Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / LCSSA.cpp
blob84fcc643bfb2ec8a10f9871e6705a95b41320847
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/PredIteratorCache.h"
45 #include <algorithm>
46 #include <map>
47 using namespace llvm;
49 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
51 namespace {
52 struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
53 static char ID; // Pass identification, replacement for typeid
54 LCSSA() : LoopPass(&ID) {}
56 // Cached analysis information for the current function.
57 LoopInfo *LI;
58 DominatorTree *DT;
59 std::vector<BasicBlock*> LoopBlocks;
60 PredIteratorCache PredCache;
62 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
64 void ProcessInstruction(Instruction* Instr,
65 const SmallVector<BasicBlock*, 8>& exitBlocks);
67 /// This transformation requires natural loop information & requires that
68 /// loop preheaders be inserted into the CFG. It maintains both of these,
69 /// as well as the CFG. It also requires dominator information.
70 ///
71 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.setPreservesCFG();
73 AU.addRequiredID(LoopSimplifyID);
74 AU.addPreservedID(LoopSimplifyID);
75 AU.addRequired<LoopInfo>();
76 AU.addPreserved<LoopInfo>();
77 AU.addRequired<DominatorTree>();
78 AU.addPreserved<ScalarEvolution>();
79 AU.addPreserved<DominatorTree>();
81 // Request DominanceFrontier now, even though LCSSA does
82 // not use it. This allows Pass Manager to schedule Dominance
83 // Frontier early enough such that one LPPassManager can handle
84 // multiple loop transformation passes.
85 AU.addRequired<DominanceFrontier>();
86 AU.addPreserved<DominanceFrontier>();
88 private:
89 void getLoopValuesUsedOutsideLoop(Loop *L,
90 SetVector<Instruction*> &AffectedValues,
91 const SmallVector<BasicBlock*, 8>& exitBlocks);
93 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
94 DenseMap<DomTreeNode*, Value*> &Phis);
96 /// inLoop - returns true if the given block is within the current loop
97 bool inLoop(BasicBlock* B) {
98 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
103 char LCSSA::ID = 0;
104 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
106 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
107 const PassInfo *const llvm::LCSSAID = &X;
109 /// runOnFunction - Process all loops in the function, inner-most out.
110 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
111 PredCache.clear();
113 LI = &LPM.getAnalysis<LoopInfo>();
114 DT = &getAnalysis<DominatorTree>();
116 // Speed up queries by creating a sorted list of blocks
117 LoopBlocks.clear();
118 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
119 std::sort(LoopBlocks.begin(), LoopBlocks.end());
121 SmallVector<BasicBlock*, 8> exitBlocks;
122 L->getExitBlocks(exitBlocks);
124 SetVector<Instruction*> AffectedValues;
125 getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
127 // If no values are affected, we can save a lot of work, since we know that
128 // nothing will be changed.
129 if (AffectedValues.empty())
130 return false;
132 // Iterate over all affected values for this loop and insert Phi nodes
133 // for them in the appropriate exit blocks
135 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
136 E = AffectedValues.end(); I != E; ++I)
137 ProcessInstruction(*I, exitBlocks);
139 assert(L->isLCSSAForm());
141 return true;
144 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
145 /// eliminate all out-of-loop uses.
146 void LCSSA::ProcessInstruction(Instruction *Instr,
147 const SmallVector<BasicBlock*, 8>& exitBlocks) {
148 ++NumLCSSA; // We are applying the transformation
150 // Keep track of the blocks that have the value available already.
151 DenseMap<DomTreeNode*, Value*> Phis;
153 BasicBlock *DomBB = Instr->getParent();
155 // Invoke instructions are special in that their result value is not available
156 // along their unwind edge. The code below tests to see whether DomBB dominates
157 // the value, so adjust DomBB to the normal destination block, which is
158 // effectively where the value is first usable.
159 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
160 DomBB = Inv->getNormalDest();
162 DomTreeNode *DomNode = DT->getNode(DomBB);
164 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
165 // add them to the Phi's map.
166 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
167 BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
168 BasicBlock *BB = *BBI;
169 DomTreeNode *ExitBBNode = DT->getNode(BB);
170 Value *&Phi = Phis[ExitBBNode];
171 if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
172 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
173 BB->begin());
174 PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
176 // Remember that this phi makes the value alive in this block.
177 Phi = PN;
179 // Add inputs from inside the loop for this PHI.
180 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
181 PN->addIncoming(Instr, *PI);
186 // Record all uses of Instr outside the loop. We need to rewrite these. The
187 // LCSSA phis won't be included because they use the value in the loop.
188 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
189 UI != E;) {
190 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
191 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
192 UserBB = P->getIncomingBlock(UI);
195 // If the user is in the loop, don't rewrite it!
196 if (UserBB == Instr->getParent() || inLoop(UserBB)) {
197 ++UI;
198 continue;
201 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
202 // inserting PHI nodes into join points where needed.
203 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
205 // Preincrement the iterator to avoid invalidating it when we change the
206 // value.
207 Use &U = UI.getUse();
208 ++UI;
209 U.set(Val);
213 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
214 /// are used by instructions outside of it.
215 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
216 SetVector<Instruction*> &AffectedValues,
217 const SmallVector<BasicBlock*, 8>& exitBlocks) {
218 // FIXME: For large loops, we may be able to avoid a lot of use-scanning
219 // by using dominance information. In particular, if a block does not
220 // dominate any of the loop exits, then none of the values defined in the
221 // block could be used outside the loop.
222 for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
223 BB != BE; ++BB) {
224 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
225 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
226 ++UI) {
227 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
228 if (PHINode* p = dyn_cast<PHINode>(*UI)) {
229 UserBB = p->getIncomingBlock(UI);
232 if (*BB != UserBB && !inLoop(UserBB)) {
233 AffectedValues.insert(I);
234 break;
240 /// GetValueForBlock - Get the value to use within the specified basic block.
241 /// available values are in Phis.
242 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
243 DenseMap<DomTreeNode*, Value*> &Phis) {
244 // If there is no dominator info for this BB, it is unreachable.
245 if (BB == 0)
246 return UndefValue::get(OrigInst->getType());
248 // If we have already computed this value, return the previously computed val.
249 if (Phis.count(BB)) return Phis[BB];
251 DomTreeNode *IDom = BB->getIDom();
253 // Otherwise, there are two cases: we either have to insert a PHI node or we
254 // don't. We need to insert a PHI node if this block is not dominated by one
255 // of the exit nodes from the loop (the loop could have multiple exits, and
256 // though the value defined *inside* the loop dominated all its uses, each
257 // exit by itself may not dominate all the uses).
259 // The simplest way to check for this condition is by checking to see if the
260 // idom is in the loop. If so, we *know* that none of the exit blocks
261 // dominate this block. Note that we *know* that the block defining the
262 // original instruction is in the idom chain, because if it weren't, then the
263 // original value didn't dominate this use.
264 if (!inLoop(IDom->getBlock())) {
265 // Idom is not in the loop, we must still be "below" the exit block and must
266 // be fully dominated by the value live in the idom.
267 Value* val = GetValueForBlock(IDom, OrigInst, Phis);
268 Phis.insert(std::make_pair(BB, val));
269 return val;
272 BasicBlock *BBN = BB->getBlock();
274 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
275 // now, then get values to fill in the incoming values for the PHI.
276 PHINode *PN = PHINode::Create(OrigInst->getType(),
277 OrigInst->getName() + ".lcssa", BBN->begin());
278 PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
279 Phis.insert(std::make_pair(BB, PN));
281 // Fill in the incoming values for the block.
282 for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
283 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
284 return PN;