled conservatively.
1238 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1239 UI != E; ++UI) {
1240 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1241 if (EVI->getNumIndices() == 1) {
1242 mergeInValue(EVI,
1243 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1244 continue;
1247 // The aggregate value is used in a way not handled here. Assume nothing.
1248 markOverdefined(*UI);
1250 } else {
1251 // Otherwise we're not tracking this callee, so handle it in the
1252 // common path above.
1253 goto CallOverdefined;
1256 // Finally, if this is the first call to the function hit, mark its entry
1257 // block executable.
1258 if (!BBExecutable.count(F->begin()))
1259 MarkBlockExecutable(F->begin());
1261 // Propagate information from this call site into the callee.
1262 CallSite::arg_iterator CAI = CS.arg_begin();
1263 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1264 AI != E; ++AI, ++CAI) {
1265 LatticeVal &IV = ValueState[AI];
1266 if (!IV.isOverdefined())
1267 mergeInValue(IV, AI, getValueState(*CAI));
1272 void SCCPSolver::Solve() {
1273 // Process the work lists until they are empty!
1274 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1275 !OverdefinedInstWorkList.empty()) {
1276 // Process the instruction work list...
1277 while (!OverdefinedInstWorkList.empty()) {
1278 Value *I = OverdefinedInstWorkList.back();
1279 OverdefinedInstWorkList.pop_back();
1281 DEBUG(errs() << "\nPopped off OI-WL: " << *I);
1283 // "I" got into the work list because it either made the transition from
1284 // bottom to constant
1286 // Anything on this worklist that is overdefined need not be visited
1287 // since all of its users will have already been marked as overdefined
1288 // Update all of the users of this instruction's value...
1290 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1291 UI != E; ++UI)
1292 OperandChangedState(*UI);
1294 // Process the instruction work list...
1295 while (!InstWorkList.empty()) {
1296 Value *I = InstWorkList.back();
1297 InstWorkList.pop_back();
1299 DEBUG(errs() << "\nPopped off I-WL: " << *I);
1301 // "I" got into the work list because it either made the transition from
1302 // bottom to constant
1304 // Anything on this worklist that is overdefined need not be visited
1305 // since all of its users will have already been marked as overdefined.
1306 // Update all of the users of this instruction's value...
1308 if (!getValueState(I).isOverdefined())
1309 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1310 UI != E; ++UI)
1311 OperandChangedState(*UI);
1314 // Process the basic block work list...
1315 while (!BBWorkList.empty()) {
1316 BasicBlock *BB = BBWorkList.back();
1317 BBWorkList.pop_back();
1319 DEBUG(errs() << "\nPopped off BBWL: " << *BB);
1321 // Notify all instructions in this basic block that they are newly
1322 // executable.
1323 visit(BB);
1328 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1329 /// that branches on undef values cannot reach any of their successors.
1330 /// However, this is not a safe assumption. After we solve dataflow, this
1331 /// method should be use to handle this. If this returns true, the solver
1332 /// should be rerun.
1334 /// This method handles this by finding an unresolved branch and marking it one
1335 /// of the edges from the block as being feasible, even though the condition
1336 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1337 /// CFG and only slightly pessimizes the analysis results (by marking one,
1338 /// potentially infeasible, edge feasible). This cannot usefully modify the
1339 /// constraints on the condition of the branch, as that would impact other users
1340 /// of the value.
1342 /// This scan also checks for values that use undefs, whose results are actually
1343 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1344 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1345 /// even if X isn't defined.
1346 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1347 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1348 if (!BBExecutable.count(BB))
1349 continue;
1351 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1352 // Look for instructions which produce undef values.
1353 if (I->getType() == Type::VoidTy) continue;
1355 LatticeVal &LV = getValueState(I);
1356 if (!LV.isUndefined()) continue;
1358 // Get the lattice values of the first two operands for use below.
1359 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1360 LatticeVal Op1LV;
1361 if (I->getNumOperands() == 2) {
1362 // If this is a two-operand instruction, and if both operands are
1363 // undefs, the result stays undef.
1364 Op1LV = getValueState(I->getOperand(1));
1365 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1366 continue;
1369 // If this is an instructions whose result is defined even if the input is
1370 // not fully defined, propagate the information.
1371 const Type *ITy = I->getType();
1372 switch (I->getOpcode()) {
1373 default: break; // Leave the instruction as an undef.
1374 case Instruction::ZExt:
1375 // After a zero extend, we know the top part is zero. SExt doesn't have
1376 // to be handled here, because we don't know whether the top part is 1's
1377 // or 0's.
1378 assert(Op0LV.isUndefined());
1379 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1380 return true;
1381 case Instruction::Mul:
1382 case Instruction::And:
1383 // undef * X -> 0. X could be zero.
1384 // undef & X -> 0. X could be zero.
1385 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1386 return true;
1388 case Instruction::Or:
1389 // undef | X -> -1. X could be -1.
1390 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1391 markForcedConstant(LV, I,
1392 Constant::getAllOnesValue(PTy));
1393 else
1394 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1395 return true;
1397 case Instruction::SDiv:
1398 case Instruction::UDiv:
1399 case Instruction::SRem:
1400 case Instruction::URem:
1401 // X / undef -> undef. No change.
1402 // X % undef -> undef. No change.
1403 if (Op1LV.isUndefined()) break;
1405 // undef / X -> 0. X could be maxint.
1406 // undef % X -> 0. X could be 1.
1407 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1408 return true;
1410 case Instruction::AShr:
1411 // undef >>s X -> undef. No change.
1412 if (Op0LV.isUndefined()) break;
1414 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1415 if (Op0LV.isConstant())
1416 markForcedConstant(LV, I, Op0LV.getConstant());
1417 else
1418 markOverdefined(LV, I);
1419 return true;
1420 case Instruction::LShr:
1421 case Instruction::Shl:
1422 // undef >> X -> undef. No change.
1423 // undef << X -> undef. No change.
1424 if (Op0LV.isUndefined()) break;
1426 // X >> undef -> 0. X could be 0.
1427 // X << undef -> 0. X could be 0.
1428 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1429 return true;
1430 case Instruction::Select:
1431 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1432 if (Op0LV.isUndefined()) {
1433 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1434 Op1LV = getValueState(I->getOperand(2));
1435 } else if (Op1LV.isUndefined()) {
1436 // c ? undef : undef -> undef. No change.
1437 Op1LV = getValueState(I->getOperand(2));
1438 if (Op1LV.isUndefined())
1439 break;
1440 // Otherwise, c ? undef : x -> x.
1441 } else {
1442 // Leave Op1LV as Operand(1)'s LatticeValue.
1445 if (Op1LV.isConstant())
1446 markForcedConstant(LV, I, Op1LV.getConstant());
1447 else
1448 markOverdefined(LV, I);
1449 return true;
1450 case Instruction::Call:
1451 // If a call has an undef result, it is because it is constant foldable
1452 // but one of the inputs was undef. Just force the result to
1453 // overdefined.
1454 markOverdefined(LV, I);
1455 return true;
1459 TerminatorInst *TI = BB->getTerminator();
1460 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1461 if (!BI->isConditional()) continue;
1462 if (!getValueState(BI->getCondition()).isUndefined())
1463 continue;
1464 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1465 if (SI->getNumSuccessors()<2) // no cases
1466 continue;
1467 if (!getValueState(SI->getCondition()).isUndefined())
1468 continue;
1469 } else {
1470 continue;
1473 // If the edge to the second successor isn't thought to be feasible yet,
1474 // mark it so now. We pick the second one so that this goes to some
1475 // enumerated value in a switch instead of going to the default destination.
1476 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1477 continue;
1479 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1480 // and return. This will make other blocks reachable, which will allow new
1481 // values to be discovered and existing ones to be moved in the lattice.
1482 markEdgeExecutable(BB, TI->getSuccessor(1));
1484 // This must be a conditional branch of switch on undef. At this point,
1485 // force the old terminator to branch to the first successor. This is
1486 // required because we are now influencing the dataflow of the function with
1487 // the assumption that this edge is taken. If we leave the branch condition
1488 // as undef, then further analysis could think the undef went another way
1489 // leading to an inconsistent set of conclusions.
1490 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1491 BI->setCondition(ConstantInt::getFalse(*Context));
1492 } else {
1493 SwitchInst *SI = cast<SwitchInst>(TI);
1494 SI->setCondition(SI->getCaseValue(1));
1497 return true;
1500 return false;
1504 namespace {
1505 //===--------------------------------------------------------------------===//
1507 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1508 /// Sparse Conditional Constant Propagator.
1510 struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1511 static char ID; // Pass identification, replacement for typeid
1512 SCCP() : FunctionPass(&ID) {}
1514 // runOnFunction - Run the Sparse Conditional Constant Propagation
1515 // algorithm, and return true if the function was modified.
1517 bool runOnFunction(Function &F);
1519 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1520 AU.setPreservesCFG();
1523 } // end anonymous namespace
1525 char SCCP::ID = 0;
1526 static RegisterPass<SCCP>
1527 X("sccp", "Sparse Conditional Constant Propagation");
1529 // createSCCPPass - This is the public interface to this file...
1530 FunctionPass *llvm::createSCCPPass() {
1531 return new SCCP();
1535 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1536 // and return true if the function was modified.
1538 bool SCCP::runOnFunction(Function &F) {
1539 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1540 SCCPSolver Solver;
1541 Solver.setContext(&F.getContext());
1543 // Mark the first block of the function as being executable.
1544 Solver.MarkBlockExecutable(F.begin());
1546 // Mark all arguments to the function as being overdefined.
1547 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1548 Solver.markOverdefined(AI);
1550 // Solve for constants.
1551 bool ResolvedUndefs = true;
1552 while (ResolvedUndefs) {
1553 Solver.Solve();
1554 DEBUG(errs() << "RESOLVING UNDEFs\n");
1555 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1558 bool MadeChanges = false;
1560 // If we decided that there are basic blocks that are dead in this function,
1561 // delete their contents now. Note that we cannot actually delete the blocks,
1562 // as we cannot modify the CFG of the function.
1564 SmallVector<Instruction*, 512> Insts;
1565 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1567 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1568 if (!Solver.isBlockExecutable(BB)) {
1569 DEBUG(errs() << " BasicBlock Dead:" << *BB);
1570 ++NumDeadBlocks;
1572 // Delete the instructions backwards, as it has a reduced likelihood of
1573 // having to update as many def-use and use-def chains.
1574 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1575 I != E; ++I)
1576 Insts.push_back(I);
1577 while (!Insts.empty()) {
1578 Instruction *I = Insts.back();
1579 Insts.pop_back();
1580 if (!I->use_empty())
1581 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1582 BB->getInstList().erase(I);
1583 MadeChanges = true;
1584 ++NumInstRemoved;
1586 } else {
1587 // Iterate over all of the instructions in a function, replacing them with
1588 // constants if we have found them to be of constant values.
1590 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1591 Instruction *Inst = BI++;
1592 if (Inst->getType() == Type::VoidTy ||
1593 isa<TerminatorInst>(Inst))
1594 continue;
1596 LatticeVal &IV = Values[Inst];
1597 if (!IV.isConstant() && !IV.isUndefined())
1598 continue;
1600 Constant *Const = IV.isConstant()
1601 ? IV.getConstant() : UndefValue::get(Inst->getType());
1602 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
1604 // Replaces all of the uses of a variable with uses of the constant.
1605 Inst->replaceAllUsesWith(Const);
1607 // Delete the instruction.
1608 Inst->eraseFromParent();
1610 // Hey, we just changed something!
1611 MadeChanges = true;
1612 ++NumInstRemoved;
1616 return MadeChanges;
1619 namespace {
1620 //===--------------------------------------------------------------------===//
1622 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1623 /// Constant Propagation.
1625 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1626 static char ID;
1627 IPSCCP() : ModulePass(&ID) {}
1628 bool runOnModule(Module &M);
1630 } // end anonymous namespace
1632 char IPSCCP::ID = 0;
1633 static RegisterPass<IPSCCP>
1634 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1636 // createIPSCCPPass - This is the public interface to this file...
1637 ModulePass *llvm::createIPSCCPPass() {
1638 return new IPSCCP();
1642 static bool AddressIsTaken(GlobalValue *GV) {
1643 // Delete any dead constantexpr klingons.
1644 GV->removeDeadConstantUsers();
1646 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1647 UI != E; ++UI)
1648 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1649 if (SI->getOperand(0) == GV || SI->isVolatile())
1650 return true; // Storing addr of GV.
1651 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1652 // Make sure we are calling the function, not passing the address.
1653 CallSite CS = CallSite::get(cast<Instruction>(*UI));
1654 if (CS.hasArgument(GV))
1655 return true;
1656 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1657 if (LI->isVolatile())
1658 return true;
1659 } else {
1660 return true;
1662 return false;
1665 bool IPSCCP::runOnModule(Module &M) {
1666 LLVMContext *Context = &M.getContext();
1668 SCCPSolver Solver;
1669 Solver.setContext(Context);
1671 // Loop over all functions, marking arguments to those with their addresses
1672 // taken or that are external as overdefined.
1674 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1675 if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1676 if (!F->isDeclaration())
1677 Solver.MarkBlockExecutable(F->begin());
1678 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1679 AI != E; ++AI)
1680 Solver.markOverdefined(AI);
1681 } else {
1682 Solver.AddTrackedFunction(F);
1685 // Loop over global variables. We inform the solver about any internal global
1686 // variables that do not have their 'addresses taken'. If they don't have
1687 // their addresses taken, we can propagate constants through them.
1688 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1689 G != E; ++G)
1690 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1691 Solver.TrackValueOfGlobalVariable(G);
1693 // Solve for constants.
1694 bool ResolvedUndefs = true;
1695 while (ResolvedUndefs) {
1696 Solver.Solve();
1698 DEBUG(errs() << "RESOLVING UNDEFS\n");
1699 ResolvedUndefs = false;
1700 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1701 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1704 bool MadeChanges = false;
1706 // Iterate over all of the instructions in the module, replacing them with
1707 // constants if we have found them to be of constant values.
1709 SmallVector<Instruction*, 512> Insts;
1710 SmallVector<BasicBlock*, 512> BlocksToErase;
1711 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1713 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1714 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1715 AI != E; ++AI)
1716 if (!AI->use_empty()) {
1717 LatticeVal &IV = Values[AI];
1718 if (IV.isConstant() || IV.isUndefined()) {
1719 Constant *CST = IV.isConstant() ?
1720 IV.getConstant() : UndefValue::get(AI->getType());
1721 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1723 // Replaces all of the uses of a variable with uses of the
1724 // constant.
1725 AI->replaceAllUsesWith(CST);
1726 ++IPNumArgsElimed;
1730 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1731 if (!Solver.isBlockExecutable(BB)) {
1732 DEBUG(errs() << " BasicBlock Dead:" << *BB);
1733 ++IPNumDeadBlocks;
1735 // Delete the instructions backwards, as it has a reduced likelihood of
1736 // having to update as many def-use and use-def chains.
1737 TerminatorInst *TI = BB->getTerminator();
1738 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1739 Insts.push_back(I);
1741 while (!Insts.empty()) {
1742 Instruction *I = Insts.back();
1743 Insts.pop_back();
1744 if (!I->use_empty())
1745 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1746 BB->getInstList().erase(I);
1747 MadeChanges = true;
1748 ++IPNumInstRemoved;
1751 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1752 BasicBlock *Succ = TI->getSuccessor(i);
1753 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1754 TI->getSuccessor(i)->removePredecessor(BB);
1756 if (!TI->use_empty())
1757 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1758 BB->getInstList().erase(TI);
1760 if (&*BB != &F->front())
1761 BlocksToErase.push_back(BB);
1762 else
1763 new UnreachableInst(BB);
1765 } else {
1766 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1767 Instruction *Inst = BI++;
1768 if (Inst->getType() == Type::VoidTy)
1769 continue;
1771 LatticeVal &IV = Values[Inst];
1772 if (!IV.isConstant() && !IV.isUndefined())
1773 continue;
1775 Constant *Const = IV.isConstant()
1776 ? IV.getConstant() : UndefValue::get(Inst->getType());
1777 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
1779 // Replaces all of the uses of a variable with uses of the
1780 // constant.
1781 Inst->replaceAllUsesWith(Const);
1783 // Delete the instruction.
1784 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1785 Inst->eraseFromParent();
1787 // Hey, we just changed something!
1788 MadeChanges = true;
1789 ++IPNumInstRemoved;
1793 // Now that all instructions in the function are constant folded, erase dead
1794 // blocks, because we can now use ConstantFoldTerminator to get rid of
1795 // in-edges.
1796 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1797 // If there are any PHI nodes in this successor, drop entries for BB now.
1798 BasicBlock *DeadBB = BlocksToErase[i];
1799 while (!DeadBB->use_empty()) {
1800 Instruction *I = cast<Instruction>(DeadBB->use_back());
1801 bool Folded = ConstantFoldTerminator(I->getParent());
1802 if (!Folded) {
1803 // The constant folder may not have been able to fold the terminator
1804 // if this is a branch or switch on undef. Fold it manually as a
1805 // branch to the first successor.
1806 #ifndef NDEBUG
1807 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1808 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1809 "Branch should be foldable!");
1810 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1811 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1812 } else {
1813 llvm_unreachable("Didn't fold away reference to block!");
1815 #endif
1817 // Make this an uncond branch to the first successor.
1818 TerminatorInst *TI = I->getParent()->getTerminator();
1819 BranchInst::Create(TI->getSuccessor(0), TI);
1821 // Remove entries in successor phi nodes to remove edges.
1822 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1823 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1825 // Remove the old terminator.
1826 TI->eraseFromParent();
1830 // Finally, delete the basic block.
1831 F->getBasicBlockList().erase(DeadBB);
1833 BlocksToErase.clear();
1836 // If we inferred constant or undef return values for a function, we replaced
1837 // all call uses with the inferred value. This means we don't need to bother
1838 // actually returning anything from the function. Replace all return
1839 // instructions with return undef.
1840 // TODO: Process multiple value ret instructions also.
1841 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1842 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1843 E = RV.end(); I != E; ++I)
1844 if (!I->second.isOverdefined() &&
1845 I->first->getReturnType() != Type::VoidTy) {
1846 Function *F = I->first;
1847 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1848 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1849 if (!isa<UndefValue>(RI->getOperand(0)))
1850 RI->setOperand(0, UndefValue::get(F->getReturnType()));
1853 // If we infered constant or undef values for globals variables, we can delete
1854 // the global and any stores that remain to it.
1855 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1856 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1857 E = TG.end(); I != E; ++I) {
1858 GlobalVariable *GV = I->first;
1859 assert(!I->second.isOverdefined() &&
1860 "Overdefined values should have been taken out of the map!");
1861 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1862 while (!GV->use_empty()) {
1863 StoreInst *SI = cast<StoreInst>(GV->use_back());
1864 SI->eraseFromParent();
1866 M.getGlobalList().erase(GV);
1867 ++IPNumGlobalConst;
1870 return MadeChanges;