1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/Attributes.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/Support/CallSite.h"
32 bool llvm::InlineFunction(CallInst
*CI
, CallGraph
*CG
, const TargetData
*TD
) {
33 return InlineFunction(CallSite(CI
), CG
, TD
);
35 bool llvm::InlineFunction(InvokeInst
*II
, CallGraph
*CG
, const TargetData
*TD
) {
36 return InlineFunction(CallSite(II
), CG
, TD
);
39 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
40 /// in the body of the inlined function into invokes and turn unwind
41 /// instructions into branches to the invoke unwind dest.
43 /// II is the invoke instruction being inlined. FirstNewBlock is the first
44 /// block of the inlined code (the last block is the end of the function),
45 /// and InlineCodeInfo is information about the code that got inlined.
46 static void HandleInlinedInvoke(InvokeInst
*II
, BasicBlock
*FirstNewBlock
,
47 ClonedCodeInfo
&InlinedCodeInfo
,
49 BasicBlock
*InvokeDest
= II
->getUnwindDest();
50 std::vector
<Value
*> InvokeDestPHIValues
;
52 // If there are PHI nodes in the unwind destination block, we need to
53 // keep track of which values came into them from this invoke, then remove
54 // the entry for this block.
55 BasicBlock
*InvokeBlock
= II
->getParent();
56 for (BasicBlock::iterator I
= InvokeDest
->begin(); isa
<PHINode
>(I
); ++I
) {
57 PHINode
*PN
= cast
<PHINode
>(I
);
58 // Save the value to use for this edge.
59 InvokeDestPHIValues
.push_back(PN
->getIncomingValueForBlock(InvokeBlock
));
62 Function
*Caller
= FirstNewBlock
->getParent();
64 // The inlined code is currently at the end of the function, scan from the
65 // start of the inlined code to its end, checking for stuff we need to
67 if (InlinedCodeInfo
.ContainsCalls
|| InlinedCodeInfo
.ContainsUnwinds
) {
68 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
70 if (InlinedCodeInfo
.ContainsCalls
) {
71 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ){
72 Instruction
*I
= BBI
++;
74 // We only need to check for function calls: inlined invoke
75 // instructions require no special handling.
76 if (!isa
<CallInst
>(I
)) continue;
77 CallInst
*CI
= cast
<CallInst
>(I
);
79 // If this call cannot unwind, don't convert it to an invoke.
80 if (CI
->doesNotThrow())
83 // Convert this function call into an invoke instruction.
84 // First, split the basic block.
85 BasicBlock
*Split
= BB
->splitBasicBlock(CI
, CI
->getName()+".noexc");
87 // Next, create the new invoke instruction, inserting it at the end
88 // of the old basic block.
89 SmallVector
<Value
*, 8> InvokeArgs(CI
->op_begin()+1, CI
->op_end());
91 InvokeInst::Create(CI
->getCalledValue(), Split
, InvokeDest
,
92 InvokeArgs
.begin(), InvokeArgs
.end(),
93 CI
->getName(), BB
->getTerminator());
94 II
->setCallingConv(CI
->getCallingConv());
95 II
->setAttributes(CI
->getAttributes());
97 // Make sure that anything using the call now uses the invoke!
98 CI
->replaceAllUsesWith(II
);
100 // Update the callgraph.
102 // We should be able to do this:
103 // (*CG)[Caller]->replaceCallSite(CI, II);
104 // but that fails if the old call site isn't in the call graph,
105 // which, because of LLVM bug 3601, it sometimes isn't.
106 CallGraphNode
*CGN
= (*CG
)[Caller
];
107 for (CallGraphNode::iterator NI
= CGN
->begin(), NE
= CGN
->end();
109 if (NI
->first
== CI
) {
116 // Delete the unconditional branch inserted by splitBasicBlock
117 BB
->getInstList().pop_back();
118 Split
->getInstList().pop_front(); // Delete the original call
120 // Update any PHI nodes in the exceptional block to indicate that
121 // there is now a new entry in them.
123 for (BasicBlock::iterator I
= InvokeDest
->begin();
124 isa
<PHINode
>(I
); ++I
, ++i
) {
125 PHINode
*PN
= cast
<PHINode
>(I
);
126 PN
->addIncoming(InvokeDestPHIValues
[i
], BB
);
129 // This basic block is now complete, start scanning the next one.
134 if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
135 // An UnwindInst requires special handling when it gets inlined into an
136 // invoke site. Once this happens, we know that the unwind would cause
137 // a control transfer to the invoke exception destination, so we can
138 // transform it into a direct branch to the exception destination.
139 BranchInst::Create(InvokeDest
, UI
);
141 // Delete the unwind instruction!
142 UI
->eraseFromParent();
144 // Update any PHI nodes in the exceptional block to indicate that
145 // there is now a new entry in them.
147 for (BasicBlock::iterator I
= InvokeDest
->begin();
148 isa
<PHINode
>(I
); ++I
, ++i
) {
149 PHINode
*PN
= cast
<PHINode
>(I
);
150 PN
->addIncoming(InvokeDestPHIValues
[i
], BB
);
156 // Now that everything is happy, we have one final detail. The PHI nodes in
157 // the exception destination block still have entries due to the original
158 // invoke instruction. Eliminate these entries (which might even delete the
160 InvokeDest
->removePredecessor(II
->getParent());
163 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
164 /// into the caller, update the specified callgraph to reflect the changes we
165 /// made. Note that it's possible that not all code was copied over, so only
166 /// some edges of the callgraph may remain.
167 static void UpdateCallGraphAfterInlining(CallSite CS
,
168 Function::iterator FirstNewBlock
,
169 DenseMap
<const Value
*, Value
*> &ValueMap
,
171 const Function
*Caller
= CS
.getInstruction()->getParent()->getParent();
172 const Function
*Callee
= CS
.getCalledFunction();
173 CallGraphNode
*CalleeNode
= CG
[Callee
];
174 CallGraphNode
*CallerNode
= CG
[Caller
];
176 // Since we inlined some uninlined call sites in the callee into the caller,
177 // add edges from the caller to all of the callees of the callee.
178 CallGraphNode::iterator I
= CalleeNode
->begin(), E
= CalleeNode
->end();
180 // Consider the case where CalleeNode == CallerNode.
181 CallGraphNode::CalledFunctionsVector CallCache
;
182 if (CalleeNode
== CallerNode
) {
183 CallCache
.assign(I
, E
);
184 I
= CallCache
.begin();
188 for (; I
!= E
; ++I
) {
189 const Instruction
*OrigCall
= I
->first
.getInstruction();
191 DenseMap
<const Value
*, Value
*>::iterator VMI
= ValueMap
.find(OrigCall
);
192 // Only copy the edge if the call was inlined!
193 if (VMI
!= ValueMap
.end() && VMI
->second
) {
194 // If the call was inlined, but then constant folded, there is no edge to
195 // add. Check for this case.
196 if (Instruction
*NewCall
= dyn_cast
<Instruction
>(VMI
->second
))
197 CallerNode
->addCalledFunction(CallSite::get(NewCall
), I
->second
);
200 // Update the call graph by deleting the edge from Callee to Caller. We must
201 // do this after the loop above in case Caller and Callee are the same.
202 CallerNode
->removeCallEdgeFor(CS
);
205 /// findFnRegionEndMarker - This is a utility routine that is used by
206 /// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
207 /// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
208 static const DbgRegionEndInst
*findFnRegionEndMarker(const Function
*F
) {
210 GlobalVariable
*FnStart
= NULL
;
211 const DbgRegionEndInst
*FnEnd
= NULL
;
212 for (Function::const_iterator FI
= F
->begin(), FE
=F
->end(); FI
!= FE
; ++FI
)
213 for (BasicBlock::const_iterator BI
= FI
->begin(), BE
= FI
->end(); BI
!= BE
;
215 if (FnStart
== NULL
) {
216 if (const DbgFuncStartInst
*FSI
= dyn_cast
<DbgFuncStartInst
>(BI
)) {
217 DISubprogram
SP(cast
<GlobalVariable
>(FSI
->getSubprogram()));
218 assert (SP
.isNull() == false && "Invalid llvm.dbg.func.start");
220 FnStart
= SP
.getGV();
223 if (const DbgRegionEndInst
*REI
= dyn_cast
<DbgRegionEndInst
>(BI
))
224 if (REI
->getContext() == FnStart
)
231 // InlineFunction - This function inlines the called function into the basic
232 // block of the caller. This returns false if it is not possible to inline this
233 // call. The program is still in a well defined state if this occurs though.
235 // Note that this only does one level of inlining. For example, if the
236 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
237 // exists in the instruction stream. Similiarly this will inline a recursive
238 // function by one level.
240 bool llvm::InlineFunction(CallSite CS
, CallGraph
*CG
, const TargetData
*TD
) {
241 Instruction
*TheCall
= CS
.getInstruction();
242 LLVMContext
&Context
= TheCall
->getContext();
243 assert(TheCall
->getParent() && TheCall
->getParent()->getParent() &&
244 "Instruction not in function!");
246 const Function
*CalledFunc
= CS
.getCalledFunction();
247 if (CalledFunc
== 0 || // Can't inline external function or indirect
248 CalledFunc
->isDeclaration() || // call, or call to a vararg function!
249 CalledFunc
->getFunctionType()->isVarArg()) return false;
252 // If the call to the callee is not a tail call, we must clear the 'tail'
253 // flags on any calls that we inline.
254 bool MustClearTailCallFlags
=
255 !(isa
<CallInst
>(TheCall
) && cast
<CallInst
>(TheCall
)->isTailCall());
257 // If the call to the callee cannot throw, set the 'nounwind' flag on any
258 // calls that we inline.
259 bool MarkNoUnwind
= CS
.doesNotThrow();
261 BasicBlock
*OrigBB
= TheCall
->getParent();
262 Function
*Caller
= OrigBB
->getParent();
264 // GC poses two hazards to inlining, which only occur when the callee has GC:
265 // 1. If the caller has no GC, then the callee's GC must be propagated to the
267 // 2. If the caller has a differing GC, it is invalid to inline.
268 if (CalledFunc
->hasGC()) {
269 if (!Caller
->hasGC())
270 Caller
->setGC(CalledFunc
->getGC());
271 else if (CalledFunc
->getGC() != Caller
->getGC())
275 // Get an iterator to the last basic block in the function, which will have
276 // the new function inlined after it.
278 Function::iterator LastBlock
= &Caller
->back();
280 // Make sure to capture all of the return instructions from the cloned
282 std::vector
<ReturnInst
*> Returns
;
283 ClonedCodeInfo InlinedFunctionInfo
;
284 Function::iterator FirstNewBlock
;
286 { // Scope to destroy ValueMap after cloning.
287 DenseMap
<const Value
*, Value
*> ValueMap
;
289 assert(CalledFunc
->arg_size() == CS
.arg_size() &&
290 "No varargs calls can be inlined!");
292 // Calculate the vector of arguments to pass into the function cloner, which
293 // matches up the formal to the actual argument values.
294 CallSite::arg_iterator AI
= CS
.arg_begin();
296 for (Function::const_arg_iterator I
= CalledFunc
->arg_begin(),
297 E
= CalledFunc
->arg_end(); I
!= E
; ++I
, ++AI
, ++ArgNo
) {
298 Value
*ActualArg
= *AI
;
300 // When byval arguments actually inlined, we need to make the copy implied
301 // by them explicit. However, we don't do this if the callee is readonly
302 // or readnone, because the copy would be unneeded: the callee doesn't
303 // modify the struct.
304 if (CalledFunc
->paramHasAttr(ArgNo
+1, Attribute::ByVal
) &&
305 !CalledFunc
->onlyReadsMemory()) {
306 const Type
*AggTy
= cast
<PointerType
>(I
->getType())->getElementType();
307 const Type
*VoidPtrTy
= PointerType::getUnqual(Type::Int8Ty
);
309 // Create the alloca. If we have TargetData, use nice alignment.
311 if (TD
) Align
= TD
->getPrefTypeAlignment(AggTy
);
312 Value
*NewAlloca
= new AllocaInst(AggTy
, 0, Align
,
314 &*Caller
->begin()->begin());
316 const Type
*Tys
[] = { Type::Int64Ty
};
317 Function
*MemCpyFn
= Intrinsic::getDeclaration(Caller
->getParent(),
320 Value
*DestCast
= new BitCastInst(NewAlloca
, VoidPtrTy
, "tmp", TheCall
);
321 Value
*SrcCast
= new BitCastInst(*AI
, VoidPtrTy
, "tmp", TheCall
);
325 Size
= ConstantExpr::getSizeOf(AggTy
);
327 Size
= ConstantInt::get(Type::Int64Ty
,
328 TD
->getTypeStoreSize(AggTy
));
330 // Always generate a memcpy of alignment 1 here because we don't know
331 // the alignment of the src pointer. Other optimizations can infer
333 Value
*CallArgs
[] = {
334 DestCast
, SrcCast
, Size
, ConstantInt::get(Type::Int32Ty
, 1)
336 CallInst
*TheMemCpy
=
337 CallInst::Create(MemCpyFn
, CallArgs
, CallArgs
+4, "", TheCall
);
339 // If we have a call graph, update it.
341 CallGraphNode
*MemCpyCGN
= CG
->getOrInsertFunction(MemCpyFn
);
342 CallGraphNode
*CallerNode
= (*CG
)[Caller
];
343 CallerNode
->addCalledFunction(TheMemCpy
, MemCpyCGN
);
346 // Uses of the argument in the function should use our new alloca
348 ActualArg
= NewAlloca
;
351 ValueMap
[I
] = ActualArg
;
354 // Adjust llvm.dbg.region.end. If the CalledFunc has region end
355 // marker then clone that marker after next stop point at the
356 // call site. The function body cloner does not clone original
357 // region end marker from the CalledFunc. This will ensure that
358 // inlined function's scope ends at the right place.
359 const DbgRegionEndInst
*DREI
= findFnRegionEndMarker(CalledFunc
);
361 for (BasicBlock::iterator BI
= TheCall
,
362 BE
= TheCall
->getParent()->end(); BI
!= BE
; ++BI
) {
363 if (DbgStopPointInst
*DSPI
= dyn_cast
<DbgStopPointInst
>(BI
)) {
364 if (DbgRegionEndInst
*NewDREI
=
365 dyn_cast
<DbgRegionEndInst
>(DREI
->clone(Context
)))
366 NewDREI
->insertAfter(DSPI
);
372 // We want the inliner to prune the code as it copies. We would LOVE to
373 // have no dead or constant instructions leftover after inlining occurs
374 // (which can happen, e.g., because an argument was constant), but we'll be
375 // happy with whatever the cloner can do.
376 CloneAndPruneFunctionInto(Caller
, CalledFunc
, ValueMap
, Returns
, ".i",
377 &InlinedFunctionInfo
, TD
);
379 // Remember the first block that is newly cloned over.
380 FirstNewBlock
= LastBlock
; ++FirstNewBlock
;
382 // Update the callgraph if requested.
384 UpdateCallGraphAfterInlining(CS
, FirstNewBlock
, ValueMap
, *CG
);
387 // If there are any alloca instructions in the block that used to be the entry
388 // block for the callee, move them to the entry block of the caller. First
389 // calculate which instruction they should be inserted before. We insert the
390 // instructions at the end of the current alloca list.
393 BasicBlock::iterator InsertPoint
= Caller
->begin()->begin();
394 for (BasicBlock::iterator I
= FirstNewBlock
->begin(),
395 E
= FirstNewBlock
->end(); I
!= E
; )
396 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
++)) {
397 // If the alloca is now dead, remove it. This often occurs due to code
399 if (AI
->use_empty()) {
400 AI
->eraseFromParent();
404 if (isa
<Constant
>(AI
->getArraySize())) {
405 // Scan for the block of allocas that we can move over, and move them
407 while (isa
<AllocaInst
>(I
) &&
408 isa
<Constant
>(cast
<AllocaInst
>(I
)->getArraySize()))
411 // Transfer all of the allocas over in a block. Using splice means
412 // that the instructions aren't removed from the symbol table, then
414 Caller
->getEntryBlock().getInstList().splice(
416 FirstNewBlock
->getInstList(),
422 // If the inlined code contained dynamic alloca instructions, wrap the inlined
423 // code with llvm.stacksave/llvm.stackrestore intrinsics.
424 if (InlinedFunctionInfo
.ContainsDynamicAllocas
) {
425 Module
*M
= Caller
->getParent();
426 // Get the two intrinsics we care about.
427 Constant
*StackSave
, *StackRestore
;
428 StackSave
= Intrinsic::getDeclaration(M
, Intrinsic::stacksave
);
429 StackRestore
= Intrinsic::getDeclaration(M
, Intrinsic::stackrestore
);
431 // If we are preserving the callgraph, add edges to the stacksave/restore
432 // functions for the calls we insert.
433 CallGraphNode
*StackSaveCGN
= 0, *StackRestoreCGN
= 0, *CallerNode
= 0;
435 // We know that StackSave/StackRestore are Function*'s, because they are
436 // intrinsics which must have the right types.
437 StackSaveCGN
= CG
->getOrInsertFunction(cast
<Function
>(StackSave
));
438 StackRestoreCGN
= CG
->getOrInsertFunction(cast
<Function
>(StackRestore
));
439 CallerNode
= (*CG
)[Caller
];
442 // Insert the llvm.stacksave.
443 CallInst
*SavedPtr
= CallInst::Create(StackSave
, "savedstack",
444 FirstNewBlock
->begin());
445 if (CG
) CallerNode
->addCalledFunction(SavedPtr
, StackSaveCGN
);
447 // Insert a call to llvm.stackrestore before any return instructions in the
449 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
450 CallInst
*CI
= CallInst::Create(StackRestore
, SavedPtr
, "", Returns
[i
]);
451 if (CG
) CallerNode
->addCalledFunction(CI
, StackRestoreCGN
);
454 // Count the number of StackRestore calls we insert.
455 unsigned NumStackRestores
= Returns
.size();
457 // If we are inlining an invoke instruction, insert restores before each
458 // unwind. These unwinds will be rewritten into branches later.
459 if (InlinedFunctionInfo
.ContainsUnwinds
&& isa
<InvokeInst
>(TheCall
)) {
460 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
462 if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
463 CallInst::Create(StackRestore
, SavedPtr
, "", UI
);
469 // If we are inlining tail call instruction through a call site that isn't
470 // marked 'tail', we must remove the tail marker for any calls in the inlined
471 // code. Also, calls inlined through a 'nounwind' call site should be marked
473 if (InlinedFunctionInfo
.ContainsCalls
&&
474 (MustClearTailCallFlags
|| MarkNoUnwind
)) {
475 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
477 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
478 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
479 if (MustClearTailCallFlags
)
480 CI
->setTailCall(false);
482 CI
->setDoesNotThrow();
486 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
487 // instructions are unreachable.
488 if (InlinedFunctionInfo
.ContainsUnwinds
&& MarkNoUnwind
)
489 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
491 TerminatorInst
*Term
= BB
->getTerminator();
492 if (isa
<UnwindInst
>(Term
)) {
493 new UnreachableInst(Term
);
494 BB
->getInstList().erase(Term
);
498 // If we are inlining for an invoke instruction, we must make sure to rewrite
499 // any inlined 'unwind' instructions into branches to the invoke exception
500 // destination, and call instructions into invoke instructions.
501 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
))
502 HandleInlinedInvoke(II
, FirstNewBlock
, InlinedFunctionInfo
, CG
);
504 // If we cloned in _exactly one_ basic block, and if that block ends in a
505 // return instruction, we splice the body of the inlined callee directly into
506 // the calling basic block.
507 if (Returns
.size() == 1 && std::distance(FirstNewBlock
, Caller
->end()) == 1) {
508 // Move all of the instructions right before the call.
509 OrigBB
->getInstList().splice(TheCall
, FirstNewBlock
->getInstList(),
510 FirstNewBlock
->begin(), FirstNewBlock
->end());
511 // Remove the cloned basic block.
512 Caller
->getBasicBlockList().pop_back();
514 // If the call site was an invoke instruction, add a branch to the normal
516 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
))
517 BranchInst::Create(II
->getNormalDest(), TheCall
);
519 // If the return instruction returned a value, replace uses of the call with
520 // uses of the returned value.
521 if (!TheCall
->use_empty()) {
522 ReturnInst
*R
= Returns
[0];
523 if (TheCall
== R
->getReturnValue())
524 TheCall
->replaceAllUsesWith(UndefValue::get(TheCall
->getType()));
526 TheCall
->replaceAllUsesWith(R
->getReturnValue());
528 // Since we are now done with the Call/Invoke, we can delete it.
529 TheCall
->eraseFromParent();
531 // Since we are now done with the return instruction, delete it also.
532 Returns
[0]->eraseFromParent();
534 // We are now done with the inlining.
538 // Otherwise, we have the normal case, of more than one block to inline or
539 // multiple return sites.
541 // We want to clone the entire callee function into the hole between the
542 // "starter" and "ender" blocks. How we accomplish this depends on whether
543 // this is an invoke instruction or a call instruction.
544 BasicBlock
*AfterCallBB
;
545 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
)) {
547 // Add an unconditional branch to make this look like the CallInst case...
548 BranchInst
*NewBr
= BranchInst::Create(II
->getNormalDest(), TheCall
);
550 // Split the basic block. This guarantees that no PHI nodes will have to be
551 // updated due to new incoming edges, and make the invoke case more
552 // symmetric to the call case.
553 AfterCallBB
= OrigBB
->splitBasicBlock(NewBr
,
554 CalledFunc
->getName()+".exit");
556 } else { // It's a call
557 // If this is a call instruction, we need to split the basic block that
558 // the call lives in.
560 AfterCallBB
= OrigBB
->splitBasicBlock(TheCall
,
561 CalledFunc
->getName()+".exit");
564 // Change the branch that used to go to AfterCallBB to branch to the first
565 // basic block of the inlined function.
567 TerminatorInst
*Br
= OrigBB
->getTerminator();
568 assert(Br
&& Br
->getOpcode() == Instruction::Br
&&
569 "splitBasicBlock broken!");
570 Br
->setOperand(0, FirstNewBlock
);
573 // Now that the function is correct, make it a little bit nicer. In
574 // particular, move the basic blocks inserted from the end of the function
575 // into the space made by splitting the source basic block.
576 Caller
->getBasicBlockList().splice(AfterCallBB
, Caller
->getBasicBlockList(),
577 FirstNewBlock
, Caller
->end());
579 // Handle all of the return instructions that we just cloned in, and eliminate
580 // any users of the original call/invoke instruction.
581 const Type
*RTy
= CalledFunc
->getReturnType();
583 if (Returns
.size() > 1) {
584 // The PHI node should go at the front of the new basic block to merge all
585 // possible incoming values.
587 if (!TheCall
->use_empty()) {
588 PHI
= PHINode::Create(RTy
, TheCall
->getName(),
589 AfterCallBB
->begin());
590 // Anything that used the result of the function call should now use the
591 // PHI node as their operand.
592 TheCall
->replaceAllUsesWith(PHI
);
595 // Loop over all of the return instructions adding entries to the PHI node
598 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
599 ReturnInst
*RI
= Returns
[i
];
600 assert(RI
->getReturnValue()->getType() == PHI
->getType() &&
601 "Ret value not consistent in function!");
602 PHI
->addIncoming(RI
->getReturnValue(), RI
->getParent());
606 // Add a branch to the merge points and remove return instructions.
607 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
608 ReturnInst
*RI
= Returns
[i
];
609 BranchInst::Create(AfterCallBB
, RI
);
610 RI
->eraseFromParent();
612 } else if (!Returns
.empty()) {
613 // Otherwise, if there is exactly one return value, just replace anything
614 // using the return value of the call with the computed value.
615 if (!TheCall
->use_empty()) {
616 if (TheCall
== Returns
[0]->getReturnValue())
617 TheCall
->replaceAllUsesWith(UndefValue::get(TheCall
->getType()));
619 TheCall
->replaceAllUsesWith(Returns
[0]->getReturnValue());
622 // Splice the code from the return block into the block that it will return
623 // to, which contains the code that was after the call.
624 BasicBlock
*ReturnBB
= Returns
[0]->getParent();
625 AfterCallBB
->getInstList().splice(AfterCallBB
->begin(),
626 ReturnBB
->getInstList());
628 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
629 ReturnBB
->replaceAllUsesWith(AfterCallBB
);
631 // Delete the return instruction now and empty ReturnBB now.
632 Returns
[0]->eraseFromParent();
633 ReturnBB
->eraseFromParent();
634 } else if (!TheCall
->use_empty()) {
635 // No returns, but something is using the return value of the call. Just
637 TheCall
->replaceAllUsesWith(UndefValue::get(TheCall
->getType()));
640 // Since we are now done with the Call/Invoke, we can delete it.
641 TheCall
->eraseFromParent();
643 // We should always be able to fold the entry block of the function into the
644 // single predecessor of the block...
645 assert(cast
<BranchInst
>(Br
)->isUnconditional() && "splitBasicBlock broken!");
646 BasicBlock
*CalleeEntry
= cast
<BranchInst
>(Br
)->getSuccessor(0);
648 // Splice the code entry block into calling block, right before the
649 // unconditional branch.
650 OrigBB
->getInstList().splice(Br
, CalleeEntry
->getInstList());
651 CalleeEntry
->replaceAllUsesWith(OrigBB
); // Update PHI nodes
653 // Remove the unconditional branch.
654 OrigBB
->getInstList().erase(Br
);
656 // Now we can remove the CalleeEntry block, which is now empty.
657 Caller
->getBasicBlockList().erase(CalleeEntry
);