Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / InlineFunction.cpp
blobd6382af379c0a5c493fe67f2e6df5a97e72dca01
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/Attributes.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/Support/CallSite.h"
30 using namespace llvm;
32 bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
33 return InlineFunction(CallSite(CI), CG, TD);
35 bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
36 return InlineFunction(CallSite(II), CG, TD);
39 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
40 /// in the body of the inlined function into invokes and turn unwind
41 /// instructions into branches to the invoke unwind dest.
42 ///
43 /// II is the invoke instruction being inlined. FirstNewBlock is the first
44 /// block of the inlined code (the last block is the end of the function),
45 /// and InlineCodeInfo is information about the code that got inlined.
46 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
47 ClonedCodeInfo &InlinedCodeInfo,
48 CallGraph *CG) {
49 BasicBlock *InvokeDest = II->getUnwindDest();
50 std::vector<Value*> InvokeDestPHIValues;
52 // If there are PHI nodes in the unwind destination block, we need to
53 // keep track of which values came into them from this invoke, then remove
54 // the entry for this block.
55 BasicBlock *InvokeBlock = II->getParent();
56 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
57 PHINode *PN = cast<PHINode>(I);
58 // Save the value to use for this edge.
59 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
62 Function *Caller = FirstNewBlock->getParent();
64 // The inlined code is currently at the end of the function, scan from the
65 // start of the inlined code to its end, checking for stuff we need to
66 // rewrite.
67 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
68 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
69 BB != E; ++BB) {
70 if (InlinedCodeInfo.ContainsCalls) {
71 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
72 Instruction *I = BBI++;
74 // We only need to check for function calls: inlined invoke
75 // instructions require no special handling.
76 if (!isa<CallInst>(I)) continue;
77 CallInst *CI = cast<CallInst>(I);
79 // If this call cannot unwind, don't convert it to an invoke.
80 if (CI->doesNotThrow())
81 continue;
83 // Convert this function call into an invoke instruction.
84 // First, split the basic block.
85 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
87 // Next, create the new invoke instruction, inserting it at the end
88 // of the old basic block.
89 SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
90 InvokeInst *II =
91 InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
92 InvokeArgs.begin(), InvokeArgs.end(),
93 CI->getName(), BB->getTerminator());
94 II->setCallingConv(CI->getCallingConv());
95 II->setAttributes(CI->getAttributes());
97 // Make sure that anything using the call now uses the invoke!
98 CI->replaceAllUsesWith(II);
100 // Update the callgraph.
101 if (CG) {
102 // We should be able to do this:
103 // (*CG)[Caller]->replaceCallSite(CI, II);
104 // but that fails if the old call site isn't in the call graph,
105 // which, because of LLVM bug 3601, it sometimes isn't.
106 CallGraphNode *CGN = (*CG)[Caller];
107 for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
108 NI != NE; ++NI) {
109 if (NI->first == CI) {
110 NI->first = II;
111 break;
116 // Delete the unconditional branch inserted by splitBasicBlock
117 BB->getInstList().pop_back();
118 Split->getInstList().pop_front(); // Delete the original call
120 // Update any PHI nodes in the exceptional block to indicate that
121 // there is now a new entry in them.
122 unsigned i = 0;
123 for (BasicBlock::iterator I = InvokeDest->begin();
124 isa<PHINode>(I); ++I, ++i) {
125 PHINode *PN = cast<PHINode>(I);
126 PN->addIncoming(InvokeDestPHIValues[i], BB);
129 // This basic block is now complete, start scanning the next one.
130 break;
134 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
135 // An UnwindInst requires special handling when it gets inlined into an
136 // invoke site. Once this happens, we know that the unwind would cause
137 // a control transfer to the invoke exception destination, so we can
138 // transform it into a direct branch to the exception destination.
139 BranchInst::Create(InvokeDest, UI);
141 // Delete the unwind instruction!
142 UI->eraseFromParent();
144 // Update any PHI nodes in the exceptional block to indicate that
145 // there is now a new entry in them.
146 unsigned i = 0;
147 for (BasicBlock::iterator I = InvokeDest->begin();
148 isa<PHINode>(I); ++I, ++i) {
149 PHINode *PN = cast<PHINode>(I);
150 PN->addIncoming(InvokeDestPHIValues[i], BB);
156 // Now that everything is happy, we have one final detail. The PHI nodes in
157 // the exception destination block still have entries due to the original
158 // invoke instruction. Eliminate these entries (which might even delete the
159 // PHI node) now.
160 InvokeDest->removePredecessor(II->getParent());
163 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
164 /// into the caller, update the specified callgraph to reflect the changes we
165 /// made. Note that it's possible that not all code was copied over, so only
166 /// some edges of the callgraph may remain.
167 static void UpdateCallGraphAfterInlining(CallSite CS,
168 Function::iterator FirstNewBlock,
169 DenseMap<const Value*, Value*> &ValueMap,
170 CallGraph &CG) {
171 const Function *Caller = CS.getInstruction()->getParent()->getParent();
172 const Function *Callee = CS.getCalledFunction();
173 CallGraphNode *CalleeNode = CG[Callee];
174 CallGraphNode *CallerNode = CG[Caller];
176 // Since we inlined some uninlined call sites in the callee into the caller,
177 // add edges from the caller to all of the callees of the callee.
178 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
180 // Consider the case where CalleeNode == CallerNode.
181 CallGraphNode::CalledFunctionsVector CallCache;
182 if (CalleeNode == CallerNode) {
183 CallCache.assign(I, E);
184 I = CallCache.begin();
185 E = CallCache.end();
188 for (; I != E; ++I) {
189 const Instruction *OrigCall = I->first.getInstruction();
191 DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
192 // Only copy the edge if the call was inlined!
193 if (VMI != ValueMap.end() && VMI->second) {
194 // If the call was inlined, but then constant folded, there is no edge to
195 // add. Check for this case.
196 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
197 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
200 // Update the call graph by deleting the edge from Callee to Caller. We must
201 // do this after the loop above in case Caller and Callee are the same.
202 CallerNode->removeCallEdgeFor(CS);
205 /// findFnRegionEndMarker - This is a utility routine that is used by
206 /// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
207 /// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
208 static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
210 GlobalVariable *FnStart = NULL;
211 const DbgRegionEndInst *FnEnd = NULL;
212 for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
213 for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
214 ++BI) {
215 if (FnStart == NULL) {
216 if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
217 DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
218 assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
219 if (SP.describes(F))
220 FnStart = SP.getGV();
222 } else {
223 if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
224 if (REI->getContext() == FnStart)
225 FnEnd = REI;
228 return FnEnd;
231 // InlineFunction - This function inlines the called function into the basic
232 // block of the caller. This returns false if it is not possible to inline this
233 // call. The program is still in a well defined state if this occurs though.
235 // Note that this only does one level of inlining. For example, if the
236 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
237 // exists in the instruction stream. Similiarly this will inline a recursive
238 // function by one level.
240 bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
241 Instruction *TheCall = CS.getInstruction();
242 LLVMContext &Context = TheCall->getContext();
243 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
244 "Instruction not in function!");
246 const Function *CalledFunc = CS.getCalledFunction();
247 if (CalledFunc == 0 || // Can't inline external function or indirect
248 CalledFunc->isDeclaration() || // call, or call to a vararg function!
249 CalledFunc->getFunctionType()->isVarArg()) return false;
252 // If the call to the callee is not a tail call, we must clear the 'tail'
253 // flags on any calls that we inline.
254 bool MustClearTailCallFlags =
255 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
257 // If the call to the callee cannot throw, set the 'nounwind' flag on any
258 // calls that we inline.
259 bool MarkNoUnwind = CS.doesNotThrow();
261 BasicBlock *OrigBB = TheCall->getParent();
262 Function *Caller = OrigBB->getParent();
264 // GC poses two hazards to inlining, which only occur when the callee has GC:
265 // 1. If the caller has no GC, then the callee's GC must be propagated to the
266 // caller.
267 // 2. If the caller has a differing GC, it is invalid to inline.
268 if (CalledFunc->hasGC()) {
269 if (!Caller->hasGC())
270 Caller->setGC(CalledFunc->getGC());
271 else if (CalledFunc->getGC() != Caller->getGC())
272 return false;
275 // Get an iterator to the last basic block in the function, which will have
276 // the new function inlined after it.
278 Function::iterator LastBlock = &Caller->back();
280 // Make sure to capture all of the return instructions from the cloned
281 // function.
282 std::vector<ReturnInst*> Returns;
283 ClonedCodeInfo InlinedFunctionInfo;
284 Function::iterator FirstNewBlock;
286 { // Scope to destroy ValueMap after cloning.
287 DenseMap<const Value*, Value*> ValueMap;
289 assert(CalledFunc->arg_size() == CS.arg_size() &&
290 "No varargs calls can be inlined!");
292 // Calculate the vector of arguments to pass into the function cloner, which
293 // matches up the formal to the actual argument values.
294 CallSite::arg_iterator AI = CS.arg_begin();
295 unsigned ArgNo = 0;
296 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
297 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
298 Value *ActualArg = *AI;
300 // When byval arguments actually inlined, we need to make the copy implied
301 // by them explicit. However, we don't do this if the callee is readonly
302 // or readnone, because the copy would be unneeded: the callee doesn't
303 // modify the struct.
304 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
305 !CalledFunc->onlyReadsMemory()) {
306 const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
307 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
309 // Create the alloca. If we have TargetData, use nice alignment.
310 unsigned Align = 1;
311 if (TD) Align = TD->getPrefTypeAlignment(AggTy);
312 Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
313 I->getName(),
314 &*Caller->begin()->begin());
315 // Emit a memcpy.
316 const Type *Tys[] = { Type::Int64Ty };
317 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
318 Intrinsic::memcpy,
319 Tys, 1);
320 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
321 Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
323 Value *Size;
324 if (TD == 0)
325 Size = ConstantExpr::getSizeOf(AggTy);
326 else
327 Size = ConstantInt::get(Type::Int64Ty,
328 TD->getTypeStoreSize(AggTy));
330 // Always generate a memcpy of alignment 1 here because we don't know
331 // the alignment of the src pointer. Other optimizations can infer
332 // better alignment.
333 Value *CallArgs[] = {
334 DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
336 CallInst *TheMemCpy =
337 CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
339 // If we have a call graph, update it.
340 if (CG) {
341 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
342 CallGraphNode *CallerNode = (*CG)[Caller];
343 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
346 // Uses of the argument in the function should use our new alloca
347 // instead.
348 ActualArg = NewAlloca;
351 ValueMap[I] = ActualArg;
354 // Adjust llvm.dbg.region.end. If the CalledFunc has region end
355 // marker then clone that marker after next stop point at the
356 // call site. The function body cloner does not clone original
357 // region end marker from the CalledFunc. This will ensure that
358 // inlined function's scope ends at the right place.
359 const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
360 if (DREI) {
361 for (BasicBlock::iterator BI = TheCall,
362 BE = TheCall->getParent()->end(); BI != BE; ++BI) {
363 if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
364 if (DbgRegionEndInst *NewDREI =
365 dyn_cast<DbgRegionEndInst>(DREI->clone(Context)))
366 NewDREI->insertAfter(DSPI);
367 break;
372 // We want the inliner to prune the code as it copies. We would LOVE to
373 // have no dead or constant instructions leftover after inlining occurs
374 // (which can happen, e.g., because an argument was constant), but we'll be
375 // happy with whatever the cloner can do.
376 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
377 &InlinedFunctionInfo, TD);
379 // Remember the first block that is newly cloned over.
380 FirstNewBlock = LastBlock; ++FirstNewBlock;
382 // Update the callgraph if requested.
383 if (CG)
384 UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
387 // If there are any alloca instructions in the block that used to be the entry
388 // block for the callee, move them to the entry block of the caller. First
389 // calculate which instruction they should be inserted before. We insert the
390 // instructions at the end of the current alloca list.
393 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
394 for (BasicBlock::iterator I = FirstNewBlock->begin(),
395 E = FirstNewBlock->end(); I != E; )
396 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
397 // If the alloca is now dead, remove it. This often occurs due to code
398 // specialization.
399 if (AI->use_empty()) {
400 AI->eraseFromParent();
401 continue;
404 if (isa<Constant>(AI->getArraySize())) {
405 // Scan for the block of allocas that we can move over, and move them
406 // all at once.
407 while (isa<AllocaInst>(I) &&
408 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
409 ++I;
411 // Transfer all of the allocas over in a block. Using splice means
412 // that the instructions aren't removed from the symbol table, then
413 // reinserted.
414 Caller->getEntryBlock().getInstList().splice(
415 InsertPoint,
416 FirstNewBlock->getInstList(),
417 AI, I);
422 // If the inlined code contained dynamic alloca instructions, wrap the inlined
423 // code with llvm.stacksave/llvm.stackrestore intrinsics.
424 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
425 Module *M = Caller->getParent();
426 // Get the two intrinsics we care about.
427 Constant *StackSave, *StackRestore;
428 StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
429 StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
431 // If we are preserving the callgraph, add edges to the stacksave/restore
432 // functions for the calls we insert.
433 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
434 if (CG) {
435 // We know that StackSave/StackRestore are Function*'s, because they are
436 // intrinsics which must have the right types.
437 StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
438 StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
439 CallerNode = (*CG)[Caller];
442 // Insert the llvm.stacksave.
443 CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
444 FirstNewBlock->begin());
445 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
447 // Insert a call to llvm.stackrestore before any return instructions in the
448 // inlined function.
449 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
450 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
451 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
454 // Count the number of StackRestore calls we insert.
455 unsigned NumStackRestores = Returns.size();
457 // If we are inlining an invoke instruction, insert restores before each
458 // unwind. These unwinds will be rewritten into branches later.
459 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
460 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
461 BB != E; ++BB)
462 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
463 CallInst::Create(StackRestore, SavedPtr, "", UI);
464 ++NumStackRestores;
469 // If we are inlining tail call instruction through a call site that isn't
470 // marked 'tail', we must remove the tail marker for any calls in the inlined
471 // code. Also, calls inlined through a 'nounwind' call site should be marked
472 // 'nounwind'.
473 if (InlinedFunctionInfo.ContainsCalls &&
474 (MustClearTailCallFlags || MarkNoUnwind)) {
475 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
476 BB != E; ++BB)
477 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
478 if (CallInst *CI = dyn_cast<CallInst>(I)) {
479 if (MustClearTailCallFlags)
480 CI->setTailCall(false);
481 if (MarkNoUnwind)
482 CI->setDoesNotThrow();
486 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
487 // instructions are unreachable.
488 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
489 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
490 BB != E; ++BB) {
491 TerminatorInst *Term = BB->getTerminator();
492 if (isa<UnwindInst>(Term)) {
493 new UnreachableInst(Term);
494 BB->getInstList().erase(Term);
498 // If we are inlining for an invoke instruction, we must make sure to rewrite
499 // any inlined 'unwind' instructions into branches to the invoke exception
500 // destination, and call instructions into invoke instructions.
501 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
502 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
504 // If we cloned in _exactly one_ basic block, and if that block ends in a
505 // return instruction, we splice the body of the inlined callee directly into
506 // the calling basic block.
507 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
508 // Move all of the instructions right before the call.
509 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
510 FirstNewBlock->begin(), FirstNewBlock->end());
511 // Remove the cloned basic block.
512 Caller->getBasicBlockList().pop_back();
514 // If the call site was an invoke instruction, add a branch to the normal
515 // destination.
516 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
517 BranchInst::Create(II->getNormalDest(), TheCall);
519 // If the return instruction returned a value, replace uses of the call with
520 // uses of the returned value.
521 if (!TheCall->use_empty()) {
522 ReturnInst *R = Returns[0];
523 if (TheCall == R->getReturnValue())
524 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
525 else
526 TheCall->replaceAllUsesWith(R->getReturnValue());
528 // Since we are now done with the Call/Invoke, we can delete it.
529 TheCall->eraseFromParent();
531 // Since we are now done with the return instruction, delete it also.
532 Returns[0]->eraseFromParent();
534 // We are now done with the inlining.
535 return true;
538 // Otherwise, we have the normal case, of more than one block to inline or
539 // multiple return sites.
541 // We want to clone the entire callee function into the hole between the
542 // "starter" and "ender" blocks. How we accomplish this depends on whether
543 // this is an invoke instruction or a call instruction.
544 BasicBlock *AfterCallBB;
545 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
547 // Add an unconditional branch to make this look like the CallInst case...
548 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
550 // Split the basic block. This guarantees that no PHI nodes will have to be
551 // updated due to new incoming edges, and make the invoke case more
552 // symmetric to the call case.
553 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
554 CalledFunc->getName()+".exit");
556 } else { // It's a call
557 // If this is a call instruction, we need to split the basic block that
558 // the call lives in.
560 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
561 CalledFunc->getName()+".exit");
564 // Change the branch that used to go to AfterCallBB to branch to the first
565 // basic block of the inlined function.
567 TerminatorInst *Br = OrigBB->getTerminator();
568 assert(Br && Br->getOpcode() == Instruction::Br &&
569 "splitBasicBlock broken!");
570 Br->setOperand(0, FirstNewBlock);
573 // Now that the function is correct, make it a little bit nicer. In
574 // particular, move the basic blocks inserted from the end of the function
575 // into the space made by splitting the source basic block.
576 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
577 FirstNewBlock, Caller->end());
579 // Handle all of the return instructions that we just cloned in, and eliminate
580 // any users of the original call/invoke instruction.
581 const Type *RTy = CalledFunc->getReturnType();
583 if (Returns.size() > 1) {
584 // The PHI node should go at the front of the new basic block to merge all
585 // possible incoming values.
586 PHINode *PHI = 0;
587 if (!TheCall->use_empty()) {
588 PHI = PHINode::Create(RTy, TheCall->getName(),
589 AfterCallBB->begin());
590 // Anything that used the result of the function call should now use the
591 // PHI node as their operand.
592 TheCall->replaceAllUsesWith(PHI);
595 // Loop over all of the return instructions adding entries to the PHI node
596 // as appropriate.
597 if (PHI) {
598 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
599 ReturnInst *RI = Returns[i];
600 assert(RI->getReturnValue()->getType() == PHI->getType() &&
601 "Ret value not consistent in function!");
602 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
606 // Add a branch to the merge points and remove return instructions.
607 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
608 ReturnInst *RI = Returns[i];
609 BranchInst::Create(AfterCallBB, RI);
610 RI->eraseFromParent();
612 } else if (!Returns.empty()) {
613 // Otherwise, if there is exactly one return value, just replace anything
614 // using the return value of the call with the computed value.
615 if (!TheCall->use_empty()) {
616 if (TheCall == Returns[0]->getReturnValue())
617 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
618 else
619 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
622 // Splice the code from the return block into the block that it will return
623 // to, which contains the code that was after the call.
624 BasicBlock *ReturnBB = Returns[0]->getParent();
625 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
626 ReturnBB->getInstList());
628 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
629 ReturnBB->replaceAllUsesWith(AfterCallBB);
631 // Delete the return instruction now and empty ReturnBB now.
632 Returns[0]->eraseFromParent();
633 ReturnBB->eraseFromParent();
634 } else if (!TheCall->use_empty()) {
635 // No returns, but something is using the return value of the call. Just
636 // nuke the result.
637 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
640 // Since we are now done with the Call/Invoke, we can delete it.
641 TheCall->eraseFromParent();
643 // We should always be able to fold the entry block of the function into the
644 // single predecessor of the block...
645 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
646 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
648 // Splice the code entry block into calling block, right before the
649 // unconditional branch.
650 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
651 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
653 // Remove the unconditional branch.
654 OrigBB->getInstList().erase(Br);
656 // Now we can remove the CalleeEntry block, which is now empty.
657 Caller->getBasicBlockList().erase(CalleeEntry);
659 return true;