add a version of the APFloat constructor that initializes to 0.0
[llvm/avr.git] / lib / Linker / LinkModules.cpp
blobe64c200cf632154230dafab05749504ea7d15750
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Path.h"
31 #include "llvm/ADT/DenseMap.h"
32 using namespace llvm;
34 // Error - Simple wrapper function to conditionally assign to E and return true.
35 // This just makes error return conditions a little bit simpler...
36 static inline bool Error(std::string *E, const Twine &Message) {
37 if (E) *E = Message.str();
38 return true;
41 // Function: ResolveTypes()
43 // Description:
44 // Attempt to link the two specified types together.
46 // Inputs:
47 // DestTy - The type to which we wish to resolve.
48 // SrcTy - The original type which we want to resolve.
50 // Outputs:
51 // DestST - The symbol table in which the new type should be placed.
53 // Return value:
54 // true - There is an error and the types cannot yet be linked.
55 // false - No errors.
57 static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
58 if (DestTy == SrcTy) return false; // If already equal, noop
59 assert(DestTy && SrcTy && "Can't handle null types");
61 if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
62 // Type _is_ in module, just opaque...
63 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
64 } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
65 const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
66 } else {
67 return true; // Cannot link types... not-equal and neither is opaque.
69 return false;
72 /// LinkerTypeMap - This implements a map of types that is stable
73 /// even if types are resolved/refined to other types. This is not a general
74 /// purpose map, it is specific to the linker's use.
75 namespace {
76 class LinkerTypeMap : public AbstractTypeUser {
77 typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
78 TheMapTy TheMap;
80 LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
81 void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
82 public:
83 LinkerTypeMap() {}
84 ~LinkerTypeMap() {
85 for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
86 E = TheMap.end(); I != E; ++I)
87 I->first->removeAbstractTypeUser(this);
90 /// lookup - Return the value for the specified type or null if it doesn't
91 /// exist.
92 const Type *lookup(const Type *Ty) const {
93 TheMapTy::const_iterator I = TheMap.find(Ty);
94 if (I != TheMap.end()) return I->second;
95 return 0;
98 /// erase - Remove the specified type, returning true if it was in the set.
99 bool erase(const Type *Ty) {
100 if (!TheMap.erase(Ty))
101 return false;
102 if (Ty->isAbstract())
103 Ty->removeAbstractTypeUser(this);
104 return true;
107 /// insert - This returns true if the pointer was new to the set, false if it
108 /// was already in the set.
109 bool insert(const Type *Src, const Type *Dst) {
110 if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
111 return false; // Already in map.
112 if (Src->isAbstract())
113 Src->addAbstractTypeUser(this);
114 return true;
117 protected:
118 /// refineAbstractType - The callback method invoked when an abstract type is
119 /// resolved to another type. An object must override this method to update
120 /// its internal state to reference NewType instead of OldType.
122 virtual void refineAbstractType(const DerivedType *OldTy,
123 const Type *NewTy) {
124 TheMapTy::iterator I = TheMap.find(OldTy);
125 const Type *DstTy = I->second;
127 TheMap.erase(I);
128 if (OldTy->isAbstract())
129 OldTy->removeAbstractTypeUser(this);
131 // Don't reinsert into the map if the key is concrete now.
132 if (NewTy->isAbstract())
133 insert(NewTy, DstTy);
136 /// The other case which AbstractTypeUsers must be aware of is when a type
137 /// makes the transition from being abstract (where it has clients on it's
138 /// AbstractTypeUsers list) to concrete (where it does not). This method
139 /// notifies ATU's when this occurs for a type.
140 virtual void typeBecameConcrete(const DerivedType *AbsTy) {
141 TheMap.erase(AbsTy);
142 AbsTy->removeAbstractTypeUser(this);
145 // for debugging...
146 virtual void dump() const {
147 errs() << "AbstractTypeSet!\n";
153 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
154 // recurses down into derived types, merging the used types if the parent types
155 // are compatible.
156 static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
157 LinkerTypeMap &Pointers) {
158 if (DstTy == SrcTy) return false; // If already equal, noop
160 // If we found our opaque type, resolve it now!
161 if (isa<OpaqueType>(DstTy) || isa<OpaqueType>(SrcTy))
162 return ResolveTypes(DstTy, SrcTy);
164 // Two types cannot be resolved together if they are of different primitive
165 // type. For example, we cannot resolve an int to a float.
166 if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
168 // If neither type is abstract, then they really are just different types.
169 if (!DstTy->isAbstract() && !SrcTy->isAbstract())
170 return true;
172 // Otherwise, resolve the used type used by this derived type...
173 switch (DstTy->getTypeID()) {
174 default:
175 return true;
176 case Type::FunctionTyID: {
177 const FunctionType *DstFT = cast<FunctionType>(DstTy);
178 const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
179 if (DstFT->isVarArg() != SrcFT->isVarArg() ||
180 DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
181 return true;
183 // Use TypeHolder's so recursive resolution won't break us.
184 PATypeHolder ST(SrcFT), DT(DstFT);
185 for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
186 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
187 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
188 return true;
190 return false;
192 case Type::StructTyID: {
193 const StructType *DstST = cast<StructType>(DstTy);
194 const StructType *SrcST = cast<StructType>(SrcTy);
195 if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
196 return true;
198 PATypeHolder ST(SrcST), DT(DstST);
199 for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
200 const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
201 if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
202 return true;
204 return false;
206 case Type::ArrayTyID: {
207 const ArrayType *DAT = cast<ArrayType>(DstTy);
208 const ArrayType *SAT = cast<ArrayType>(SrcTy);
209 if (DAT->getNumElements() != SAT->getNumElements()) return true;
210 return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
211 Pointers);
213 case Type::VectorTyID: {
214 const VectorType *DVT = cast<VectorType>(DstTy);
215 const VectorType *SVT = cast<VectorType>(SrcTy);
216 if (DVT->getNumElements() != SVT->getNumElements()) return true;
217 return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
218 Pointers);
220 case Type::PointerTyID: {
221 const PointerType *DstPT = cast<PointerType>(DstTy);
222 const PointerType *SrcPT = cast<PointerType>(SrcTy);
224 if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
225 return true;
227 // If this is a pointer type, check to see if we have already seen it. If
228 // so, we are in a recursive branch. Cut off the search now. We cannot use
229 // an associative container for this search, because the type pointers (keys
230 // in the container) change whenever types get resolved.
231 if (SrcPT->isAbstract())
232 if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
233 return ExistingDestTy != DstPT;
235 if (DstPT->isAbstract())
236 if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
237 return ExistingSrcTy != SrcPT;
238 // Otherwise, add the current pointers to the vector to stop recursion on
239 // this pair.
240 if (DstPT->isAbstract())
241 Pointers.insert(DstPT, SrcPT);
242 if (SrcPT->isAbstract())
243 Pointers.insert(SrcPT, DstPT);
245 return RecursiveResolveTypesI(DstPT->getElementType(),
246 SrcPT->getElementType(), Pointers);
251 static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
252 LinkerTypeMap PointerTypes;
253 return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
257 // LinkTypes - Go through the symbol table of the Src module and see if any
258 // types are named in the src module that are not named in the Dst module.
259 // Make sure there are no type name conflicts.
260 static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
261 TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
262 const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable();
264 // Look for a type plane for Type's...
265 TypeSymbolTable::const_iterator TI = SrcST->begin();
266 TypeSymbolTable::const_iterator TE = SrcST->end();
267 if (TI == TE) return false; // No named types, do nothing.
269 // Some types cannot be resolved immediately because they depend on other
270 // types being resolved to each other first. This contains a list of types we
271 // are waiting to recheck.
272 std::vector<std::string> DelayedTypesToResolve;
274 for ( ; TI != TE; ++TI ) {
275 const std::string &Name = TI->first;
276 const Type *RHS = TI->second;
278 // Check to see if this type name is already in the dest module.
279 Type *Entry = DestST->lookup(Name);
281 // If the name is just in the source module, bring it over to the dest.
282 if (Entry == 0) {
283 if (!Name.empty())
284 DestST->insert(Name, const_cast<Type*>(RHS));
285 } else if (ResolveTypes(Entry, RHS)) {
286 // They look different, save the types 'till later to resolve.
287 DelayedTypesToResolve.push_back(Name);
291 // Iteratively resolve types while we can...
292 while (!DelayedTypesToResolve.empty()) {
293 // Loop over all of the types, attempting to resolve them if possible...
294 unsigned OldSize = DelayedTypesToResolve.size();
296 // Try direct resolution by name...
297 for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
298 const std::string &Name = DelayedTypesToResolve[i];
299 Type *T1 = SrcST->lookup(Name);
300 Type *T2 = DestST->lookup(Name);
301 if (!ResolveTypes(T2, T1)) {
302 // We are making progress!
303 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
304 --i;
308 // Did we not eliminate any types?
309 if (DelayedTypesToResolve.size() == OldSize) {
310 // Attempt to resolve subelements of types. This allows us to merge these
311 // two types: { int* } and { opaque* }
312 for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
313 const std::string &Name = DelayedTypesToResolve[i];
314 if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
315 // We are making progress!
316 DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
318 // Go back to the main loop, perhaps we can resolve directly by name
319 // now...
320 break;
324 // If we STILL cannot resolve the types, then there is something wrong.
325 if (DelayedTypesToResolve.size() == OldSize) {
326 // Remove the symbol name from the destination.
327 DelayedTypesToResolve.pop_back();
333 return false;
336 #ifndef NDEBUG
337 static void PrintMap(const std::map<const Value*, Value*> &M) {
338 for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
339 I != E; ++I) {
340 errs() << " Fr: " << (void*)I->first << " ";
341 I->first->dump();
342 errs() << " To: " << (void*)I->second << " ";
343 I->second->dump();
344 errs() << "\n";
347 #endif
350 // RemapOperand - Use ValueMap to convert constants from one module to another.
351 static Value *RemapOperand(const Value *In,
352 std::map<const Value*, Value*> &ValueMap,
353 LLVMContext &Context) {
354 std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
355 if (I != ValueMap.end())
356 return I->second;
358 // Check to see if it's a constant that we are interested in transforming.
359 Value *Result = 0;
360 if (const Constant *CPV = dyn_cast<Constant>(In)) {
361 if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
362 isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
363 return const_cast<Constant*>(CPV); // Simple constants stay identical.
365 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
366 std::vector<Constant*> Operands(CPA->getNumOperands());
367 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
368 Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap,
369 Context));
370 Result =
371 ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
372 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
373 std::vector<Constant*> Operands(CPS->getNumOperands());
374 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
375 Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap,
376 Context));
377 Result =
378 ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
379 } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
380 Result = const_cast<Constant*>(CPV);
381 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
382 std::vector<Constant*> Operands(CP->getNumOperands());
383 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
384 Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap,
385 Context));
386 Result = ConstantVector::get(Operands);
387 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
388 std::vector<Constant*> Ops;
389 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
390 Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap,
391 Context)));
392 Result = CE->getWithOperands(Ops);
393 } else {
394 assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
395 llvm_unreachable("Unknown type of derived type constant value!");
397 } else if (isa<MetadataBase>(In)) {
398 Result = const_cast<Value*>(In);
399 } else if (isa<InlineAsm>(In)) {
400 Result = const_cast<Value*>(In);
403 // Cache the mapping in our local map structure
404 if (Result) {
405 ValueMap[In] = Result;
406 return Result;
409 #ifndef NDEBUG
410 errs() << "LinkModules ValueMap: \n";
411 PrintMap(ValueMap);
413 errs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
414 llvm_unreachable("Couldn't remap value!");
415 #endif
416 return 0;
419 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
420 /// in the symbol table. This is good for all clients except for us. Go
421 /// through the trouble to force this back.
422 static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
423 assert(GV->getName() != Name && "Can't force rename to self");
424 ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
426 // If there is a conflict, rename the conflict.
427 if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
428 assert(ConflictGV->hasLocalLinkage() &&
429 "Not conflicting with a static global, should link instead!");
430 GV->takeName(ConflictGV);
431 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
432 assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
433 } else {
434 GV->setName(Name); // Force the name back
438 /// CopyGVAttributes - copy additional attributes (those not needed to construct
439 /// a GlobalValue) from the SrcGV to the DestGV.
440 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
441 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
442 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
443 DestGV->copyAttributesFrom(SrcGV);
444 DestGV->setAlignment(Alignment);
447 /// GetLinkageResult - This analyzes the two global values and determines what
448 /// the result will look like in the destination module. In particular, it
449 /// computes the resultant linkage type, computes whether the global in the
450 /// source should be copied over to the destination (replacing the existing
451 /// one), and computes whether this linkage is an error or not. It also performs
452 /// visibility checks: we cannot link together two symbols with different
453 /// visibilities.
454 static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
455 GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
456 std::string *Err) {
457 assert((!Dest || !Src->hasLocalLinkage()) &&
458 "If Src has internal linkage, Dest shouldn't be set!");
459 if (!Dest) {
460 // Linking something to nothing.
461 LinkFromSrc = true;
462 LT = Src->getLinkage();
463 } else if (Src->isDeclaration()) {
464 // If Src is external or if both Src & Dest are external.. Just link the
465 // external globals, we aren't adding anything.
466 if (Src->hasDLLImportLinkage()) {
467 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
468 if (Dest->isDeclaration()) {
469 LinkFromSrc = true;
470 LT = Src->getLinkage();
472 } else if (Dest->hasExternalWeakLinkage()) {
473 // If the Dest is weak, use the source linkage.
474 LinkFromSrc = true;
475 LT = Src->getLinkage();
476 } else {
477 LinkFromSrc = false;
478 LT = Dest->getLinkage();
480 } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
481 // If Dest is external but Src is not:
482 LinkFromSrc = true;
483 LT = Src->getLinkage();
484 } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
485 if (Src->getLinkage() != Dest->getLinkage())
486 return Error(Err, "Linking globals named '" + Src->getName() +
487 "': can only link appending global with another appending global!");
488 LinkFromSrc = true; // Special cased.
489 LT = Src->getLinkage();
490 } else if (Src->isWeakForLinker()) {
491 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
492 // or DLL* linkage.
493 if (Dest->hasExternalWeakLinkage() ||
494 Dest->hasAvailableExternallyLinkage() ||
495 (Dest->hasLinkOnceLinkage() &&
496 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
497 LinkFromSrc = true;
498 LT = Src->getLinkage();
499 } else {
500 LinkFromSrc = false;
501 LT = Dest->getLinkage();
503 } else if (Dest->isWeakForLinker()) {
504 // At this point we know that Src has External* or DLL* linkage.
505 if (Src->hasExternalWeakLinkage()) {
506 LinkFromSrc = false;
507 LT = Dest->getLinkage();
508 } else {
509 LinkFromSrc = true;
510 LT = GlobalValue::ExternalLinkage;
512 } else {
513 assert((Dest->hasExternalLinkage() ||
514 Dest->hasDLLImportLinkage() ||
515 Dest->hasDLLExportLinkage() ||
516 Dest->hasExternalWeakLinkage()) &&
517 (Src->hasExternalLinkage() ||
518 Src->hasDLLImportLinkage() ||
519 Src->hasDLLExportLinkage() ||
520 Src->hasExternalWeakLinkage()) &&
521 "Unexpected linkage type!");
522 return Error(Err, "Linking globals named '" + Src->getName() +
523 "': symbol multiply defined!");
526 // Check visibility
527 if (Dest && Src->getVisibility() != Dest->getVisibility())
528 if (!Src->isDeclaration() && !Dest->isDeclaration())
529 return Error(Err, "Linking globals named '" + Src->getName() +
530 "': symbols have different visibilities!");
531 return false;
534 // Insert all of the named mdnoes in Src into the Dest module.
535 static void LinkNamedMDNodes(Module *Dest, Module *Src) {
536 for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
537 E = Src->named_metadata_end(); I != E; ++I) {
538 const NamedMDNode *SrcNMD = I;
539 NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
540 if (!DestNMD)
541 NamedMDNode::Create(SrcNMD, Dest);
542 else {
543 // Add Src elements into Dest node.
544 for (unsigned i = 0, e = SrcNMD->getNumElements(); i != e; ++i)
545 DestNMD->addElement(SrcNMD->getElement(i));
550 // LinkGlobals - Loop through the global variables in the src module and merge
551 // them into the dest module.
552 static bool LinkGlobals(Module *Dest, const Module *Src,
553 std::map<const Value*, Value*> &ValueMap,
554 std::multimap<std::string, GlobalVariable *> &AppendingVars,
555 std::string *Err) {
556 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
558 // Loop over all of the globals in the src module, mapping them over as we go
559 for (Module::const_global_iterator I = Src->global_begin(),
560 E = Src->global_end(); I != E; ++I) {
561 const GlobalVariable *SGV = I;
562 GlobalValue *DGV = 0;
564 // Check to see if may have to link the global with the global, alias or
565 // function.
566 if (SGV->hasName() && !SGV->hasLocalLinkage())
567 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
569 // If we found a global with the same name in the dest module, but it has
570 // internal linkage, we are really not doing any linkage here.
571 if (DGV && DGV->hasLocalLinkage())
572 DGV = 0;
574 // If types don't agree due to opaque types, try to resolve them.
575 if (DGV && DGV->getType() != SGV->getType())
576 RecursiveResolveTypes(SGV->getType(), DGV->getType());
578 assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
579 SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
580 "Global must either be external or have an initializer!");
582 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
583 bool LinkFromSrc = false;
584 if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
585 return true;
587 if (DGV == 0) {
588 // No linking to be performed, simply create an identical version of the
589 // symbol over in the dest module... the initializer will be filled in
590 // later by LinkGlobalInits.
591 GlobalVariable *NewDGV =
592 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
593 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
594 SGV->getName(), 0, false,
595 SGV->getType()->getAddressSpace());
596 // Propagate alignment, visibility and section info.
597 CopyGVAttributes(NewDGV, SGV);
599 // If the LLVM runtime renamed the global, but it is an externally visible
600 // symbol, DGV must be an existing global with internal linkage. Rename
601 // it.
602 if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
603 ForceRenaming(NewDGV, SGV->getName());
605 // Make sure to remember this mapping.
606 ValueMap[SGV] = NewDGV;
608 // Keep track that this is an appending variable.
609 if (SGV->hasAppendingLinkage())
610 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
611 continue;
614 // If the visibilities of the symbols disagree and the destination is a
615 // prototype, take the visibility of its input.
616 if (DGV->isDeclaration())
617 DGV->setVisibility(SGV->getVisibility());
619 if (DGV->hasAppendingLinkage()) {
620 // No linking is performed yet. Just insert a new copy of the global, and
621 // keep track of the fact that it is an appending variable in the
622 // AppendingVars map. The name is cleared out so that no linkage is
623 // performed.
624 GlobalVariable *NewDGV =
625 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
626 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
627 "", 0, false,
628 SGV->getType()->getAddressSpace());
630 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
631 NewDGV->setAlignment(DGV->getAlignment());
632 // Propagate alignment, section and visibility info.
633 CopyGVAttributes(NewDGV, SGV);
635 // Make sure to remember this mapping...
636 ValueMap[SGV] = NewDGV;
638 // Keep track that this is an appending variable...
639 AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
640 continue;
643 if (LinkFromSrc) {
644 if (isa<GlobalAlias>(DGV))
645 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
646 "': symbol multiple defined");
648 // If the types don't match, and if we are to link from the source, nuke
649 // DGV and create a new one of the appropriate type. Note that the thing
650 // we are replacing may be a function (if a prototype, weak, etc) or a
651 // global variable.
652 GlobalVariable *NewDGV =
653 new GlobalVariable(*Dest, SGV->getType()->getElementType(),
654 SGV->isConstant(), NewLinkage, /*init*/0,
655 DGV->getName(), 0, false,
656 SGV->getType()->getAddressSpace());
658 // Propagate alignment, section, and visibility info.
659 CopyGVAttributes(NewDGV, SGV);
660 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
661 DGV->getType()));
663 // DGV will conflict with NewDGV because they both had the same
664 // name. We must erase this now so ForceRenaming doesn't assert
665 // because DGV might not have internal linkage.
666 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
667 Var->eraseFromParent();
668 else
669 cast<Function>(DGV)->eraseFromParent();
670 DGV = NewDGV;
672 // If the symbol table renamed the global, but it is an externally visible
673 // symbol, DGV must be an existing global with internal linkage. Rename.
674 if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
675 ForceRenaming(NewDGV, SGV->getName());
677 // Inherit const as appropriate.
678 NewDGV->setConstant(SGV->isConstant());
680 // Make sure to remember this mapping.
681 ValueMap[SGV] = NewDGV;
682 continue;
685 // Not "link from source", keep the one in the DestModule and remap the
686 // input onto it.
688 // Special case for const propagation.
689 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
690 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
691 DGVar->setConstant(true);
693 // SGV is global, but DGV is alias.
694 if (isa<GlobalAlias>(DGV)) {
695 // The only valid mappings are:
696 // - SGV is external declaration, which is effectively a no-op.
697 // - SGV is weak, when we just need to throw SGV out.
698 if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
699 return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
700 "': symbol multiple defined");
703 // Set calculated linkage
704 DGV->setLinkage(NewLinkage);
706 // Make sure to remember this mapping...
707 ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
709 return false;
712 static GlobalValue::LinkageTypes
713 CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
714 GlobalValue::LinkageTypes SL = SGV->getLinkage();
715 GlobalValue::LinkageTypes DL = DGV->getLinkage();
716 if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
717 return GlobalValue::ExternalLinkage;
718 else if (SL == GlobalValue::WeakAnyLinkage ||
719 DL == GlobalValue::WeakAnyLinkage)
720 return GlobalValue::WeakAnyLinkage;
721 else if (SL == GlobalValue::WeakODRLinkage ||
722 DL == GlobalValue::WeakODRLinkage)
723 return GlobalValue::WeakODRLinkage;
724 else if (SL == GlobalValue::InternalLinkage &&
725 DL == GlobalValue::InternalLinkage)
726 return GlobalValue::InternalLinkage;
727 else if (SL == GlobalValue::LinkerPrivateLinkage &&
728 DL == GlobalValue::LinkerPrivateLinkage)
729 return GlobalValue::LinkerPrivateLinkage;
730 else {
731 assert (SL == GlobalValue::PrivateLinkage &&
732 DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
733 return GlobalValue::PrivateLinkage;
737 // LinkAlias - Loop through the alias in the src module and link them into the
738 // dest module. We're assuming, that all functions/global variables were already
739 // linked in.
740 static bool LinkAlias(Module *Dest, const Module *Src,
741 std::map<const Value*, Value*> &ValueMap,
742 std::string *Err) {
743 // Loop over all alias in the src module
744 for (Module::const_alias_iterator I = Src->alias_begin(),
745 E = Src->alias_end(); I != E; ++I) {
746 const GlobalAlias *SGA = I;
747 const GlobalValue *SAliasee = SGA->getAliasedGlobal();
748 GlobalAlias *NewGA = NULL;
750 // Globals were already linked, thus we can just query ValueMap for variant
751 // of SAliasee in Dest.
752 std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
753 assert(VMI != ValueMap.end() && "Aliasee not linked");
754 GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
755 GlobalValue* DGV = NULL;
757 // Try to find something 'similar' to SGA in destination module.
758 if (!DGV && !SGA->hasLocalLinkage()) {
759 DGV = Dest->getNamedAlias(SGA->getName());
761 // If types don't agree due to opaque types, try to resolve them.
762 if (DGV && DGV->getType() != SGA->getType())
763 RecursiveResolveTypes(SGA->getType(), DGV->getType());
766 if (!DGV && !SGA->hasLocalLinkage()) {
767 DGV = Dest->getGlobalVariable(SGA->getName());
769 // If types don't agree due to opaque types, try to resolve them.
770 if (DGV && DGV->getType() != SGA->getType())
771 RecursiveResolveTypes(SGA->getType(), DGV->getType());
774 if (!DGV && !SGA->hasLocalLinkage()) {
775 DGV = Dest->getFunction(SGA->getName());
777 // If types don't agree due to opaque types, try to resolve them.
778 if (DGV && DGV->getType() != SGA->getType())
779 RecursiveResolveTypes(SGA->getType(), DGV->getType());
782 // No linking to be performed on internal stuff.
783 if (DGV && DGV->hasLocalLinkage())
784 DGV = NULL;
786 if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
787 // Types are known to be the same, check whether aliasees equal. As
788 // globals are already linked we just need query ValueMap to find the
789 // mapping.
790 if (DAliasee == DGA->getAliasedGlobal()) {
791 // This is just two copies of the same alias. Propagate linkage, if
792 // necessary.
793 DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
795 NewGA = DGA;
796 // Proceed to 'common' steps
797 } else
798 return Error(Err, "Alias Collision on '" + SGA->getName()+
799 "': aliases have different aliasees");
800 } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
801 // The only allowed way is to link alias with external declaration or weak
802 // symbol..
803 if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
804 // But only if aliasee is global too...
805 if (!isa<GlobalVariable>(DAliasee))
806 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
807 "': aliasee is not global variable");
809 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
810 SGA->getName(), DAliasee, Dest);
811 CopyGVAttributes(NewGA, SGA);
813 // Any uses of DGV need to change to NewGA, with cast, if needed.
814 if (SGA->getType() != DGVar->getType())
815 DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
816 DGVar->getType()));
817 else
818 DGVar->replaceAllUsesWith(NewGA);
820 // DGVar will conflict with NewGA because they both had the same
821 // name. We must erase this now so ForceRenaming doesn't assert
822 // because DGV might not have internal linkage.
823 DGVar->eraseFromParent();
825 // Proceed to 'common' steps
826 } else
827 return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
828 "': symbol multiple defined");
829 } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
830 // The only allowed way is to link alias with external declaration or weak
831 // symbol...
832 if (DF->isDeclaration() || DF->isWeakForLinker()) {
833 // But only if aliasee is function too...
834 if (!isa<Function>(DAliasee))
835 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
836 "': aliasee is not function");
838 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
839 SGA->getName(), DAliasee, Dest);
840 CopyGVAttributes(NewGA, SGA);
842 // Any uses of DF need to change to NewGA, with cast, if needed.
843 if (SGA->getType() != DF->getType())
844 DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
845 DF->getType()));
846 else
847 DF->replaceAllUsesWith(NewGA);
849 // DF will conflict with NewGA because they both had the same
850 // name. We must erase this now so ForceRenaming doesn't assert
851 // because DF might not have internal linkage.
852 DF->eraseFromParent();
854 // Proceed to 'common' steps
855 } else
856 return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
857 "': symbol multiple defined");
858 } else {
859 // No linking to be performed, simply create an identical version of the
860 // alias over in the dest module...
862 NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
863 SGA->getName(), DAliasee, Dest);
864 CopyGVAttributes(NewGA, SGA);
866 // Proceed to 'common' steps
869 assert(NewGA && "No alias was created in destination module!");
871 // If the symbol table renamed the alias, but it is an externally visible
872 // symbol, DGA must be an global value with internal linkage. Rename it.
873 if (NewGA->getName() != SGA->getName() &&
874 !NewGA->hasLocalLinkage())
875 ForceRenaming(NewGA, SGA->getName());
877 // Remember this mapping so uses in the source module get remapped
878 // later by RemapOperand.
879 ValueMap[SGA] = NewGA;
882 return false;
886 // LinkGlobalInits - Update the initializers in the Dest module now that all
887 // globals that may be referenced are in Dest.
888 static bool LinkGlobalInits(Module *Dest, const Module *Src,
889 std::map<const Value*, Value*> &ValueMap,
890 std::string *Err) {
891 // Loop over all of the globals in the src module, mapping them over as we go
892 for (Module::const_global_iterator I = Src->global_begin(),
893 E = Src->global_end(); I != E; ++I) {
894 const GlobalVariable *SGV = I;
896 if (SGV->hasInitializer()) { // Only process initialized GV's
897 // Figure out what the initializer looks like in the dest module...
898 Constant *SInit =
899 cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap,
900 Dest->getContext()));
901 // Grab destination global variable or alias.
902 GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
904 // If dest if global variable, check that initializers match.
905 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
906 if (DGVar->hasInitializer()) {
907 if (SGV->hasExternalLinkage()) {
908 if (DGVar->getInitializer() != SInit)
909 return Error(Err, "Global Variable Collision on '" +
910 SGV->getName() +
911 "': global variables have different initializers");
912 } else if (DGVar->isWeakForLinker()) {
913 // Nothing is required, mapped values will take the new global
914 // automatically.
915 } else if (SGV->isWeakForLinker()) {
916 // Nothing is required, mapped values will take the new global
917 // automatically.
918 } else if (DGVar->hasAppendingLinkage()) {
919 llvm_unreachable("Appending linkage unimplemented!");
920 } else {
921 llvm_unreachable("Unknown linkage!");
923 } else {
924 // Copy the initializer over now...
925 DGVar->setInitializer(SInit);
927 } else {
928 // Destination is alias, the only valid situation is when source is
929 // weak. Also, note, that we already checked linkage in LinkGlobals(),
930 // thus we assert here.
931 // FIXME: Should we weaken this assumption, 'dereference' alias and
932 // check for initializer of aliasee?
933 assert(SGV->isWeakForLinker());
937 return false;
940 // LinkFunctionProtos - Link the functions together between the two modules,
941 // without doing function bodies... this just adds external function prototypes
942 // to the Dest function...
944 static bool LinkFunctionProtos(Module *Dest, const Module *Src,
945 std::map<const Value*, Value*> &ValueMap,
946 std::string *Err) {
947 ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
949 // Loop over all of the functions in the src module, mapping them over
950 for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
951 const Function *SF = I; // SrcFunction
952 GlobalValue *DGV = 0;
954 // Check to see if may have to link the function with the global, alias or
955 // function.
956 if (SF->hasName() && !SF->hasLocalLinkage())
957 DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
959 // If we found a global with the same name in the dest module, but it has
960 // internal linkage, we are really not doing any linkage here.
961 if (DGV && DGV->hasLocalLinkage())
962 DGV = 0;
964 // If types don't agree due to opaque types, try to resolve them.
965 if (DGV && DGV->getType() != SF->getType())
966 RecursiveResolveTypes(SF->getType(), DGV->getType());
968 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
969 bool LinkFromSrc = false;
970 if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
971 return true;
973 // If there is no linkage to be performed, just bring over SF without
974 // modifying it.
975 if (DGV == 0) {
976 // Function does not already exist, simply insert an function signature
977 // identical to SF into the dest module.
978 Function *NewDF = Function::Create(SF->getFunctionType(),
979 SF->getLinkage(),
980 SF->getName(), Dest);
981 CopyGVAttributes(NewDF, SF);
983 // If the LLVM runtime renamed the function, but it is an externally
984 // visible symbol, DF must be an existing function with internal linkage.
985 // Rename it.
986 if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
987 ForceRenaming(NewDF, SF->getName());
989 // ... and remember this mapping...
990 ValueMap[SF] = NewDF;
991 continue;
994 // If the visibilities of the symbols disagree and the destination is a
995 // prototype, take the visibility of its input.
996 if (DGV->isDeclaration())
997 DGV->setVisibility(SF->getVisibility());
999 if (LinkFromSrc) {
1000 if (isa<GlobalAlias>(DGV))
1001 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1002 "': symbol multiple defined");
1004 // We have a definition of the same name but different type in the
1005 // source module. Copy the prototype to the destination and replace
1006 // uses of the destination's prototype with the new prototype.
1007 Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
1008 SF->getName(), Dest);
1009 CopyGVAttributes(NewDF, SF);
1011 // Any uses of DF need to change to NewDF, with cast
1012 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
1013 DGV->getType()));
1015 // DF will conflict with NewDF because they both had the same. We must
1016 // erase this now so ForceRenaming doesn't assert because DF might
1017 // not have internal linkage.
1018 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
1019 Var->eraseFromParent();
1020 else
1021 cast<Function>(DGV)->eraseFromParent();
1023 // If the symbol table renamed the function, but it is an externally
1024 // visible symbol, DF must be an existing function with internal
1025 // linkage. Rename it.
1026 if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
1027 ForceRenaming(NewDF, SF->getName());
1029 // Remember this mapping so uses in the source module get remapped
1030 // later by RemapOperand.
1031 ValueMap[SF] = NewDF;
1032 continue;
1035 // Not "link from source", keep the one in the DestModule and remap the
1036 // input onto it.
1038 if (isa<GlobalAlias>(DGV)) {
1039 // The only valid mappings are:
1040 // - SF is external declaration, which is effectively a no-op.
1041 // - SF is weak, when we just need to throw SF out.
1042 if (!SF->isDeclaration() && !SF->isWeakForLinker())
1043 return Error(Err, "Function-Alias Collision on '" + SF->getName() +
1044 "': symbol multiple defined");
1047 // Set calculated linkage
1048 DGV->setLinkage(NewLinkage);
1050 // Make sure to remember this mapping.
1051 ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
1053 return false;
1056 // LinkFunctionBody - Copy the source function over into the dest function and
1057 // fix up references to values. At this point we know that Dest is an external
1058 // function, and that Src is not.
1059 static bool LinkFunctionBody(Function *Dest, Function *Src,
1060 std::map<const Value*, Value*> &ValueMap,
1061 std::string *Err) {
1062 assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
1064 // Go through and convert function arguments over, remembering the mapping.
1065 Function::arg_iterator DI = Dest->arg_begin();
1066 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1067 I != E; ++I, ++DI) {
1068 DI->setName(I->getName()); // Copy the name information over...
1070 // Add a mapping to our local map
1071 ValueMap[I] = DI;
1074 // Splice the body of the source function into the dest function.
1075 Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
1077 // At this point, all of the instructions and values of the function are now
1078 // copied over. The only problem is that they are still referencing values in
1079 // the Source function as operands. Loop through all of the operands of the
1080 // functions and patch them up to point to the local versions...
1082 for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
1083 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1084 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1085 OI != OE; ++OI)
1086 if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
1087 *OI = RemapOperand(*OI, ValueMap, Dest->getContext());
1089 // There is no need to map the arguments anymore.
1090 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1091 I != E; ++I)
1092 ValueMap.erase(I);
1094 return false;
1098 // LinkFunctionBodies - Link in the function bodies that are defined in the
1099 // source module into the DestModule. This consists basically of copying the
1100 // function over and fixing up references to values.
1101 static bool LinkFunctionBodies(Module *Dest, Module *Src,
1102 std::map<const Value*, Value*> &ValueMap,
1103 std::string *Err) {
1105 // Loop over all of the functions in the src module, mapping them over as we
1106 // go
1107 for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
1108 if (!SF->isDeclaration()) { // No body if function is external
1109 Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
1111 // DF not external SF external?
1112 if (DF && DF->isDeclaration())
1113 // Only provide the function body if there isn't one already.
1114 if (LinkFunctionBody(DF, SF, ValueMap, Err))
1115 return true;
1118 return false;
1121 // LinkAppendingVars - If there were any appending global variables, link them
1122 // together now. Return true on error.
1123 static bool LinkAppendingVars(Module *M,
1124 std::multimap<std::string, GlobalVariable *> &AppendingVars,
1125 std::string *ErrorMsg) {
1126 if (AppendingVars.empty()) return false; // Nothing to do.
1128 // Loop over the multimap of appending vars, processing any variables with the
1129 // same name, forming a new appending global variable with both of the
1130 // initializers merged together, then rewrite references to the old variables
1131 // and delete them.
1132 std::vector<Constant*> Inits;
1133 while (AppendingVars.size() > 1) {
1134 // Get the first two elements in the map...
1135 std::multimap<std::string,
1136 GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
1138 // If the first two elements are for different names, there is no pair...
1139 // Otherwise there is a pair, so link them together...
1140 if (First->first == Second->first) {
1141 GlobalVariable *G1 = First->second, *G2 = Second->second;
1142 const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
1143 const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
1145 // Check to see that they two arrays agree on type...
1146 if (T1->getElementType() != T2->getElementType())
1147 return Error(ErrorMsg,
1148 "Appending variables with different element types need to be linked!");
1149 if (G1->isConstant() != G2->isConstant())
1150 return Error(ErrorMsg,
1151 "Appending variables linked with different const'ness!");
1153 if (G1->getAlignment() != G2->getAlignment())
1154 return Error(ErrorMsg,
1155 "Appending variables with different alignment need to be linked!");
1157 if (G1->getVisibility() != G2->getVisibility())
1158 return Error(ErrorMsg,
1159 "Appending variables with different visibility need to be linked!");
1161 if (G1->getSection() != G2->getSection())
1162 return Error(ErrorMsg,
1163 "Appending variables with different section name need to be linked!");
1165 unsigned NewSize = T1->getNumElements() + T2->getNumElements();
1166 ArrayType *NewType = ArrayType::get(T1->getElementType(),
1167 NewSize);
1169 G1->setName(""); // Clear G1's name in case of a conflict!
1171 // Create the new global variable...
1172 GlobalVariable *NG =
1173 new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
1174 /*init*/0, First->first, 0, G1->isThreadLocal(),
1175 G1->getType()->getAddressSpace());
1177 // Propagate alignment, visibility and section info.
1178 CopyGVAttributes(NG, G1);
1180 // Merge the initializer...
1181 Inits.reserve(NewSize);
1182 if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
1183 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1184 Inits.push_back(I->getOperand(i));
1185 } else {
1186 assert(isa<ConstantAggregateZero>(G1->getInitializer()));
1187 Constant *CV = Constant::getNullValue(T1->getElementType());
1188 for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
1189 Inits.push_back(CV);
1191 if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
1192 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1193 Inits.push_back(I->getOperand(i));
1194 } else {
1195 assert(isa<ConstantAggregateZero>(G2->getInitializer()));
1196 Constant *CV = Constant::getNullValue(T2->getElementType());
1197 for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
1198 Inits.push_back(CV);
1200 NG->setInitializer(ConstantArray::get(NewType, Inits));
1201 Inits.clear();
1203 // Replace any uses of the two global variables with uses of the new
1204 // global...
1206 // FIXME: This should rewrite simple/straight-forward uses such as
1207 // getelementptr instructions to not use the Cast!
1208 G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1209 G1->getType()));
1210 G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
1211 G2->getType()));
1213 // Remove the two globals from the module now...
1214 M->getGlobalList().erase(G1);
1215 M->getGlobalList().erase(G2);
1217 // Put the new global into the AppendingVars map so that we can handle
1218 // linking of more than two vars...
1219 Second->second = NG;
1221 AppendingVars.erase(First);
1224 return false;
1227 static bool ResolveAliases(Module *Dest) {
1228 for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
1229 I != E; ++I)
1230 if (const GlobalValue *GV = I->resolveAliasedGlobal())
1231 if (GV != I && !GV->isDeclaration())
1232 I->replaceAllUsesWith(const_cast<GlobalValue*>(GV));
1234 return false;
1237 // LinkModules - This function links two modules together, with the resulting
1238 // left module modified to be the composite of the two input modules. If an
1239 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1240 // the problem. Upon failure, the Dest module could be in a modified state, and
1241 // shouldn't be relied on to be consistent.
1242 bool
1243 Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
1244 assert(Dest != 0 && "Invalid Destination module");
1245 assert(Src != 0 && "Invalid Source Module");
1247 if (Dest->getDataLayout().empty()) {
1248 if (!Src->getDataLayout().empty()) {
1249 Dest->setDataLayout(Src->getDataLayout());
1250 } else {
1251 std::string DataLayout;
1253 if (Dest->getEndianness() == Module::AnyEndianness) {
1254 if (Src->getEndianness() == Module::BigEndian)
1255 DataLayout.append("E");
1256 else if (Src->getEndianness() == Module::LittleEndian)
1257 DataLayout.append("e");
1260 if (Dest->getPointerSize() == Module::AnyPointerSize) {
1261 if (Src->getPointerSize() == Module::Pointer64)
1262 DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
1263 else if (Src->getPointerSize() == Module::Pointer32)
1264 DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
1266 Dest->setDataLayout(DataLayout);
1270 // Copy the target triple from the source to dest if the dest's is empty.
1271 if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
1272 Dest->setTargetTriple(Src->getTargetTriple());
1274 if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
1275 Src->getDataLayout() != Dest->getDataLayout())
1276 errs() << "WARNING: Linking two modules of different data layouts!\n";
1277 if (!Src->getTargetTriple().empty() &&
1278 Dest->getTargetTriple() != Src->getTargetTriple())
1279 errs() << "WARNING: Linking two modules of different target triples!\n";
1281 // Append the module inline asm string.
1282 if (!Src->getModuleInlineAsm().empty()) {
1283 if (Dest->getModuleInlineAsm().empty())
1284 Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
1285 else
1286 Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
1287 Src->getModuleInlineAsm());
1290 // Update the destination module's dependent libraries list with the libraries
1291 // from the source module. There's no opportunity for duplicates here as the
1292 // Module ensures that duplicate insertions are discarded.
1293 for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
1294 SI != SE; ++SI)
1295 Dest->addLibrary(*SI);
1297 // LinkTypes - Go through the symbol table of the Src module and see if any
1298 // types are named in the src module that are not named in the Dst module.
1299 // Make sure there are no type name conflicts.
1300 if (LinkTypes(Dest, Src, ErrorMsg))
1301 return true;
1303 // ValueMap - Mapping of values from what they used to be in Src, to what they
1304 // are now in Dest.
1305 std::map<const Value*, Value*> ValueMap;
1307 // AppendingVars - Keep track of global variables in the destination module
1308 // with appending linkage. After the module is linked together, they are
1309 // appended and the module is rewritten.
1310 std::multimap<std::string, GlobalVariable *> AppendingVars;
1311 for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
1312 I != E; ++I) {
1313 // Add all of the appending globals already in the Dest module to
1314 // AppendingVars.
1315 if (I->hasAppendingLinkage())
1316 AppendingVars.insert(std::make_pair(I->getName(), I));
1319 // Insert all of the named mdnoes in Src into the Dest module.
1320 LinkNamedMDNodes(Dest, Src);
1322 // Insert all of the globals in src into the Dest module... without linking
1323 // initializers (which could refer to functions not yet mapped over).
1324 if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
1325 return true;
1327 // Link the functions together between the two modules, without doing function
1328 // bodies... this just adds external function prototypes to the Dest
1329 // function... We do this so that when we begin processing function bodies,
1330 // all of the global values that may be referenced are available in our
1331 // ValueMap.
1332 if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
1333 return true;
1335 // If there were any alias, link them now. We really need to do this now,
1336 // because all of the aliases that may be referenced need to be available in
1337 // ValueMap
1338 if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
1340 // Update the initializers in the Dest module now that all globals that may
1341 // be referenced are in Dest.
1342 if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
1344 // Link in the function bodies that are defined in the source module into the
1345 // DestModule. This consists basically of copying the function over and
1346 // fixing up references to values.
1347 if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
1349 // If there were any appending global variables, link them together now.
1350 if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
1352 // Resolve all uses of aliases with aliasees
1353 if (ResolveAliases(Dest)) return true;
1355 // If the source library's module id is in the dependent library list of the
1356 // destination library, remove it since that module is now linked in.
1357 sys::Path modId;
1358 modId.set(Src->getModuleIdentifier());
1359 if (!modId.isEmpty())
1360 Dest->removeLibrary(modId.getBasename());
1362 return false;
1365 // vim: sw=2