Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Scalar / TailRecursionElimination.cpp
blob34ee57c9b9dcaec09ca680d22a706c15bf5fd32a
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
13 // algorithm:
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative expression to use an accumulator variable,
20 // thus compiling the typical naive factorial or 'fib' implementation into
21 // efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access theier caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
30 // generator).
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately preceeds the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Constants.h"
57 #include "llvm/DerivedTypes.h"
58 #include "llvm/Function.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/CFG.h"
62 #include "llvm/ADT/Statistic.h"
63 #include "llvm/Support/Compiler.h"
64 using namespace llvm;
66 STATISTIC(NumEliminated, "Number of tail calls removed");
67 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
69 namespace {
70 struct VISIBILITY_HIDDEN TailCallElim : public FunctionPass {
71 static char ID; // Pass identification, replacement for typeid
72 TailCallElim() : FunctionPass(&ID) {}
74 virtual bool runOnFunction(Function &F);
76 private:
77 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
78 bool &TailCallsAreMarkedTail,
79 std::vector<PHINode*> &ArgumentPHIs,
80 bool CannotTailCallElimCallsMarkedTail);
81 bool CanMoveAboveCall(Instruction *I, CallInst *CI);
82 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
86 char TailCallElim::ID = 0;
87 static RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
89 // Public interface to the TailCallElimination pass
90 FunctionPass *llvm::createTailCallEliminationPass() {
91 return new TailCallElim();
95 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
96 /// callees of this function. We only do very simple analysis right now, this
97 /// could be expanded in the future to use mod/ref information for particular
98 /// call sites if desired.
99 static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
100 // FIXME: do simple 'address taken' analysis.
101 return true;
104 /// FunctionContainsAllocas - Scan the specified basic block for alloca
105 /// instructions. If it contains any that might be accessed by calls, return
106 /// true.
107 static bool CheckForEscapingAllocas(BasicBlock *BB,
108 bool &CannotTCETailMarkedCall) {
109 bool RetVal = false;
110 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
111 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
112 RetVal |= AllocaMightEscapeToCalls(AI);
114 // If this alloca is in the body of the function, or if it is a variable
115 // sized allocation, we cannot tail call eliminate calls marked 'tail'
116 // with this mechanism.
117 if (BB != &BB->getParent()->getEntryBlock() ||
118 !isa<ConstantInt>(AI->getArraySize()))
119 CannotTCETailMarkedCall = true;
121 return RetVal;
124 bool TailCallElim::runOnFunction(Function &F) {
125 // If this function is a varargs function, we won't be able to PHI the args
126 // right, so don't even try to convert it...
127 if (F.getFunctionType()->isVarArg()) return false;
129 BasicBlock *OldEntry = 0;
130 bool TailCallsAreMarkedTail = false;
131 std::vector<PHINode*> ArgumentPHIs;
132 bool MadeChange = false;
134 bool FunctionContainsEscapingAllocas = false;
136 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
137 // marked with the 'tail' attribute, because doing so would cause the stack
138 // size to increase (real TCE would deallocate variable sized allocas, TCE
139 // doesn't).
140 bool CannotTCETailMarkedCall = false;
142 // Loop over the function, looking for any returning blocks, and keeping track
143 // of whether this function has any non-trivially used allocas.
144 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
145 if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
146 break;
148 FunctionContainsEscapingAllocas |=
149 CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
152 /// FIXME: The code generator produces really bad code when an 'escaping
153 /// alloca' is changed from being a static alloca to being a dynamic alloca.
154 /// Until this is resolved, disable this transformation if that would ever
155 /// happen. This bug is PR962.
156 if (FunctionContainsEscapingAllocas)
157 return false;
160 // Second pass, change any tail calls to loops.
161 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
162 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
163 MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
164 ArgumentPHIs,CannotTCETailMarkedCall);
166 // If we eliminated any tail recursions, it's possible that we inserted some
167 // silly PHI nodes which just merge an initial value (the incoming operand)
168 // with themselves. Check to see if we did and clean up our mess if so. This
169 // occurs when a function passes an argument straight through to its tail
170 // call.
171 if (!ArgumentPHIs.empty()) {
172 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
173 PHINode *PN = ArgumentPHIs[i];
175 // If the PHI Node is a dynamic constant, replace it with the value it is.
176 if (Value *PNV = PN->hasConstantValue()) {
177 PN->replaceAllUsesWith(PNV);
178 PN->eraseFromParent();
183 // Finally, if this function contains no non-escaping allocas, mark all calls
184 // in the function as eligible for tail calls (there is no stack memory for
185 // them to access).
186 if (!FunctionContainsEscapingAllocas)
187 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
188 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
189 if (CallInst *CI = dyn_cast<CallInst>(I)) {
190 CI->setTailCall();
191 MadeChange = true;
194 return MadeChange;
198 /// CanMoveAboveCall - Return true if it is safe to move the specified
199 /// instruction from after the call to before the call, assuming that all
200 /// instructions between the call and this instruction are movable.
202 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
203 // FIXME: We can move load/store/call/free instructions above the call if the
204 // call does not mod/ref the memory location being processed.
205 if (I->mayHaveSideEffects()) // This also handles volatile loads.
206 return false;
208 if (LoadInst* L = dyn_cast<LoadInst>(I)) {
209 // Loads may always be moved above calls without side effects.
210 if (CI->mayHaveSideEffects()) {
211 // Non-volatile loads may be moved above a call with side effects if it
212 // does not write to memory and the load provably won't trap.
213 // FIXME: Writes to memory only matter if they may alias the pointer
214 // being loaded from.
215 if (CI->mayWriteToMemory() ||
216 !isSafeToLoadUnconditionally(L->getPointerOperand(), L))
217 return false;
221 // Otherwise, if this is a side-effect free instruction, check to make sure
222 // that it does not use the return value of the call. If it doesn't use the
223 // return value of the call, it must only use things that are defined before
224 // the call, or movable instructions between the call and the instruction
225 // itself.
226 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
227 if (I->getOperand(i) == CI)
228 return false;
229 return true;
232 // isDynamicConstant - Return true if the specified value is the same when the
233 // return would exit as it was when the initial iteration of the recursive
234 // function was executed.
236 // We currently handle static constants and arguments that are not modified as
237 // part of the recursion.
239 static bool isDynamicConstant(Value *V, CallInst *CI) {
240 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
242 // Check to see if this is an immutable argument, if so, the value
243 // will be available to initialize the accumulator.
244 if (Argument *Arg = dyn_cast<Argument>(V)) {
245 // Figure out which argument number this is...
246 unsigned ArgNo = 0;
247 Function *F = CI->getParent()->getParent();
248 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
249 ++ArgNo;
251 // If we are passing this argument into call as the corresponding
252 // argument operand, then the argument is dynamically constant.
253 // Otherwise, we cannot transform this function safely.
254 if (CI->getOperand(ArgNo+1) == Arg)
255 return true;
257 // Not a constant or immutable argument, we can't safely transform.
258 return false;
261 // getCommonReturnValue - Check to see if the function containing the specified
262 // return instruction and tail call consistently returns the same
263 // runtime-constant value at all exit points. If so, return the returned value.
265 static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
266 Function *F = TheRI->getParent()->getParent();
267 Value *ReturnedValue = 0;
269 // TODO: Handle multiple value ret instructions;
270 if (isa<StructType>(F->getReturnType()))
271 return 0;
273 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
274 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
275 if (RI != TheRI) {
276 Value *RetOp = RI->getOperand(0);
278 // We can only perform this transformation if the value returned is
279 // evaluatable at the start of the initial invocation of the function,
280 // instead of at the end of the evaluation.
282 if (!isDynamicConstant(RetOp, CI))
283 return 0;
285 if (ReturnedValue && RetOp != ReturnedValue)
286 return 0; // Cannot transform if differing values are returned.
287 ReturnedValue = RetOp;
289 return ReturnedValue;
292 /// CanTransformAccumulatorRecursion - If the specified instruction can be
293 /// transformed using accumulator recursion elimination, return the constant
294 /// which is the start of the accumulator value. Otherwise return null.
296 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
297 CallInst *CI) {
298 if (!I->isAssociative()) return 0;
299 assert(I->getNumOperands() == 2 &&
300 "Associative operations should have 2 args!");
302 // Exactly one operand should be the result of the call instruction...
303 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
304 (I->getOperand(0) != CI && I->getOperand(1) != CI))
305 return 0;
307 // The only user of this instruction we allow is a single return instruction.
308 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
309 return 0;
311 // Ok, now we have to check all of the other return instructions in this
312 // function. If they return non-constants or differing values, then we cannot
313 // transform the function safely.
314 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
317 bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
318 bool &TailCallsAreMarkedTail,
319 std::vector<PHINode*> &ArgumentPHIs,
320 bool CannotTailCallElimCallsMarkedTail) {
321 BasicBlock *BB = Ret->getParent();
322 Function *F = BB->getParent();
324 if (&BB->front() == Ret) // Make sure there is something before the ret...
325 return false;
327 // If the return is in the entry block, then making this transformation would
328 // turn infinite recursion into an infinite loop. This transformation is ok
329 // in theory, but breaks some code like:
330 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
331 // disable this xform in this case, because the code generator will lower the
332 // call to fabs into inline code.
333 if (BB == &F->getEntryBlock())
334 return false;
336 // Scan backwards from the return, checking to see if there is a tail call in
337 // this block. If so, set CI to it.
338 CallInst *CI;
339 BasicBlock::iterator BBI = Ret;
340 while (1) {
341 CI = dyn_cast<CallInst>(BBI);
342 if (CI && CI->getCalledFunction() == F)
343 break;
345 if (BBI == BB->begin())
346 return false; // Didn't find a potential tail call.
347 --BBI;
350 // If this call is marked as a tail call, and if there are dynamic allocas in
351 // the function, we cannot perform this optimization.
352 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
353 return false;
355 // If we are introducing accumulator recursion to eliminate associative
356 // operations after the call instruction, this variable contains the initial
357 // value for the accumulator. If this value is set, we actually perform
358 // accumulator recursion elimination instead of simple tail recursion
359 // elimination.
360 Value *AccumulatorRecursionEliminationInitVal = 0;
361 Instruction *AccumulatorRecursionInstr = 0;
363 // Ok, we found a potential tail call. We can currently only transform the
364 // tail call if all of the instructions between the call and the return are
365 // movable to above the call itself, leaving the call next to the return.
366 // Check that this is the case now.
367 for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
368 if (!CanMoveAboveCall(BBI, CI)) {
369 // If we can't move the instruction above the call, it might be because it
370 // is an associative operation that could be tranformed using accumulator
371 // recursion elimination. Check to see if this is the case, and if so,
372 // remember the initial accumulator value for later.
373 if ((AccumulatorRecursionEliminationInitVal =
374 CanTransformAccumulatorRecursion(BBI, CI))) {
375 // Yes, this is accumulator recursion. Remember which instruction
376 // accumulates.
377 AccumulatorRecursionInstr = BBI;
378 } else {
379 return false; // Otherwise, we cannot eliminate the tail recursion!
383 // We can only transform call/return pairs that either ignore the return value
384 // of the call and return void, ignore the value of the call and return a
385 // constant, return the value returned by the tail call, or that are being
386 // accumulator recursion variable eliminated.
387 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
388 !isa<UndefValue>(Ret->getReturnValue()) &&
389 AccumulatorRecursionEliminationInitVal == 0 &&
390 !getCommonReturnValue(Ret, CI))
391 return false;
393 // OK! We can transform this tail call. If this is the first one found,
394 // create the new entry block, allowing us to branch back to the old entry.
395 if (OldEntry == 0) {
396 OldEntry = &F->getEntryBlock();
397 BasicBlock *NewEntry = BasicBlock::Create("", F, OldEntry);
398 NewEntry->takeName(OldEntry);
399 OldEntry->setName("tailrecurse");
400 BranchInst::Create(OldEntry, NewEntry);
402 // If this tail call is marked 'tail' and if there are any allocas in the
403 // entry block, move them up to the new entry block.
404 TailCallsAreMarkedTail = CI->isTailCall();
405 if (TailCallsAreMarkedTail)
406 // Move all fixed sized allocas from OldEntry to NewEntry.
407 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
408 NEBI = NewEntry->begin(); OEBI != E; )
409 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
410 if (isa<ConstantInt>(AI->getArraySize()))
411 AI->moveBefore(NEBI);
413 // Now that we have created a new block, which jumps to the entry
414 // block, insert a PHI node for each argument of the function.
415 // For now, we initialize each PHI to only have the real arguments
416 // which are passed in.
417 Instruction *InsertPos = OldEntry->begin();
418 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
419 I != E; ++I) {
420 PHINode *PN = PHINode::Create(I->getType(),
421 I->getName() + ".tr", InsertPos);
422 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
423 PN->addIncoming(I, NewEntry);
424 ArgumentPHIs.push_back(PN);
428 // If this function has self recursive calls in the tail position where some
429 // are marked tail and some are not, only transform one flavor or another. We
430 // have to choose whether we move allocas in the entry block to the new entry
431 // block or not, so we can't make a good choice for both. NOTE: We could do
432 // slightly better here in the case that the function has no entry block
433 // allocas.
434 if (TailCallsAreMarkedTail && !CI->isTailCall())
435 return false;
437 // Ok, now that we know we have a pseudo-entry block WITH all of the
438 // required PHI nodes, add entries into the PHI node for the actual
439 // parameters passed into the tail-recursive call.
440 for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
441 ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
443 // If we are introducing an accumulator variable to eliminate the recursion,
444 // do so now. Note that we _know_ that no subsequent tail recursion
445 // eliminations will happen on this function because of the way the
446 // accumulator recursion predicate is set up.
448 if (AccumulatorRecursionEliminationInitVal) {
449 Instruction *AccRecInstr = AccumulatorRecursionInstr;
450 // Start by inserting a new PHI node for the accumulator.
451 PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
452 OldEntry->begin());
454 // Loop over all of the predecessors of the tail recursion block. For the
455 // real entry into the function we seed the PHI with the initial value,
456 // computed earlier. For any other existing branches to this block (due to
457 // other tail recursions eliminated) the accumulator is not modified.
458 // Because we haven't added the branch in the current block to OldEntry yet,
459 // it will not show up as a predecessor.
460 for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
461 PI != PE; ++PI) {
462 if (*PI == &F->getEntryBlock())
463 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
464 else
465 AccPN->addIncoming(AccPN, *PI);
468 // Add an incoming argument for the current block, which is computed by our
469 // associative accumulator instruction.
470 AccPN->addIncoming(AccRecInstr, BB);
472 // Next, rewrite the accumulator recursion instruction so that it does not
473 // use the result of the call anymore, instead, use the PHI node we just
474 // inserted.
475 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
477 // Finally, rewrite any return instructions in the program to return the PHI
478 // node instead of the "initval" that they do currently. This loop will
479 // actually rewrite the return value we are destroying, but that's ok.
480 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
481 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
482 RI->setOperand(0, AccPN);
483 ++NumAccumAdded;
486 // Now that all of the PHI nodes are in place, remove the call and
487 // ret instructions, replacing them with an unconditional branch.
488 BranchInst::Create(OldEntry, Ret);
489 BB->getInstList().erase(Ret); // Remove return.
490 BB->getInstList().erase(CI); // Remove call.
491 ++NumEliminated;
492 return true;