Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / SSI.cpp
blob0585561a30b6eef7b964c44e66d17ddddb60437e
1 //===------------------- SSI.cpp - Creates SSI Representation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts a list of variables to the Static Single Information
11 // form. This is a program representation described by Scott Ananian in his
12 // Master Thesis: "The Static Single Information Form (1999)".
13 // We are building an on-demand representation, that is, we do not convert
14 // every single variable in the target function to SSI form. Rather, we receive
15 // a list of target variables that must be converted. We also do not
16 // completely convert a target variable to the SSI format. Instead, we only
17 // change the variable in the points where new information can be attached
18 // to its live range, that is, at branch points.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "ssi"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/SSI.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/Dominators.h"
29 using namespace llvm;
31 static const std::string SSI_PHI = "SSI_phi";
32 static const std::string SSI_SIG = "SSI_sigma";
34 static const unsigned UNSIGNED_INFINITE = ~0U;
36 STATISTIC(NumSigmaInserted, "Number of sigma functions inserted");
37 STATISTIC(NumPhiInserted, "Number of phi functions inserted");
39 void SSI::getAnalysisUsage(AnalysisUsage &AU) const {
40 AU.addRequired<DominanceFrontier>();
41 AU.addRequired<DominatorTree>();
42 AU.setPreservesAll();
45 bool SSI::runOnFunction(Function &F) {
46 DT_ = &getAnalysis<DominatorTree>();
47 return false;
50 /// This methods creates the SSI representation for the list of values
51 /// received. It will only create SSI representation if a value is used
52 /// in a to decide a branch. Repeated values are created only once.
53 ///
54 void SSI::createSSI(SmallVectorImpl<Instruction *> &value) {
55 init(value);
57 for (unsigned i = 0; i < num_values; ++i) {
58 if (created.insert(value[i])) {
59 needConstruction[i] = true;
62 insertSigmaFunctions(value);
64 // Test if there is a need to transform to SSI
65 if (needConstruction.any()) {
66 insertPhiFunctions(value);
67 renameInit(value);
68 rename(DT_->getRoot());
69 fixPhis();
72 clean();
75 /// Insert sigma functions (a sigma function is a phi function with one
76 /// operator)
77 ///
78 void SSI::insertSigmaFunctions(SmallVectorImpl<Instruction *> &value) {
79 for (unsigned i = 0; i < num_values; ++i) {
80 if (!needConstruction[i])
81 continue;
83 bool need = false;
84 for (Value::use_iterator begin = value[i]->use_begin(), end =
85 value[i]->use_end(); begin != end; ++begin) {
86 // Test if the Use of the Value is in a comparator
87 CmpInst *CI = dyn_cast<CmpInst>(begin);
88 if (CI && isUsedInTerminator(CI)) {
89 // Basic Block of the Instruction
90 BasicBlock *BB = CI->getParent();
91 // Last Instruction of the Basic Block
92 const TerminatorInst *TI = BB->getTerminator();
94 for (unsigned j = 0, e = TI->getNumSuccessors(); j < e; ++j) {
95 // Next Basic Block
96 BasicBlock *BB_next = TI->getSuccessor(j);
97 if (BB_next != BB &&
98 BB_next->getUniquePredecessor() != NULL &&
99 dominateAny(BB_next, value[i])) {
100 PHINode *PN = PHINode::Create(
101 value[i]->getType(), SSI_SIG, BB_next->begin());
102 PN->addIncoming(value[i], BB);
103 sigmas.insert(std::make_pair(PN, i));
104 created.insert(PN);
105 need = true;
106 defsites[i].push_back(BB_next);
107 ++NumSigmaInserted;
112 needConstruction[i] = need;
116 /// Insert phi functions when necessary
118 void SSI::insertPhiFunctions(SmallVectorImpl<Instruction *> &value) {
119 DominanceFrontier *DF = &getAnalysis<DominanceFrontier>();
120 for (unsigned i = 0; i < num_values; ++i) {
121 // Test if there were any sigmas for this variable
122 if (needConstruction[i]) {
124 SmallPtrSet<BasicBlock *, 1> BB_visited;
126 // Insert phi functions if there is any sigma function
127 while (!defsites[i].empty()) {
129 BasicBlock *BB = defsites[i].back();
131 defsites[i].pop_back();
132 DominanceFrontier::iterator DF_BB = DF->find(BB);
134 // Iterates through all the dominance frontier of BB
135 for (std::set<BasicBlock *>::iterator DF_BB_begin =
136 DF_BB->second.begin(), DF_BB_end = DF_BB->second.end();
137 DF_BB_begin != DF_BB_end; ++DF_BB_begin) {
138 BasicBlock *BB_dominated = *DF_BB_begin;
140 // Test if has not yet visited this node and if the
141 // original definition dominates this node
142 if (BB_visited.insert(BB_dominated) &&
143 DT_->properlyDominates(value_original[i], BB_dominated) &&
144 dominateAny(BB_dominated, value[i])) {
145 PHINode *PN = PHINode::Create(
146 value[i]->getType(), SSI_PHI, BB_dominated->begin());
147 phis.insert(std::make_pair(PN, i));
148 created.insert(PN);
150 defsites[i].push_back(BB_dominated);
151 ++NumPhiInserted;
155 BB_visited.clear();
160 /// Some initialization for the rename part
162 void SSI::renameInit(SmallVectorImpl<Instruction *> &value) {
163 value_stack.resize(num_values);
164 for (unsigned i = 0; i < num_values; ++i) {
165 value_stack[i].push_back(value[i]);
169 /// Renames all variables in the specified BasicBlock.
170 /// Only variables that need to be rename will be.
172 void SSI::rename(BasicBlock *BB) {
173 BitVector *defined = new BitVector(num_values, false);
175 // Iterate through instructions and make appropriate renaming.
176 // For SSI_PHI (b = PHI()), store b at value_stack as a new
177 // definition of the variable it represents.
178 // For SSI_SIG (b = PHI(a)), substitute a with the current
179 // value of a, present in the value_stack.
180 // Then store bin the value_stack as the new definition of a.
181 // For all other instructions (b = OP(a, c, d, ...)), we need to substitute
182 // all operands with its current value, present in value_stack.
183 for (BasicBlock::iterator begin = BB->begin(), end = BB->end();
184 begin != end; ++begin) {
185 Instruction *I = begin;
186 if (PHINode *PN = dyn_cast<PHINode>(I)) { // Treat PHI functions
187 int position;
189 // Treat SSI_PHI
190 if ((position = getPositionPhi(PN)) != -1) {
191 value_stack[position].push_back(PN);
192 (*defined)[position] = true;
195 // Treat SSI_SIG
196 else if ((position = getPositionSigma(PN)) != -1) {
197 substituteUse(I);
198 value_stack[position].push_back(PN);
199 (*defined)[position] = true;
202 // Treat all other PHI functions
203 else {
204 substituteUse(I);
208 // Treat all other functions
209 else {
210 substituteUse(I);
214 // This loop iterates in all BasicBlocks that are successors of the current
215 // BasicBlock. For each SSI_PHI instruction found, insert an operand.
216 // This operand is the current operand in value_stack for the variable
217 // in "position". And the BasicBlock this operand represents is the current
218 // BasicBlock.
219 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
220 BasicBlock *BB_succ = *SI;
222 for (BasicBlock::iterator begin = BB_succ->begin(),
223 notPhi = BB_succ->getFirstNonPHI(); begin != *notPhi; ++begin) {
224 Instruction *I = begin;
225 PHINode *PN;
226 int position;
227 if ((PN = dyn_cast<PHINode>(I)) && ((position
228 = getPositionPhi(PN)) != -1)) {
229 PN->addIncoming(value_stack[position].back(), BB);
234 // This loop calls rename on all children from this block. This time children
235 // refers to a successor block in the dominance tree.
236 DomTreeNode *DTN = DT_->getNode(BB);
237 for (DomTreeNode::iterator begin = DTN->begin(), end = DTN->end();
238 begin != end; ++begin) {
239 DomTreeNodeBase<BasicBlock> *DTN_children = *begin;
240 BasicBlock *BB_children = DTN_children->getBlock();
241 rename(BB_children);
244 // Now we remove all inserted definitions of a variable from the top of
245 // the stack leaving the previous one as the top.
246 if (defined->any()) {
247 for (unsigned i = 0; i < num_values; ++i) {
248 if ((*defined)[i]) {
249 value_stack[i].pop_back();
255 /// Substitute any use in this instruction for the last definition of
256 /// the variable
258 void SSI::substituteUse(Instruction *I) {
259 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
260 Value *operand = I->getOperand(i);
261 for (unsigned j = 0; j < num_values; ++j) {
262 if (operand == value_stack[j].front() &&
263 I != value_stack[j].back()) {
264 PHINode *PN_I = dyn_cast<PHINode>(I);
265 PHINode *PN_vs = dyn_cast<PHINode>(value_stack[j].back());
267 // If a phi created in a BasicBlock is used as an operand of another
268 // created in the same BasicBlock, this step marks this second phi,
269 // to fix this issue later. It cannot be fixed now, because the
270 // operands of the first phi are not final yet.
271 if (PN_I && PN_vs &&
272 value_stack[j].back()->getParent() == I->getParent()) {
274 phisToFix.insert(PN_I);
277 I->setOperand(i, value_stack[j].back());
278 break;
284 /// Test if the BasicBlock BB dominates any use or definition of value.
285 /// If it dominates a phi instruction that is on the same BasicBlock,
286 /// that does not count.
288 bool SSI::dominateAny(BasicBlock *BB, Instruction *value) {
289 for (Value::use_iterator begin = value->use_begin(),
290 end = value->use_end(); begin != end; ++begin) {
291 Instruction *I = cast<Instruction>(*begin);
292 BasicBlock *BB_father = I->getParent();
293 if (BB == BB_father && isa<PHINode>(I))
294 continue;
295 if (DT_->dominates(BB, BB_father)) {
296 return true;
299 return false;
302 /// When there is a phi node that is created in a BasicBlock and it is used
303 /// as an operand of another phi function used in the same BasicBlock,
304 /// LLVM looks this as an error. So on the second phi, the first phi is called
305 /// P and the BasicBlock it incomes is B. This P will be replaced by the value
306 /// it has for BasicBlock B.
308 void SSI::fixPhis() {
309 for (SmallPtrSet<PHINode *, 1>::iterator begin = phisToFix.begin(),
310 end = phisToFix.end(); begin != end; ++begin) {
311 PHINode *PN = *begin;
312 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
313 PHINode *PN_father;
314 if ((PN_father = dyn_cast<PHINode>(PN->getIncomingValue(i))) &&
315 PN->getParent() == PN_father->getParent()) {
316 BasicBlock *BB = PN->getIncomingBlock(i);
317 int pos = PN_father->getBasicBlockIndex(BB);
318 PN->setIncomingValue(i, PN_father->getIncomingValue(pos));
324 /// Return which variable (position on the vector of variables) this phi
325 /// represents on the phis list.
327 unsigned SSI::getPositionPhi(PHINode *PN) {
328 DenseMap<PHINode *, unsigned>::iterator val = phis.find(PN);
329 if (val == phis.end())
330 return UNSIGNED_INFINITE;
331 else
332 return val->second;
335 /// Return which variable (position on the vector of variables) this phi
336 /// represents on the sigmas list.
338 unsigned SSI::getPositionSigma(PHINode *PN) {
339 DenseMap<PHINode *, unsigned>::iterator val = sigmas.find(PN);
340 if (val == sigmas.end())
341 return UNSIGNED_INFINITE;
342 else
343 return val->second;
346 /// Return true if the the Comparison Instruction is an operator
347 /// of the Terminator instruction of its Basic Block.
349 unsigned SSI::isUsedInTerminator(CmpInst *CI) {
350 TerminatorInst *TI = CI->getParent()->getTerminator();
351 if (TI->getNumOperands() == 0) {
352 return false;
353 } else if (CI == TI->getOperand(0)) {
354 return true;
355 } else {
356 return false;
360 /// Initializes
362 void SSI::init(SmallVectorImpl<Instruction *> &value) {
363 num_values = value.size();
364 needConstruction.resize(num_values, false);
366 value_original.resize(num_values);
367 defsites.resize(num_values);
369 for (unsigned i = 0; i < num_values; ++i) {
370 value_original[i] = value[i]->getParent();
371 defsites[i].push_back(value_original[i]);
375 /// Clean all used resources in this creation of SSI
377 void SSI::clean() {
378 for (unsigned i = 0; i < num_values; ++i) {
379 defsites[i].clear();
380 if (i < value_stack.size())
381 value_stack[i].clear();
384 phis.clear();
385 sigmas.clear();
386 phisToFix.clear();
388 defsites.clear();
389 value_stack.clear();
390 value_original.clear();
391 needConstruction.clear();
394 /// createSSIPass - The public interface to this file...
396 FunctionPass *llvm::createSSIPass() { return new SSI(); }
398 char SSI::ID = 0;
399 static RegisterPass<SSI> X("ssi", "Static Single Information Construction");
401 /// SSIEverything - A pass that runs createSSI on every non-void variable,
402 /// intended for debugging.
403 namespace {
404 struct VISIBILITY_HIDDEN SSIEverything : public FunctionPass {
405 static char ID; // Pass identification, replacement for typeid
406 SSIEverything() : FunctionPass((intptr_t)&ID) {}
408 bool runOnFunction(Function &F);
410 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
411 AU.addRequired<SSI>();
416 bool SSIEverything::runOnFunction(Function &F) {
417 SmallVector<Instruction *, 16> Insts;
418 SSI &ssi = getAnalysis<SSI>();
420 if (F.isDeclaration() || F.isIntrinsic()) return false;
422 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
423 for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
424 if (I->getType() != Type::VoidTy)
425 Insts.push_back(I);
427 ssi.createSSI(Insts);
428 return true;
431 /// createSSIEverythingPass - The public interface to this file...
433 FunctionPass *llvm::createSSIEverythingPass() { return new SSIEverything(); }
435 char SSIEverything::ID = 0;
436 static RegisterPass<SSIEverything>
437 Y("ssi-everything", "Static Single Information Construction");