Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / InlineCost.cpp
blob1a04b96be51415f9c30602f874683122673a2baf
1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inline cost analysis.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/InlineCost.h"
16 #include "llvm/Support/CallSite.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/IntrinsicInst.h"
20 using namespace llvm;
22 // CountCodeReductionForConstant - Figure out an approximation for how many
23 // instructions will be constant folded if the specified value is constant.
25 unsigned InlineCostAnalyzer::FunctionInfo::
26 CountCodeReductionForConstant(Value *V) {
27 unsigned Reduction = 0;
28 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
29 if (isa<BranchInst>(*UI))
30 Reduction += 40; // Eliminating a conditional branch is a big win
31 else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
32 // Eliminating a switch is a big win, proportional to the number of edges
33 // deleted.
34 Reduction += (SI->getNumSuccessors()-1) * 40;
35 else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
36 // Turning an indirect call into a direct call is a BIG win
37 Reduction += CI->getCalledValue() == V ? 500 : 0;
38 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
39 // Turning an indirect call into a direct call is a BIG win
40 Reduction += II->getCalledValue() == V ? 500 : 0;
41 } else {
42 // Figure out if this instruction will be removed due to simple constant
43 // propagation.
44 Instruction &Inst = cast<Instruction>(**UI);
46 // We can't constant propagate instructions which have effects or
47 // read memory.
49 // FIXME: It would be nice to capture the fact that a load from a
50 // pointer-to-constant-global is actually a *really* good thing to zap.
51 // Unfortunately, we don't know the pointer that may get propagated here,
52 // so we can't make this decision.
53 if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
54 isa<AllocationInst>(Inst))
55 continue;
57 bool AllOperandsConstant = true;
58 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
59 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
60 AllOperandsConstant = false;
61 break;
64 if (AllOperandsConstant) {
65 // We will get to remove this instruction...
66 Reduction += 7;
68 // And any other instructions that use it which become constants
69 // themselves.
70 Reduction += CountCodeReductionForConstant(&Inst);
74 return Reduction;
77 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
78 // the function will be if it is inlined into a context where an argument
79 // becomes an alloca.
81 unsigned InlineCostAnalyzer::FunctionInfo::
82 CountCodeReductionForAlloca(Value *V) {
83 if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
84 unsigned Reduction = 0;
85 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
86 Instruction *I = cast<Instruction>(*UI);
87 if (isa<LoadInst>(I) || isa<StoreInst>(I))
88 Reduction += 10;
89 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
90 // If the GEP has variable indices, we won't be able to do much with it.
91 if (!GEP->hasAllConstantIndices())
92 Reduction += CountCodeReductionForAlloca(GEP)+15;
93 } else {
94 // If there is some other strange instruction, we're not going to be able
95 // to do much if we inline this.
96 return 0;
100 return Reduction;
103 /// analyzeFunction - Fill in the current structure with information gleaned
104 /// from the specified function.
105 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
106 unsigned NumInsts = 0, NumBlocks = 0, NumVectorInsts = 0;
108 // Look at the size of the callee. Each basic block counts as 20 units, and
109 // each instruction counts as 5.
110 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
111 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
112 II != E; ++II) {
113 if (isa<PHINode>(II)) continue; // PHI nodes don't count.
115 // Special handling for calls.
116 if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
117 if (isa<DbgInfoIntrinsic>(II))
118 continue; // Debug intrinsics don't count as size.
120 CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
122 // If this function contains a call to setjmp or _setjmp, never inline
123 // it. This is a hack because we depend on the user marking their local
124 // variables as volatile if they are live across a setjmp call, and they
125 // probably won't do this in callers.
126 if (Function *F = CS.getCalledFunction())
127 if (F->isDeclaration() &&
128 (F->getName() == "setjmp" || F->getName() == "_setjmp")) {
129 NeverInline = true;
130 return;
133 // Calls often compile into many machine instructions. Bump up their
134 // cost to reflect this.
135 if (!isa<IntrinsicInst>(II))
136 NumInsts += 5;
139 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
140 if (!AI->isStaticAlloca())
141 this->usesDynamicAlloca = true;
144 if (isa<ExtractElementInst>(II) || isa<VectorType>(II->getType()))
145 ++NumVectorInsts;
147 // Noop casts, including ptr <-> int, don't count.
148 if (const CastInst *CI = dyn_cast<CastInst>(II)) {
149 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
150 isa<PtrToIntInst>(CI))
151 continue;
152 } else if (const GetElementPtrInst *GEPI =
153 dyn_cast<GetElementPtrInst>(II)) {
154 // If a GEP has all constant indices, it will probably be folded with
155 // a load/store.
156 if (GEPI->hasAllConstantIndices())
157 continue;
160 ++NumInsts;
163 ++NumBlocks;
166 this->NumBlocks = NumBlocks;
167 this->NumInsts = NumInsts;
168 this->NumVectorInsts = NumVectorInsts;
170 // Check out all of the arguments to the function, figuring out how much
171 // code can be eliminated if one of the arguments is a constant.
172 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
173 ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
174 CountCodeReductionForAlloca(I)));
179 // getInlineCost - The heuristic used to determine if we should inline the
180 // function call or not.
182 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
183 SmallPtrSet<const Function *, 16> &NeverInline) {
184 Instruction *TheCall = CS.getInstruction();
185 Function *Callee = CS.getCalledFunction();
186 Function *Caller = TheCall->getParent()->getParent();
188 // Don't inline functions which can be redefined at link-time to mean
189 // something else.
190 if (Callee->mayBeOverridden() ||
191 // Don't inline functions marked noinline.
192 Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee))
193 return llvm::InlineCost::getNever();
195 // InlineCost - This value measures how good of an inline candidate this call
196 // site is to inline. A lower inline cost make is more likely for the call to
197 // be inlined. This value may go negative.
199 int InlineCost = 0;
201 // If there is only one call of the function, and it has internal linkage,
202 // make it almost guaranteed to be inlined.
204 if (Callee->hasLocalLinkage() && Callee->hasOneUse())
205 InlineCost -= 15000;
207 // If this function uses the coldcc calling convention, prefer not to inline
208 // it.
209 if (Callee->getCallingConv() == CallingConv::Cold)
210 InlineCost += 2000;
212 // If the instruction after the call, or if the normal destination of the
213 // invoke is an unreachable instruction, the function is noreturn. As such,
214 // there is little point in inlining this.
215 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
216 if (isa<UnreachableInst>(II->getNormalDest()->begin()))
217 InlineCost += 10000;
218 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
219 InlineCost += 10000;
221 // Get information about the callee...
222 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
224 // If we haven't calculated this information yet, do so now.
225 if (CalleeFI.NumBlocks == 0)
226 CalleeFI.analyzeFunction(Callee);
228 // If we should never inline this, return a huge cost.
229 if (CalleeFI.NeverInline)
230 return InlineCost::getNever();
232 // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
233 // could move this up and avoid computing the FunctionInfo for
234 // things we are going to just return always inline for. This
235 // requires handling setjmp somewhere else, however.
236 if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
237 return InlineCost::getAlways();
239 if (CalleeFI.usesDynamicAlloca) {
240 // Get infomation about the caller...
241 FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
243 // If we haven't calculated this information yet, do so now.
244 if (CallerFI.NumBlocks == 0)
245 CallerFI.analyzeFunction(Caller);
247 // Don't inline a callee with dynamic alloca into a caller without them.
248 // Functions containing dynamic alloca's are inefficient in various ways;
249 // don't create more inefficiency.
250 if (!CallerFI.usesDynamicAlloca)
251 return InlineCost::getNever();
254 // Add to the inline quality for properties that make the call valuable to
255 // inline. This includes factors that indicate that the result of inlining
256 // the function will be optimizable. Currently this just looks at arguments
257 // passed into the function.
259 unsigned ArgNo = 0;
260 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
261 I != E; ++I, ++ArgNo) {
262 // Each argument passed in has a cost at both the caller and the callee
263 // sides. This favors functions that take many arguments over functions
264 // that take few arguments.
265 InlineCost -= 20;
267 // If this is a function being passed in, it is very likely that we will be
268 // able to turn an indirect function call into a direct function call.
269 if (isa<Function>(I))
270 InlineCost -= 100;
272 // If an alloca is passed in, inlining this function is likely to allow
273 // significant future optimization possibilities (like scalar promotion, and
274 // scalarization), so encourage the inlining of the function.
276 else if (isa<AllocaInst>(I)) {
277 if (ArgNo < CalleeFI.ArgumentWeights.size())
278 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
280 // If this is a constant being passed into the function, use the argument
281 // weights calculated for the callee to determine how much will be folded
282 // away with this information.
283 } else if (isa<Constant>(I)) {
284 if (ArgNo < CalleeFI.ArgumentWeights.size())
285 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
289 // Now that we have considered all of the factors that make the call site more
290 // likely to be inlined, look at factors that make us not want to inline it.
292 // Don't inline into something too big, which would make it bigger.
294 InlineCost += Caller->size()/15;
296 // Look at the size of the callee. Each instruction counts as 5.
297 InlineCost += CalleeFI.NumInsts*5;
299 return llvm::InlineCost::get(InlineCost);
302 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
303 // higher threshold to determine if the function call should be inlined.
304 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
305 Function *Callee = CS.getCalledFunction();
307 // Get information about the callee...
308 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
310 // If we haven't calculated this information yet, do so now.
311 if (CalleeFI.NumBlocks == 0)
312 CalleeFI.analyzeFunction(Callee);
314 float Factor = 1.0f;
315 // Single BB functions are often written to be inlined.
316 if (CalleeFI.NumBlocks == 1)
317 Factor += 0.5f;
319 // Be more aggressive if the function contains a good chunk (if it mades up
320 // at least 10% of the instructions) of vector instructions.
321 if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/2)
322 Factor += 2.0f;
323 else if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10)
324 Factor += 1.5f;
325 return Factor;