1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
37 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
39 /// SafeToMergeTerminators - Return true if it is safe to merge these two
40 /// terminator instructions together.
42 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
43 if (SI1
== SI2
) return false; // Can't merge with self!
45 // It is not safe to merge these two switch instructions if they have a common
46 // successor, and if that successor has a PHI node, and if *that* PHI node has
47 // conflicting incoming values from the two switch blocks.
48 BasicBlock
*SI1BB
= SI1
->getParent();
49 BasicBlock
*SI2BB
= SI2
->getParent();
50 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
52 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
53 if (SI1Succs
.count(*I
))
54 for (BasicBlock::iterator BBI
= (*I
)->begin();
55 isa
<PHINode
>(BBI
); ++BBI
) {
56 PHINode
*PN
= cast
<PHINode
>(BBI
);
57 if (PN
->getIncomingValueForBlock(SI1BB
) !=
58 PN
->getIncomingValueForBlock(SI2BB
))
65 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
66 /// now be entries in it from the 'NewPred' block. The values that will be
67 /// flowing into the PHI nodes will be the same as those coming in from
68 /// ExistPred, an existing predecessor of Succ.
69 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
70 BasicBlock
*ExistPred
) {
71 assert(std::find(succ_begin(ExistPred
), succ_end(ExistPred
), Succ
) !=
72 succ_end(ExistPred
) && "ExistPred is not a predecessor of Succ!");
73 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
76 for (BasicBlock::iterator I
= Succ
->begin();
77 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
78 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
81 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
82 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
84 /// Assumption: Succ is the single successor for BB.
86 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
87 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
89 DEBUG(errs() << "Looking to fold " << BB
->getName() << " into "
90 << Succ
->getName() << "\n");
91 // Shortcut, if there is only a single predecessor it must be BB and merging
93 if (Succ
->getSinglePredecessor()) return true;
95 typedef SmallPtrSet
<Instruction
*, 16> InstrSet
;
98 // Make a list of all phi nodes in BB
99 BasicBlock::iterator BBI
= BB
->begin();
100 while (isa
<PHINode
>(*BBI
)) BBPHIs
.insert(BBI
++);
102 // Make a list of the predecessors of BB
103 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
104 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
106 // Use that list to make another list of common predecessors of BB and Succ
107 BlockSet CommonPreds
;
108 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
110 if (BBPreds
.count(*PI
))
111 CommonPreds
.insert(*PI
);
113 // Shortcut, if there are no common predecessors, merging is always safe
114 if (CommonPreds
.empty())
117 // Look at all the phi nodes in Succ, to see if they present a conflict when
118 // merging these blocks
119 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
120 PHINode
*PN
= cast
<PHINode
>(I
);
122 // If the incoming value from BB is again a PHINode in
123 // BB which has the same incoming value for *PI as PN does, we can
124 // merge the phi nodes and then the blocks can still be merged
125 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
126 if (BBPN
&& BBPN
->getParent() == BB
) {
127 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
129 if (BBPN
->getIncomingValueForBlock(*PI
)
130 != PN
->getIncomingValueForBlock(*PI
)) {
131 DEBUG(errs() << "Can't fold, phi node " << PN
->getName() << " in "
132 << Succ
->getName() << " is conflicting with "
133 << BBPN
->getName() << " with regard to common predecessor "
134 << (*PI
)->getName() << "\n");
138 // Remove this phinode from the list of phis in BB, since it has been
142 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
143 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
145 // See if the incoming value for the common predecessor is equal to the
146 // one for BB, in which case this phi node will not prevent the merging
148 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
149 DEBUG(errs() << "Can't fold, phi node " << PN
->getName() << " in "
150 << Succ
->getName() << " is conflicting with regard to common "
151 << "predecessor " << (*PI
)->getName() << "\n");
158 // If there are any other phi nodes in BB that don't have a phi node in Succ
159 // to merge with, they must be moved to Succ completely. However, for any
160 // predecessors of Succ, branches will be added to the phi node that just
161 // point to itself. So, for any common predecessors, this must not cause
163 for (InstrSet::iterator I
= BBPHIs
.begin(), E
= BBPHIs
.end();
165 PHINode
*PN
= cast
<PHINode
>(*I
);
166 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
168 if (PN
->getIncomingValueForBlock(*PI
) != PN
) {
169 DEBUG(errs() << "Can't fold, phi node " << PN
->getName() << " in "
170 << BB
->getName() << " is conflicting with regard to common "
171 << "predecessor " << (*PI
)->getName() << "\n");
179 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
180 /// branch to Succ, and contains no instructions other than PHI nodes and the
181 /// branch. If possible, eliminate BB.
182 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
184 // Check to see if merging these blocks would cause conflicts for any of the
185 // phi nodes in BB or Succ. If not, we can safely merge.
186 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
188 DOUT
<< "Killing Trivial BB: \n" << *BB
;
190 if (isa
<PHINode
>(Succ
->begin())) {
191 // If there is more than one pred of succ, and there are PHI nodes in
192 // the successor, then we need to add incoming edges for the PHI nodes
194 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
196 // Loop over all of the PHI nodes in the successor of BB.
197 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
198 PHINode
*PN
= cast
<PHINode
>(I
);
199 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
200 assert(OldVal
&& "No entry in PHI for Pred BB!");
202 // If this incoming value is one of the PHI nodes in BB, the new entries
203 // in the PHI node are the entries from the old PHI.
204 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
205 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
206 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
207 // Note that, since we are merging phi nodes and BB and Succ might
208 // have common predecessors, we could end up with a phi node with
209 // identical incoming branches. This will be cleaned up later (and
210 // will trigger asserts if we try to clean it up now, without also
211 // simplifying the corresponding conditional branch).
212 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
213 OldValPN
->getIncomingBlock(i
));
215 // Add an incoming value for each of the new incoming values.
216 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
217 PN
->addIncoming(OldVal
, BBPreds
[i
]);
222 if (isa
<PHINode
>(&BB
->front())) {
223 SmallVector
<BasicBlock
*, 16>
224 OldSuccPreds(pred_begin(Succ
), pred_end(Succ
));
226 // Move all PHI nodes in BB to Succ if they are alive, otherwise
228 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
229 if (PN
->use_empty()) {
230 // Just remove the dead phi. This happens if Succ's PHIs were the only
231 // users of the PHI nodes.
232 PN
->eraseFromParent();
236 // The instruction is alive, so this means that BB must dominate all
237 // predecessors of Succ (Since all uses of the PN are after its
238 // definition, so in Succ or a block dominated by Succ. If a predecessor
239 // of Succ would not be dominated by BB, PN would violate the def before
240 // use SSA demand). Therefore, we can simply move the phi node to the
242 Succ
->getInstList().splice(Succ
->begin(),
243 BB
->getInstList(), BB
->begin());
245 // We need to add new entries for the PHI node to account for
246 // predecessors of Succ that the PHI node does not take into
247 // account. At this point, since we know that BB dominated succ and all
248 // of its predecessors, this means that we should any newly added
249 // incoming edges should use the PHI node itself as the value for these
250 // edges, because they are loop back edges.
251 for (unsigned i
= 0, e
= OldSuccPreds
.size(); i
!= e
; ++i
)
252 if (OldSuccPreds
[i
] != BB
)
253 PN
->addIncoming(PN
, OldSuccPreds
[i
]);
257 // Everything that jumped to BB now goes to Succ.
258 BB
->replaceAllUsesWith(Succ
);
259 if (!Succ
->hasName()) Succ
->takeName(BB
);
260 BB
->eraseFromParent(); // Delete the old basic block.
264 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
265 /// presumably PHI nodes in it), check to see if the merge at this block is due
266 /// to an "if condition". If so, return the boolean condition that determines
267 /// which entry into BB will be taken. Also, return by references the block
268 /// that will be entered from if the condition is true, and the block that will
269 /// be entered if the condition is false.
272 static Value
*GetIfCondition(BasicBlock
*BB
,
273 BasicBlock
*&IfTrue
, BasicBlock
*&IfFalse
) {
274 assert(std::distance(pred_begin(BB
), pred_end(BB
)) == 2 &&
275 "Function can only handle blocks with 2 predecessors!");
276 BasicBlock
*Pred1
= *pred_begin(BB
);
277 BasicBlock
*Pred2
= *++pred_begin(BB
);
279 // We can only handle branches. Other control flow will be lowered to
280 // branches if possible anyway.
281 if (!isa
<BranchInst
>(Pred1
->getTerminator()) ||
282 !isa
<BranchInst
>(Pred2
->getTerminator()))
284 BranchInst
*Pred1Br
= cast
<BranchInst
>(Pred1
->getTerminator());
285 BranchInst
*Pred2Br
= cast
<BranchInst
>(Pred2
->getTerminator());
287 // Eliminate code duplication by ensuring that Pred1Br is conditional if
289 if (Pred2Br
->isConditional()) {
290 // If both branches are conditional, we don't have an "if statement". In
291 // reality, we could transform this case, but since the condition will be
292 // required anyway, we stand no chance of eliminating it, so the xform is
293 // probably not profitable.
294 if (Pred1Br
->isConditional())
297 std::swap(Pred1
, Pred2
);
298 std::swap(Pred1Br
, Pred2Br
);
301 if (Pred1Br
->isConditional()) {
302 // If we found a conditional branch predecessor, make sure that it branches
303 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
304 if (Pred1Br
->getSuccessor(0) == BB
&&
305 Pred1Br
->getSuccessor(1) == Pred2
) {
308 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
309 Pred1Br
->getSuccessor(1) == BB
) {
313 // We know that one arm of the conditional goes to BB, so the other must
314 // go somewhere unrelated, and this must not be an "if statement".
318 // The only thing we have to watch out for here is to make sure that Pred2
319 // doesn't have incoming edges from other blocks. If it does, the condition
320 // doesn't dominate BB.
321 if (++pred_begin(Pred2
) != pred_end(Pred2
))
324 return Pred1Br
->getCondition();
327 // Ok, if we got here, both predecessors end with an unconditional branch to
328 // BB. Don't panic! If both blocks only have a single (identical)
329 // predecessor, and THAT is a conditional branch, then we're all ok!
330 if (pred_begin(Pred1
) == pred_end(Pred1
) ||
331 ++pred_begin(Pred1
) != pred_end(Pred1
) ||
332 pred_begin(Pred2
) == pred_end(Pred2
) ||
333 ++pred_begin(Pred2
) != pred_end(Pred2
) ||
334 *pred_begin(Pred1
) != *pred_begin(Pred2
))
337 // Otherwise, if this is a conditional branch, then we can use it!
338 BasicBlock
*CommonPred
= *pred_begin(Pred1
);
339 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator())) {
340 assert(BI
->isConditional() && "Two successors but not conditional?");
341 if (BI
->getSuccessor(0) == Pred1
) {
348 return BI
->getCondition();
353 /// DominatesMergePoint - If we have a merge point of an "if condition" as
354 /// accepted above, return true if the specified value dominates the block. We
355 /// don't handle the true generality of domination here, just a special case
356 /// which works well enough for us.
358 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
359 /// see if V (which must be an instruction) is cheap to compute and is
360 /// non-trapping. If both are true, the instruction is inserted into the set
361 /// and true is returned.
362 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
363 std::set
<Instruction
*> *AggressiveInsts
) {
364 Instruction
*I
= dyn_cast
<Instruction
>(V
);
366 // Non-instructions all dominate instructions, but not all constantexprs
367 // can be executed unconditionally.
368 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
373 BasicBlock
*PBB
= I
->getParent();
375 // We don't want to allow weird loops that might have the "if condition" in
376 // the bottom of this block.
377 if (PBB
== BB
) return false;
379 // If this instruction is defined in a block that contains an unconditional
380 // branch to BB, then it must be in the 'conditional' part of the "if
382 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator()))
383 if (BI
->isUnconditional() && BI
->getSuccessor(0) == BB
) {
384 if (!AggressiveInsts
) return false;
385 // Okay, it looks like the instruction IS in the "condition". Check to
386 // see if its a cheap instruction to unconditionally compute, and if it
387 // only uses stuff defined outside of the condition. If so, hoist it out.
388 if (!I
->isSafeToSpeculativelyExecute())
391 switch (I
->getOpcode()) {
392 default: return false; // Cannot hoist this out safely.
393 case Instruction::Load
: {
394 // We have to check to make sure there are no instructions before the
395 // load in its basic block, as we are going to hoist the loop out to
397 BasicBlock::iterator IP
= PBB
->begin();
398 while (isa
<DbgInfoIntrinsic
>(IP
))
400 if (IP
!= BasicBlock::iterator(I
))
404 case Instruction::Add
:
405 case Instruction::Sub
:
406 case Instruction::And
:
407 case Instruction::Or
:
408 case Instruction::Xor
:
409 case Instruction::Shl
:
410 case Instruction::LShr
:
411 case Instruction::AShr
:
412 case Instruction::ICmp
:
413 break; // These are all cheap and non-trapping instructions.
416 // Okay, we can only really hoist these out if their operands are not
417 // defined in the conditional region.
418 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
419 if (!DominatesMergePoint(*i
, BB
, 0))
421 // Okay, it's safe to do this! Remember this instruction.
422 AggressiveInsts
->insert(I
);
428 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
429 /// icmp_eq instructions that compare a value against a constant, return the
430 /// value being compared, and stick the constant into the Values vector.
431 static Value
*GatherConstantSetEQs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
432 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
433 if (Inst
->getOpcode() == Instruction::ICmp
&&
434 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_EQ
) {
435 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
437 return Inst
->getOperand(0);
438 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
440 return Inst
->getOperand(1);
442 } else if (Inst
->getOpcode() == Instruction::Or
) {
443 if (Value
*LHS
= GatherConstantSetEQs(Inst
->getOperand(0), Values
))
444 if (Value
*RHS
= GatherConstantSetEQs(Inst
->getOperand(1), Values
))
452 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
453 /// setne instructions that compare a value against a constant, return the value
454 /// being compared, and stick the constant into the Values vector.
455 static Value
*GatherConstantSetNEs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
456 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
457 if (Inst
->getOpcode() == Instruction::ICmp
&&
458 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_NE
) {
459 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
461 return Inst
->getOperand(0);
462 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
464 return Inst
->getOperand(1);
466 } else if (Inst
->getOpcode() == Instruction::And
) {
467 if (Value
*LHS
= GatherConstantSetNEs(Inst
->getOperand(0), Values
))
468 if (Value
*RHS
= GatherConstantSetNEs(Inst
->getOperand(1), Values
))
476 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
477 /// bunch of comparisons of one value against constants, return the value and
478 /// the constants being compared.
479 static bool GatherValueComparisons(Instruction
*Cond
, Value
*&CompVal
,
480 std::vector
<ConstantInt
*> &Values
) {
481 if (Cond
->getOpcode() == Instruction::Or
) {
482 CompVal
= GatherConstantSetEQs(Cond
, Values
);
484 // Return true to indicate that the condition is true if the CompVal is
485 // equal to one of the constants.
487 } else if (Cond
->getOpcode() == Instruction::And
) {
488 CompVal
= GatherConstantSetNEs(Cond
, Values
);
490 // Return false to indicate that the condition is false if the CompVal is
491 // equal to one of the constants.
497 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
498 Instruction
* Cond
= 0;
499 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
500 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
501 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
502 if (BI
->isConditional())
503 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
506 TI
->eraseFromParent();
507 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
510 /// isValueEqualityComparison - Return true if the specified terminator checks
511 /// to see if a value is equal to constant integer value.
512 static Value
*isValueEqualityComparison(TerminatorInst
*TI
) {
513 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
514 // Do not permit merging of large switch instructions into their
515 // predecessors unless there is only one predecessor.
516 if (SI
->getNumSuccessors() * std::distance(pred_begin(SI
->getParent()),
517 pred_end(SI
->getParent())) > 128)
520 return SI
->getCondition();
522 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
523 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
524 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
525 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
526 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
527 isa
<ConstantInt
>(ICI
->getOperand(1)))
528 return ICI
->getOperand(0);
532 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
533 /// decode all of the 'cases' that it represents and return the 'default' block.
535 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
536 std::vector
<std::pair
<ConstantInt
*,
537 BasicBlock
*> > &Cases
) {
538 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
539 Cases
.reserve(SI
->getNumCases());
540 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
541 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
542 return SI
->getDefaultDest();
545 BranchInst
*BI
= cast
<BranchInst
>(TI
);
546 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
547 Cases
.push_back(std::make_pair(cast
<ConstantInt
>(ICI
->getOperand(1)),
548 BI
->getSuccessor(ICI
->getPredicate() ==
549 ICmpInst::ICMP_NE
)));
550 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
554 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
555 /// in the list that match the specified block.
556 static void EliminateBlockCases(BasicBlock
*BB
,
557 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
558 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
559 if (Cases
[i
].second
== BB
) {
560 Cases
.erase(Cases
.begin()+i
);
565 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
568 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
569 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
570 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
572 // Make V1 be smaller than V2.
573 if (V1
->size() > V2
->size())
576 if (V1
->size() == 0) return false;
577 if (V1
->size() == 1) {
579 ConstantInt
*TheVal
= (*V1
)[0].first
;
580 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
581 if (TheVal
== (*V2
)[i
].first
)
585 // Otherwise, just sort both lists and compare element by element.
586 std::sort(V1
->begin(), V1
->end());
587 std::sort(V2
->begin(), V2
->end());
588 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
589 while (i1
!= e1
&& i2
!= e2
) {
590 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
592 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
600 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
601 /// terminator instruction and its block is known to only have a single
602 /// predecessor block, check to see if that predecessor is also a value
603 /// comparison with the same value, and if that comparison determines the
604 /// outcome of this comparison. If so, simplify TI. This does a very limited
605 /// form of jump threading.
606 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
608 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
609 if (!PredVal
) return false; // Not a value comparison in predecessor.
611 Value
*ThisVal
= isValueEqualityComparison(TI
);
612 assert(ThisVal
&& "This isn't a value comparison!!");
613 if (ThisVal
!= PredVal
) return false; // Different predicates.
615 // Find out information about when control will move from Pred to TI's block.
616 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
617 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
619 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
621 // Find information about how control leaves this block.
622 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
623 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
624 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
626 // If TI's block is the default block from Pred's comparison, potentially
627 // simplify TI based on this knowledge.
628 if (PredDef
== TI
->getParent()) {
629 // If we are here, we know that the value is none of those cases listed in
630 // PredCases. If there are any cases in ThisCases that are in PredCases, we
632 if (ValuesOverlap(PredCases
, ThisCases
)) {
633 if (isa
<BranchInst
>(TI
)) {
634 // Okay, one of the successors of this condbr is dead. Convert it to a
636 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
637 // Insert the new branch.
638 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
640 // Remove PHI node entries for the dead edge.
641 ThisCases
[0].second
->removePredecessor(TI
->getParent());
643 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
644 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
646 EraseTerminatorInstAndDCECond(TI
);
650 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
651 // Okay, TI has cases that are statically dead, prune them away.
652 SmallPtrSet
<Constant
*, 16> DeadCases
;
653 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
654 DeadCases
.insert(PredCases
[i
].first
);
656 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
657 << "Through successor TI: " << *TI
;
659 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
660 if (DeadCases
.count(SI
->getCaseValue(i
))) {
661 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
665 DOUT
<< "Leaving: " << *TI
<< "\n";
671 // Otherwise, TI's block must correspond to some matched value. Find out
672 // which value (or set of values) this is.
673 ConstantInt
*TIV
= 0;
674 BasicBlock
*TIBB
= TI
->getParent();
675 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
676 if (PredCases
[i
].second
== TIBB
) {
678 TIV
= PredCases
[i
].first
;
680 return false; // Cannot handle multiple values coming to this block.
682 assert(TIV
&& "No edge from pred to succ?");
684 // Okay, we found the one constant that our value can be if we get into TI's
685 // BB. Find out which successor will unconditionally be branched to.
686 BasicBlock
*TheRealDest
= 0;
687 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
688 if (ThisCases
[i
].first
== TIV
) {
689 TheRealDest
= ThisCases
[i
].second
;
693 // If not handled by any explicit cases, it is handled by the default case.
694 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
696 // Remove PHI node entries for dead edges.
697 BasicBlock
*CheckEdge
= TheRealDest
;
698 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
699 if (*SI
!= CheckEdge
)
700 (*SI
)->removePredecessor(TIBB
);
704 // Insert the new branch.
705 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
707 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
708 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
710 EraseTerminatorInstAndDCECond(TI
);
717 /// ConstantIntOrdering - This class implements a stable ordering of constant
718 /// integers that does not depend on their address. This is important for
719 /// applications that sort ConstantInt's to ensure uniqueness.
720 struct ConstantIntOrdering
{
721 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
722 return LHS
->getValue().ult(RHS
->getValue());
727 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
728 /// equality comparison instruction (either a switch or a branch on "X == c").
729 /// See if any of the predecessors of the terminator block are value comparisons
730 /// on the same value. If so, and if safe to do so, fold them together.
731 static bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
732 BasicBlock
*BB
= TI
->getParent();
733 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
734 assert(CV
&& "Not a comparison?");
735 bool Changed
= false;
737 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
738 while (!Preds
.empty()) {
739 BasicBlock
*Pred
= Preds
.pop_back_val();
741 // See if the predecessor is a comparison with the same value.
742 TerminatorInst
*PTI
= Pred
->getTerminator();
743 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
745 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
746 // Figure out which 'cases' to copy from SI to PSI.
747 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
748 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
750 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
751 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
753 // Based on whether the default edge from PTI goes to BB or not, fill in
754 // PredCases and PredDefault with the new switch cases we would like to
756 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
758 if (PredDefault
== BB
) {
759 // If this is the default destination from PTI, only the edges in TI
760 // that don't occur in PTI, or that branch to BB will be activated.
761 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
762 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
763 if (PredCases
[i
].second
!= BB
)
764 PTIHandled
.insert(PredCases
[i
].first
);
766 // The default destination is BB, we don't need explicit targets.
767 std::swap(PredCases
[i
], PredCases
.back());
768 PredCases
.pop_back();
772 // Reconstruct the new switch statement we will be building.
773 if (PredDefault
!= BBDefault
) {
774 PredDefault
->removePredecessor(Pred
);
775 PredDefault
= BBDefault
;
776 NewSuccessors
.push_back(BBDefault
);
778 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
779 if (!PTIHandled
.count(BBCases
[i
].first
) &&
780 BBCases
[i
].second
!= BBDefault
) {
781 PredCases
.push_back(BBCases
[i
]);
782 NewSuccessors
.push_back(BBCases
[i
].second
);
786 // If this is not the default destination from PSI, only the edges
787 // in SI that occur in PSI with a destination of BB will be
789 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
790 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
791 if (PredCases
[i
].second
== BB
) {
792 PTIHandled
.insert(PredCases
[i
].first
);
793 std::swap(PredCases
[i
], PredCases
.back());
794 PredCases
.pop_back();
798 // Okay, now we know which constants were sent to BB from the
799 // predecessor. Figure out where they will all go now.
800 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
801 if (PTIHandled
.count(BBCases
[i
].first
)) {
802 // If this is one we are capable of getting...
803 PredCases
.push_back(BBCases
[i
]);
804 NewSuccessors
.push_back(BBCases
[i
].second
);
805 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
808 // If there are any constants vectored to BB that TI doesn't handle,
809 // they must go to the default destination of TI.
810 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
812 E
= PTIHandled
.end(); I
!= E
; ++I
) {
813 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
814 NewSuccessors
.push_back(BBDefault
);
818 // Okay, at this point, we know which new successor Pred will get. Make
819 // sure we update the number of entries in the PHI nodes for these
821 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
822 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
824 // Now that the successors are updated, create the new Switch instruction.
825 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
826 PredCases
.size(), PTI
);
827 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
828 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
830 EraseTerminatorInstAndDCECond(PTI
);
832 // Okay, last check. If BB is still a successor of PSI, then we must
833 // have an infinite loop case. If so, add an infinitely looping block
834 // to handle the case to preserve the behavior of the code.
835 BasicBlock
*InfLoopBlock
= 0;
836 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
837 if (NewSI
->getSuccessor(i
) == BB
) {
838 if (InfLoopBlock
== 0) {
839 // Insert it at the end of the function, because it's either code,
840 // or it won't matter if it's hot. :)
841 InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
842 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
844 NewSI
->setSuccessor(i
, InfLoopBlock
);
853 // isSafeToHoistInvoke - If we would need to insert a select that uses the
854 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
855 // would need to do this), we can't hoist the invoke, as there is nowhere
856 // to put the select in this case.
857 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
858 Instruction
*I1
, Instruction
*I2
) {
859 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
861 for (BasicBlock::iterator BBI
= SI
->begin();
862 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
863 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
864 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
865 if (BB1V
!= BB2V
&& (BB1V
==I1
|| BB2V
==I2
)) {
873 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
874 /// BB2, hoist any common code in the two blocks up into the branch block. The
875 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
876 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
877 // This does very trivial matching, with limited scanning, to find identical
878 // instructions in the two blocks. In particular, we don't want to get into
879 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
880 // such, we currently just scan for obviously identical instructions in an
882 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
883 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
885 BasicBlock::iterator BB1_Itr
= BB1
->begin();
886 BasicBlock::iterator BB2_Itr
= BB2
->begin();
888 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
889 while (isa
<DbgInfoIntrinsic
>(I1
))
891 while (isa
<DbgInfoIntrinsic
>(I2
))
893 if (I1
->getOpcode() != I2
->getOpcode() || isa
<PHINode
>(I1
) ||
894 !I1
->isIdenticalTo(I2
) ||
895 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)))
898 // If we get here, we can hoist at least one instruction.
899 BasicBlock
*BIParent
= BI
->getParent();
902 // If we are hoisting the terminator instruction, don't move one (making a
903 // broken BB), instead clone it, and remove BI.
904 if (isa
<TerminatorInst
>(I1
))
905 goto HoistTerminator
;
907 // For a normal instruction, we just move one to right before the branch,
908 // then replace all uses of the other with the first. Finally, we remove
909 // the now redundant second instruction.
910 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
911 if (!I2
->use_empty())
912 I2
->replaceAllUsesWith(I1
);
913 BB2
->getInstList().erase(I2
);
916 while (isa
<DbgInfoIntrinsic
>(I1
))
919 while (isa
<DbgInfoIntrinsic
>(I2
))
921 } while (I1
->getOpcode() == I2
->getOpcode() && I1
->isIdenticalTo(I2
));
926 // It may not be possible to hoist an invoke.
927 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
930 // Okay, it is safe to hoist the terminator.
931 Instruction
*NT
= I1
->clone(BB1
->getContext());
932 BIParent
->getInstList().insert(BI
, NT
);
933 if (NT
->getType() != Type::VoidTy
) {
934 I1
->replaceAllUsesWith(NT
);
935 I2
->replaceAllUsesWith(NT
);
939 // Hoisting one of the terminators from our successor is a great thing.
940 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
941 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
942 // nodes, so we insert select instruction to compute the final result.
943 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
944 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
946 for (BasicBlock::iterator BBI
= SI
->begin();
947 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
948 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
949 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
951 // These values do not agree. Insert a select instruction before NT
952 // that determines the right value.
953 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
955 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
956 BB1V
->getName()+"."+BB2V
->getName(), NT
);
957 // Make the PHI node use the select for all incoming values for BB1/BB2
958 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
959 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
960 PN
->setIncomingValue(i
, SI
);
965 // Update any PHI nodes in our new successors.
966 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
967 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
969 EraseTerminatorInstAndDCECond(BI
);
973 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
974 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
975 /// (for now, restricted to a single instruction that's side effect free) from
976 /// the BB1 into the branch block to speculatively execute it.
977 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
978 // Only speculatively execution a single instruction (not counting the
979 // terminator) for now.
980 Instruction
*HInst
= NULL
;
981 Instruction
*Term
= BB1
->getTerminator();
982 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
984 Instruction
*I
= BBI
;
986 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
987 if (I
== Term
) break;
997 // Be conservative for now. FP select instruction can often be expensive.
998 Value
*BrCond
= BI
->getCondition();
999 if (isa
<Instruction
>(BrCond
) &&
1000 cast
<Instruction
>(BrCond
)->getOpcode() == Instruction::FCmp
)
1003 // If BB1 is actually on the false edge of the conditional branch, remember
1004 // to swap the select operands later.
1005 bool Invert
= false;
1006 if (BB1
!= BI
->getSuccessor(0)) {
1007 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
1014 // br i1 %t1, label %BB1, label %BB2
1023 // %t3 = select i1 %t1, %t2, %t3
1024 switch (HInst
->getOpcode()) {
1025 default: return false; // Not safe / profitable to hoist.
1026 case Instruction::Add
:
1027 case Instruction::Sub
:
1028 // Not worth doing for vector ops.
1029 if (isa
<VectorType
>(HInst
->getType()))
1032 case Instruction::And
:
1033 case Instruction::Or
:
1034 case Instruction::Xor
:
1035 case Instruction::Shl
:
1036 case Instruction::LShr
:
1037 case Instruction::AShr
:
1038 // Don't mess with vector operations.
1039 if (isa
<VectorType
>(HInst
->getType()))
1041 break; // These are all cheap and non-trapping instructions.
1044 // If the instruction is obviously dead, don't try to predicate it.
1045 if (HInst
->use_empty()) {
1046 HInst
->eraseFromParent();
1050 // Can we speculatively execute the instruction? And what is the value
1051 // if the condition is false? Consider the phi uses, if the incoming value
1052 // from the "if" block are all the same V, then V is the value of the
1053 // select if the condition is false.
1054 BasicBlock
*BIParent
= BI
->getParent();
1055 SmallVector
<PHINode
*, 4> PHIUses
;
1056 Value
*FalseV
= NULL
;
1058 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1059 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1061 // Ignore any user that is not a PHI node in BB2. These can only occur in
1062 // unreachable blocks, because they would not be dominated by the instr.
1063 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
1064 if (!PN
|| PN
->getParent() != BB2
)
1066 PHIUses
.push_back(PN
);
1068 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1071 else if (FalseV
!= PHIV
)
1072 return false; // Inconsistent value when condition is false.
1075 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1077 // Do not hoist the instruction if any of its operands are defined but not
1078 // used in this BB. The transformation will prevent the operand from
1079 // being sunk into the use block.
1080 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1082 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1083 if (OpI
&& OpI
->getParent() == BIParent
&&
1084 !OpI
->isUsedInBasicBlock(BIParent
))
1088 // If we get here, we can hoist the instruction. Try to place it
1089 // before the icmp instruction preceding the conditional branch.
1090 BasicBlock::iterator InsertPos
= BI
;
1091 if (InsertPos
!= BIParent
->begin())
1093 // Skip debug info between condition and branch.
1094 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1096 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1097 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1098 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1099 BB1I
!= BB1E
; ++BB1I
)
1100 BB1Insns
.insert(BB1I
);
1101 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1103 Instruction
*Use
= cast
<Instruction
>(*UI
);
1104 if (BB1Insns
.count(Use
)) {
1105 // If BrCond uses the instruction that place it just before
1106 // branch instruction.
1113 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1115 // Create a select whose true value is the speculatively executed value and
1116 // false value is the previously determined FalseV.
1119 SI
= SelectInst::Create(BrCond
, FalseV
, HInst
,
1120 FalseV
->getName() + "." + HInst
->getName(), BI
);
1122 SI
= SelectInst::Create(BrCond
, HInst
, FalseV
,
1123 HInst
->getName() + "." + FalseV
->getName(), BI
);
1125 // Make the PHI node use the select for all incoming values for "then" and
1127 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1128 PHINode
*PN
= PHIUses
[i
];
1129 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1130 if (PN
->getIncomingBlock(j
) == BB1
||
1131 PN
->getIncomingBlock(j
) == BIParent
)
1132 PN
->setIncomingValue(j
, SI
);
1139 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1140 /// across this block.
1141 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1142 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1145 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1146 if (isa
<DbgInfoIntrinsic
>(BBI
))
1148 if (Size
> 10) return false; // Don't clone large BB's.
1151 // We can only support instructions that do not define values that are
1152 // live outside of the current basic block.
1153 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1155 Instruction
*U
= cast
<Instruction
>(*UI
);
1156 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1159 // Looks ok, continue checking.
1165 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1166 /// that is defined in the same block as the branch and if any PHI entries are
1167 /// constants, thread edges corresponding to that entry to be branches to their
1168 /// ultimate destination.
1169 static bool FoldCondBranchOnPHI(BranchInst
*BI
) {
1170 BasicBlock
*BB
= BI
->getParent();
1171 LLVMContext
&Context
= BB
->getContext();
1172 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1173 // NOTE: we currently cannot transform this case if the PHI node is used
1174 // outside of the block.
1175 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1178 // Degenerate case of a single entry PHI.
1179 if (PN
->getNumIncomingValues() == 1) {
1180 FoldSingleEntryPHINodes(PN
->getParent());
1184 // Now we know that this block has multiple preds and two succs.
1185 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1187 // Okay, this is a simple enough basic block. See if any phi values are
1189 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1191 if ((CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))) &&
1192 CB
->getType() == Type::Int1Ty
) {
1193 // Okay, we now know that all edges from PredBB should be revectored to
1194 // branch to RealDest.
1195 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1196 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1198 if (RealDest
== BB
) continue; // Skip self loops.
1200 // The dest block might have PHI nodes, other predecessors and other
1201 // difficult cases. Instead of being smart about this, just insert a new
1202 // block that jumps to the destination block, effectively splitting
1203 // the edge we are about to create.
1204 BasicBlock
*EdgeBB
= BasicBlock::Create(RealDest
->getName()+".critedge",
1205 RealDest
->getParent(), RealDest
);
1206 BranchInst::Create(RealDest
, EdgeBB
);
1208 for (BasicBlock::iterator BBI
= RealDest
->begin();
1209 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
1210 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1211 PN
->addIncoming(V
, EdgeBB
);
1214 // BB may have instructions that are being threaded over. Clone these
1215 // instructions into EdgeBB. We know that there will be no uses of the
1216 // cloned instructions outside of EdgeBB.
1217 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1218 std::map
<Value
*, Value
*> TranslateMap
; // Track translated values.
1219 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1220 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1221 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1223 // Clone the instruction.
1224 Instruction
*N
= BBI
->clone(Context
);
1225 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1227 // Update operands due to translation.
1228 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1230 std::map
<Value
*, Value
*>::iterator PI
=
1231 TranslateMap
.find(*i
);
1232 if (PI
!= TranslateMap
.end())
1236 // Check for trivial simplification.
1237 if (Constant
*C
= ConstantFoldInstruction(N
, Context
)) {
1238 TranslateMap
[BBI
] = C
;
1239 delete N
; // Constant folded away, don't need actual inst
1241 // Insert the new instruction into its new home.
1242 EdgeBB
->getInstList().insert(InsertPt
, N
);
1243 if (!BBI
->use_empty())
1244 TranslateMap
[BBI
] = N
;
1249 // Loop over all of the edges from PredBB to BB, changing them to branch
1250 // to EdgeBB instead.
1251 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1252 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1253 if (PredBBTI
->getSuccessor(i
) == BB
) {
1254 BB
->removePredecessor(PredBB
);
1255 PredBBTI
->setSuccessor(i
, EdgeBB
);
1258 // Recurse, simplifying any other constants.
1259 return FoldCondBranchOnPHI(BI
) | true;
1266 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1267 /// PHI node, see if we can eliminate it.
1268 static bool FoldTwoEntryPHINode(PHINode
*PN
) {
1269 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1270 // statement", which has a very simple dominance structure. Basically, we
1271 // are trying to find the condition that is being branched on, which
1272 // subsequently causes this merge to happen. We really want control
1273 // dependence information for this check, but simplifycfg can't keep it up
1274 // to date, and this catches most of the cases we care about anyway.
1276 BasicBlock
*BB
= PN
->getParent();
1277 BasicBlock
*IfTrue
, *IfFalse
;
1278 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1279 if (!IfCond
) return false;
1281 // Okay, we found that we can merge this two-entry phi node into a select.
1282 // Doing so would require us to fold *all* two entry phi nodes in this block.
1283 // At some point this becomes non-profitable (particularly if the target
1284 // doesn't support cmov's). Only do this transformation if there are two or
1285 // fewer PHI nodes in this block.
1286 unsigned NumPhis
= 0;
1287 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1291 DEBUG(errs() << "FOUND IF CONDITION! " << *IfCond
<< " T: "
1292 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n");
1294 // Loop over the PHI's seeing if we can promote them all to select
1295 // instructions. While we are at it, keep track of the instructions
1296 // that need to be moved to the dominating block.
1297 std::set
<Instruction
*> AggressiveInsts
;
1299 BasicBlock::iterator AfterPHIIt
= BB
->begin();
1300 while (isa
<PHINode
>(AfterPHIIt
)) {
1301 PHINode
*PN
= cast
<PHINode
>(AfterPHIIt
++);
1302 if (PN
->getIncomingValue(0) == PN
->getIncomingValue(1)) {
1303 if (PN
->getIncomingValue(0) != PN
)
1304 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1306 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1307 } else if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
,
1308 &AggressiveInsts
) ||
1309 !DominatesMergePoint(PN
->getIncomingValue(1), BB
,
1310 &AggressiveInsts
)) {
1315 // If we all PHI nodes are promotable, check to make sure that all
1316 // instructions in the predecessor blocks can be promoted as well. If
1317 // not, we won't be able to get rid of the control flow, so it's not
1318 // worth promoting to select instructions.
1319 BasicBlock
*DomBlock
= 0, *IfBlock1
= 0, *IfBlock2
= 0;
1320 PN
= cast
<PHINode
>(BB
->begin());
1321 BasicBlock
*Pred
= PN
->getIncomingBlock(0);
1322 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1324 DomBlock
= *pred_begin(Pred
);
1325 for (BasicBlock::iterator I
= Pred
->begin();
1326 !isa
<TerminatorInst
>(I
); ++I
)
1327 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1328 // This is not an aggressive instruction that we can promote.
1329 // Because of this, we won't be able to get rid of the control
1330 // flow, so the xform is not worth it.
1335 Pred
= PN
->getIncomingBlock(1);
1336 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1338 DomBlock
= *pred_begin(Pred
);
1339 for (BasicBlock::iterator I
= Pred
->begin();
1340 !isa
<TerminatorInst
>(I
); ++I
)
1341 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1342 // This is not an aggressive instruction that we can promote.
1343 // Because of this, we won't be able to get rid of the control
1344 // flow, so the xform is not worth it.
1349 // If we can still promote the PHI nodes after this gauntlet of tests,
1350 // do all of the PHI's now.
1352 // Move all 'aggressive' instructions, which are defined in the
1353 // conditional parts of the if's up to the dominating block.
1355 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1356 IfBlock1
->getInstList(),
1358 IfBlock1
->getTerminator());
1361 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1362 IfBlock2
->getInstList(),
1364 IfBlock2
->getTerminator());
1367 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1368 // Change the PHI node into a select instruction.
1370 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1372 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1374 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", AfterPHIIt
);
1375 PN
->replaceAllUsesWith(NV
);
1378 BB
->getInstList().erase(PN
);
1383 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1384 /// instruction ignoring Phi nodes and dbg intrinsics.
1385 static bool isTerminatorFirstRelevantInsn(BasicBlock
*BB
, Instruction
*Term
) {
1386 BasicBlock::iterator BBI
= Term
;
1387 while (BBI
!= BB
->begin()) {
1389 if (!isa
<DbgInfoIntrinsic
>(BBI
))
1393 if (isa
<PHINode
>(BBI
) || &*BBI
== Term
|| isa
<DbgInfoIntrinsic
>(BBI
))
1398 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1399 /// to two returning blocks, try to merge them together into one return,
1400 /// introducing a select if the return values disagree.
1401 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1402 assert(BI
->isConditional() && "Must be a conditional branch");
1403 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1404 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1405 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1406 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1408 // Check to ensure both blocks are empty (just a return) or optionally empty
1409 // with PHI nodes. If there are other instructions, merging would cause extra
1410 // computation on one path or the other.
1411 if (!isTerminatorFirstRelevantInsn(TrueSucc
, TrueRet
))
1413 if (!isTerminatorFirstRelevantInsn(FalseSucc
, FalseRet
))
1416 // Okay, we found a branch that is going to two return nodes. If
1417 // there is no return value for this function, just change the
1418 // branch into a return.
1419 if (FalseRet
->getNumOperands() == 0) {
1420 TrueSucc
->removePredecessor(BI
->getParent());
1421 FalseSucc
->removePredecessor(BI
->getParent());
1422 ReturnInst::Create(0, BI
);
1423 EraseTerminatorInstAndDCECond(BI
);
1427 // Otherwise, figure out what the true and false return values are
1428 // so we can insert a new select instruction.
1429 Value
*TrueValue
= TrueRet
->getReturnValue();
1430 Value
*FalseValue
= FalseRet
->getReturnValue();
1432 // Unwrap any PHI nodes in the return blocks.
1433 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1434 if (TVPN
->getParent() == TrueSucc
)
1435 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1436 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1437 if (FVPN
->getParent() == FalseSucc
)
1438 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1440 // In order for this transformation to be safe, we must be able to
1441 // unconditionally execute both operands to the return. This is
1442 // normally the case, but we could have a potentially-trapping
1443 // constant expression that prevents this transformation from being
1445 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1448 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1452 // Okay, we collected all the mapped values and checked them for sanity, and
1453 // defined to really do this transformation. First, update the CFG.
1454 TrueSucc
->removePredecessor(BI
->getParent());
1455 FalseSucc
->removePredecessor(BI
->getParent());
1457 // Insert select instructions where needed.
1458 Value
*BrCond
= BI
->getCondition();
1460 // Insert a select if the results differ.
1461 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1462 } else if (isa
<UndefValue
>(TrueValue
)) {
1463 TrueValue
= FalseValue
;
1465 TrueValue
= SelectInst::Create(BrCond
, TrueValue
,
1466 FalseValue
, "retval", BI
);
1470 Value
*RI
= !TrueValue
?
1471 ReturnInst::Create(BI
) :
1472 ReturnInst::Create(TrueValue
, BI
);
1474 DOUT
<< "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1475 << "\n " << *BI
<< "NewRet = " << *RI
1476 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
;
1478 EraseTerminatorInstAndDCECond(BI
);
1483 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1484 /// and if a predecessor branches to us and one of our successors, fold the
1485 /// setcc into the predecessor and use logical operations to pick the right
1487 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
) {
1488 BasicBlock
*BB
= BI
->getParent();
1489 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1490 if (Cond
== 0) return false;
1493 // Only allow this if the condition is a simple instruction that can be
1494 // executed unconditionally. It must be in the same block as the branch, and
1495 // must be at the front of the block.
1496 BasicBlock::iterator FrontIt
= BB
->front();
1497 // Ignore dbg intrinsics.
1498 while(isa
<DbgInfoIntrinsic
>(FrontIt
))
1500 if ((!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1501 Cond
->getParent() != BB
|| &*FrontIt
!= Cond
|| !Cond
->hasOneUse()) {
1505 // Make sure the instruction after the condition is the cond branch.
1506 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1507 // Ingore dbg intrinsics.
1508 while(isa
<DbgInfoIntrinsic
>(CondIt
))
1510 if (&*CondIt
!= BI
) {
1511 assert (!isa
<DbgInfoIntrinsic
>(CondIt
) && "Hey do not forget debug info!");
1515 // Cond is known to be a compare or binary operator. Check to make sure that
1516 // neither operand is a potentially-trapping constant expression.
1517 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1520 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1525 // Finally, don't infinitely unroll conditional loops.
1526 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1527 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1528 if (TrueDest
== BB
|| FalseDest
== BB
)
1531 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1532 BasicBlock
*PredBlock
= *PI
;
1533 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1535 // Check that we have two conditional branches. If there is a PHI node in
1536 // the common successor, verify that the same value flows in from both
1538 if (PBI
== 0 || PBI
->isUnconditional() ||
1539 !SafeToMergeTerminators(BI
, PBI
))
1542 Instruction::BinaryOps Opc
;
1543 bool InvertPredCond
= false;
1545 if (PBI
->getSuccessor(0) == TrueDest
)
1546 Opc
= Instruction::Or
;
1547 else if (PBI
->getSuccessor(1) == FalseDest
)
1548 Opc
= Instruction::And
;
1549 else if (PBI
->getSuccessor(0) == FalseDest
)
1550 Opc
= Instruction::And
, InvertPredCond
= true;
1551 else if (PBI
->getSuccessor(1) == TrueDest
)
1552 Opc
= Instruction::Or
, InvertPredCond
= true;
1556 DOUT
<< "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
;
1558 // If we need to invert the condition in the pred block to match, do so now.
1559 if (InvertPredCond
) {
1561 BinaryOperator::CreateNot(BI
->getParent()->getContext(),
1562 PBI
->getCondition(),
1563 PBI
->getCondition()->getName()+".not", PBI
);
1564 PBI
->setCondition(NewCond
);
1565 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1566 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1567 PBI
->setSuccessor(0, OldFalse
);
1568 PBI
->setSuccessor(1, OldTrue
);
1571 // Clone Cond into the predecessor basic block, and or/and the
1572 // two conditions together.
1573 Instruction
*New
= Cond
->clone(BB
->getContext());
1574 PredBlock
->getInstList().insert(PBI
, New
);
1575 New
->takeName(Cond
);
1576 Cond
->setName(New
->getName()+".old");
1578 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1579 New
, "or.cond", PBI
);
1580 PBI
->setCondition(NewCond
);
1581 if (PBI
->getSuccessor(0) == BB
) {
1582 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1583 PBI
->setSuccessor(0, TrueDest
);
1585 if (PBI
->getSuccessor(1) == BB
) {
1586 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1587 PBI
->setSuccessor(1, FalseDest
);
1594 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1595 /// predecessor of another block, this function tries to simplify it. We know
1596 /// that PBI and BI are both conditional branches, and BI is in one of the
1597 /// successor blocks of PBI - PBI branches to BI.
1598 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1599 assert(PBI
->isConditional() && BI
->isConditional());
1600 BasicBlock
*BB
= BI
->getParent();
1601 LLVMContext
&Context
= BB
->getContext();
1603 // If this block ends with a branch instruction, and if there is a
1604 // predecessor that ends on a branch of the same condition, make
1605 // this conditional branch redundant.
1606 if (PBI
->getCondition() == BI
->getCondition() &&
1607 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1608 // Okay, the outcome of this conditional branch is statically
1609 // knowable. If this block had a single pred, handle specially.
1610 if (BB
->getSinglePredecessor()) {
1611 // Turn this into a branch on constant.
1612 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1613 BI
->setCondition(ConstantInt::get(Type::Int1Ty
, CondIsTrue
));
1614 return true; // Nuke the branch on constant.
1617 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1618 // in the constant and simplify the block result. Subsequent passes of
1619 // simplifycfg will thread the block.
1620 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1621 PHINode
*NewPN
= PHINode::Create(Type::Int1Ty
,
1622 BI
->getCondition()->getName() + ".pr",
1624 // Okay, we're going to insert the PHI node. Since PBI is not the only
1625 // predecessor, compute the PHI'd conditional value for all of the preds.
1626 // Any predecessor where the condition is not computable we keep symbolic.
1627 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1628 if ((PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator())) &&
1629 PBI
!= BI
&& PBI
->isConditional() &&
1630 PBI
->getCondition() == BI
->getCondition() &&
1631 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1632 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1633 NewPN
->addIncoming(ConstantInt::get(Type::Int1Ty
,
1636 NewPN
->addIncoming(BI
->getCondition(), *PI
);
1639 BI
->setCondition(NewPN
);
1644 // If this is a conditional branch in an empty block, and if any
1645 // predecessors is a conditional branch to one of our destinations,
1646 // fold the conditions into logical ops and one cond br.
1647 BasicBlock::iterator BBI
= BB
->begin();
1648 // Ignore dbg intrinsics.
1649 while (isa
<DbgInfoIntrinsic
>(BBI
))
1655 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1660 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1662 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1663 PBIOp
= 0, BIOp
= 1;
1664 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1665 PBIOp
= 1, BIOp
= 0;
1666 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1671 // Check to make sure that the other destination of this branch
1672 // isn't BB itself. If so, this is an infinite loop that will
1673 // keep getting unwound.
1674 if (PBI
->getSuccessor(PBIOp
) == BB
)
1677 // Do not perform this transformation if it would require
1678 // insertion of a large number of select instructions. For targets
1679 // without predication/cmovs, this is a big pessimization.
1680 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1682 unsigned NumPhis
= 0;
1683 for (BasicBlock::iterator II
= CommonDest
->begin();
1684 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1685 if (NumPhis
> 2) // Disable this xform.
1688 // Finally, if everything is ok, fold the branches to logical ops.
1689 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1691 DOUT
<< "FOLDING BRs:" << *PBI
->getParent()
1692 << "AND: " << *BI
->getParent();
1695 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1696 // branch in it, where one edge (OtherDest) goes back to itself but the other
1697 // exits. We don't *know* that the program avoids the infinite loop
1698 // (even though that seems likely). If we do this xform naively, we'll end up
1699 // recursively unpeeling the loop. Since we know that (after the xform is
1700 // done) that the block *is* infinite if reached, we just make it an obviously
1701 // infinite loop with no cond branch.
1702 if (OtherDest
== BB
) {
1703 // Insert it at the end of the function, because it's either code,
1704 // or it won't matter if it's hot. :)
1705 BasicBlock
*InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
1706 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1707 OtherDest
= InfLoopBlock
;
1710 DOUT
<< *PBI
->getParent()->getParent();
1712 // BI may have other predecessors. Because of this, we leave
1713 // it alone, but modify PBI.
1715 // Make sure we get to CommonDest on True&True directions.
1716 Value
*PBICond
= PBI
->getCondition();
1718 PBICond
= BinaryOperator::CreateNot(Context
, PBICond
,
1719 PBICond
->getName()+".not",
1721 Value
*BICond
= BI
->getCondition();
1723 BICond
= BinaryOperator::CreateNot(Context
, BICond
,
1724 BICond
->getName()+".not",
1726 // Merge the conditions.
1727 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1729 // Modify PBI to branch on the new condition to the new dests.
1730 PBI
->setCondition(Cond
);
1731 PBI
->setSuccessor(0, CommonDest
);
1732 PBI
->setSuccessor(1, OtherDest
);
1734 // OtherDest may have phi nodes. If so, add an entry from PBI's
1735 // block that are identical to the entries for BI's block.
1737 for (BasicBlock::iterator II
= OtherDest
->begin();
1738 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1739 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1740 PN
->addIncoming(V
, PBI
->getParent());
1743 // We know that the CommonDest already had an edge from PBI to
1744 // it. If it has PHIs though, the PHIs may have different
1745 // entries for BB and PBI's BB. If so, insert a select to make
1747 for (BasicBlock::iterator II
= CommonDest
->begin();
1748 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1749 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1750 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1751 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1753 // Insert a select in PBI to pick the right value.
1754 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1755 PBIV
->getName()+".mux", PBI
);
1756 PN
->setIncomingValue(PBBIdx
, NV
);
1760 DOUT
<< "INTO: " << *PBI
->getParent();
1762 DOUT
<< *PBI
->getParent()->getParent();
1764 // This basic block is probably dead. We know it has at least
1765 // one fewer predecessor.
1770 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1771 /// example, it adjusts branches to branches to eliminate the extra hop, it
1772 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1773 /// of the CFG. It returns true if a modification was made.
1775 /// WARNING: The entry node of a function may not be simplified.
1777 bool llvm::SimplifyCFG(BasicBlock
*BB
) {
1778 bool Changed
= false;
1779 Function
*M
= BB
->getParent();
1781 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
1782 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
1783 assert(&BB
->getParent()->getEntryBlock() != BB
&&
1784 "Can't Simplify entry block!");
1786 // Remove basic blocks that have no predecessors... or that just have themself
1787 // as a predecessor. These are unreachable.
1788 if (pred_begin(BB
) == pred_end(BB
) || BB
->getSinglePredecessor() == BB
) {
1789 DOUT
<< "Removing BB: \n" << *BB
;
1790 DeleteDeadBlock(BB
);
1794 // Check to see if we can constant propagate this terminator instruction
1796 Changed
|= ConstantFoldTerminator(BB
);
1798 // If there is a trivial two-entry PHI node in this basic block, and we can
1799 // eliminate it, do so now.
1800 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
1801 if (PN
->getNumIncomingValues() == 2)
1802 Changed
|= FoldTwoEntryPHINode(PN
);
1804 // If this is a returning block with only PHI nodes in it, fold the return
1805 // instruction into any unconditional branch predecessors.
1807 // If any predecessor is a conditional branch that just selects among
1808 // different return values, fold the replace the branch/return with a select
1810 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
1811 if (isTerminatorFirstRelevantInsn(BB
, BB
->getTerminator())) {
1812 // Find predecessors that end with branches.
1813 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
1814 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
1815 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1816 TerminatorInst
*PTI
= (*PI
)->getTerminator();
1817 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
1818 if (BI
->isUnconditional())
1819 UncondBranchPreds
.push_back(*PI
);
1821 CondBranchPreds
.push_back(BI
);
1825 // If we found some, do the transformation!
1826 if (!UncondBranchPreds
.empty()) {
1827 while (!UncondBranchPreds
.empty()) {
1828 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
1829 DOUT
<< "FOLDING: " << *BB
1830 << "INTO UNCOND BRANCH PRED: " << *Pred
;
1831 Instruction
*UncondBranch
= Pred
->getTerminator();
1832 // Clone the return and add it to the end of the predecessor.
1833 Instruction
*NewRet
= RI
->clone(BB
->getContext());
1834 Pred
->getInstList().push_back(NewRet
);
1836 BasicBlock::iterator BBI
= RI
;
1837 if (BBI
!= BB
->begin()) {
1838 // Move region end info into the predecessor.
1839 if (DbgRegionEndInst
*DREI
= dyn_cast
<DbgRegionEndInst
>(--BBI
))
1840 DREI
->moveBefore(NewRet
);
1843 // If the return instruction returns a value, and if the value was a
1844 // PHI node in "BB", propagate the right value into the return.
1845 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
1847 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
1848 if (PN
->getParent() == BB
)
1849 *i
= PN
->getIncomingValueForBlock(Pred
);
1851 // Update any PHI nodes in the returning block to realize that we no
1852 // longer branch to them.
1853 BB
->removePredecessor(Pred
);
1854 Pred
->getInstList().erase(UncondBranch
);
1857 // If we eliminated all predecessors of the block, delete the block now.
1858 if (pred_begin(BB
) == pred_end(BB
))
1859 // We know there are no successors, so just nuke the block.
1860 M
->getBasicBlockList().erase(BB
);
1865 // Check out all of the conditional branches going to this return
1866 // instruction. If any of them just select between returns, change the
1867 // branch itself into a select/return pair.
1868 while (!CondBranchPreds
.empty()) {
1869 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
1871 // Check to see if the non-BB successor is also a return block.
1872 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
1873 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
1874 SimplifyCondBranchToTwoReturns(BI
))
1878 } else if (isa
<UnwindInst
>(BB
->begin())) {
1879 // Check to see if the first instruction in this block is just an unwind.
1880 // If so, replace any invoke instructions which use this as an exception
1881 // destination with call instructions, and any unconditional branch
1882 // predecessor with an unwind.
1884 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1885 while (!Preds
.empty()) {
1886 BasicBlock
*Pred
= Preds
.back();
1887 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator())) {
1888 if (BI
->isUnconditional()) {
1889 Pred
->getInstList().pop_back(); // nuke uncond branch
1890 new UnwindInst(Pred
); // Use unwind.
1893 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator()))
1894 if (II
->getUnwindDest() == BB
) {
1895 // Insert a new branch instruction before the invoke, because this
1896 // is now a fall through...
1897 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
1898 Pred
->getInstList().remove(II
); // Take out of symbol table
1900 // Insert the call now...
1901 SmallVector
<Value
*,8> Args(II
->op_begin()+3, II
->op_end());
1902 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
1903 Args
.begin(), Args
.end(),
1905 CI
->setCallingConv(II
->getCallingConv());
1906 CI
->setAttributes(II
->getAttributes());
1907 // If the invoke produced a value, the Call now does instead
1908 II
->replaceAllUsesWith(CI
);
1916 // If this block is now dead, remove it.
1917 if (pred_begin(BB
) == pred_end(BB
)) {
1918 // We know there are no successors, so just nuke the block.
1919 M
->getBasicBlockList().erase(BB
);
1923 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1924 if (isValueEqualityComparison(SI
)) {
1925 // If we only have one predecessor, and if it is a branch on this value,
1926 // see if that predecessor totally determines the outcome of this switch.
1927 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1928 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
1929 return SimplifyCFG(BB
) || 1;
1931 // If the block only contains the switch, see if we can fold the block
1932 // away into any preds.
1933 BasicBlock::iterator BBI
= BB
->begin();
1934 // Ignore dbg intrinsics.
1935 while (isa
<DbgInfoIntrinsic
>(BBI
))
1938 if (FoldValueComparisonIntoPredecessors(SI
))
1939 return SimplifyCFG(BB
) || 1;
1941 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1942 if (BI
->isUnconditional()) {
1943 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
1945 BasicBlock
*Succ
= BI
->getSuccessor(0);
1946 // Ignore dbg intrinsics.
1947 while (isa
<DbgInfoIntrinsic
>(BBI
))
1949 if (BBI
->isTerminator() && // Terminator is the only non-phi instruction!
1950 Succ
!= BB
) // Don't hurt infinite loops!
1951 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
, Succ
))
1954 } else { // Conditional branch
1955 if (isValueEqualityComparison(BI
)) {
1956 // If we only have one predecessor, and if it is a branch on this value,
1957 // see if that predecessor totally determines the outcome of this
1959 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1960 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
1961 return SimplifyCFG(BB
) || 1;
1963 // This block must be empty, except for the setcond inst, if it exists.
1964 // Ignore dbg intrinsics.
1965 BasicBlock::iterator I
= BB
->begin();
1966 // Ignore dbg intrinsics.
1967 while (isa
<DbgInfoIntrinsic
>(I
))
1970 if (FoldValueComparisonIntoPredecessors(BI
))
1971 return SimplifyCFG(BB
) | true;
1972 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
1974 // Ignore dbg intrinsics.
1975 while (isa
<DbgInfoIntrinsic
>(I
))
1978 if (FoldValueComparisonIntoPredecessors(BI
))
1979 return SimplifyCFG(BB
) | true;
1984 // If this is a branch on a phi node in the current block, thread control
1985 // through this block if any PHI node entries are constants.
1986 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
1987 if (PN
->getParent() == BI
->getParent())
1988 if (FoldCondBranchOnPHI(BI
))
1989 return SimplifyCFG(BB
) | true;
1991 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1992 // branches to us and one of our successors, fold the setcc into the
1993 // predecessor and use logical operations to pick the right destination.
1994 if (FoldBranchToCommonDest(BI
))
1995 return SimplifyCFG(BB
) | 1;
1998 // Scan predecessor blocks for conditional branches.
1999 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2000 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2001 if (PBI
!= BI
&& PBI
->isConditional())
2002 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
2003 return SimplifyCFG(BB
) | true;
2005 } else if (isa
<UnreachableInst
>(BB
->getTerminator())) {
2006 // If there are any instructions immediately before the unreachable that can
2007 // be removed, do so.
2008 Instruction
*Unreachable
= BB
->getTerminator();
2009 while (Unreachable
!= BB
->begin()) {
2010 BasicBlock::iterator BBI
= Unreachable
;
2012 // Do not delete instructions that can have side effects, like calls
2013 // (which may never return) and volatile loads and stores.
2014 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
2016 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
2017 if (SI
->isVolatile())
2020 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2021 if (LI
->isVolatile())
2024 // Delete this instruction
2025 BB
->getInstList().erase(BBI
);
2029 // If the unreachable instruction is the first in the block, take a gander
2030 // at all of the predecessors of this instruction, and simplify them.
2031 if (&BB
->front() == Unreachable
) {
2032 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2033 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2034 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2036 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2037 if (BI
->isUnconditional()) {
2038 if (BI
->getSuccessor(0) == BB
) {
2039 new UnreachableInst(TI
);
2040 TI
->eraseFromParent();
2044 if (BI
->getSuccessor(0) == BB
) {
2045 BranchInst::Create(BI
->getSuccessor(1), BI
);
2046 EraseTerminatorInstAndDCECond(BI
);
2047 } else if (BI
->getSuccessor(1) == BB
) {
2048 BranchInst::Create(BI
->getSuccessor(0), BI
);
2049 EraseTerminatorInstAndDCECond(BI
);
2053 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2054 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2055 if (SI
->getSuccessor(i
) == BB
) {
2056 BB
->removePredecessor(SI
->getParent());
2061 // If the default value is unreachable, figure out the most popular
2062 // destination and make it the default.
2063 if (SI
->getSuccessor(0) == BB
) {
2064 std::map
<BasicBlock
*, unsigned> Popularity
;
2065 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2066 Popularity
[SI
->getSuccessor(i
)]++;
2068 // Find the most popular block.
2069 unsigned MaxPop
= 0;
2070 BasicBlock
*MaxBlock
= 0;
2071 for (std::map
<BasicBlock
*, unsigned>::iterator
2072 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2073 if (I
->second
> MaxPop
) {
2075 MaxBlock
= I
->first
;
2079 // Make this the new default, allowing us to delete any explicit
2081 SI
->setSuccessor(0, MaxBlock
);
2084 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2086 if (isa
<PHINode
>(MaxBlock
->begin()))
2087 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2088 MaxBlock
->removePredecessor(SI
->getParent());
2090 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2091 if (SI
->getSuccessor(i
) == MaxBlock
) {
2097 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2098 if (II
->getUnwindDest() == BB
) {
2099 // Convert the invoke to a call instruction. This would be a good
2100 // place to note that the call does not throw though.
2101 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2102 II
->removeFromParent(); // Take out of symbol table
2104 // Insert the call now...
2105 SmallVector
<Value
*, 8> Args(II
->op_begin()+3, II
->op_end());
2106 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2107 Args
.begin(), Args
.end(),
2109 CI
->setCallingConv(II
->getCallingConv());
2110 CI
->setAttributes(II
->getAttributes());
2111 // If the invoke produced a value, the Call does now instead.
2112 II
->replaceAllUsesWith(CI
);
2119 // If this block is now dead, remove it.
2120 if (pred_begin(BB
) == pred_end(BB
)) {
2121 // We know there are no successors, so just nuke the block.
2122 M
->getBasicBlockList().erase(BB
);
2128 // Merge basic blocks into their predecessor if there is only one distinct
2129 // pred, and if there is only one distinct successor of the predecessor, and
2130 // if there are no PHI nodes.
2132 if (MergeBlockIntoPredecessor(BB
))
2135 // Otherwise, if this block only has a single predecessor, and if that block
2136 // is a conditional branch, see if we can hoist any code from this block up
2137 // into our predecessor.
2138 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
2139 BasicBlock
*OnlyPred
= *PI
++;
2140 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
2141 if (*PI
!= OnlyPred
) {
2142 OnlyPred
= 0; // There are multiple different predecessors...
2147 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(OnlyPred
->getTerminator()))
2148 if (BI
->isConditional()) {
2149 // Get the other block.
2150 BasicBlock
*OtherBB
= BI
->getSuccessor(BI
->getSuccessor(0) == BB
);
2151 PI
= pred_begin(OtherBB
);
2154 if (PI
== pred_end(OtherBB
)) {
2155 // We have a conditional branch to two blocks that are only reachable
2156 // from the condbr. We know that the condbr dominates the two blocks,
2157 // so see if there is any identical code in the "then" and "else"
2158 // blocks. If so, we can hoist it up to the branching block.
2159 Changed
|= HoistThenElseCodeToIf(BI
);
2161 BasicBlock
* OnlySucc
= NULL
;
2162 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
2166 else if (*SI
!= OnlySucc
) {
2167 OnlySucc
= 0; // There are multiple distinct successors!
2172 if (OnlySucc
== OtherBB
) {
2173 // If BB's only successor is the other successor of the predecessor,
2174 // i.e. a triangle, see if we can hoist any code from this block up
2175 // to the "if" block.
2176 Changed
|= SpeculativelyExecuteBB(BI
, BB
);
2181 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2182 if (BranchInst
*BI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2183 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2184 if (BI
->isConditional() && isa
<Instruction
>(BI
->getCondition())) {
2185 Instruction
*Cond
= cast
<Instruction
>(BI
->getCondition());
2186 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2187 // 'setne's and'ed together, collect them.
2189 std::vector
<ConstantInt
*> Values
;
2190 bool TrueWhenEqual
= GatherValueComparisons(Cond
, CompVal
, Values
);
2191 if (CompVal
&& CompVal
->getType()->isInteger()) {
2192 // There might be duplicate constants in the list, which the switch
2193 // instruction can't handle, remove them now.
2194 std::sort(Values
.begin(), Values
.end(), ConstantIntOrdering());
2195 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2197 // Figure out which block is which destination.
2198 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2199 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2200 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2202 // Create the new switch instruction now.
2203 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
,
2206 // Add all of the 'cases' to the switch instruction.
2207 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2208 New
->addCase(Values
[i
], EdgeBB
);
2210 // We added edges from PI to the EdgeBB. As such, if there were any
2211 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2212 // the number of edges added.
2213 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2214 isa
<PHINode
>(BBI
); ++BBI
) {
2215 PHINode
*PN
= cast
<PHINode
>(BBI
);
2216 Value
*InVal
= PN
->getIncomingValueForBlock(*PI
);
2217 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2218 PN
->addIncoming(InVal
, *PI
);
2221 // Erase the old branch instruction.
2222 EraseTerminatorInstAndDCECond(BI
);