Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / CodeExtractor.cpp
blob80da263df557c2461fa28c4d38140855f1019a20
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/Verifier.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <algorithm>
34 #include <set>
35 using namespace llvm;
37 // Provide a command-line option to aggregate function arguments into a struct
38 // for functions produced by the code extractor. This is useful when converting
39 // extracted functions to pthread-based code, as only one argument (void*) can
40 // be passed in to pthread_create().
41 static cl::opt<bool>
42 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
43 cl::desc("Aggregate arguments to code-extracted functions"));
45 namespace {
46 class VISIBILITY_HIDDEN CodeExtractor {
47 typedef std::vector<Value*> Values;
48 std::set<BasicBlock*> BlocksToExtract;
49 DominatorTree* DT;
50 bool AggregateArgs;
51 unsigned NumExitBlocks;
52 const Type *RetTy;
53 public:
54 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
55 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
57 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
59 bool isEligible(const std::vector<BasicBlock*> &code);
61 private:
62 /// definedInRegion - Return true if the specified value is defined in the
63 /// extracted region.
64 bool definedInRegion(Value *V) const {
65 if (Instruction *I = dyn_cast<Instruction>(V))
66 if (BlocksToExtract.count(I->getParent()))
67 return true;
68 return false;
71 /// definedInCaller - Return true if the specified value is defined in the
72 /// function being code extracted, but not in the region being extracted.
73 /// These values must be passed in as live-ins to the function.
74 bool definedInCaller(Value *V) const {
75 if (isa<Argument>(V)) return true;
76 if (Instruction *I = dyn_cast<Instruction>(V))
77 if (!BlocksToExtract.count(I->getParent()))
78 return true;
79 return false;
82 void severSplitPHINodes(BasicBlock *&Header);
83 void splitReturnBlocks();
84 void findInputsOutputs(Values &inputs, Values &outputs);
86 Function *constructFunction(const Values &inputs,
87 const Values &outputs,
88 BasicBlock *header,
89 BasicBlock *newRootNode, BasicBlock *newHeader,
90 Function *oldFunction, Module *M);
92 void moveCodeToFunction(Function *newFunction);
94 void emitCallAndSwitchStatement(Function *newFunction,
95 BasicBlock *newHeader,
96 Values &inputs,
97 Values &outputs);
102 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
103 /// region, we need to split the entry block of the region so that the PHI node
104 /// is easier to deal with.
105 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
106 bool HasPredsFromRegion = false;
107 unsigned NumPredsOutsideRegion = 0;
109 if (Header != &Header->getParent()->getEntryBlock()) {
110 PHINode *PN = dyn_cast<PHINode>(Header->begin());
111 if (!PN) return; // No PHI nodes.
113 // If the header node contains any PHI nodes, check to see if there is more
114 // than one entry from outside the region. If so, we need to sever the
115 // header block into two.
116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
117 if (BlocksToExtract.count(PN->getIncomingBlock(i)))
118 HasPredsFromRegion = true;
119 else
120 ++NumPredsOutsideRegion;
122 // If there is one (or fewer) predecessor from outside the region, we don't
123 // need to do anything special.
124 if (NumPredsOutsideRegion <= 1) return;
127 // Otherwise, we need to split the header block into two pieces: one
128 // containing PHI nodes merging values from outside of the region, and a
129 // second that contains all of the code for the block and merges back any
130 // incoming values from inside of the region.
131 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
133 Header->getName()+".ce");
135 // We only want to code extract the second block now, and it becomes the new
136 // header of the region.
137 BasicBlock *OldPred = Header;
138 BlocksToExtract.erase(OldPred);
139 BlocksToExtract.insert(NewBB);
140 Header = NewBB;
142 // Okay, update dominator sets. The blocks that dominate the new one are the
143 // blocks that dominate TIBB plus the new block itself.
144 if (DT)
145 DT->splitBlock(NewBB);
147 // Okay, now we need to adjust the PHI nodes and any branches from within the
148 // region to go to the new header block instead of the old header block.
149 if (HasPredsFromRegion) {
150 PHINode *PN = cast<PHINode>(OldPred->begin());
151 // Loop over all of the predecessors of OldPred that are in the region,
152 // changing them to branch to NewBB instead.
153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
154 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
155 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
156 TI->replaceUsesOfWith(OldPred, NewBB);
159 // Okay, everthing within the region is now branching to the right block, we
160 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
161 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
162 PHINode *PN = cast<PHINode>(AfterPHIs);
163 // Create a new PHI node in the new region, which has an incoming value
164 // from OldPred of PN.
165 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
166 NewBB->begin());
167 NewPN->addIncoming(PN, OldPred);
169 // Loop over all of the incoming value in PN, moving them to NewPN if they
170 // are from the extracted region.
171 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
172 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
173 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
174 PN->removeIncomingValue(i);
175 --i;
182 void CodeExtractor::splitReturnBlocks() {
183 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
184 E = BlocksToExtract.end(); I != E; ++I)
185 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
186 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
189 // findInputsOutputs - Find inputs to, outputs from the code region.
191 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
192 std::set<BasicBlock*> ExitBlocks;
193 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
194 ce = BlocksToExtract.end(); ci != ce; ++ci) {
195 BasicBlock *BB = *ci;
197 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
198 // If a used value is defined outside the region, it's an input. If an
199 // instruction is used outside the region, it's an output.
200 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
201 if (definedInCaller(*O))
202 inputs.push_back(*O);
204 // Consider uses of this instruction (outputs).
205 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
206 UI != E; ++UI)
207 if (!definedInRegion(*UI)) {
208 outputs.push_back(I);
209 break;
211 } // for: insts
213 // Keep track of the exit blocks from the region.
214 TerminatorInst *TI = BB->getTerminator();
215 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
216 if (!BlocksToExtract.count(TI->getSuccessor(i)))
217 ExitBlocks.insert(TI->getSuccessor(i));
218 } // for: basic blocks
220 NumExitBlocks = ExitBlocks.size();
222 // Eliminate duplicates.
223 std::sort(inputs.begin(), inputs.end());
224 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
225 std::sort(outputs.begin(), outputs.end());
226 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
229 /// constructFunction - make a function based on inputs and outputs, as follows:
230 /// f(in0, ..., inN, out0, ..., outN)
232 Function *CodeExtractor::constructFunction(const Values &inputs,
233 const Values &outputs,
234 BasicBlock *header,
235 BasicBlock *newRootNode,
236 BasicBlock *newHeader,
237 Function *oldFunction,
238 Module *M) {
239 DOUT << "inputs: " << inputs.size() << "\n";
240 DOUT << "outputs: " << outputs.size() << "\n";
242 // This function returns unsigned, outputs will go back by reference.
243 switch (NumExitBlocks) {
244 case 0:
245 case 1: RetTy = Type::VoidTy; break;
246 case 2: RetTy = Type::Int1Ty; break;
247 default: RetTy = Type::Int16Ty; break;
250 std::vector<const Type*> paramTy;
252 // Add the types of the input values to the function's argument list
253 for (Values::const_iterator i = inputs.begin(),
254 e = inputs.end(); i != e; ++i) {
255 const Value *value = *i;
256 DOUT << "value used in func: " << *value << "\n";
257 paramTy.push_back(value->getType());
260 // Add the types of the output values to the function's argument list.
261 for (Values::const_iterator I = outputs.begin(), E = outputs.end();
262 I != E; ++I) {
263 DOUT << "instr used in func: " << **I << "\n";
264 if (AggregateArgs)
265 paramTy.push_back((*I)->getType());
266 else
267 paramTy.push_back(PointerType::getUnqual((*I)->getType()));
270 DOUT << "Function type: " << *RetTy << " f(";
271 for (std::vector<const Type*>::iterator i = paramTy.begin(),
272 e = paramTy.end(); i != e; ++i)
273 DOUT << **i << ", ";
274 DOUT << ")\n";
276 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
277 PointerType *StructPtr =
278 PointerType::getUnqual(StructType::get(paramTy));
279 paramTy.clear();
280 paramTy.push_back(StructPtr);
282 const FunctionType *funcType =
283 FunctionType::get(RetTy, paramTy, false);
285 // Create the new function
286 Function *newFunction = Function::Create(funcType,
287 GlobalValue::InternalLinkage,
288 oldFunction->getName() + "_" +
289 header->getName(), M);
290 // If the old function is no-throw, so is the new one.
291 if (oldFunction->doesNotThrow())
292 newFunction->setDoesNotThrow(true);
294 newFunction->getBasicBlockList().push_back(newRootNode);
296 // Create an iterator to name all of the arguments we inserted.
297 Function::arg_iterator AI = newFunction->arg_begin();
299 // Rewrite all users of the inputs in the extracted region to use the
300 // arguments (or appropriate addressing into struct) instead.
301 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
302 Value *RewriteVal;
303 if (AggregateArgs) {
304 Value *Idx[2];
305 Idx[0] = Constant::getNullValue(Type::Int32Ty);
306 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
307 TerminatorInst *TI = newFunction->begin()->getTerminator();
308 GetElementPtrInst *GEP =
309 GetElementPtrInst::Create(AI, Idx, Idx+2,
310 "gep_" + inputs[i]->getName(), TI);
311 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
312 } else
313 RewriteVal = AI++;
315 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
316 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
317 use != useE; ++use)
318 if (Instruction* inst = dyn_cast<Instruction>(*use))
319 if (BlocksToExtract.count(inst->getParent()))
320 inst->replaceUsesOfWith(inputs[i], RewriteVal);
323 // Set names for input and output arguments.
324 if (!AggregateArgs) {
325 AI = newFunction->arg_begin();
326 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
327 AI->setName(inputs[i]->getName());
328 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
329 AI->setName(outputs[i]->getName()+".out");
332 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
333 // within the new function. This must be done before we lose track of which
334 // blocks were originally in the code region.
335 std::vector<User*> Users(header->use_begin(), header->use_end());
336 for (unsigned i = 0, e = Users.size(); i != e; ++i)
337 // The BasicBlock which contains the branch is not in the region
338 // modify the branch target to a new block
339 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
340 if (!BlocksToExtract.count(TI->getParent()) &&
341 TI->getParent()->getParent() == oldFunction)
342 TI->replaceUsesOfWith(header, newHeader);
344 return newFunction;
347 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
348 /// the call instruction, splitting any PHI nodes in the header block as
349 /// necessary.
350 void CodeExtractor::
351 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
352 Values &inputs, Values &outputs) {
353 // Emit a call to the new function, passing in: *pointer to struct (if
354 // aggregating parameters), or plan inputs and allocated memory for outputs
355 std::vector<Value*> params, StructValues, ReloadOutputs;
357 // Add inputs as params, or to be filled into the struct
358 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
359 if (AggregateArgs)
360 StructValues.push_back(*i);
361 else
362 params.push_back(*i);
364 // Create allocas for the outputs
365 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
366 if (AggregateArgs) {
367 StructValues.push_back(*i);
368 } else {
369 AllocaInst *alloca =
370 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
371 codeReplacer->getParent()->begin()->begin());
372 ReloadOutputs.push_back(alloca);
373 params.push_back(alloca);
377 AllocaInst *Struct = 0;
378 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
379 std::vector<const Type*> ArgTypes;
380 for (Values::iterator v = StructValues.begin(),
381 ve = StructValues.end(); v != ve; ++v)
382 ArgTypes.push_back((*v)->getType());
384 // Allocate a struct at the beginning of this function
385 Type *StructArgTy = StructType::get(ArgTypes);
386 Struct =
387 new AllocaInst(StructArgTy, 0, "structArg",
388 codeReplacer->getParent()->begin()->begin());
389 params.push_back(Struct);
391 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
392 Value *Idx[2];
393 Idx[0] = Constant::getNullValue(Type::Int32Ty);
394 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
395 GetElementPtrInst *GEP =
396 GetElementPtrInst::Create(Struct, Idx, Idx + 2,
397 "gep_" + StructValues[i]->getName());
398 codeReplacer->getInstList().push_back(GEP);
399 StoreInst *SI = new StoreInst(StructValues[i], GEP);
400 codeReplacer->getInstList().push_back(SI);
404 // Emit the call to the function
405 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
406 NumExitBlocks > 1 ? "targetBlock" : "");
407 codeReplacer->getInstList().push_back(call);
409 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
410 unsigned FirstOut = inputs.size();
411 if (!AggregateArgs)
412 std::advance(OutputArgBegin, inputs.size());
414 // Reload the outputs passed in by reference
415 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
416 Value *Output = 0;
417 if (AggregateArgs) {
418 Value *Idx[2];
419 Idx[0] = Constant::getNullValue(Type::Int32Ty);
420 Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i);
421 GetElementPtrInst *GEP
422 = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
423 "gep_reload_" + outputs[i]->getName());
424 codeReplacer->getInstList().push_back(GEP);
425 Output = GEP;
426 } else {
427 Output = ReloadOutputs[i];
429 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
430 codeReplacer->getInstList().push_back(load);
431 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
432 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
433 Instruction *inst = cast<Instruction>(Users[u]);
434 if (!BlocksToExtract.count(inst->getParent()))
435 inst->replaceUsesOfWith(outputs[i], load);
439 // Now we can emit a switch statement using the call as a value.
440 SwitchInst *TheSwitch =
441 SwitchInst::Create(Constant::getNullValue(Type::Int16Ty),
442 codeReplacer, 0, codeReplacer);
444 // Since there may be multiple exits from the original region, make the new
445 // function return an unsigned, switch on that number. This loop iterates
446 // over all of the blocks in the extracted region, updating any terminator
447 // instructions in the to-be-extracted region that branch to blocks that are
448 // not in the region to be extracted.
449 std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
451 unsigned switchVal = 0;
452 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
453 e = BlocksToExtract.end(); i != e; ++i) {
454 TerminatorInst *TI = (*i)->getTerminator();
455 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
456 if (!BlocksToExtract.count(TI->getSuccessor(i))) {
457 BasicBlock *OldTarget = TI->getSuccessor(i);
458 // add a new basic block which returns the appropriate value
459 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
460 if (!NewTarget) {
461 // If we don't already have an exit stub for this non-extracted
462 // destination, create one now!
463 NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
464 newFunction);
465 unsigned SuccNum = switchVal++;
467 Value *brVal = 0;
468 switch (NumExitBlocks) {
469 case 0:
470 case 1: break; // No value needed.
471 case 2: // Conditional branch, return a bool
472 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
473 break;
474 default:
475 brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
476 break;
479 ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);
481 // Update the switch instruction.
482 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
483 OldTarget);
485 // Restore values just before we exit
486 Function::arg_iterator OAI = OutputArgBegin;
487 for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
488 // For an invoke, the normal destination is the only one that is
489 // dominated by the result of the invocation
490 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
492 bool DominatesDef = true;
494 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
495 DefBlock = Invoke->getNormalDest();
497 // Make sure we are looking at the original successor block, not
498 // at a newly inserted exit block, which won't be in the dominator
499 // info.
500 for (std::map<BasicBlock*, BasicBlock*>::iterator I =
501 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
502 if (DefBlock == I->second) {
503 DefBlock = I->first;
504 break;
507 // In the extract block case, if the block we are extracting ends
508 // with an invoke instruction, make sure that we don't emit a
509 // store of the invoke value for the unwind block.
510 if (!DT && DefBlock != OldTarget)
511 DominatesDef = false;
514 if (DT)
515 DominatesDef = DT->dominates(DefBlock, OldTarget);
517 if (DominatesDef) {
518 if (AggregateArgs) {
519 Value *Idx[2];
520 Idx[0] = Constant::getNullValue(Type::Int32Ty);
521 Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out);
522 GetElementPtrInst *GEP =
523 GetElementPtrInst::Create(OAI, Idx, Idx + 2,
524 "gep_" + outputs[out]->getName(),
525 NTRet);
526 new StoreInst(outputs[out], GEP, NTRet);
527 } else {
528 new StoreInst(outputs[out], OAI, NTRet);
531 // Advance output iterator even if we don't emit a store
532 if (!AggregateArgs) ++OAI;
536 // rewrite the original branch instruction with this new target
537 TI->setSuccessor(i, NewTarget);
541 // Now that we've done the deed, simplify the switch instruction.
542 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
543 switch (NumExitBlocks) {
544 case 0:
545 // There are no successors (the block containing the switch itself), which
546 // means that previously this was the last part of the function, and hence
547 // this should be rewritten as a `ret'
549 // Check if the function should return a value
550 if (OldFnRetTy == Type::VoidTy) {
551 ReturnInst::Create(0, TheSwitch); // Return void
552 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
553 // return what we have
554 ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
555 } else {
556 // Otherwise we must have code extracted an unwind or something, just
557 // return whatever we want.
558 ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch);
561 TheSwitch->eraseFromParent();
562 break;
563 case 1:
564 // Only a single destination, change the switch into an unconditional
565 // branch.
566 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
567 TheSwitch->eraseFromParent();
568 break;
569 case 2:
570 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
571 call, TheSwitch);
572 TheSwitch->eraseFromParent();
573 break;
574 default:
575 // Otherwise, make the default destination of the switch instruction be one
576 // of the other successors.
577 TheSwitch->setOperand(0, call);
578 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
579 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
580 break;
584 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
585 Function *oldFunc = (*BlocksToExtract.begin())->getParent();
586 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
587 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
589 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
590 e = BlocksToExtract.end(); i != e; ++i) {
591 // Delete the basic block from the old function, and the list of blocks
592 oldBlocks.remove(*i);
594 // Insert this basic block into the new function
595 newBlocks.push_back(*i);
599 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
600 /// new function. Returns pointer to the new function.
602 /// algorithm:
604 /// find inputs and outputs for the region
606 /// for inputs: add to function as args, map input instr* to arg#
607 /// for outputs: add allocas for scalars,
608 /// add to func as args, map output instr* to arg#
610 /// rewrite func to use argument #s instead of instr*
612 /// for each scalar output in the function: at every exit, store intermediate
613 /// computed result back into memory.
615 Function *CodeExtractor::
616 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
617 if (!isEligible(code))
618 return 0;
620 // 1) Find inputs, outputs
621 // 2) Construct new function
622 // * Add allocas for defs, pass as args by reference
623 // * Pass in uses as args
624 // 3) Move code region, add call instr to func
626 BlocksToExtract.insert(code.begin(), code.end());
628 Values inputs, outputs;
630 // Assumption: this is a single-entry code region, and the header is the first
631 // block in the region.
632 BasicBlock *header = code[0];
634 for (unsigned i = 1, e = code.size(); i != e; ++i)
635 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
636 PI != E; ++PI)
637 assert(BlocksToExtract.count(*PI) &&
638 "No blocks in this region may have entries from outside the region"
639 " except for the first block!");
641 // If we have to split PHI nodes or the entry block, do so now.
642 severSplitPHINodes(header);
644 // If we have any return instructions in the region, split those blocks so
645 // that the return is not in the region.
646 splitReturnBlocks();
648 Function *oldFunction = header->getParent();
650 // This takes place of the original loop
651 BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction,
652 header);
654 // The new function needs a root node because other nodes can branch to the
655 // head of the region, but the entry node of a function cannot have preds.
656 BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
657 newFuncRoot->getInstList().push_back(BranchInst::Create(header));
659 // Find inputs to, outputs from the code region.
660 findInputsOutputs(inputs, outputs);
662 // Construct new function based on inputs/outputs & add allocas for all defs.
663 Function *newFunction = constructFunction(inputs, outputs, header,
664 newFuncRoot,
665 codeReplacer, oldFunction,
666 oldFunction->getParent());
668 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
670 moveCodeToFunction(newFunction);
672 // Loop over all of the PHI nodes in the header block, and change any
673 // references to the old incoming edge to be the new incoming edge.
674 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
675 PHINode *PN = cast<PHINode>(I);
676 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
677 if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
678 PN->setIncomingBlock(i, newFuncRoot);
681 // Look at all successors of the codeReplacer block. If any of these blocks
682 // had PHI nodes in them, we need to update the "from" block to be the code
683 // replacer, not the original block in the extracted region.
684 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
685 succ_end(codeReplacer));
686 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
687 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
688 PHINode *PN = cast<PHINode>(I);
689 std::set<BasicBlock*> ProcessedPreds;
690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
691 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
692 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
693 PN->setIncomingBlock(i, codeReplacer);
694 else {
695 // There were multiple entries in the PHI for this block, now there
696 // is only one, so remove the duplicated entries.
697 PN->removeIncomingValue(i, false);
698 --i; --e;
703 //cerr << "NEW FUNCTION: " << *newFunction;
704 // verifyFunction(*newFunction);
706 // cerr << "OLD FUNCTION: " << *oldFunction;
707 // verifyFunction(*oldFunction);
709 DEBUG(if (verifyFunction(*newFunction))
710 llvm_report_error("verifyFunction failed!"));
711 return newFunction;
714 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
715 // Deny code region if it contains allocas or vastarts.
716 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
717 BB != e; ++BB)
718 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
719 I != Ie; ++I)
720 if (isa<AllocaInst>(*I))
721 return false;
722 else if (const CallInst *CI = dyn_cast<CallInst>(I))
723 if (const Function *F = CI->getCalledFunction())
724 if (F->getIntrinsicID() == Intrinsic::vastart)
725 return false;
726 return true;
730 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
731 /// function
733 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
734 const std::vector<BasicBlock*> &code,
735 bool AggregateArgs) {
736 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
739 /// ExtractBasicBlock - slurp a natural loop into a brand new function
741 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
742 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
745 /// ExtractBasicBlock - slurp a basic block into a brand new function
747 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
748 std::vector<BasicBlock*> Blocks;
749 Blocks.push_back(BB);
750 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);