1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements inline cost analysis.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/InlineCost.h"
16 #include "llvm/Support/CallSite.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/IntrinsicInst.h"
22 // CountCodeReductionForConstant - Figure out an approximation for how many
23 // instructions will be constant folded if the specified value is constant.
25 unsigned InlineCostAnalyzer::FunctionInfo::
26 CountCodeReductionForConstant(Value
*V
) {
27 unsigned Reduction
= 0;
28 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
; ++UI
)
29 if (isa
<BranchInst
>(*UI
))
30 Reduction
+= 40; // Eliminating a conditional branch is a big win
31 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(*UI
))
32 // Eliminating a switch is a big win, proportional to the number of edges
34 Reduction
+= (SI
->getNumSuccessors()-1) * 40;
35 else if (CallInst
*CI
= dyn_cast
<CallInst
>(*UI
)) {
36 // Turning an indirect call into a direct call is a BIG win
37 Reduction
+= CI
->getCalledValue() == V
? 500 : 0;
38 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(*UI
)) {
39 // Turning an indirect call into a direct call is a BIG win
40 Reduction
+= II
->getCalledValue() == V
? 500 : 0;
42 // Figure out if this instruction will be removed due to simple constant
44 Instruction
&Inst
= cast
<Instruction
>(**UI
);
46 // We can't constant propagate instructions which have effects or
49 // FIXME: It would be nice to capture the fact that a load from a
50 // pointer-to-constant-global is actually a *really* good thing to zap.
51 // Unfortunately, we don't know the pointer that may get propagated here,
52 // so we can't make this decision.
53 if (Inst
.mayReadFromMemory() || Inst
.mayHaveSideEffects() ||
54 isa
<AllocationInst
>(Inst
))
57 bool AllOperandsConstant
= true;
58 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
)
59 if (!isa
<Constant
>(Inst
.getOperand(i
)) && Inst
.getOperand(i
) != V
) {
60 AllOperandsConstant
= false;
64 if (AllOperandsConstant
) {
65 // We will get to remove this instruction...
68 // And any other instructions that use it which become constants
70 Reduction
+= CountCodeReductionForConstant(&Inst
);
77 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
78 // the function will be if it is inlined into a context where an argument
81 unsigned InlineCostAnalyzer::FunctionInfo::
82 CountCodeReductionForAlloca(Value
*V
) {
83 if (!isa
<PointerType
>(V
->getType())) return 0; // Not a pointer
84 unsigned Reduction
= 0;
85 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
86 Instruction
*I
= cast
<Instruction
>(*UI
);
87 if (isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
))
89 else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
90 // If the GEP has variable indices, we won't be able to do much with it.
91 if (!GEP
->hasAllConstantIndices())
92 Reduction
+= CountCodeReductionForAlloca(GEP
)+15;
94 // If there is some other strange instruction, we're not going to be able
95 // to do much if we inline this.
103 /// analyzeFunction - Fill in the current structure with information gleaned
104 /// from the specified function.
105 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function
*F
) {
106 unsigned NumInsts
= 0, NumBlocks
= 0, NumVectorInsts
= 0;
108 // Look at the size of the callee. Each basic block counts as 20 units, and
109 // each instruction counts as 5.
110 for (Function::const_iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
) {
111 for (BasicBlock::const_iterator II
= BB
->begin(), E
= BB
->end();
113 if (isa
<PHINode
>(II
)) continue; // PHI nodes don't count.
115 // Special handling for calls.
116 if (isa
<CallInst
>(II
) || isa
<InvokeInst
>(II
)) {
117 if (isa
<DbgInfoIntrinsic
>(II
))
118 continue; // Debug intrinsics don't count as size.
120 CallSite CS
= CallSite::get(const_cast<Instruction
*>(&*II
));
122 // If this function contains a call to setjmp or _setjmp, never inline
123 // it. This is a hack because we depend on the user marking their local
124 // variables as volatile if they are live across a setjmp call, and they
125 // probably won't do this in callers.
126 if (Function
*F
= CS
.getCalledFunction())
127 if (F
->isDeclaration() &&
128 (F
->getName() == "setjmp" || F
->getName() == "_setjmp")) {
133 // Calls often compile into many machine instructions. Bump up their
134 // cost to reflect this.
135 if (!isa
<IntrinsicInst
>(II
))
139 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(II
)) {
140 if (!AI
->isStaticAlloca())
141 this->usesDynamicAlloca
= true;
144 if (isa
<ExtractElementInst
>(II
) || isa
<VectorType
>(II
->getType()))
147 // Noop casts, including ptr <-> int, don't count.
148 if (const CastInst
*CI
= dyn_cast
<CastInst
>(II
)) {
149 if (CI
->isLosslessCast() || isa
<IntToPtrInst
>(CI
) ||
150 isa
<PtrToIntInst
>(CI
))
152 } else if (const GetElementPtrInst
*GEPI
=
153 dyn_cast
<GetElementPtrInst
>(II
)) {
154 // If a GEP has all constant indices, it will probably be folded with
156 if (GEPI
->hasAllConstantIndices())
166 this->NumBlocks
= NumBlocks
;
167 this->NumInsts
= NumInsts
;
168 this->NumVectorInsts
= NumVectorInsts
;
170 // Check out all of the arguments to the function, figuring out how much
171 // code can be eliminated if one of the arguments is a constant.
172 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
; ++I
)
173 ArgumentWeights
.push_back(ArgInfo(CountCodeReductionForConstant(I
),
174 CountCodeReductionForAlloca(I
)));
179 // getInlineCost - The heuristic used to determine if we should inline the
180 // function call or not.
182 InlineCost
InlineCostAnalyzer::getInlineCost(CallSite CS
,
183 SmallPtrSet
<const Function
*, 16> &NeverInline
) {
184 Instruction
*TheCall
= CS
.getInstruction();
185 Function
*Callee
= CS
.getCalledFunction();
186 Function
*Caller
= TheCall
->getParent()->getParent();
188 // Don't inline functions which can be redefined at link-time to mean
190 if (Callee
->mayBeOverridden() ||
191 // Don't inline functions marked noinline.
192 Callee
->hasFnAttr(Attribute::NoInline
) || NeverInline
.count(Callee
))
193 return llvm::InlineCost::getNever();
195 // InlineCost - This value measures how good of an inline candidate this call
196 // site is to inline. A lower inline cost make is more likely for the call to
197 // be inlined. This value may go negative.
201 // If there is only one call of the function, and it has internal linkage,
202 // make it almost guaranteed to be inlined.
204 if (Callee
->hasLocalLinkage() && Callee
->hasOneUse())
207 // If this function uses the coldcc calling convention, prefer not to inline
209 if (Callee
->getCallingConv() == CallingConv::Cold
)
212 // If the instruction after the call, or if the normal destination of the
213 // invoke is an unreachable instruction, the function is noreturn. As such,
214 // there is little point in inlining this.
215 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
)) {
216 if (isa
<UnreachableInst
>(II
->getNormalDest()->begin()))
218 } else if (isa
<UnreachableInst
>(++BasicBlock::iterator(TheCall
)))
221 // Get information about the callee...
222 FunctionInfo
&CalleeFI
= CachedFunctionInfo
[Callee
];
224 // If we haven't calculated this information yet, do so now.
225 if (CalleeFI
.NumBlocks
== 0)
226 CalleeFI
.analyzeFunction(Callee
);
228 // If we should never inline this, return a huge cost.
229 if (CalleeFI
.NeverInline
)
230 return InlineCost::getNever();
232 // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
233 // could move this up and avoid computing the FunctionInfo for
234 // things we are going to just return always inline for. This
235 // requires handling setjmp somewhere else, however.
236 if (!Callee
->isDeclaration() && Callee
->hasFnAttr(Attribute::AlwaysInline
))
237 return InlineCost::getAlways();
239 if (CalleeFI
.usesDynamicAlloca
) {
240 // Get infomation about the caller...
241 FunctionInfo
&CallerFI
= CachedFunctionInfo
[Caller
];
243 // If we haven't calculated this information yet, do so now.
244 if (CallerFI
.NumBlocks
== 0)
245 CallerFI
.analyzeFunction(Caller
);
247 // Don't inline a callee with dynamic alloca into a caller without them.
248 // Functions containing dynamic alloca's are inefficient in various ways;
249 // don't create more inefficiency.
250 if (!CallerFI
.usesDynamicAlloca
)
251 return InlineCost::getNever();
254 // Add to the inline quality for properties that make the call valuable to
255 // inline. This includes factors that indicate that the result of inlining
256 // the function will be optimizable. Currently this just looks at arguments
257 // passed into the function.
260 for (CallSite::arg_iterator I
= CS
.arg_begin(), E
= CS
.arg_end();
261 I
!= E
; ++I
, ++ArgNo
) {
262 // Each argument passed in has a cost at both the caller and the callee
263 // sides. This favors functions that take many arguments over functions
264 // that take few arguments.
267 // If this is a function being passed in, it is very likely that we will be
268 // able to turn an indirect function call into a direct function call.
269 if (isa
<Function
>(I
))
272 // If an alloca is passed in, inlining this function is likely to allow
273 // significant future optimization possibilities (like scalar promotion, and
274 // scalarization), so encourage the inlining of the function.
276 else if (isa
<AllocaInst
>(I
)) {
277 if (ArgNo
< CalleeFI
.ArgumentWeights
.size())
278 InlineCost
-= CalleeFI
.ArgumentWeights
[ArgNo
].AllocaWeight
;
280 // If this is a constant being passed into the function, use the argument
281 // weights calculated for the callee to determine how much will be folded
282 // away with this information.
283 } else if (isa
<Constant
>(I
)) {
284 if (ArgNo
< CalleeFI
.ArgumentWeights
.size())
285 InlineCost
-= CalleeFI
.ArgumentWeights
[ArgNo
].ConstantWeight
;
289 // Now that we have considered all of the factors that make the call site more
290 // likely to be inlined, look at factors that make us not want to inline it.
292 // Don't inline into something too big, which would make it bigger.
294 InlineCost
+= Caller
->size()/15;
296 // Look at the size of the callee. Each instruction counts as 5.
297 InlineCost
+= CalleeFI
.NumInsts
*5;
299 return llvm::InlineCost::get(InlineCost
);
302 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
303 // higher threshold to determine if the function call should be inlined.
304 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS
) {
305 Function
*Callee
= CS
.getCalledFunction();
307 // Get information about the callee...
308 FunctionInfo
&CalleeFI
= CachedFunctionInfo
[Callee
];
310 // If we haven't calculated this information yet, do so now.
311 if (CalleeFI
.NumBlocks
== 0)
312 CalleeFI
.analyzeFunction(Callee
);
315 // Single BB functions are often written to be inlined.
316 if (CalleeFI
.NumBlocks
== 1)
319 // Be more aggressive if the function contains a good chunk (if it mades up
320 // at least 10% of the instructions) of vector instructions.
321 if (CalleeFI
.NumVectorInsts
> CalleeFI
.NumInsts
/2)
323 else if (CalleeFI
.NumVectorInsts
> CalleeFI
.NumInsts
/10)