Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blobcacf3dbb4b35a8afa27762f43f5185957d7218f9
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/IRBuilder.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 using namespace llvm;
46 STATISTIC(NumReplaced, "Number of allocas broken up");
47 STATISTIC(NumPromoted, "Number of allocas promoted");
48 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
51 namespace {
52 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
53 static char ID; // Pass identification, replacement for typeid
54 explicit SROA(signed T = -1) : FunctionPass(&ID) {
55 if (T == -1)
56 SRThreshold = 128;
57 else
58 SRThreshold = T;
61 bool runOnFunction(Function &F);
63 bool performScalarRepl(Function &F);
64 bool performPromotion(Function &F);
66 // getAnalysisUsage - This pass does not require any passes, but we know it
67 // will not alter the CFG, so say so.
68 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69 AU.addRequired<DominatorTree>();
70 AU.addRequired<DominanceFrontier>();
71 AU.addRequired<TargetData>();
72 AU.setPreservesCFG();
75 private:
76 TargetData *TD;
78 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
79 /// information about the uses. All these fields are initialized to false
80 /// and set to true when something is learned.
81 struct AllocaInfo {
82 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
83 bool isUnsafe : 1;
85 /// needsCleanup - This is set to true if there is some use of the alloca
86 /// that requires cleanup.
87 bool needsCleanup : 1;
89 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
90 bool isMemCpySrc : 1;
92 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
93 bool isMemCpyDst : 1;
95 AllocaInfo()
96 : isUnsafe(false), needsCleanup(false),
97 isMemCpySrc(false), isMemCpyDst(false) {}
100 unsigned SRThreshold;
102 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
104 int isSafeAllocaToScalarRepl(AllocationInst *AI);
106 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
107 AllocaInfo &Info);
108 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
109 AllocaInfo &Info);
110 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
111 unsigned OpNo, AllocaInfo &Info);
112 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
113 AllocaInfo &Info);
115 void DoScalarReplacement(AllocationInst *AI,
116 std::vector<AllocationInst*> &WorkList);
117 void CleanupGEP(GetElementPtrInst *GEP);
118 void CleanupAllocaUsers(AllocationInst *AI);
119 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
121 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
122 SmallVector<AllocaInst*, 32> &NewElts);
124 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
125 AllocationInst *AI,
126 SmallVector<AllocaInst*, 32> &NewElts);
127 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
128 SmallVector<AllocaInst*, 32> &NewElts);
129 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
130 SmallVector<AllocaInst*, 32> &NewElts);
132 bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
133 bool &SawVec, uint64_t Offset, unsigned AllocaSize);
134 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
135 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
136 uint64_t Offset, IRBuilder<> &Builder);
137 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
138 uint64_t Offset, IRBuilder<> &Builder);
139 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
143 char SROA::ID = 0;
144 static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
146 // Public interface to the ScalarReplAggregates pass
147 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
148 return new SROA(Threshold);
152 bool SROA::runOnFunction(Function &F) {
153 TD = &getAnalysis<TargetData>();
155 bool Changed = performPromotion(F);
156 while (1) {
157 bool LocalChange = performScalarRepl(F);
158 if (!LocalChange) break; // No need to repromote if no scalarrepl
159 Changed = true;
160 LocalChange = performPromotion(F);
161 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
164 return Changed;
168 bool SROA::performPromotion(Function &F) {
169 std::vector<AllocaInst*> Allocas;
170 DominatorTree &DT = getAnalysis<DominatorTree>();
171 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
173 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
175 bool Changed = false;
177 while (1) {
178 Allocas.clear();
180 // Find allocas that are safe to promote, by looking at all instructions in
181 // the entry node
182 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
183 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
184 if (isAllocaPromotable(AI))
185 Allocas.push_back(AI);
187 if (Allocas.empty()) break;
189 PromoteMemToReg(Allocas, DT, DF, F.getContext());
190 NumPromoted += Allocas.size();
191 Changed = true;
194 return Changed;
197 /// getNumSAElements - Return the number of elements in the specific struct or
198 /// array.
199 static uint64_t getNumSAElements(const Type *T) {
200 if (const StructType *ST = dyn_cast<StructType>(T))
201 return ST->getNumElements();
202 return cast<ArrayType>(T)->getNumElements();
205 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
206 // which runs on all of the malloc/alloca instructions in the function, removing
207 // them if they are only used by getelementptr instructions.
209 bool SROA::performScalarRepl(Function &F) {
210 std::vector<AllocationInst*> WorkList;
212 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
213 BasicBlock &BB = F.getEntryBlock();
214 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
215 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
216 WorkList.push_back(A);
218 // Process the worklist
219 bool Changed = false;
220 while (!WorkList.empty()) {
221 AllocationInst *AI = WorkList.back();
222 WorkList.pop_back();
224 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
225 // with unused elements.
226 if (AI->use_empty()) {
227 AI->eraseFromParent();
228 continue;
231 // If this alloca is impossible for us to promote, reject it early.
232 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
233 continue;
235 // Check to see if this allocation is only modified by a memcpy/memmove from
236 // a constant global. If this is the case, we can change all users to use
237 // the constant global instead. This is commonly produced by the CFE by
238 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
239 // is only subsequently read.
240 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
241 DOUT << "Found alloca equal to global: " << *AI;
242 DOUT << " memcpy = " << *TheCopy;
243 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
244 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
245 TheCopy->eraseFromParent(); // Don't mutate the global.
246 AI->eraseFromParent();
247 ++NumGlobals;
248 Changed = true;
249 continue;
252 // Check to see if we can perform the core SROA transformation. We cannot
253 // transform the allocation instruction if it is an array allocation
254 // (allocations OF arrays are ok though), and an allocation of a scalar
255 // value cannot be decomposed at all.
256 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
258 // Do not promote any struct whose size is too big.
259 if (AllocaSize > SRThreshold) continue;
261 if ((isa<StructType>(AI->getAllocatedType()) ||
262 isa<ArrayType>(AI->getAllocatedType())) &&
263 // Do not promote any struct into more than "32" separate vars.
264 getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
265 // Check that all of the users of the allocation are capable of being
266 // transformed.
267 switch (isSafeAllocaToScalarRepl(AI)) {
268 default: llvm_unreachable("Unexpected value!");
269 case 0: // Not safe to scalar replace.
270 break;
271 case 1: // Safe, but requires cleanup/canonicalizations first
272 CleanupAllocaUsers(AI);
273 // FALL THROUGH.
274 case 3: // Safe to scalar replace.
275 DoScalarReplacement(AI, WorkList);
276 Changed = true;
277 continue;
281 // If we can turn this aggregate value (potentially with casts) into a
282 // simple scalar value that can be mem2reg'd into a register value.
283 // IsNotTrivial tracks whether this is something that mem2reg could have
284 // promoted itself. If so, we don't want to transform it needlessly. Note
285 // that we can't just check based on the type: the alloca may be of an i32
286 // but that has pointer arithmetic to set byte 3 of it or something.
287 bool IsNotTrivial = false;
288 const Type *VectorTy = 0;
289 bool HadAVector = false;
290 if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
291 0, unsigned(AllocaSize)) && IsNotTrivial) {
292 AllocaInst *NewAI;
293 // If we were able to find a vector type that can handle this with
294 // insert/extract elements, and if there was at least one use that had
295 // a vector type, promote this to a vector. We don't want to promote
296 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
297 // we just get a lot of insert/extracts. If at least one vector is
298 // involved, then we probably really do have a union of vector/array.
299 if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
300 DOUT << "CONVERT TO VECTOR: " << *AI << " TYPE = " << *VectorTy <<"\n";
302 // Create and insert the vector alloca.
303 NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
304 ConvertUsesToScalar(AI, NewAI, 0);
305 } else {
306 DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
308 // Create and insert the integer alloca.
309 const Type *NewTy = IntegerType::get(AllocaSize*8);
310 NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
311 ConvertUsesToScalar(AI, NewAI, 0);
313 NewAI->takeName(AI);
314 AI->eraseFromParent();
315 ++NumConverted;
316 Changed = true;
317 continue;
320 // Otherwise, couldn't process this alloca.
323 return Changed;
326 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
327 /// predicate, do SROA now.
328 void SROA::DoScalarReplacement(AllocationInst *AI,
329 std::vector<AllocationInst*> &WorkList) {
330 DOUT << "Found inst to SROA: " << *AI;
331 SmallVector<AllocaInst*, 32> ElementAllocas;
332 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
333 ElementAllocas.reserve(ST->getNumContainedTypes());
334 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
335 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
336 AI->getAlignment(),
337 AI->getName() + "." + Twine(i), AI);
338 ElementAllocas.push_back(NA);
339 WorkList.push_back(NA); // Add to worklist for recursive processing
341 } else {
342 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
343 ElementAllocas.reserve(AT->getNumElements());
344 const Type *ElTy = AT->getElementType();
345 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
346 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
347 AI->getName() + "." + Twine(i), AI);
348 ElementAllocas.push_back(NA);
349 WorkList.push_back(NA); // Add to worklist for recursive processing
353 // Now that we have created the alloca instructions that we want to use,
354 // expand the getelementptr instructions to use them.
356 while (!AI->use_empty()) {
357 Instruction *User = cast<Instruction>(AI->use_back());
358 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
359 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
360 BCInst->eraseFromParent();
361 continue;
364 // Replace:
365 // %res = load { i32, i32 }* %alloc
366 // with:
367 // %load.0 = load i32* %alloc.0
368 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
369 // %load.1 = load i32* %alloc.1
370 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
371 // (Also works for arrays instead of structs)
372 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
373 Value *Insert = UndefValue::get(LI->getType());
374 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
375 Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
376 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
378 LI->replaceAllUsesWith(Insert);
379 LI->eraseFromParent();
380 continue;
383 // Replace:
384 // store { i32, i32 } %val, { i32, i32 }* %alloc
385 // with:
386 // %val.0 = extractvalue { i32, i32 } %val, 0
387 // store i32 %val.0, i32* %alloc.0
388 // %val.1 = extractvalue { i32, i32 } %val, 1
389 // store i32 %val.1, i32* %alloc.1
390 // (Also works for arrays instead of structs)
391 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
392 Value *Val = SI->getOperand(0);
393 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
394 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
395 new StoreInst(Extract, ElementAllocas[i], SI);
397 SI->eraseFromParent();
398 continue;
401 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
402 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
403 unsigned Idx =
404 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
406 assert(Idx < ElementAllocas.size() && "Index out of range?");
407 AllocaInst *AllocaToUse = ElementAllocas[Idx];
409 Value *RepValue;
410 if (GEPI->getNumOperands() == 3) {
411 // Do not insert a new getelementptr instruction with zero indices, only
412 // to have it optimized out later.
413 RepValue = AllocaToUse;
414 } else {
415 // We are indexing deeply into the structure, so we still need a
416 // getelement ptr instruction to finish the indexing. This may be
417 // expanded itself once the worklist is rerun.
419 SmallVector<Value*, 8> NewArgs;
420 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
421 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
422 RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
423 NewArgs.end(), "", GEPI);
424 RepValue->takeName(GEPI);
427 // If this GEP is to the start of the aggregate, check for memcpys.
428 if (Idx == 0 && GEPI->hasAllZeroIndices())
429 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
431 // Move all of the users over to the new GEP.
432 GEPI->replaceAllUsesWith(RepValue);
433 // Delete the old GEP
434 GEPI->eraseFromParent();
437 // Finally, delete the Alloca instruction
438 AI->eraseFromParent();
439 NumReplaced++;
443 /// isSafeElementUse - Check to see if this use is an allowed use for a
444 /// getelementptr instruction of an array aggregate allocation. isFirstElt
445 /// indicates whether Ptr is known to the start of the aggregate.
447 void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
448 AllocaInfo &Info) {
449 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
450 I != E; ++I) {
451 Instruction *User = cast<Instruction>(*I);
452 switch (User->getOpcode()) {
453 case Instruction::Load: break;
454 case Instruction::Store:
455 // Store is ok if storing INTO the pointer, not storing the pointer
456 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
457 break;
458 case Instruction::GetElementPtr: {
459 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
460 bool AreAllZeroIndices = isFirstElt;
461 if (GEP->getNumOperands() > 1) {
462 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
463 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
464 // Using pointer arithmetic to navigate the array.
465 return MarkUnsafe(Info);
467 if (AreAllZeroIndices)
468 AreAllZeroIndices = GEP->hasAllZeroIndices();
470 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
471 if (Info.isUnsafe) return;
472 break;
474 case Instruction::BitCast:
475 if (isFirstElt) {
476 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
477 if (Info.isUnsafe) return;
478 break;
480 DOUT << " Transformation preventing inst: " << *User;
481 return MarkUnsafe(Info);
482 case Instruction::Call:
483 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
484 if (isFirstElt) {
485 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
486 if (Info.isUnsafe) return;
487 break;
490 DOUT << " Transformation preventing inst: " << *User;
491 return MarkUnsafe(Info);
492 default:
493 DOUT << " Transformation preventing inst: " << *User;
494 return MarkUnsafe(Info);
497 return; // All users look ok :)
500 /// AllUsersAreLoads - Return true if all users of this value are loads.
501 static bool AllUsersAreLoads(Value *Ptr) {
502 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
503 I != E; ++I)
504 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
505 return false;
506 return true;
509 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
510 /// aggregate allocation.
512 void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
513 AllocaInfo &Info) {
514 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
515 return isSafeUseOfBitCastedAllocation(C, AI, Info);
517 if (LoadInst *LI = dyn_cast<LoadInst>(User))
518 if (!LI->isVolatile())
519 return;// Loads (returning a first class aggregrate) are always rewritable
521 if (StoreInst *SI = dyn_cast<StoreInst>(User))
522 if (!SI->isVolatile() && SI->getOperand(0) != AI)
523 return;// Store is ok if storing INTO the pointer, not storing the pointer
525 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
526 if (GEPI == 0)
527 return MarkUnsafe(Info);
529 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
531 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
532 if (I == E ||
533 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
534 return MarkUnsafe(Info);
537 ++I;
538 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
540 bool IsAllZeroIndices = true;
542 // If the first index is a non-constant index into an array, see if we can
543 // handle it as a special case.
544 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
545 if (!isa<ConstantInt>(I.getOperand())) {
546 IsAllZeroIndices = 0;
547 uint64_t NumElements = AT->getNumElements();
549 // If this is an array index and the index is not constant, we cannot
550 // promote... that is unless the array has exactly one or two elements in
551 // it, in which case we CAN promote it, but we have to canonicalize this
552 // out if this is the only problem.
553 if ((NumElements == 1 || NumElements == 2) &&
554 AllUsersAreLoads(GEPI)) {
555 Info.needsCleanup = true;
556 return; // Canonicalization required!
558 return MarkUnsafe(Info);
562 // Walk through the GEP type indices, checking the types that this indexes
563 // into.
564 for (; I != E; ++I) {
565 // Ignore struct elements, no extra checking needed for these.
566 if (isa<StructType>(*I))
567 continue;
569 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
570 if (!IdxVal) return MarkUnsafe(Info);
572 // Are all indices still zero?
573 IsAllZeroIndices &= IdxVal->isZero();
575 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
576 // This GEP indexes an array. Verify that this is an in-range constant
577 // integer. Specifically, consider A[0][i]. We cannot know that the user
578 // isn't doing invalid things like allowing i to index an out-of-range
579 // subscript that accesses A[1]. Because of this, we have to reject SROA
580 // of any accesses into structs where any of the components are variables.
581 if (IdxVal->getZExtValue() >= AT->getNumElements())
582 return MarkUnsafe(Info);
583 } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
584 if (IdxVal->getZExtValue() >= VT->getNumElements())
585 return MarkUnsafe(Info);
589 // If there are any non-simple uses of this getelementptr, make sure to reject
590 // them.
591 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
594 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
595 /// intrinsic can be promoted by SROA. At this point, we know that the operand
596 /// of the memintrinsic is a pointer to the beginning of the allocation.
597 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
598 unsigned OpNo, AllocaInfo &Info) {
599 // If not constant length, give up.
600 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
601 if (!Length) return MarkUnsafe(Info);
603 // If not the whole aggregate, give up.
604 if (Length->getZExtValue() !=
605 TD->getTypeAllocSize(AI->getType()->getElementType()))
606 return MarkUnsafe(Info);
608 // We only know about memcpy/memset/memmove.
609 if (!isa<MemIntrinsic>(MI))
610 return MarkUnsafe(Info);
612 // Otherwise, we can transform it. Determine whether this is a memcpy/set
613 // into or out of the aggregate.
614 if (OpNo == 1)
615 Info.isMemCpyDst = true;
616 else {
617 assert(OpNo == 2);
618 Info.isMemCpySrc = true;
622 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
623 /// are
624 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
625 AllocaInfo &Info) {
626 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
627 UI != E; ++UI) {
628 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
629 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
630 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
631 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
632 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
633 if (SI->isVolatile())
634 return MarkUnsafe(Info);
636 // If storing the entire alloca in one chunk through a bitcasted pointer
637 // to integer, we can transform it. This happens (for example) when you
638 // cast a {i32,i32}* to i64* and store through it. This is similar to the
639 // memcpy case and occurs in various "byval" cases and emulated memcpys.
640 if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
641 TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
642 TD->getTypeAllocSize(AI->getType()->getElementType())) {
643 Info.isMemCpyDst = true;
644 continue;
646 return MarkUnsafe(Info);
647 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
648 if (LI->isVolatile())
649 return MarkUnsafe(Info);
651 // If loading the entire alloca in one chunk through a bitcasted pointer
652 // to integer, we can transform it. This happens (for example) when you
653 // cast a {i32,i32}* to i64* and load through it. This is similar to the
654 // memcpy case and occurs in various "byval" cases and emulated memcpys.
655 if (isa<IntegerType>(LI->getType()) &&
656 TD->getTypeAllocSize(LI->getType()) ==
657 TD->getTypeAllocSize(AI->getType()->getElementType())) {
658 Info.isMemCpySrc = true;
659 continue;
661 return MarkUnsafe(Info);
662 } else if (isa<DbgInfoIntrinsic>(UI)) {
663 // If one user is DbgInfoIntrinsic then check if all users are
664 // DbgInfoIntrinsics.
665 if (OnlyUsedByDbgInfoIntrinsics(BC)) {
666 Info.needsCleanup = true;
667 return;
669 else
670 MarkUnsafe(Info);
672 else {
673 return MarkUnsafe(Info);
675 if (Info.isUnsafe) return;
679 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
680 /// to its first element. Transform users of the cast to use the new values
681 /// instead.
682 void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
683 SmallVector<AllocaInst*, 32> &NewElts) {
684 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
685 while (UI != UE) {
686 Instruction *User = cast<Instruction>(*UI++);
687 if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
688 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
689 if (BCU->use_empty()) BCU->eraseFromParent();
690 continue;
693 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
694 // This must be memcpy/memmove/memset of the entire aggregate.
695 // Split into one per element.
696 RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
697 continue;
700 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
701 // If this is a store of the entire alloca from an integer, rewrite it.
702 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
703 continue;
706 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
707 // If this is a load of the entire alloca to an integer, rewrite it.
708 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
709 continue;
712 // Otherwise it must be some other user of a gep of the first pointer. Just
713 // leave these alone.
714 continue;
718 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
719 /// Rewrite it to copy or set the elements of the scalarized memory.
720 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
721 AllocationInst *AI,
722 SmallVector<AllocaInst*, 32> &NewElts) {
724 // If this is a memcpy/memmove, construct the other pointer as the
725 // appropriate type. The "Other" pointer is the pointer that goes to memory
726 // that doesn't have anything to do with the alloca that we are promoting. For
727 // memset, this Value* stays null.
728 Value *OtherPtr = 0;
729 LLVMContext &Context = MI->getContext();
730 unsigned MemAlignment = MI->getAlignment();
731 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
732 if (BCInst == MTI->getRawDest())
733 OtherPtr = MTI->getRawSource();
734 else {
735 assert(BCInst == MTI->getRawSource());
736 OtherPtr = MTI->getRawDest();
740 // If there is an other pointer, we want to convert it to the same pointer
741 // type as AI has, so we can GEP through it safely.
742 if (OtherPtr) {
743 // It is likely that OtherPtr is a bitcast, if so, remove it.
744 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
745 OtherPtr = BC->getOperand(0);
746 // All zero GEPs are effectively bitcasts.
747 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
748 if (GEP->hasAllZeroIndices())
749 OtherPtr = GEP->getOperand(0);
751 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
752 if (BCE->getOpcode() == Instruction::BitCast)
753 OtherPtr = BCE->getOperand(0);
755 // If the pointer is not the right type, insert a bitcast to the right
756 // type.
757 if (OtherPtr->getType() != AI->getType())
758 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
759 MI);
762 // Process each element of the aggregate.
763 Value *TheFn = MI->getOperand(0);
764 const Type *BytePtrTy = MI->getRawDest()->getType();
765 bool SROADest = MI->getRawDest() == BCInst;
767 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
769 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
770 // If this is a memcpy/memmove, emit a GEP of the other element address.
771 Value *OtherElt = 0;
772 unsigned OtherEltAlign = MemAlignment;
774 if (OtherPtr) {
775 Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
776 OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
777 OtherPtr->getNameStr()+"."+Twine(i),
778 MI);
779 uint64_t EltOffset;
780 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
781 if (const StructType *ST =
782 dyn_cast<StructType>(OtherPtrTy->getElementType())) {
783 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
784 } else {
785 const Type *EltTy =
786 cast<SequentialType>(OtherPtr->getType())->getElementType();
787 EltOffset = TD->getTypeAllocSize(EltTy)*i;
790 // The alignment of the other pointer is the guaranteed alignment of the
791 // element, which is affected by both the known alignment of the whole
792 // mem intrinsic and the alignment of the element. If the alignment of
793 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
794 // known alignment is just 4 bytes.
795 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
798 Value *EltPtr = NewElts[i];
799 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
801 // If we got down to a scalar, insert a load or store as appropriate.
802 if (EltTy->isSingleValueType()) {
803 if (isa<MemTransferInst>(MI)) {
804 if (SROADest) {
805 // From Other to Alloca.
806 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
807 new StoreInst(Elt, EltPtr, MI);
808 } else {
809 // From Alloca to Other.
810 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
811 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
813 continue;
815 assert(isa<MemSetInst>(MI));
817 // If the stored element is zero (common case), just store a null
818 // constant.
819 Constant *StoreVal;
820 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
821 if (CI->isZero()) {
822 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
823 } else {
824 // If EltTy is a vector type, get the element type.
825 const Type *ValTy = EltTy->getScalarType();
827 // Construct an integer with the right value.
828 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
829 APInt OneVal(EltSize, CI->getZExtValue());
830 APInt TotalVal(OneVal);
831 // Set each byte.
832 for (unsigned i = 0; 8*i < EltSize; ++i) {
833 TotalVal = TotalVal.shl(8);
834 TotalVal |= OneVal;
837 // Convert the integer value to the appropriate type.
838 StoreVal = ConstantInt::get(Context, TotalVal);
839 if (isa<PointerType>(ValTy))
840 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
841 else if (ValTy->isFloatingPoint())
842 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
843 assert(StoreVal->getType() == ValTy && "Type mismatch!");
845 // If the requested value was a vector constant, create it.
846 if (EltTy != ValTy) {
847 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
848 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
849 StoreVal = ConstantVector::get(&Elts[0], NumElts);
852 new StoreInst(StoreVal, EltPtr, MI);
853 continue;
855 // Otherwise, if we're storing a byte variable, use a memset call for
856 // this element.
859 // Cast the element pointer to BytePtrTy.
860 if (EltPtr->getType() != BytePtrTy)
861 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
863 // Cast the other pointer (if we have one) to BytePtrTy.
864 if (OtherElt && OtherElt->getType() != BytePtrTy)
865 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
866 MI);
868 unsigned EltSize = TD->getTypeAllocSize(EltTy);
870 // Finally, insert the meminst for this element.
871 if (isa<MemTransferInst>(MI)) {
872 Value *Ops[] = {
873 SROADest ? EltPtr : OtherElt, // Dest ptr
874 SROADest ? OtherElt : EltPtr, // Src ptr
875 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
876 ConstantInt::get(Type::Int32Ty, OtherEltAlign) // Align
878 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
879 } else {
880 assert(isa<MemSetInst>(MI));
881 Value *Ops[] = {
882 EltPtr, MI->getOperand(2), // Dest, Value,
883 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
884 Zero // Align
886 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
889 MI->eraseFromParent();
892 /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
893 /// overwrites the entire allocation. Extract out the pieces of the stored
894 /// integer and store them individually.
895 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
896 AllocationInst *AI,
897 SmallVector<AllocaInst*, 32> &NewElts){
898 // Extract each element out of the integer according to its structure offset
899 // and store the element value to the individual alloca.
900 Value *SrcVal = SI->getOperand(0);
901 const Type *AllocaEltTy = AI->getType()->getElementType();
902 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
904 // If this isn't a store of an integer to the whole alloca, it may be a store
905 // to the first element. Just ignore the store in this case and normal SROA
906 // will handle it.
907 if (!isa<IntegerType>(SrcVal->getType()) ||
908 TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
909 return;
910 // Handle tail padding by extending the operand
911 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
912 SrcVal = new ZExtInst(SrcVal,
913 IntegerType::get(AllocaSizeBits), "", SI);
915 DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
917 // There are two forms here: AI could be an array or struct. Both cases
918 // have different ways to compute the element offset.
919 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
920 const StructLayout *Layout = TD->getStructLayout(EltSTy);
922 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
923 // Get the number of bits to shift SrcVal to get the value.
924 const Type *FieldTy = EltSTy->getElementType(i);
925 uint64_t Shift = Layout->getElementOffsetInBits(i);
927 if (TD->isBigEndian())
928 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
930 Value *EltVal = SrcVal;
931 if (Shift) {
932 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
933 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
934 "sroa.store.elt", SI);
937 // Truncate down to an integer of the right size.
938 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
940 // Ignore zero sized fields like {}, they obviously contain no data.
941 if (FieldSizeBits == 0) continue;
943 if (FieldSizeBits != AllocaSizeBits)
944 EltVal = new TruncInst(EltVal,
945 IntegerType::get(FieldSizeBits), "", SI);
946 Value *DestField = NewElts[i];
947 if (EltVal->getType() == FieldTy) {
948 // Storing to an integer field of this size, just do it.
949 } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
950 // Bitcast to the right element type (for fp/vector values).
951 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
952 } else {
953 // Otherwise, bitcast the dest pointer (for aggregates).
954 DestField = new BitCastInst(DestField,
955 PointerType::getUnqual(EltVal->getType()),
956 "", SI);
958 new StoreInst(EltVal, DestField, SI);
961 } else {
962 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
963 const Type *ArrayEltTy = ATy->getElementType();
964 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
965 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
967 uint64_t Shift;
969 if (TD->isBigEndian())
970 Shift = AllocaSizeBits-ElementOffset;
971 else
972 Shift = 0;
974 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
975 // Ignore zero sized fields like {}, they obviously contain no data.
976 if (ElementSizeBits == 0) continue;
978 Value *EltVal = SrcVal;
979 if (Shift) {
980 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
981 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
982 "sroa.store.elt", SI);
985 // Truncate down to an integer of the right size.
986 if (ElementSizeBits != AllocaSizeBits)
987 EltVal = new TruncInst(EltVal,
988 IntegerType::get(ElementSizeBits),"",SI);
989 Value *DestField = NewElts[i];
990 if (EltVal->getType() == ArrayEltTy) {
991 // Storing to an integer field of this size, just do it.
992 } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
993 // Bitcast to the right element type (for fp/vector values).
994 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
995 } else {
996 // Otherwise, bitcast the dest pointer (for aggregates).
997 DestField = new BitCastInst(DestField,
998 PointerType::getUnqual(EltVal->getType()),
999 "", SI);
1001 new StoreInst(EltVal, DestField, SI);
1003 if (TD->isBigEndian())
1004 Shift -= ElementOffset;
1005 else
1006 Shift += ElementOffset;
1010 SI->eraseFromParent();
1013 /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1014 /// an integer. Load the individual pieces to form the aggregate value.
1015 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1016 SmallVector<AllocaInst*, 32> &NewElts) {
1017 // Extract each element out of the NewElts according to its structure offset
1018 // and form the result value.
1019 const Type *AllocaEltTy = AI->getType()->getElementType();
1020 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1022 // If this isn't a load of the whole alloca to an integer, it may be a load
1023 // of the first element. Just ignore the load in this case and normal SROA
1024 // will handle it.
1025 if (!isa<IntegerType>(LI->getType()) ||
1026 TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1027 return;
1029 DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1031 // There are two forms here: AI could be an array or struct. Both cases
1032 // have different ways to compute the element offset.
1033 const StructLayout *Layout = 0;
1034 uint64_t ArrayEltBitOffset = 0;
1035 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1036 Layout = TD->getStructLayout(EltSTy);
1037 } else {
1038 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1039 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1042 Value *ResultVal =
1043 Constant::getNullValue(IntegerType::get(AllocaSizeBits));
1045 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1046 // Load the value from the alloca. If the NewElt is an aggregate, cast
1047 // the pointer to an integer of the same size before doing the load.
1048 Value *SrcField = NewElts[i];
1049 const Type *FieldTy =
1050 cast<PointerType>(SrcField->getType())->getElementType();
1051 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1053 // Ignore zero sized fields like {}, they obviously contain no data.
1054 if (FieldSizeBits == 0) continue;
1056 const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1057 if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1058 !isa<VectorType>(FieldTy))
1059 SrcField = new BitCastInst(SrcField,
1060 PointerType::getUnqual(FieldIntTy),
1061 "", LI);
1062 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1064 // If SrcField is a fp or vector of the right size but that isn't an
1065 // integer type, bitcast to an integer so we can shift it.
1066 if (SrcField->getType() != FieldIntTy)
1067 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1069 // Zero extend the field to be the same size as the final alloca so that
1070 // we can shift and insert it.
1071 if (SrcField->getType() != ResultVal->getType())
1072 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1074 // Determine the number of bits to shift SrcField.
1075 uint64_t Shift;
1076 if (Layout) // Struct case.
1077 Shift = Layout->getElementOffsetInBits(i);
1078 else // Array case.
1079 Shift = i*ArrayEltBitOffset;
1081 if (TD->isBigEndian())
1082 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1084 if (Shift) {
1085 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1086 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1089 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1092 // Handle tail padding by truncating the result
1093 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1094 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1096 LI->replaceAllUsesWith(ResultVal);
1097 LI->eraseFromParent();
1101 /// HasPadding - Return true if the specified type has any structure or
1102 /// alignment padding, false otherwise.
1103 static bool HasPadding(const Type *Ty, const TargetData &TD) {
1104 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1105 const StructLayout *SL = TD.getStructLayout(STy);
1106 unsigned PrevFieldBitOffset = 0;
1107 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1108 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1110 // Padding in sub-elements?
1111 if (HasPadding(STy->getElementType(i), TD))
1112 return true;
1114 // Check to see if there is any padding between this element and the
1115 // previous one.
1116 if (i) {
1117 unsigned PrevFieldEnd =
1118 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1119 if (PrevFieldEnd < FieldBitOffset)
1120 return true;
1123 PrevFieldBitOffset = FieldBitOffset;
1126 // Check for tail padding.
1127 if (unsigned EltCount = STy->getNumElements()) {
1128 unsigned PrevFieldEnd = PrevFieldBitOffset +
1129 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1130 if (PrevFieldEnd < SL->getSizeInBits())
1131 return true;
1134 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1135 return HasPadding(ATy->getElementType(), TD);
1136 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1137 return HasPadding(VTy->getElementType(), TD);
1139 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1142 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1143 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1144 /// or 1 if safe after canonicalization has been performed.
1146 int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1147 // Loop over the use list of the alloca. We can only transform it if all of
1148 // the users are safe to transform.
1149 AllocaInfo Info;
1151 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1152 I != E; ++I) {
1153 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1154 if (Info.isUnsafe) {
1155 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
1156 return 0;
1160 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1161 // source and destination, we have to be careful. In particular, the memcpy
1162 // could be moving around elements that live in structure padding of the LLVM
1163 // types, but may actually be used. In these cases, we refuse to promote the
1164 // struct.
1165 if (Info.isMemCpySrc && Info.isMemCpyDst &&
1166 HasPadding(AI->getType()->getElementType(), *TD))
1167 return 0;
1169 // If we require cleanup, return 1, otherwise return 3.
1170 return Info.needsCleanup ? 1 : 3;
1173 /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1174 /// is canonicalized here.
1175 void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1176 gep_type_iterator I = gep_type_begin(GEPI);
1177 ++I;
1179 const ArrayType *AT = dyn_cast<ArrayType>(*I);
1180 if (!AT)
1181 return;
1183 uint64_t NumElements = AT->getNumElements();
1185 if (isa<ConstantInt>(I.getOperand()))
1186 return;
1188 if (NumElements == 1) {
1189 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1190 return;
1193 assert(NumElements == 2 && "Unhandled case!");
1194 // All users of the GEP must be loads. At each use of the GEP, insert
1195 // two loads of the appropriate indexed GEP and select between them.
1196 Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1197 Constant::getNullValue(I.getOperand()->getType()),
1198 "isone");
1199 // Insert the new GEP instructions, which are properly indexed.
1200 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1201 Indices[1] = Constant::getNullValue(Type::Int32Ty);
1202 Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1203 Indices.begin(),
1204 Indices.end(),
1205 GEPI->getName()+".0", GEPI);
1206 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1207 Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1208 Indices.begin(),
1209 Indices.end(),
1210 GEPI->getName()+".1", GEPI);
1211 // Replace all loads of the variable index GEP with loads from both
1212 // indexes and a select.
1213 while (!GEPI->use_empty()) {
1214 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1215 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1216 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
1217 Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1218 LI->replaceAllUsesWith(R);
1219 LI->eraseFromParent();
1221 GEPI->eraseFromParent();
1225 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
1226 /// allocation, but only if cleaned up, perform the cleanups required.
1227 void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1228 // At this point, we know that the end result will be SROA'd and promoted, so
1229 // we can insert ugly code if required so long as sroa+mem2reg will clean it
1230 // up.
1231 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1232 UI != E; ) {
1233 User *U = *UI++;
1234 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1235 CleanupGEP(GEPI);
1236 else {
1237 Instruction *I = cast<Instruction>(U);
1238 SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1239 if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1240 // Safe to remove debug info uses.
1241 while (!DbgInUses.empty()) {
1242 DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1243 DI->eraseFromParent();
1245 I->eraseFromParent();
1251 /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1252 /// the offset specified by Offset (which is specified in bytes).
1254 /// There are two cases we handle here:
1255 /// 1) A union of vector types of the same size and potentially its elements.
1256 /// Here we turn element accesses into insert/extract element operations.
1257 /// This promotes a <4 x float> with a store of float to the third element
1258 /// into a <4 x float> that uses insert element.
1259 /// 2) A fully general blob of memory, which we turn into some (potentially
1260 /// large) integer type with extract and insert operations where the loads
1261 /// and stores would mutate the memory.
1262 static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1263 unsigned AllocaSize, const TargetData &TD,
1264 LLVMContext &Context) {
1265 // If this could be contributing to a vector, analyze it.
1266 if (VecTy != Type::VoidTy) { // either null or a vector type.
1268 // If the In type is a vector that is the same size as the alloca, see if it
1269 // matches the existing VecTy.
1270 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1271 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1272 // If we're storing/loading a vector of the right size, allow it as a
1273 // vector. If this the first vector we see, remember the type so that
1274 // we know the element size.
1275 if (VecTy == 0)
1276 VecTy = VInTy;
1277 return;
1279 } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1280 (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1281 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1282 // If we're accessing something that could be an element of a vector, see
1283 // if the implied vector agrees with what we already have and if Offset is
1284 // compatible with it.
1285 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1286 if (Offset % EltSize == 0 &&
1287 AllocaSize % EltSize == 0 &&
1288 (VecTy == 0 ||
1289 cast<VectorType>(VecTy)->getElementType()
1290 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1291 if (VecTy == 0)
1292 VecTy = VectorType::get(In, AllocaSize/EltSize);
1293 return;
1298 // Otherwise, we have a case that we can't handle with an optimized vector
1299 // form. We can still turn this into a large integer.
1300 VecTy = Type::VoidTy;
1303 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
1304 /// its accesses to use a to single vector type, return true, and set VecTy to
1305 /// the new type. If we could convert the alloca into a single promotable
1306 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
1307 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
1308 /// is the current offset from the base of the alloca being analyzed.
1310 /// If we see at least one access to the value that is as a vector type, set the
1311 /// SawVec flag.
1313 bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1314 bool &SawVec, uint64_t Offset,
1315 unsigned AllocaSize) {
1316 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1317 Instruction *User = cast<Instruction>(*UI);
1319 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1320 // Don't break volatile loads.
1321 if (LI->isVolatile())
1322 return false;
1323 MergeInType(LI->getType(), Offset, VecTy,
1324 AllocaSize, *TD, V->getContext());
1325 SawVec |= isa<VectorType>(LI->getType());
1326 continue;
1329 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1330 // Storing the pointer, not into the value?
1331 if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1332 MergeInType(SI->getOperand(0)->getType(), Offset,
1333 VecTy, AllocaSize, *TD, V->getContext());
1334 SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1335 continue;
1338 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1339 if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1340 AllocaSize))
1341 return false;
1342 IsNotTrivial = true;
1343 continue;
1346 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1347 // If this is a GEP with a variable indices, we can't handle it.
1348 if (!GEP->hasAllConstantIndices())
1349 return false;
1351 // Compute the offset that this GEP adds to the pointer.
1352 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1353 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1354 &Indices[0], Indices.size());
1355 // See if all uses can be converted.
1356 if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1357 AllocaSize))
1358 return false;
1359 IsNotTrivial = true;
1360 continue;
1363 // If this is a constant sized memset of a constant value (e.g. 0) we can
1364 // handle it.
1365 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1366 // Store of constant value and constant size.
1367 if (isa<ConstantInt>(MSI->getValue()) &&
1368 isa<ConstantInt>(MSI->getLength())) {
1369 IsNotTrivial = true;
1370 continue;
1374 // If this is a memcpy or memmove into or out of the whole allocation, we
1375 // can handle it like a load or store of the scalar type.
1376 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1377 if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1378 if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1379 IsNotTrivial = true;
1380 continue;
1384 // Ignore dbg intrinsic.
1385 if (isa<DbgInfoIntrinsic>(User))
1386 continue;
1388 // Otherwise, we cannot handle this!
1389 return false;
1392 return true;
1396 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1397 /// directly. This happens when we are converting an "integer union" to a
1398 /// single integer scalar, or when we are converting a "vector union" to a
1399 /// vector with insert/extractelement instructions.
1401 /// Offset is an offset from the original alloca, in bits that need to be
1402 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1403 void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1404 while (!Ptr->use_empty()) {
1405 Instruction *User = cast<Instruction>(Ptr->use_back());
1407 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1408 ConvertUsesToScalar(CI, NewAI, Offset);
1409 CI->eraseFromParent();
1410 continue;
1413 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1414 // Compute the offset that this GEP adds to the pointer.
1415 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1416 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1417 &Indices[0], Indices.size());
1418 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1419 GEP->eraseFromParent();
1420 continue;
1423 IRBuilder<> Builder(User->getParent(), User);
1425 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1426 // The load is a bit extract from NewAI shifted right by Offset bits.
1427 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1428 Value *NewLoadVal
1429 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1430 LI->replaceAllUsesWith(NewLoadVal);
1431 LI->eraseFromParent();
1432 continue;
1435 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1436 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1437 // FIXME: Remove once builder has Twine API.
1438 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1439 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1440 Builder);
1441 Builder.CreateStore(New, NewAI);
1442 SI->eraseFromParent();
1443 continue;
1446 // If this is a constant sized memset of a constant value (e.g. 0) we can
1447 // transform it into a store of the expanded constant value.
1448 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1449 assert(MSI->getRawDest() == Ptr && "Consistency error!");
1450 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1451 if (NumBytes != 0) {
1452 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1454 // Compute the value replicated the right number of times.
1455 APInt APVal(NumBytes*8, Val);
1457 // Splat the value if non-zero.
1458 if (Val)
1459 for (unsigned i = 1; i != NumBytes; ++i)
1460 APVal |= APVal << 8;
1462 // FIXME: Remove once builder has Twine API.
1463 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1464 Value *New = ConvertScalar_InsertValue(
1465 ConstantInt::get(User->getContext(), APVal),
1466 Old, Offset, Builder);
1467 Builder.CreateStore(New, NewAI);
1469 MSI->eraseFromParent();
1470 continue;
1473 // If this is a memcpy or memmove into or out of the whole allocation, we
1474 // can handle it like a load or store of the scalar type.
1475 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1476 assert(Offset == 0 && "must be store to start of alloca");
1478 // If the source and destination are both to the same alloca, then this is
1479 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
1480 // as appropriate.
1481 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1483 if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1484 // Dest must be OrigAI, change this to be a load from the original
1485 // pointer (bitcasted), then a store to our new alloca.
1486 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1487 Value *SrcPtr = MTI->getSource();
1488 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1490 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1491 SrcVal->setAlignment(MTI->getAlignment());
1492 Builder.CreateStore(SrcVal, NewAI);
1493 } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1494 // Src must be OrigAI, change this to be a load from NewAI then a store
1495 // through the original dest pointer (bitcasted).
1496 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1497 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1499 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1500 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1501 NewStore->setAlignment(MTI->getAlignment());
1502 } else {
1503 // Noop transfer. Src == Dst
1507 MTI->eraseFromParent();
1508 continue;
1511 // If user is a dbg info intrinsic then it is safe to remove it.
1512 if (isa<DbgInfoIntrinsic>(User)) {
1513 User->eraseFromParent();
1514 continue;
1517 llvm_unreachable("Unsupported operation!");
1521 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1522 /// or vector value FromVal, extracting the bits from the offset specified by
1523 /// Offset. This returns the value, which is of type ToType.
1525 /// This happens when we are converting an "integer union" to a single
1526 /// integer scalar, or when we are converting a "vector union" to a vector with
1527 /// insert/extractelement instructions.
1529 /// Offset is an offset from the original alloca, in bits that need to be
1530 /// shifted to the right.
1531 Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1532 uint64_t Offset, IRBuilder<> &Builder) {
1533 // If the load is of the whole new alloca, no conversion is needed.
1534 if (FromVal->getType() == ToType && Offset == 0)
1535 return FromVal;
1537 // If the result alloca is a vector type, this is either an element
1538 // access or a bitcast to another vector type of the same size.
1539 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1540 if (isa<VectorType>(ToType))
1541 return Builder.CreateBitCast(FromVal, ToType, "tmp");
1543 // Otherwise it must be an element access.
1544 unsigned Elt = 0;
1545 if (Offset) {
1546 unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1547 Elt = Offset/EltSize;
1548 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1550 // Return the element extracted out of it.
1551 Value *V = Builder.CreateExtractElement(FromVal,
1552 ConstantInt::get(Type::Int32Ty,Elt),
1553 "tmp");
1554 if (V->getType() != ToType)
1555 V = Builder.CreateBitCast(V, ToType, "tmp");
1556 return V;
1559 // If ToType is a first class aggregate, extract out each of the pieces and
1560 // use insertvalue's to form the FCA.
1561 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1562 const StructLayout &Layout = *TD->getStructLayout(ST);
1563 Value *Res = UndefValue::get(ST);
1564 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1565 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1566 Offset+Layout.getElementOffsetInBits(i),
1567 Builder);
1568 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1570 return Res;
1573 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1574 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1575 Value *Res = UndefValue::get(AT);
1576 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1577 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1578 Offset+i*EltSize, Builder);
1579 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1581 return Res;
1584 // Otherwise, this must be a union that was converted to an integer value.
1585 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1587 // If this is a big-endian system and the load is narrower than the
1588 // full alloca type, we need to do a shift to get the right bits.
1589 int ShAmt = 0;
1590 if (TD->isBigEndian()) {
1591 // On big-endian machines, the lowest bit is stored at the bit offset
1592 // from the pointer given by getTypeStoreSizeInBits. This matters for
1593 // integers with a bitwidth that is not a multiple of 8.
1594 ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1595 TD->getTypeStoreSizeInBits(ToType) - Offset;
1596 } else {
1597 ShAmt = Offset;
1600 // Note: we support negative bitwidths (with shl) which are not defined.
1601 // We do this to support (f.e.) loads off the end of a structure where
1602 // only some bits are used.
1603 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1604 FromVal = Builder.CreateLShr(FromVal,
1605 ConstantInt::get(FromVal->getType(),
1606 ShAmt), "tmp");
1607 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1608 FromVal = Builder.CreateShl(FromVal,
1609 ConstantInt::get(FromVal->getType(),
1610 -ShAmt), "tmp");
1612 // Finally, unconditionally truncate the integer to the right width.
1613 unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1614 if (LIBitWidth < NTy->getBitWidth())
1615 FromVal =
1616 Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp");
1617 else if (LIBitWidth > NTy->getBitWidth())
1618 FromVal =
1619 Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp");
1621 // If the result is an integer, this is a trunc or bitcast.
1622 if (isa<IntegerType>(ToType)) {
1623 // Should be done.
1624 } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1625 // Just do a bitcast, we know the sizes match up.
1626 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1627 } else {
1628 // Otherwise must be a pointer.
1629 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1631 assert(FromVal->getType() == ToType && "Didn't convert right?");
1632 return FromVal;
1636 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1637 /// or vector value "Old" at the offset specified by Offset.
1639 /// This happens when we are converting an "integer union" to a
1640 /// single integer scalar, or when we are converting a "vector union" to a
1641 /// vector with insert/extractelement instructions.
1643 /// Offset is an offset from the original alloca, in bits that need to be
1644 /// shifted to the right.
1645 Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1646 uint64_t Offset, IRBuilder<> &Builder) {
1648 // Convert the stored type to the actual type, shift it left to insert
1649 // then 'or' into place.
1650 const Type *AllocaType = Old->getType();
1651 LLVMContext &Context = Old->getContext();
1653 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1654 uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1655 uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1657 // Changing the whole vector with memset or with an access of a different
1658 // vector type?
1659 if (ValSize == VecSize)
1660 return Builder.CreateBitCast(SV, AllocaType, "tmp");
1662 uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1664 // Must be an element insertion.
1665 unsigned Elt = Offset/EltSize;
1667 if (SV->getType() != VTy->getElementType())
1668 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1670 SV = Builder.CreateInsertElement(Old, SV,
1671 ConstantInt::get(Type::Int32Ty, Elt),
1672 "tmp");
1673 return SV;
1676 // If SV is a first-class aggregate value, insert each value recursively.
1677 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1678 const StructLayout &Layout = *TD->getStructLayout(ST);
1679 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1680 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1681 Old = ConvertScalar_InsertValue(Elt, Old,
1682 Offset+Layout.getElementOffsetInBits(i),
1683 Builder);
1685 return Old;
1688 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1689 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1690 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1691 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1692 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1694 return Old;
1697 // If SV is a float, convert it to the appropriate integer type.
1698 // If it is a pointer, do the same.
1699 unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1700 unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1701 unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1702 unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1703 if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1704 SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp");
1705 else if (isa<PointerType>(SV->getType()))
1706 SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1708 // Zero extend or truncate the value if needed.
1709 if (SV->getType() != AllocaType) {
1710 if (SV->getType()->getPrimitiveSizeInBits() <
1711 AllocaType->getPrimitiveSizeInBits())
1712 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1713 else {
1714 // Truncation may be needed if storing more than the alloca can hold
1715 // (undefined behavior).
1716 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1717 SrcWidth = DestWidth;
1718 SrcStoreWidth = DestStoreWidth;
1722 // If this is a big-endian system and the store is narrower than the
1723 // full alloca type, we need to do a shift to get the right bits.
1724 int ShAmt = 0;
1725 if (TD->isBigEndian()) {
1726 // On big-endian machines, the lowest bit is stored at the bit offset
1727 // from the pointer given by getTypeStoreSizeInBits. This matters for
1728 // integers with a bitwidth that is not a multiple of 8.
1729 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1730 } else {
1731 ShAmt = Offset;
1734 // Note: we support negative bitwidths (with shr) which are not defined.
1735 // We do this to support (f.e.) stores off the end of a structure where
1736 // only some bits in the structure are set.
1737 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1738 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1739 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1740 ShAmt), "tmp");
1741 Mask <<= ShAmt;
1742 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1743 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1744 -ShAmt), "tmp");
1745 Mask = Mask.lshr(-ShAmt);
1748 // Mask out the bits we are about to insert from the old value, and or
1749 // in the new bits.
1750 if (SrcWidth != DestWidth) {
1751 assert(DestWidth > SrcWidth);
1752 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1753 SV = Builder.CreateOr(Old, SV, "ins");
1755 return SV;
1760 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1761 /// some part of a constant global variable. This intentionally only accepts
1762 /// constant expressions because we don't can't rewrite arbitrary instructions.
1763 static bool PointsToConstantGlobal(Value *V) {
1764 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1765 return GV->isConstant();
1766 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1767 if (CE->getOpcode() == Instruction::BitCast ||
1768 CE->getOpcode() == Instruction::GetElementPtr)
1769 return PointsToConstantGlobal(CE->getOperand(0));
1770 return false;
1773 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1774 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1775 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1776 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1777 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1778 /// the alloca, and if the source pointer is a pointer to a constant global, we
1779 /// can optimize this.
1780 static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1781 bool isOffset) {
1782 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1783 if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1784 // Ignore non-volatile loads, they are always ok.
1785 if (!LI->isVolatile())
1786 continue;
1788 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1789 // If uses of the bitcast are ok, we are ok.
1790 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1791 return false;
1792 continue;
1794 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1795 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1796 // doesn't, it does.
1797 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1798 isOffset || !GEP->hasAllZeroIndices()))
1799 return false;
1800 continue;
1803 // If this is isn't our memcpy/memmove, reject it as something we can't
1804 // handle.
1805 if (!isa<MemTransferInst>(*UI))
1806 return false;
1808 // If we already have seen a copy, reject the second one.
1809 if (TheCopy) return false;
1811 // If the pointer has been offset from the start of the alloca, we can't
1812 // safely handle this.
1813 if (isOffset) return false;
1815 // If the memintrinsic isn't using the alloca as the dest, reject it.
1816 if (UI.getOperandNo() != 1) return false;
1818 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1820 // If the source of the memcpy/move is not a constant global, reject it.
1821 if (!PointsToConstantGlobal(MI->getOperand(2)))
1822 return false;
1824 // Otherwise, the transform is safe. Remember the copy instruction.
1825 TheCopy = MI;
1827 return true;
1830 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1831 /// modified by a copy from a constant global. If we can prove this, we can
1832 /// replace any uses of the alloca with uses of the global directly.
1833 Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1834 Instruction *TheCopy = 0;
1835 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1836 return TheCopy;
1837 return 0;