1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Intrinsics.h"
43 #include "llvm/LLVMContext.h"
44 #include "llvm/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Target/TargetLowering.h"
56 STATISTIC(NumInvokes
, "Number of invokes replaced");
57 STATISTIC(NumUnwinds
, "Number of unwinds replaced");
58 STATISTIC(NumSpilled
, "Number of registers live across unwind edges");
60 static cl::opt
<bool> ExpensiveEHSupport("enable-correct-eh-support",
61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
64 class VISIBILITY_HIDDEN LowerInvoke
: public FunctionPass
{
65 // Used for both models.
69 unsigned AbortMessageLength
;
71 // Used for expensive EH support.
73 GlobalVariable
*JBListHead
;
74 Constant
*SetJmpFn
, *LongJmpFn
;
76 // We peek in TLI to grab the target's jmp_buf size and alignment
77 const TargetLowering
*TLI
;
80 static char ID
; // Pass identification, replacement for typeid
81 explicit LowerInvoke(const TargetLowering
*tli
= NULL
)
82 : FunctionPass(&ID
), TLI(tli
) { }
83 bool doInitialization(Module
&M
);
84 bool runOnFunction(Function
&F
);
86 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
87 // This is a cluster of orthogonal Transforms
88 AU
.addPreservedID(PromoteMemoryToRegisterID
);
89 AU
.addPreservedID(LowerSwitchID
);
90 AU
.addPreservedID(LowerAllocationsID
);
94 void createAbortMessage(Module
*M
);
95 void writeAbortMessage(Instruction
*IB
);
96 bool insertCheapEHSupport(Function
&F
);
97 void splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
);
98 void rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
99 AllocaInst
*InvokeNum
, SwitchInst
*CatchSwitch
);
100 bool insertExpensiveEHSupport(Function
&F
);
104 char LowerInvoke::ID
= 0;
105 static RegisterPass
<LowerInvoke
>
106 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
108 const PassInfo
*const llvm::LowerInvokePassID
= &X
;
110 // Public Interface To the LowerInvoke pass.
111 FunctionPass
*llvm::createLowerInvokePass(const TargetLowering
*TLI
) {
112 return new LowerInvoke(TLI
);
115 // doInitialization - Make sure that there is a prototype for abort in the
117 bool LowerInvoke::doInitialization(Module
&M
) {
118 const Type
*VoidPtrTy
= PointerType::getUnqual(Type::Int8Ty
);
120 if (ExpensiveEHSupport
) {
121 // Insert a type for the linked list of jump buffers.
122 unsigned JBSize
= TLI
? TLI
->getJumpBufSize() : 0;
123 JBSize
= JBSize
? JBSize
: 200;
124 const Type
*JmpBufTy
= ArrayType::get(VoidPtrTy
, JBSize
);
126 { // The type is recursive, so use a type holder.
127 std::vector
<const Type
*> Elements
;
128 Elements
.push_back(JmpBufTy
);
129 OpaqueType
*OT
= OpaqueType::get();
130 Elements
.push_back(PointerType::getUnqual(OT
));
131 PATypeHolder
JBLType(StructType::get(Elements
));
132 OT
->refineAbstractTypeTo(JBLType
.get()); // Complete the cycle.
133 JBLinkTy
= JBLType
.get();
134 M
.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy
);
137 const Type
*PtrJBList
= PointerType::getUnqual(JBLinkTy
);
139 // Now that we've done that, insert the jmpbuf list head global, unless it
141 if (!(JBListHead
= M
.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList
))) {
142 JBListHead
= new GlobalVariable(M
, PtrJBList
, false,
143 GlobalValue::LinkOnceAnyLinkage
,
144 Constant::getNullValue(PtrJBList
),
145 "llvm.sjljeh.jblist");
148 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
149 // so it looks like Intrinsic::_setjmp
150 #if defined(_MSC_VER) && defined(setjmp)
151 #define setjmp_undefined_for_visual_studio
155 SetJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::setjmp
);
157 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
158 // let's return it to _setjmp state in case anyone ever needs it after this
159 // point under VisualStudio
160 #define setjmp _setjmp
163 LongJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::longjmp
);
166 // We need the 'write' and 'abort' functions for both models.
167 AbortFn
= M
.getOrInsertFunction("abort", Type::VoidTy
, (Type
*)0);
168 #if 0 // "write" is Unix-specific.. code is going away soon anyway.
169 WriteFn
= M
.getOrInsertFunction("write", Type::VoidTy
, Type::Int32Ty
,
170 VoidPtrTy
, Type::Int32Ty
, (Type
*)0);
177 void LowerInvoke::createAbortMessage(Module
*M
) {
178 if (ExpensiveEHSupport
) {
179 // The abort message for expensive EH support tells the user that the
180 // program 'unwound' without an 'invoke' instruction.
182 ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
183 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
185 GlobalVariable
*MsgGV
= new GlobalVariable(*M
, Msg
->getType(), true,
186 GlobalValue::InternalLinkage
,
188 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty
));
189 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, &GEPIdx
[0], 2);
191 // The abort message for cheap EH support tells the user that EH is not
194 ConstantArray::get("Exception handler needed, but not enabled."
195 "Recompile program with -enable-correct-eh-support.\n");
196 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
198 GlobalVariable
*MsgGV
= new GlobalVariable(*M
, Msg
->getType(), true,
199 GlobalValue::InternalLinkage
,
201 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty
));
202 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, &GEPIdx
[0], 2);
207 void LowerInvoke::writeAbortMessage(Instruction
*IB
) {
209 if (AbortMessage
== 0)
210 createAbortMessage(IB
->getParent()->getParent()->getParent());
212 // These are the arguments we WANT...
214 Args
[0] = ConstantInt::get(Type::Int32Ty
, 2);
215 Args
[1] = AbortMessage
;
216 Args
[2] = ConstantInt::get(Type::Int32Ty
, AbortMessageLength
);
217 (new CallInst(WriteFn
, Args
, 3, "", IB
))->setTailCall();
221 bool LowerInvoke::insertCheapEHSupport(Function
&F
) {
222 bool Changed
= false;
223 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
224 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
225 std::vector
<Value
*> CallArgs(II
->op_begin()+3, II
->op_end());
226 // Insert a normal call instruction...
227 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
228 CallArgs
.begin(), CallArgs
.end(), "",II
);
229 NewCall
->takeName(II
);
230 NewCall
->setCallingConv(II
->getCallingConv());
231 NewCall
->setAttributes(II
->getAttributes());
232 II
->replaceAllUsesWith(NewCall
);
234 // Insert an unconditional branch to the normal destination.
235 BranchInst::Create(II
->getNormalDest(), II
);
237 // Remove any PHI node entries from the exception destination.
238 II
->getUnwindDest()->removePredecessor(BB
);
240 // Remove the invoke instruction now.
241 BB
->getInstList().erase(II
);
243 ++NumInvokes
; Changed
= true;
244 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
245 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
246 writeAbortMessage(UI
);
248 // Insert a call to abort()
249 CallInst::Create(AbortFn
, "", UI
)->setTailCall();
251 // Insert a return instruction. This really should be a "barrier", as it
253 ReturnInst::Create(F
.getReturnType() == Type::VoidTy
? 0 :
254 Constant::getNullValue(F
.getReturnType()), UI
);
256 // Remove the unwind instruction now.
257 BB
->getInstList().erase(UI
);
259 ++NumUnwinds
; Changed
= true;
264 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
265 /// specified invoke instruction with a call.
266 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
267 AllocaInst
*InvokeNum
,
268 SwitchInst
*CatchSwitch
) {
269 ConstantInt
*InvokeNoC
= ConstantInt::get(Type::Int32Ty
, InvokeNo
);
271 // If the unwind edge has phi nodes, split the edge.
272 if (isa
<PHINode
>(II
->getUnwindDest()->begin())) {
273 SplitCriticalEdge(II
, 1, this);
275 // If there are any phi nodes left, they must have a single predecessor.
276 while (PHINode
*PN
= dyn_cast
<PHINode
>(II
->getUnwindDest()->begin())) {
277 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
278 PN
->eraseFromParent();
282 // Insert a store of the invoke num before the invoke and store zero into the
283 // location afterward.
284 new StoreInst(InvokeNoC
, InvokeNum
, true, II
); // volatile
286 BasicBlock::iterator NI
= II
->getNormalDest()->getFirstNonPHI();
288 new StoreInst(Constant::getNullValue(Type::Int32Ty
), InvokeNum
, false, NI
);
290 // Add a switch case to our unwind block.
291 CatchSwitch
->addCase(InvokeNoC
, II
->getUnwindDest());
293 // Insert a normal call instruction.
294 std::vector
<Value
*> CallArgs(II
->op_begin()+3, II
->op_end());
295 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
296 CallArgs
.begin(), CallArgs
.end(), "",
298 NewCall
->takeName(II
);
299 NewCall
->setCallingConv(II
->getCallingConv());
300 NewCall
->setAttributes(II
->getAttributes());
301 II
->replaceAllUsesWith(NewCall
);
303 // Replace the invoke with an uncond branch.
304 BranchInst::Create(II
->getNormalDest(), NewCall
->getParent());
305 II
->eraseFromParent();
308 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
309 /// we reach blocks we've already seen.
310 static void MarkBlocksLiveIn(BasicBlock
*BB
, std::set
<BasicBlock
*> &LiveBBs
) {
311 if (!LiveBBs
.insert(BB
).second
) return; // already been here.
313 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
314 MarkBlocksLiveIn(*PI
, LiveBBs
);
317 // First thing we need to do is scan the whole function for values that are
318 // live across unwind edges. Each value that is live across an unwind edge
319 // we spill into a stack location, guaranteeing that there is nothing live
320 // across the unwind edge. This process also splits all critical edges
321 // coming out of invoke's.
323 splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
) {
324 // First step, split all critical edges from invoke instructions.
325 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
326 InvokeInst
*II
= Invokes
[i
];
327 SplitCriticalEdge(II
, 0, this);
328 SplitCriticalEdge(II
, 1, this);
329 assert(!isa
<PHINode
>(II
->getNormalDest()) &&
330 !isa
<PHINode
>(II
->getUnwindDest()) &&
331 "critical edge splitting left single entry phi nodes?");
334 Function
*F
= Invokes
.back()->getParent()->getParent();
336 // To avoid having to handle incoming arguments specially, we lower each arg
337 // to a copy instruction in the entry block. This ensures that the argument
338 // value itself cannot be live across the entry block.
339 BasicBlock::iterator AfterAllocaInsertPt
= F
->begin()->begin();
340 while (isa
<AllocaInst
>(AfterAllocaInsertPt
) &&
341 isa
<ConstantInt
>(cast
<AllocaInst
>(AfterAllocaInsertPt
)->getArraySize()))
342 ++AfterAllocaInsertPt
;
343 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
345 // This is always a no-op cast because we're casting AI to AI->getType() so
346 // src and destination types are identical. BitCast is the only possibility.
347 CastInst
*NC
= new BitCastInst(
348 AI
, AI
->getType(), AI
->getName()+".tmp", AfterAllocaInsertPt
);
349 AI
->replaceAllUsesWith(NC
);
350 // Normally its is forbidden to replace a CastInst's operand because it
351 // could cause the opcode to reflect an illegal conversion. However, we're
352 // replacing it here with the same value it was constructed with to simply
354 NC
->setOperand(0, AI
);
357 // Finally, scan the code looking for instructions with bad live ranges.
358 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
359 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
360 // Ignore obvious cases we don't have to handle. In particular, most
361 // instructions either have no uses or only have a single use inside the
362 // current block. Ignore them quickly.
363 Instruction
*Inst
= II
;
364 if (Inst
->use_empty()) continue;
365 if (Inst
->hasOneUse() &&
366 cast
<Instruction
>(Inst
->use_back())->getParent() == BB
&&
367 !isa
<PHINode
>(Inst
->use_back())) continue;
369 // If this is an alloca in the entry block, it's not a real register
371 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
372 if (isa
<ConstantInt
>(AI
->getArraySize()) && BB
== F
->begin())
375 // Avoid iterator invalidation by copying users to a temporary vector.
376 std::vector
<Instruction
*> Users
;
377 for (Value::use_iterator UI
= Inst
->use_begin(), E
= Inst
->use_end();
379 Instruction
*User
= cast
<Instruction
>(*UI
);
380 if (User
->getParent() != BB
|| isa
<PHINode
>(User
))
381 Users
.push_back(User
);
384 // Scan all of the uses and see if the live range is live across an unwind
385 // edge. If we find a use live across an invoke edge, create an alloca
386 // and spill the value.
387 std::set
<InvokeInst
*> InvokesWithStoreInserted
;
389 // Find all of the blocks that this value is live in.
390 std::set
<BasicBlock
*> LiveBBs
;
391 LiveBBs
.insert(Inst
->getParent());
392 while (!Users
.empty()) {
393 Instruction
*U
= Users
.back();
396 if (!isa
<PHINode
>(U
)) {
397 MarkBlocksLiveIn(U
->getParent(), LiveBBs
);
399 // Uses for a PHI node occur in their predecessor block.
400 PHINode
*PN
= cast
<PHINode
>(U
);
401 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
402 if (PN
->getIncomingValue(i
) == Inst
)
403 MarkBlocksLiveIn(PN
->getIncomingBlock(i
), LiveBBs
);
407 // Now that we know all of the blocks that this thing is live in, see if
408 // it includes any of the unwind locations.
409 bool NeedsSpill
= false;
410 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
411 BasicBlock
*UnwindBlock
= Invokes
[i
]->getUnwindDest();
412 if (UnwindBlock
!= BB
&& LiveBBs
.count(UnwindBlock
)) {
417 // If we decided we need a spill, do it.
420 DemoteRegToStack(*Inst
, true);
425 bool LowerInvoke::insertExpensiveEHSupport(Function
&F
) {
426 std::vector
<ReturnInst
*> Returns
;
427 std::vector
<UnwindInst
*> Unwinds
;
428 std::vector
<InvokeInst
*> Invokes
;
430 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
431 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
432 // Remember all return instructions in case we insert an invoke into this
434 Returns
.push_back(RI
);
435 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
436 Invokes
.push_back(II
);
437 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
438 Unwinds
.push_back(UI
);
441 if (Unwinds
.empty() && Invokes
.empty()) return false;
443 NumInvokes
+= Invokes
.size();
444 NumUnwinds
+= Unwinds
.size();
446 // TODO: This is not an optimal way to do this. In particular, this always
447 // inserts setjmp calls into the entries of functions with invoke instructions
448 // even though there are possibly paths through the function that do not
449 // execute any invokes. In particular, for functions with early exits, e.g.
450 // the 'addMove' method in hexxagon, it would be nice to not have to do the
451 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
452 // would not be too hard to do.
454 // If we have an invoke instruction, insert a setjmp that dominates all
455 // invokes. After the setjmp, use a cond branch that goes to the original
456 // code path on zero, and to a designated 'catch' block of nonzero.
457 Value
*OldJmpBufPtr
= 0;
458 if (!Invokes
.empty()) {
459 // First thing we need to do is scan the whole function for values that are
460 // live across unwind edges. Each value that is live across an unwind edge
461 // we spill into a stack location, guaranteeing that there is nothing live
462 // across the unwind edge. This process also splits all critical edges
463 // coming out of invoke's.
464 splitLiveRangesLiveAcrossInvokes(Invokes
);
466 BasicBlock
*EntryBB
= F
.begin();
468 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
469 // that needs to be restored on all exits from the function. This is an
470 // alloca because the value needs to be live across invokes.
471 unsigned Align
= TLI
? TLI
->getJumpBufAlignment() : 0;
473 new AllocaInst(JBLinkTy
, 0, Align
,
474 "jblink", F
.begin()->begin());
476 std::vector
<Value
*> Idx
;
477 Idx
.push_back(Constant::getNullValue(Type::Int32Ty
));
478 Idx
.push_back(ConstantInt::get(Type::Int32Ty
, 1));
479 OldJmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, Idx
.begin(), Idx
.end(),
481 EntryBB
->getTerminator());
483 // Copy the JBListHead to the alloca.
484 Value
*OldBuf
= new LoadInst(JBListHead
, "oldjmpbufptr", true,
485 EntryBB
->getTerminator());
486 new StoreInst(OldBuf
, OldJmpBufPtr
, true, EntryBB
->getTerminator());
488 // Add the new jumpbuf to the list.
489 new StoreInst(JmpBuf
, JBListHead
, true, EntryBB
->getTerminator());
491 // Create the catch block. The catch block is basically a big switch
492 // statement that goes to all of the invoke catch blocks.
493 BasicBlock
*CatchBB
= BasicBlock::Create("setjmp.catch", &F
);
495 // Create an alloca which keeps track of which invoke is currently
496 // executing. For normal calls it contains zero.
497 AllocaInst
*InvokeNum
= new AllocaInst(Type::Int32Ty
, 0,
498 "invokenum",EntryBB
->begin());
499 new StoreInst(ConstantInt::get(Type::Int32Ty
, 0), InvokeNum
, true,
500 EntryBB
->getTerminator());
502 // Insert a load in the Catch block, and a switch on its value. By default,
503 // we go to a block that just does an unwind (which is the correct action
504 // for a standard call).
505 BasicBlock
*UnwindBB
= BasicBlock::Create("unwindbb", &F
);
506 Unwinds
.push_back(new UnwindInst(UnwindBB
));
508 Value
*CatchLoad
= new LoadInst(InvokeNum
, "invoke.num", true, CatchBB
);
509 SwitchInst
*CatchSwitch
=
510 SwitchInst::Create(CatchLoad
, UnwindBB
, Invokes
.size(), CatchBB
);
512 // Now that things are set up, insert the setjmp call itself.
514 // Split the entry block to insert the conditional branch for the setjmp.
515 BasicBlock
*ContBlock
= EntryBB
->splitBasicBlock(EntryBB
->getTerminator(),
518 Idx
[1] = ConstantInt::get(Type::Int32Ty
, 0);
519 Value
*JmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, Idx
.begin(), Idx
.end(),
521 EntryBB
->getTerminator());
522 JmpBufPtr
= new BitCastInst(JmpBufPtr
, PointerType::getUnqual(Type::Int8Ty
),
523 "tmp", EntryBB
->getTerminator());
524 Value
*SJRet
= CallInst::Create(SetJmpFn
, JmpBufPtr
, "sjret",
525 EntryBB
->getTerminator());
527 // Compare the return value to zero.
528 Value
*IsNormal
= new ICmpInst(EntryBB
->getTerminator(),
529 ICmpInst::ICMP_EQ
, SJRet
,
530 Constant::getNullValue(SJRet
->getType()),
532 // Nuke the uncond branch.
533 EntryBB
->getTerminator()->eraseFromParent();
535 // Put in a new condbranch in its place.
536 BranchInst::Create(ContBlock
, CatchBB
, IsNormal
, EntryBB
);
538 // At this point, we are all set up, rewrite each invoke instruction.
539 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
)
540 rewriteExpensiveInvoke(Invokes
[i
], i
+1, InvokeNum
, CatchSwitch
);
543 // We know that there is at least one unwind.
545 // Create three new blocks, the block to load the jmpbuf ptr and compare
546 // against null, the block to do the longjmp, and the error block for if it
547 // is null. Add them at the end of the function because they are not hot.
548 BasicBlock
*UnwindHandler
= BasicBlock::Create("dounwind", &F
);
549 BasicBlock
*UnwindBlock
= BasicBlock::Create("unwind", &F
);
550 BasicBlock
*TermBlock
= BasicBlock::Create("unwinderror", &F
);
552 // If this function contains an invoke, restore the old jumpbuf ptr.
555 // Before the return, insert a copy from the saved value to the new value.
556 BufPtr
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", UnwindHandler
);
557 new StoreInst(BufPtr
, JBListHead
, UnwindHandler
);
559 BufPtr
= new LoadInst(JBListHead
, "ehlist", UnwindHandler
);
562 // Load the JBList, if it's null, then there was no catch!
563 Value
*NotNull
= new ICmpInst(*UnwindHandler
, ICmpInst::ICMP_NE
, BufPtr
,
564 Constant::getNullValue(BufPtr
->getType()),
566 BranchInst::Create(UnwindBlock
, TermBlock
, NotNull
, UnwindHandler
);
568 // Create the block to do the longjmp.
569 // Get a pointer to the jmpbuf and longjmp.
570 std::vector
<Value
*> Idx
;
571 Idx
.push_back(Constant::getNullValue(Type::Int32Ty
));
572 Idx
.push_back(ConstantInt::get(Type::Int32Ty
, 0));
573 Idx
[0] = GetElementPtrInst::Create(BufPtr
, Idx
.begin(), Idx
.end(), "JmpBuf",
575 Idx
[0] = new BitCastInst(Idx
[0], PointerType::getUnqual(Type::Int8Ty
),
577 Idx
[1] = ConstantInt::get(Type::Int32Ty
, 1);
578 CallInst::Create(LongJmpFn
, Idx
.begin(), Idx
.end(), "", UnwindBlock
);
579 new UnreachableInst(UnwindBlock
);
581 // Set up the term block ("throw without a catch").
582 new UnreachableInst(TermBlock
);
584 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
585 writeAbortMessage(TermBlock
->getTerminator());
587 // Insert a call to abort()
588 CallInst::Create(AbortFn
, "",
589 TermBlock
->getTerminator())->setTailCall();
592 // Replace all unwinds with a branch to the unwind handler.
593 for (unsigned i
= 0, e
= Unwinds
.size(); i
!= e
; ++i
) {
594 BranchInst::Create(UnwindHandler
, Unwinds
[i
]);
595 Unwinds
[i
]->eraseFromParent();
598 // Finally, for any returns from this function, if this function contains an
599 // invoke, restore the old jmpbuf pointer to its input value.
601 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
602 ReturnInst
*R
= Returns
[i
];
604 // Before the return, insert a copy from the saved value to the new value.
605 Value
*OldBuf
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", true, R
);
606 new StoreInst(OldBuf
, JBListHead
, true, R
);
613 bool LowerInvoke::runOnFunction(Function
&F
) {
614 if (ExpensiveEHSupport
)
615 return insertExpensiveEHSupport(F
);
617 return insertCheapEHSupport(F
);