1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/Verifier.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/ADT/StringExtras.h"
37 // Provide a command-line option to aggregate function arguments into a struct
38 // for functions produced by the code extractor. This is useful when converting
39 // extracted functions to pthread-based code, as only one argument (void*) can
40 // be passed in to pthread_create().
42 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden
,
43 cl::desc("Aggregate arguments to code-extracted functions"));
46 class VISIBILITY_HIDDEN CodeExtractor
{
47 typedef std::vector
<Value
*> Values
;
48 std::set
<BasicBlock
*> BlocksToExtract
;
51 unsigned NumExitBlocks
;
54 CodeExtractor(DominatorTree
* dt
= 0, bool AggArgs
= false)
55 : DT(dt
), AggregateArgs(AggArgs
||AggregateArgsOpt
), NumExitBlocks(~0U) {}
57 Function
*ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
);
59 bool isEligible(const std::vector
<BasicBlock
*> &code
);
62 /// definedInRegion - Return true if the specified value is defined in the
64 bool definedInRegion(Value
*V
) const {
65 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
66 if (BlocksToExtract
.count(I
->getParent()))
71 /// definedInCaller - Return true if the specified value is defined in the
72 /// function being code extracted, but not in the region being extracted.
73 /// These values must be passed in as live-ins to the function.
74 bool definedInCaller(Value
*V
) const {
75 if (isa
<Argument
>(V
)) return true;
76 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
77 if (!BlocksToExtract
.count(I
->getParent()))
82 void severSplitPHINodes(BasicBlock
*&Header
);
83 void splitReturnBlocks();
84 void findInputsOutputs(Values
&inputs
, Values
&outputs
);
86 Function
*constructFunction(const Values
&inputs
,
87 const Values
&outputs
,
89 BasicBlock
*newRootNode
, BasicBlock
*newHeader
,
90 Function
*oldFunction
, Module
*M
);
92 void moveCodeToFunction(Function
*newFunction
);
94 void emitCallAndSwitchStatement(Function
*newFunction
,
95 BasicBlock
*newHeader
,
102 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
103 /// region, we need to split the entry block of the region so that the PHI node
104 /// is easier to deal with.
105 void CodeExtractor::severSplitPHINodes(BasicBlock
*&Header
) {
106 bool HasPredsFromRegion
= false;
107 unsigned NumPredsOutsideRegion
= 0;
109 if (Header
!= &Header
->getParent()->getEntryBlock()) {
110 PHINode
*PN
= dyn_cast
<PHINode
>(Header
->begin());
111 if (!PN
) return; // No PHI nodes.
113 // If the header node contains any PHI nodes, check to see if there is more
114 // than one entry from outside the region. If so, we need to sever the
115 // header block into two.
116 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
117 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
118 HasPredsFromRegion
= true;
120 ++NumPredsOutsideRegion
;
122 // If there is one (or fewer) predecessor from outside the region, we don't
123 // need to do anything special.
124 if (NumPredsOutsideRegion
<= 1) return;
127 // Otherwise, we need to split the header block into two pieces: one
128 // containing PHI nodes merging values from outside of the region, and a
129 // second that contains all of the code for the block and merges back any
130 // incoming values from inside of the region.
131 BasicBlock::iterator AfterPHIs
= Header
->getFirstNonPHI();
132 BasicBlock
*NewBB
= Header
->splitBasicBlock(AfterPHIs
,
133 Header
->getName()+".ce");
135 // We only want to code extract the second block now, and it becomes the new
136 // header of the region.
137 BasicBlock
*OldPred
= Header
;
138 BlocksToExtract
.erase(OldPred
);
139 BlocksToExtract
.insert(NewBB
);
142 // Okay, update dominator sets. The blocks that dominate the new one are the
143 // blocks that dominate TIBB plus the new block itself.
145 DT
->splitBlock(NewBB
);
147 // Okay, now we need to adjust the PHI nodes and any branches from within the
148 // region to go to the new header block instead of the old header block.
149 if (HasPredsFromRegion
) {
150 PHINode
*PN
= cast
<PHINode
>(OldPred
->begin());
151 // Loop over all of the predecessors of OldPred that are in the region,
152 // changing them to branch to NewBB instead.
153 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
154 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
155 TerminatorInst
*TI
= PN
->getIncomingBlock(i
)->getTerminator();
156 TI
->replaceUsesOfWith(OldPred
, NewBB
);
159 // Okay, everthing within the region is now branching to the right block, we
160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
161 for (AfterPHIs
= OldPred
->begin(); isa
<PHINode
>(AfterPHIs
); ++AfterPHIs
) {
162 PHINode
*PN
= cast
<PHINode
>(AfterPHIs
);
163 // Create a new PHI node in the new region, which has an incoming value
164 // from OldPred of PN.
165 PHINode
*NewPN
= PHINode::Create(PN
->getType(), PN
->getName()+".ce",
167 NewPN
->addIncoming(PN
, OldPred
);
169 // Loop over all of the incoming value in PN, moving them to NewPN if they
170 // are from the extracted region.
171 for (unsigned i
= 0; i
!= PN
->getNumIncomingValues(); ++i
) {
172 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
173 NewPN
->addIncoming(PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
));
174 PN
->removeIncomingValue(i
);
182 void CodeExtractor::splitReturnBlocks() {
183 for (std::set
<BasicBlock
*>::iterator I
= BlocksToExtract
.begin(),
184 E
= BlocksToExtract
.end(); I
!= E
; ++I
)
185 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>((*I
)->getTerminator()))
186 (*I
)->splitBasicBlock(RI
, (*I
)->getName()+".ret");
189 // findInputsOutputs - Find inputs to, outputs from the code region.
191 void CodeExtractor::findInputsOutputs(Values
&inputs
, Values
&outputs
) {
192 std::set
<BasicBlock
*> ExitBlocks
;
193 for (std::set
<BasicBlock
*>::const_iterator ci
= BlocksToExtract
.begin(),
194 ce
= BlocksToExtract
.end(); ci
!= ce
; ++ci
) {
195 BasicBlock
*BB
= *ci
;
197 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
198 // If a used value is defined outside the region, it's an input. If an
199 // instruction is used outside the region, it's an output.
200 for (User::op_iterator O
= I
->op_begin(), E
= I
->op_end(); O
!= E
; ++O
)
201 if (definedInCaller(*O
))
202 inputs
.push_back(*O
);
204 // Consider uses of this instruction (outputs).
205 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
207 if (!definedInRegion(*UI
)) {
208 outputs
.push_back(I
);
213 // Keep track of the exit blocks from the region.
214 TerminatorInst
*TI
= BB
->getTerminator();
215 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
216 if (!BlocksToExtract
.count(TI
->getSuccessor(i
)))
217 ExitBlocks
.insert(TI
->getSuccessor(i
));
218 } // for: basic blocks
220 NumExitBlocks
= ExitBlocks
.size();
222 // Eliminate duplicates.
223 std::sort(inputs
.begin(), inputs
.end());
224 inputs
.erase(std::unique(inputs
.begin(), inputs
.end()), inputs
.end());
225 std::sort(outputs
.begin(), outputs
.end());
226 outputs
.erase(std::unique(outputs
.begin(), outputs
.end()), outputs
.end());
229 /// constructFunction - make a function based on inputs and outputs, as follows:
230 /// f(in0, ..., inN, out0, ..., outN)
232 Function
*CodeExtractor::constructFunction(const Values
&inputs
,
233 const Values
&outputs
,
235 BasicBlock
*newRootNode
,
236 BasicBlock
*newHeader
,
237 Function
*oldFunction
,
239 DOUT
<< "inputs: " << inputs
.size() << "\n";
240 DOUT
<< "outputs: " << outputs
.size() << "\n";
242 // This function returns unsigned, outputs will go back by reference.
243 switch (NumExitBlocks
) {
245 case 1: RetTy
= Type::VoidTy
; break;
246 case 2: RetTy
= Type::Int1Ty
; break;
247 default: RetTy
= Type::Int16Ty
; break;
250 std::vector
<const Type
*> paramTy
;
252 // Add the types of the input values to the function's argument list
253 for (Values::const_iterator i
= inputs
.begin(),
254 e
= inputs
.end(); i
!= e
; ++i
) {
255 const Value
*value
= *i
;
256 DOUT
<< "value used in func: " << *value
<< "\n";
257 paramTy
.push_back(value
->getType());
260 // Add the types of the output values to the function's argument list.
261 for (Values::const_iterator I
= outputs
.begin(), E
= outputs
.end();
263 DOUT
<< "instr used in func: " << **I
<< "\n";
265 paramTy
.push_back((*I
)->getType());
267 paramTy
.push_back(PointerType::getUnqual((*I
)->getType()));
270 DOUT
<< "Function type: " << *RetTy
<< " f(";
271 for (std::vector
<const Type
*>::iterator i
= paramTy
.begin(),
272 e
= paramTy
.end(); i
!= e
; ++i
)
276 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
277 PointerType
*StructPtr
=
278 PointerType::getUnqual(StructType::get(paramTy
));
280 paramTy
.push_back(StructPtr
);
282 const FunctionType
*funcType
=
283 FunctionType::get(RetTy
, paramTy
, false);
285 // Create the new function
286 Function
*newFunction
= Function::Create(funcType
,
287 GlobalValue::InternalLinkage
,
288 oldFunction
->getName() + "_" +
289 header
->getName(), M
);
290 // If the old function is no-throw, so is the new one.
291 if (oldFunction
->doesNotThrow())
292 newFunction
->setDoesNotThrow(true);
294 newFunction
->getBasicBlockList().push_back(newRootNode
);
296 // Create an iterator to name all of the arguments we inserted.
297 Function::arg_iterator AI
= newFunction
->arg_begin();
299 // Rewrite all users of the inputs in the extracted region to use the
300 // arguments (or appropriate addressing into struct) instead.
301 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
305 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
306 Idx
[1] = ConstantInt::get(Type::Int32Ty
, i
);
307 TerminatorInst
*TI
= newFunction
->begin()->getTerminator();
308 GetElementPtrInst
*GEP
=
309 GetElementPtrInst::Create(AI
, Idx
, Idx
+2,
310 "gep_" + inputs
[i
]->getName(), TI
);
311 RewriteVal
= new LoadInst(GEP
, "loadgep_" + inputs
[i
]->getName(), TI
);
315 std::vector
<User
*> Users(inputs
[i
]->use_begin(), inputs
[i
]->use_end());
316 for (std::vector
<User
*>::iterator use
= Users
.begin(), useE
= Users
.end();
318 if (Instruction
* inst
= dyn_cast
<Instruction
>(*use
))
319 if (BlocksToExtract
.count(inst
->getParent()))
320 inst
->replaceUsesOfWith(inputs
[i
], RewriteVal
);
323 // Set names for input and output arguments.
324 if (!AggregateArgs
) {
325 AI
= newFunction
->arg_begin();
326 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
, ++AI
)
327 AI
->setName(inputs
[i
]->getName());
328 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
, ++AI
)
329 AI
->setName(outputs
[i
]->getName()+".out");
332 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
333 // within the new function. This must be done before we lose track of which
334 // blocks were originally in the code region.
335 std::vector
<User
*> Users(header
->use_begin(), header
->use_end());
336 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
337 // The BasicBlock which contains the branch is not in the region
338 // modify the branch target to a new block
339 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(Users
[i
]))
340 if (!BlocksToExtract
.count(TI
->getParent()) &&
341 TI
->getParent()->getParent() == oldFunction
)
342 TI
->replaceUsesOfWith(header
, newHeader
);
347 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
348 /// the call instruction, splitting any PHI nodes in the header block as
351 emitCallAndSwitchStatement(Function
*newFunction
, BasicBlock
*codeReplacer
,
352 Values
&inputs
, Values
&outputs
) {
353 // Emit a call to the new function, passing in: *pointer to struct (if
354 // aggregating parameters), or plan inputs and allocated memory for outputs
355 std::vector
<Value
*> params
, StructValues
, ReloadOutputs
;
357 // Add inputs as params, or to be filled into the struct
358 for (Values::iterator i
= inputs
.begin(), e
= inputs
.end(); i
!= e
; ++i
)
360 StructValues
.push_back(*i
);
362 params
.push_back(*i
);
364 // Create allocas for the outputs
365 for (Values::iterator i
= outputs
.begin(), e
= outputs
.end(); i
!= e
; ++i
) {
367 StructValues
.push_back(*i
);
370 new AllocaInst((*i
)->getType(), 0, (*i
)->getName()+".loc",
371 codeReplacer
->getParent()->begin()->begin());
372 ReloadOutputs
.push_back(alloca
);
373 params
.push_back(alloca
);
377 AllocaInst
*Struct
= 0;
378 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
379 std::vector
<const Type
*> ArgTypes
;
380 for (Values::iterator v
= StructValues
.begin(),
381 ve
= StructValues
.end(); v
!= ve
; ++v
)
382 ArgTypes
.push_back((*v
)->getType());
384 // Allocate a struct at the beginning of this function
385 Type
*StructArgTy
= StructType::get(ArgTypes
);
387 new AllocaInst(StructArgTy
, 0, "structArg",
388 codeReplacer
->getParent()->begin()->begin());
389 params
.push_back(Struct
);
391 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
393 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
394 Idx
[1] = ConstantInt::get(Type::Int32Ty
, i
);
395 GetElementPtrInst
*GEP
=
396 GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
397 "gep_" + StructValues
[i
]->getName());
398 codeReplacer
->getInstList().push_back(GEP
);
399 StoreInst
*SI
= new StoreInst(StructValues
[i
], GEP
);
400 codeReplacer
->getInstList().push_back(SI
);
404 // Emit the call to the function
405 CallInst
*call
= CallInst::Create(newFunction
, params
.begin(), params
.end(),
406 NumExitBlocks
> 1 ? "targetBlock" : "");
407 codeReplacer
->getInstList().push_back(call
);
409 Function::arg_iterator OutputArgBegin
= newFunction
->arg_begin();
410 unsigned FirstOut
= inputs
.size();
412 std::advance(OutputArgBegin
, inputs
.size());
414 // Reload the outputs passed in by reference
415 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
) {
419 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
420 Idx
[1] = ConstantInt::get(Type::Int32Ty
, FirstOut
+ i
);
421 GetElementPtrInst
*GEP
422 = GetElementPtrInst::Create(Struct
, Idx
, Idx
+ 2,
423 "gep_reload_" + outputs
[i
]->getName());
424 codeReplacer
->getInstList().push_back(GEP
);
427 Output
= ReloadOutputs
[i
];
429 LoadInst
*load
= new LoadInst(Output
, outputs
[i
]->getName()+".reload");
430 codeReplacer
->getInstList().push_back(load
);
431 std::vector
<User
*> Users(outputs
[i
]->use_begin(), outputs
[i
]->use_end());
432 for (unsigned u
= 0, e
= Users
.size(); u
!= e
; ++u
) {
433 Instruction
*inst
= cast
<Instruction
>(Users
[u
]);
434 if (!BlocksToExtract
.count(inst
->getParent()))
435 inst
->replaceUsesOfWith(outputs
[i
], load
);
439 // Now we can emit a switch statement using the call as a value.
440 SwitchInst
*TheSwitch
=
441 SwitchInst::Create(Constant::getNullValue(Type::Int16Ty
),
442 codeReplacer
, 0, codeReplacer
);
444 // Since there may be multiple exits from the original region, make the new
445 // function return an unsigned, switch on that number. This loop iterates
446 // over all of the blocks in the extracted region, updating any terminator
447 // instructions in the to-be-extracted region that branch to blocks that are
448 // not in the region to be extracted.
449 std::map
<BasicBlock
*, BasicBlock
*> ExitBlockMap
;
451 unsigned switchVal
= 0;
452 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
453 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
454 TerminatorInst
*TI
= (*i
)->getTerminator();
455 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
456 if (!BlocksToExtract
.count(TI
->getSuccessor(i
))) {
457 BasicBlock
*OldTarget
= TI
->getSuccessor(i
);
458 // add a new basic block which returns the appropriate value
459 BasicBlock
*&NewTarget
= ExitBlockMap
[OldTarget
];
461 // If we don't already have an exit stub for this non-extracted
462 // destination, create one now!
463 NewTarget
= BasicBlock::Create(OldTarget
->getName() + ".exitStub",
465 unsigned SuccNum
= switchVal
++;
468 switch (NumExitBlocks
) {
470 case 1: break; // No value needed.
471 case 2: // Conditional branch, return a bool
472 brVal
= ConstantInt::get(Type::Int1Ty
, !SuccNum
);
475 brVal
= ConstantInt::get(Type::Int16Ty
, SuccNum
);
479 ReturnInst
*NTRet
= ReturnInst::Create(brVal
, NewTarget
);
481 // Update the switch instruction.
482 TheSwitch
->addCase(ConstantInt::get(Type::Int16Ty
, SuccNum
),
485 // Restore values just before we exit
486 Function::arg_iterator OAI
= OutputArgBegin
;
487 for (unsigned out
= 0, e
= outputs
.size(); out
!= e
; ++out
) {
488 // For an invoke, the normal destination is the only one that is
489 // dominated by the result of the invocation
490 BasicBlock
*DefBlock
= cast
<Instruction
>(outputs
[out
])->getParent();
492 bool DominatesDef
= true;
494 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(outputs
[out
])) {
495 DefBlock
= Invoke
->getNormalDest();
497 // Make sure we are looking at the original successor block, not
498 // at a newly inserted exit block, which won't be in the dominator
500 for (std::map
<BasicBlock
*, BasicBlock
*>::iterator I
=
501 ExitBlockMap
.begin(), E
= ExitBlockMap
.end(); I
!= E
; ++I
)
502 if (DefBlock
== I
->second
) {
507 // In the extract block case, if the block we are extracting ends
508 // with an invoke instruction, make sure that we don't emit a
509 // store of the invoke value for the unwind block.
510 if (!DT
&& DefBlock
!= OldTarget
)
511 DominatesDef
= false;
515 DominatesDef
= DT
->dominates(DefBlock
, OldTarget
);
520 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
521 Idx
[1] = ConstantInt::get(Type::Int32Ty
,FirstOut
+out
);
522 GetElementPtrInst
*GEP
=
523 GetElementPtrInst::Create(OAI
, Idx
, Idx
+ 2,
524 "gep_" + outputs
[out
]->getName(),
526 new StoreInst(outputs
[out
], GEP
, NTRet
);
528 new StoreInst(outputs
[out
], OAI
, NTRet
);
531 // Advance output iterator even if we don't emit a store
532 if (!AggregateArgs
) ++OAI
;
536 // rewrite the original branch instruction with this new target
537 TI
->setSuccessor(i
, NewTarget
);
541 // Now that we've done the deed, simplify the switch instruction.
542 const Type
*OldFnRetTy
= TheSwitch
->getParent()->getParent()->getReturnType();
543 switch (NumExitBlocks
) {
545 // There are no successors (the block containing the switch itself), which
546 // means that previously this was the last part of the function, and hence
547 // this should be rewritten as a `ret'
549 // Check if the function should return a value
550 if (OldFnRetTy
== Type::VoidTy
) {
551 ReturnInst::Create(0, TheSwitch
); // Return void
552 } else if (OldFnRetTy
== TheSwitch
->getCondition()->getType()) {
553 // return what we have
554 ReturnInst::Create(TheSwitch
->getCondition(), TheSwitch
);
556 // Otherwise we must have code extracted an unwind or something, just
557 // return whatever we want.
558 ReturnInst::Create(Constant::getNullValue(OldFnRetTy
), TheSwitch
);
561 TheSwitch
->eraseFromParent();
564 // Only a single destination, change the switch into an unconditional
566 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
);
567 TheSwitch
->eraseFromParent();
570 BranchInst::Create(TheSwitch
->getSuccessor(1), TheSwitch
->getSuccessor(2),
572 TheSwitch
->eraseFromParent();
575 // Otherwise, make the default destination of the switch instruction be one
576 // of the other successors.
577 TheSwitch
->setOperand(0, call
);
578 TheSwitch
->setSuccessor(0, TheSwitch
->getSuccessor(NumExitBlocks
));
579 TheSwitch
->removeCase(NumExitBlocks
); // Remove redundant case
584 void CodeExtractor::moveCodeToFunction(Function
*newFunction
) {
585 Function
*oldFunc
= (*BlocksToExtract
.begin())->getParent();
586 Function::BasicBlockListType
&oldBlocks
= oldFunc
->getBasicBlockList();
587 Function::BasicBlockListType
&newBlocks
= newFunction
->getBasicBlockList();
589 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
590 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
591 // Delete the basic block from the old function, and the list of blocks
592 oldBlocks
.remove(*i
);
594 // Insert this basic block into the new function
595 newBlocks
.push_back(*i
);
599 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
600 /// new function. Returns pointer to the new function.
604 /// find inputs and outputs for the region
606 /// for inputs: add to function as args, map input instr* to arg#
607 /// for outputs: add allocas for scalars,
608 /// add to func as args, map output instr* to arg#
610 /// rewrite func to use argument #s instead of instr*
612 /// for each scalar output in the function: at every exit, store intermediate
613 /// computed result back into memory.
615 Function
*CodeExtractor::
616 ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
) {
617 if (!isEligible(code
))
620 // 1) Find inputs, outputs
621 // 2) Construct new function
622 // * Add allocas for defs, pass as args by reference
623 // * Pass in uses as args
624 // 3) Move code region, add call instr to func
626 BlocksToExtract
.insert(code
.begin(), code
.end());
628 Values inputs
, outputs
;
630 // Assumption: this is a single-entry code region, and the header is the first
631 // block in the region.
632 BasicBlock
*header
= code
[0];
634 for (unsigned i
= 1, e
= code
.size(); i
!= e
; ++i
)
635 for (pred_iterator PI
= pred_begin(code
[i
]), E
= pred_end(code
[i
]);
637 assert(BlocksToExtract
.count(*PI
) &&
638 "No blocks in this region may have entries from outside the region"
639 " except for the first block!");
641 // If we have to split PHI nodes or the entry block, do so now.
642 severSplitPHINodes(header
);
644 // If we have any return instructions in the region, split those blocks so
645 // that the return is not in the region.
648 Function
*oldFunction
= header
->getParent();
650 // This takes place of the original loop
651 BasicBlock
*codeReplacer
= BasicBlock::Create("codeRepl", oldFunction
,
654 // The new function needs a root node because other nodes can branch to the
655 // head of the region, but the entry node of a function cannot have preds.
656 BasicBlock
*newFuncRoot
= BasicBlock::Create("newFuncRoot");
657 newFuncRoot
->getInstList().push_back(BranchInst::Create(header
));
659 // Find inputs to, outputs from the code region.
660 findInputsOutputs(inputs
, outputs
);
662 // Construct new function based on inputs/outputs & add allocas for all defs.
663 Function
*newFunction
= constructFunction(inputs
, outputs
, header
,
665 codeReplacer
, oldFunction
,
666 oldFunction
->getParent());
668 emitCallAndSwitchStatement(newFunction
, codeReplacer
, inputs
, outputs
);
670 moveCodeToFunction(newFunction
);
672 // Loop over all of the PHI nodes in the header block, and change any
673 // references to the old incoming edge to be the new incoming edge.
674 for (BasicBlock::iterator I
= header
->begin(); isa
<PHINode
>(I
); ++I
) {
675 PHINode
*PN
= cast
<PHINode
>(I
);
676 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
677 if (!BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
678 PN
->setIncomingBlock(i
, newFuncRoot
);
681 // Look at all successors of the codeReplacer block. If any of these blocks
682 // had PHI nodes in them, we need to update the "from" block to be the code
683 // replacer, not the original block in the extracted region.
684 std::vector
<BasicBlock
*> Succs(succ_begin(codeReplacer
),
685 succ_end(codeReplacer
));
686 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
687 for (BasicBlock::iterator I
= Succs
[i
]->begin(); isa
<PHINode
>(I
); ++I
) {
688 PHINode
*PN
= cast
<PHINode
>(I
);
689 std::set
<BasicBlock
*> ProcessedPreds
;
690 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
691 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
692 if (ProcessedPreds
.insert(PN
->getIncomingBlock(i
)).second
)
693 PN
->setIncomingBlock(i
, codeReplacer
);
695 // There were multiple entries in the PHI for this block, now there
696 // is only one, so remove the duplicated entries.
697 PN
->removeIncomingValue(i
, false);
703 //cerr << "NEW FUNCTION: " << *newFunction;
704 // verifyFunction(*newFunction);
706 // cerr << "OLD FUNCTION: " << *oldFunction;
707 // verifyFunction(*oldFunction);
709 DEBUG(if (verifyFunction(*newFunction
))
710 llvm_report_error("verifyFunction failed!"));
714 bool CodeExtractor::isEligible(const std::vector
<BasicBlock
*> &code
) {
715 // Deny code region if it contains allocas or vastarts.
716 for (std::vector
<BasicBlock
*>::const_iterator BB
= code
.begin(), e
=code
.end();
718 for (BasicBlock::const_iterator I
= (*BB
)->begin(), Ie
= (*BB
)->end();
720 if (isa
<AllocaInst
>(*I
))
722 else if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
723 if (const Function
*F
= CI
->getCalledFunction())
724 if (F
->getIntrinsicID() == Intrinsic::vastart
)
730 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
733 Function
* llvm::ExtractCodeRegion(DominatorTree
&DT
,
734 const std::vector
<BasicBlock
*> &code
,
735 bool AggregateArgs
) {
736 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(code
);
739 /// ExtractBasicBlock - slurp a natural loop into a brand new function
741 Function
* llvm::ExtractLoop(DominatorTree
&DT
, Loop
*L
, bool AggregateArgs
) {
742 return CodeExtractor(&DT
, AggregateArgs
).ExtractCodeRegion(L
->getBlocks());
745 /// ExtractBasicBlock - slurp a basic block into a brand new function
747 Function
* llvm::ExtractBasicBlock(BasicBlock
*BB
, bool AggregateArgs
) {
748 std::vector
<BasicBlock
*> Blocks
;
749 Blocks
.push_back(BB
);
750 return CodeExtractor(0, AggregateArgs
).ExtractCodeRegion(Blocks
);