1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPredicates.h"
17 #include "PPCTargetMachine.h"
18 #include "PPCPerfectShuffle.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/Function.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, EVT
&ValVT
, EVT
&LocVT
,
42 CCValAssign::LocInfo
&LocInfo
,
43 ISD::ArgFlagsTy
&ArgFlags
,
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, EVT
&ValVT
,
47 CCValAssign::LocInfo
&LocInfo
,
48 ISD::ArgFlagsTy
&ArgFlags
,
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, EVT
&ValVT
,
52 CCValAssign::LocInfo
&LocInfo
,
53 ISD::ArgFlagsTy
&ArgFlags
,
56 static cl::opt
<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
60 static TargetLoweringObjectFile
*CreateTLOF(const PPCTargetMachine
&TM
) {
61 if (TM
.getSubtargetImpl()->isDarwin())
62 return new TargetLoweringObjectFileMachO();
63 return new TargetLoweringObjectFileELF();
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine
&TM
)
68 : TargetLowering(TM
, CreateTLOF(TM
)), PPCSubTarget(*TM
.getSubtargetImpl()) {
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
76 // Set up the register classes.
77 addRegisterClass(MVT::i32
, PPC::GPRCRegisterClass
);
78 addRegisterClass(MVT::f32
, PPC::F4RCRegisterClass
);
79 addRegisterClass(MVT::f64
, PPC::F8RCRegisterClass
);
81 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
83 setLoadExtAction(ISD::SEXTLOAD
, MVT::i8
, Expand
);
85 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
87 // PowerPC has pre-inc load and store's.
88 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
89 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
90 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
91 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
92 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
93 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
94 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
95 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
96 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
97 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
99 // This is used in the ppcf128->int sequence. Note it has different semantics
100 // from FP_ROUND: that rounds to nearest, this rounds to zero.
101 setOperationAction(ISD::FP_ROUND_INREG
, MVT::ppcf128
, Custom
);
103 // PowerPC has no SREM/UREM instructions
104 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
105 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
106 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
107 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
109 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
111 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
112 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
113 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
114 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
115 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
116 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
117 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
119 // We don't support sin/cos/sqrt/fmod/pow
120 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
121 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
122 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
123 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
124 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
125 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
126 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
127 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
129 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
131 // If we're enabling GP optimizations, use hardware square root
132 if (!TM
.getSubtarget
<PPCSubtarget
>().hasFSQRT()) {
133 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
134 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
137 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
138 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
140 // PowerPC does not have BSWAP, CTPOP or CTTZ
141 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
142 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
143 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
144 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
145 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
146 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
148 // PowerPC does not have ROTR
149 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
150 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
152 // PowerPC does not have Select
153 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
154 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
155 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
156 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
158 // PowerPC wants to turn select_cc of FP into fsel when possible.
159 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
160 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
162 // PowerPC wants to optimize integer setcc a bit
163 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
165 // PowerPC does not have BRCOND which requires SetCC
166 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
168 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
170 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
173 // PowerPC does not have [U|S]INT_TO_FP
174 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
175 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
177 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
178 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
179 setOperationAction(ISD::BIT_CONVERT
, MVT::i64
, Expand
);
180 setOperationAction(ISD::BIT_CONVERT
, MVT::f64
, Expand
);
182 // We cannot sextinreg(i1). Expand to shifts.
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
185 // Support label based line numbers.
186 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
187 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
189 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
190 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
191 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
192 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
195 // We want to legalize GlobalAddress and ConstantPool nodes into the
196 // appropriate instructions to materialize the address.
197 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
198 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
199 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
200 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
201 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
202 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
203 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
204 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
207 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
209 // TRAMPOLINE is custom lowered.
210 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
212 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
215 // VAARG is custom lowered with the 32-bit SVR4 ABI.
216 if ( TM
.getSubtarget
<PPCSubtarget
>().isSVR4ABI()
217 && !TM
.getSubtarget
<PPCSubtarget
>().isPPC64())
218 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
220 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
222 // Use the default implementation.
223 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
224 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
225 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
226 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
227 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
228 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
230 // We want to custom lower some of our intrinsics.
231 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
233 // Comparisons that require checking two conditions.
234 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
235 setCondCodeAction(ISD::SETULT
, MVT::f64
, Expand
);
236 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
237 setCondCodeAction(ISD::SETUGT
, MVT::f64
, Expand
);
238 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
239 setCondCodeAction(ISD::SETUEQ
, MVT::f64
, Expand
);
240 setCondCodeAction(ISD::SETOGE
, MVT::f32
, Expand
);
241 setCondCodeAction(ISD::SETOGE
, MVT::f64
, Expand
);
242 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
243 setCondCodeAction(ISD::SETOLE
, MVT::f64
, Expand
);
244 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
245 setCondCodeAction(ISD::SETONE
, MVT::f64
, Expand
);
247 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
248 // They also have instructions for converting between i64 and fp.
249 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
250 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
251 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
252 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
253 // This is just the low 32 bits of a (signed) fp->i64 conversion.
254 // We cannot do this with Promote because i64 is not a legal type.
255 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
257 // FIXME: disable this lowered code. This generates 64-bit register values,
258 // and we don't model the fact that the top part is clobbered by calls. We
259 // need to flag these together so that the value isn't live across a call.
260 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
262 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
263 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
266 if (TM
.getSubtarget
<PPCSubtarget
>().use64BitRegs()) {
267 // 64-bit PowerPC implementations can support i64 types directly
268 addRegisterClass(MVT::i64
, PPC::G8RCRegisterClass
);
269 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
270 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
271 // 64-bit PowerPC wants to expand i128 shifts itself.
272 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
273 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
274 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
276 // 32-bit PowerPC wants to expand i64 shifts itself.
277 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
278 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
279 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
282 if (TM
.getSubtarget
<PPCSubtarget
>().hasAltivec()) {
283 // First set operation action for all vector types to expand. Then we
284 // will selectively turn on ones that can be effectively codegen'd.
285 for (unsigned i
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
286 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
287 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)i
;
289 // add/sub are legal for all supported vector VT's.
290 setOperationAction(ISD::ADD
, VT
, Legal
);
291 setOperationAction(ISD::SUB
, VT
, Legal
);
293 // We promote all shuffles to v16i8.
294 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Promote
);
295 AddPromotedToType (ISD::VECTOR_SHUFFLE
, VT
, MVT::v16i8
);
297 // We promote all non-typed operations to v4i32.
298 setOperationAction(ISD::AND
, VT
, Promote
);
299 AddPromotedToType (ISD::AND
, VT
, MVT::v4i32
);
300 setOperationAction(ISD::OR
, VT
, Promote
);
301 AddPromotedToType (ISD::OR
, VT
, MVT::v4i32
);
302 setOperationAction(ISD::XOR
, VT
, Promote
);
303 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i32
);
304 setOperationAction(ISD::LOAD
, VT
, Promote
);
305 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i32
);
306 setOperationAction(ISD::SELECT
, VT
, Promote
);
307 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i32
);
308 setOperationAction(ISD::STORE
, VT
, Promote
);
309 AddPromotedToType (ISD::STORE
, VT
, MVT::v4i32
);
311 // No other operations are legal.
312 setOperationAction(ISD::MUL
, VT
, Expand
);
313 setOperationAction(ISD::SDIV
, VT
, Expand
);
314 setOperationAction(ISD::SREM
, VT
, Expand
);
315 setOperationAction(ISD::UDIV
, VT
, Expand
);
316 setOperationAction(ISD::UREM
, VT
, Expand
);
317 setOperationAction(ISD::FDIV
, VT
, Expand
);
318 setOperationAction(ISD::FNEG
, VT
, Expand
);
319 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Expand
);
320 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Expand
);
321 setOperationAction(ISD::BUILD_VECTOR
, VT
, Expand
);
322 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
323 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
324 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
325 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
326 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
327 setOperationAction(ISD::FPOW
, VT
, Expand
);
328 setOperationAction(ISD::CTPOP
, VT
, Expand
);
329 setOperationAction(ISD::CTLZ
, VT
, Expand
);
330 setOperationAction(ISD::CTTZ
, VT
, Expand
);
333 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
334 // with merges, splats, etc.
335 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
337 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
338 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
339 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
340 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
341 setOperationAction(ISD::SELECT
, MVT::v4i32
, Expand
);
342 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
344 addRegisterClass(MVT::v4f32
, PPC::VRRCRegisterClass
);
345 addRegisterClass(MVT::v4i32
, PPC::VRRCRegisterClass
);
346 addRegisterClass(MVT::v8i16
, PPC::VRRCRegisterClass
);
347 addRegisterClass(MVT::v16i8
, PPC::VRRCRegisterClass
);
349 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
350 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
351 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
352 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
354 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
355 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
357 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
358 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
359 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
360 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
363 setShiftAmountType(MVT::i32
);
364 setBooleanContents(ZeroOrOneBooleanContent
);
366 if (TM
.getSubtarget
<PPCSubtarget
>().isPPC64()) {
367 setStackPointerRegisterToSaveRestore(PPC::X1
);
368 setExceptionPointerRegister(PPC::X3
);
369 setExceptionSelectorRegister(PPC::X4
);
371 setStackPointerRegisterToSaveRestore(PPC::R1
);
372 setExceptionPointerRegister(PPC::R3
);
373 setExceptionSelectorRegister(PPC::R4
);
376 // We have target-specific dag combine patterns for the following nodes:
377 setTargetDAGCombine(ISD::SINT_TO_FP
);
378 setTargetDAGCombine(ISD::STORE
);
379 setTargetDAGCombine(ISD::BR_CC
);
380 setTargetDAGCombine(ISD::BSWAP
);
382 // Darwin long double math library functions have $LDBL128 appended.
383 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
384 setLibcallName(RTLIB::COS_PPCF128
, "cosl$LDBL128");
385 setLibcallName(RTLIB::POW_PPCF128
, "powl$LDBL128");
386 setLibcallName(RTLIB::REM_PPCF128
, "fmodl$LDBL128");
387 setLibcallName(RTLIB::SIN_PPCF128
, "sinl$LDBL128");
388 setLibcallName(RTLIB::SQRT_PPCF128
, "sqrtl$LDBL128");
389 setLibcallName(RTLIB::LOG_PPCF128
, "logl$LDBL128");
390 setLibcallName(RTLIB::LOG2_PPCF128
, "log2l$LDBL128");
391 setLibcallName(RTLIB::LOG10_PPCF128
, "log10l$LDBL128");
392 setLibcallName(RTLIB::EXP_PPCF128
, "expl$LDBL128");
393 setLibcallName(RTLIB::EXP2_PPCF128
, "exp2l$LDBL128");
396 computeRegisterProperties();
399 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
400 /// function arguments in the caller parameter area.
401 unsigned PPCTargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
402 TargetMachine
&TM
= getTargetMachine();
403 // Darwin passes everything on 4 byte boundary.
404 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin())
410 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
413 case PPCISD::FSEL
: return "PPCISD::FSEL";
414 case PPCISD::FCFID
: return "PPCISD::FCFID";
415 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
416 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
417 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
418 case PPCISD::VMADDFP
: return "PPCISD::VMADDFP";
419 case PPCISD::VNMSUBFP
: return "PPCISD::VNMSUBFP";
420 case PPCISD::VPERM
: return "PPCISD::VPERM";
421 case PPCISD::Hi
: return "PPCISD::Hi";
422 case PPCISD::Lo
: return "PPCISD::Lo";
423 case PPCISD::TOC_ENTRY
: return "PPCISD::TOC_ENTRY";
424 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
425 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
426 case PPCISD::SRL
: return "PPCISD::SRL";
427 case PPCISD::SRA
: return "PPCISD::SRA";
428 case PPCISD::SHL
: return "PPCISD::SHL";
429 case PPCISD::EXTSW_32
: return "PPCISD::EXTSW_32";
430 case PPCISD::STD_32
: return "PPCISD::STD_32";
431 case PPCISD::CALL_SVR4
: return "PPCISD::CALL_SVR4";
432 case PPCISD::CALL_Darwin
: return "PPCISD::CALL_Darwin";
433 case PPCISD::NOP
: return "PPCISD::NOP";
434 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
435 case PPCISD::BCTRL_Darwin
: return "PPCISD::BCTRL_Darwin";
436 case PPCISD::BCTRL_SVR4
: return "PPCISD::BCTRL_SVR4";
437 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
438 case PPCISD::MFCR
: return "PPCISD::MFCR";
439 case PPCISD::VCMP
: return "PPCISD::VCMP";
440 case PPCISD::VCMPo
: return "PPCISD::VCMPo";
441 case PPCISD::LBRX
: return "PPCISD::LBRX";
442 case PPCISD::STBRX
: return "PPCISD::STBRX";
443 case PPCISD::LARX
: return "PPCISD::LARX";
444 case PPCISD::STCX
: return "PPCISD::STCX";
445 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
446 case PPCISD::MFFS
: return "PPCISD::MFFS";
447 case PPCISD::MTFSB0
: return "PPCISD::MTFSB0";
448 case PPCISD::MTFSB1
: return "PPCISD::MTFSB1";
449 case PPCISD::FADDRTZ
: return "PPCISD::FADDRTZ";
450 case PPCISD::MTFSF
: return "PPCISD::MTFSF";
451 case PPCISD::TC_RETURN
: return "PPCISD::TC_RETURN";
455 MVT::SimpleValueType
PPCTargetLowering::getSetCCResultType(EVT VT
) const {
459 /// getFunctionAlignment - Return the Log2 alignment of this function.
460 unsigned PPCTargetLowering::getFunctionAlignment(const Function
*F
) const {
461 if (getTargetMachine().getSubtarget
<PPCSubtarget
>().isDarwin())
462 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 2 : 4;
467 //===----------------------------------------------------------------------===//
468 // Node matching predicates, for use by the tblgen matching code.
469 //===----------------------------------------------------------------------===//
471 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
472 static bool isFloatingPointZero(SDValue Op
) {
473 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
474 return CFP
->getValueAPF().isZero();
475 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
476 // Maybe this has already been legalized into the constant pool?
477 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
478 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
479 return CFP
->getValueAPF().isZero();
484 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
485 /// true if Op is undef or if it matches the specified value.
486 static bool isConstantOrUndef(int Op
, int Val
) {
487 return Op
< 0 || Op
== Val
;
490 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
491 /// VPKUHUM instruction.
492 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
494 for (unsigned i
= 0; i
!= 16; ++i
)
495 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1))
498 for (unsigned i
= 0; i
!= 8; ++i
)
499 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1) ||
500 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+1))
506 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
507 /// VPKUWUM instruction.
508 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
510 for (unsigned i
= 0; i
!= 16; i
+= 2)
511 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
512 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3))
515 for (unsigned i
= 0; i
!= 8; i
+= 2)
516 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
517 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3) ||
518 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+2) ||
519 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+3))
525 /// isVMerge - Common function, used to match vmrg* shuffles.
527 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
528 unsigned LHSStart
, unsigned RHSStart
) {
529 assert(N
->getValueType(0) == MVT::v16i8
&&
530 "PPC only supports shuffles by bytes!");
531 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
532 "Unsupported merge size!");
534 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
535 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
536 if (!isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+j
),
537 LHSStart
+j
+i
*UnitSize
) ||
538 !isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+UnitSize
+j
),
539 RHSStart
+j
+i
*UnitSize
))
545 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
546 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
547 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
550 return isVMerge(N
, UnitSize
, 8, 24);
551 return isVMerge(N
, UnitSize
, 8, 8);
554 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
555 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
556 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
559 return isVMerge(N
, UnitSize
, 0, 16);
560 return isVMerge(N
, UnitSize
, 0, 0);
564 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
565 /// amount, otherwise return -1.
566 int PPC::isVSLDOIShuffleMask(SDNode
*N
, bool isUnary
) {
567 assert(N
->getValueType(0) == MVT::v16i8
&&
568 "PPC only supports shuffles by bytes!");
570 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
572 // Find the first non-undef value in the shuffle mask.
574 for (i
= 0; i
!= 16 && SVOp
->getMaskElt(i
) < 0; ++i
)
577 if (i
== 16) return -1; // all undef.
579 // Otherwise, check to see if the rest of the elements are consecutively
580 // numbered from this value.
581 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
582 if (ShiftAmt
< i
) return -1;
586 // Check the rest of the elements to see if they are consecutive.
587 for (++i
; i
!= 16; ++i
)
588 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
591 // Check the rest of the elements to see if they are consecutive.
592 for (++i
; i
!= 16; ++i
)
593 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), (ShiftAmt
+i
) & 15))
599 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
600 /// specifies a splat of a single element that is suitable for input to
601 /// VSPLTB/VSPLTH/VSPLTW.
602 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
) {
603 assert(N
->getValueType(0) == MVT::v16i8
&&
604 (EltSize
== 1 || EltSize
== 2 || EltSize
== 4));
606 // This is a splat operation if each element of the permute is the same, and
607 // if the value doesn't reference the second vector.
608 unsigned ElementBase
= N
->getMaskElt(0);
610 // FIXME: Handle UNDEF elements too!
611 if (ElementBase
>= 16)
614 // Check that the indices are consecutive, in the case of a multi-byte element
615 // splatted with a v16i8 mask.
616 for (unsigned i
= 1; i
!= EltSize
; ++i
)
617 if (N
->getMaskElt(i
) < 0 || N
->getMaskElt(i
) != (int)(i
+ElementBase
))
620 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
621 if (N
->getMaskElt(i
) < 0) continue;
622 for (unsigned j
= 0; j
!= EltSize
; ++j
)
623 if (N
->getMaskElt(i
+j
) != N
->getMaskElt(j
))
629 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
631 bool PPC::isAllNegativeZeroVector(SDNode
*N
) {
632 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(N
);
634 APInt APVal
, APUndef
;
638 if (BV
->isConstantSplat(APVal
, APUndef
, BitSize
, HasAnyUndefs
, 32))
639 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
640 return CFP
->getValueAPF().isNegZero();
645 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
646 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
647 unsigned PPC::getVSPLTImmediate(SDNode
*N
, unsigned EltSize
) {
648 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
649 assert(isSplatShuffleMask(SVOp
, EltSize
));
650 return SVOp
->getMaskElt(0) / EltSize
;
653 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
654 /// by using a vspltis[bhw] instruction of the specified element size, return
655 /// the constant being splatted. The ByteSize field indicates the number of
656 /// bytes of each element [124] -> [bhw].
657 SDValue
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
660 // If ByteSize of the splat is bigger than the element size of the
661 // build_vector, then we have a case where we are checking for a splat where
662 // multiple elements of the buildvector are folded together into a single
663 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
664 unsigned EltSize
= 16/N
->getNumOperands();
665 if (EltSize
< ByteSize
) {
666 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
667 SDValue UniquedVals
[4];
668 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
670 // See if all of the elements in the buildvector agree across.
671 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
672 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
673 // If the element isn't a constant, bail fully out.
674 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDValue();
677 if (UniquedVals
[i
&(Multiple
-1)].getNode() == 0)
678 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
679 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
680 return SDValue(); // no match.
683 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
684 // either constant or undef values that are identical for each chunk. See
685 // if these chunks can form into a larger vspltis*.
687 // Check to see if all of the leading entries are either 0 or -1. If
688 // neither, then this won't fit into the immediate field.
689 bool LeadingZero
= true;
690 bool LeadingOnes
= true;
691 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
692 if (UniquedVals
[i
].getNode() == 0) continue; // Must have been undefs.
694 LeadingZero
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isNullValue();
695 LeadingOnes
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isAllOnesValue();
697 // Finally, check the least significant entry.
699 if (UniquedVals
[Multiple
-1].getNode() == 0)
700 return DAG
.getTargetConstant(0, MVT::i32
); // 0,0,0,undef
701 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getZExtValue();
703 return DAG
.getTargetConstant(Val
, MVT::i32
); // 0,0,0,4 -> vspltisw(4)
706 if (UniquedVals
[Multiple
-1].getNode() == 0)
707 return DAG
.getTargetConstant(~0U, MVT::i32
); // -1,-1,-1,undef
708 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSExtValue();
709 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
710 return DAG
.getTargetConstant(Val
, MVT::i32
);
716 // Check to see if this buildvec has a single non-undef value in its elements.
717 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
718 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
719 if (OpVal
.getNode() == 0)
720 OpVal
= N
->getOperand(i
);
721 else if (OpVal
!= N
->getOperand(i
))
725 if (OpVal
.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
727 unsigned ValSizeInBytes
= EltSize
;
729 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
730 Value
= CN
->getZExtValue();
731 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
732 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
733 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
736 // If the splat value is larger than the element value, then we can never do
737 // this splat. The only case that we could fit the replicated bits into our
738 // immediate field for would be zero, and we prefer to use vxor for it.
739 if (ValSizeInBytes
< ByteSize
) return SDValue();
741 // If the element value is larger than the splat value, cut it in half and
742 // check to see if the two halves are equal. Continue doing this until we
743 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
744 while (ValSizeInBytes
> ByteSize
) {
745 ValSizeInBytes
>>= 1;
747 // If the top half equals the bottom half, we're still ok.
748 if (((Value
>> (ValSizeInBytes
*8)) & ((1 << (8*ValSizeInBytes
))-1)) !=
749 (Value
& ((1 << (8*ValSizeInBytes
))-1)))
753 // Properly sign extend the value.
754 int ShAmt
= (4-ByteSize
)*8;
755 int MaskVal
= ((int)Value
<< ShAmt
) >> ShAmt
;
757 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
758 if (MaskVal
== 0) return SDValue();
760 // Finally, if this value fits in a 5 bit sext field, return it
761 if (((MaskVal
<< (32-5)) >> (32-5)) == MaskVal
)
762 return DAG
.getTargetConstant(MaskVal
, MVT::i32
);
766 //===----------------------------------------------------------------------===//
767 // Addressing Mode Selection
768 //===----------------------------------------------------------------------===//
770 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
771 /// or 64-bit immediate, and if the value can be accurately represented as a
772 /// sign extension from a 16-bit value. If so, this returns true and the
774 static bool isIntS16Immediate(SDNode
*N
, short &Imm
) {
775 if (N
->getOpcode() != ISD::Constant
)
778 Imm
= (short)cast
<ConstantSDNode
>(N
)->getZExtValue();
779 if (N
->getValueType(0) == MVT::i32
)
780 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
782 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
784 static bool isIntS16Immediate(SDValue Op
, short &Imm
) {
785 return isIntS16Immediate(Op
.getNode(), Imm
);
789 /// SelectAddressRegReg - Given the specified addressed, check to see if it
790 /// can be represented as an indexed [r+r] operation. Returns false if it
791 /// can be more efficiently represented with [r+imm].
792 bool PPCTargetLowering::SelectAddressRegReg(SDValue N
, SDValue
&Base
,
794 SelectionDAG
&DAG
) const {
796 if (N
.getOpcode() == ISD::ADD
) {
797 if (isIntS16Immediate(N
.getOperand(1), imm
))
799 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
802 Base
= N
.getOperand(0);
803 Index
= N
.getOperand(1);
805 } else if (N
.getOpcode() == ISD::OR
) {
806 if (isIntS16Immediate(N
.getOperand(1), imm
))
807 return false; // r+i can fold it if we can.
809 // If this is an or of disjoint bitfields, we can codegen this as an add
810 // (for better address arithmetic) if the LHS and RHS of the OR are provably
812 APInt LHSKnownZero
, LHSKnownOne
;
813 APInt RHSKnownZero
, RHSKnownOne
;
814 DAG
.ComputeMaskedBits(N
.getOperand(0),
815 APInt::getAllOnesValue(N
.getOperand(0)
816 .getValueSizeInBits()),
817 LHSKnownZero
, LHSKnownOne
);
819 if (LHSKnownZero
.getBoolValue()) {
820 DAG
.ComputeMaskedBits(N
.getOperand(1),
821 APInt::getAllOnesValue(N
.getOperand(1)
822 .getValueSizeInBits()),
823 RHSKnownZero
, RHSKnownOne
);
824 // If all of the bits are known zero on the LHS or RHS, the add won't
826 if (~(LHSKnownZero
| RHSKnownZero
) == 0) {
827 Base
= N
.getOperand(0);
828 Index
= N
.getOperand(1);
837 /// Returns true if the address N can be represented by a base register plus
838 /// a signed 16-bit displacement [r+imm], and if it is not better
839 /// represented as reg+reg.
840 bool PPCTargetLowering::SelectAddressRegImm(SDValue N
, SDValue
&Disp
,
842 SelectionDAG
&DAG
) const {
843 // FIXME dl should come from parent load or store, not from address
844 DebugLoc dl
= N
.getDebugLoc();
845 // If this can be more profitably realized as r+r, fail.
846 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
849 if (N
.getOpcode() == ISD::ADD
) {
851 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
852 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
853 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
854 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
856 Base
= N
.getOperand(0);
858 return true; // [r+i]
859 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
860 // Match LOAD (ADD (X, Lo(G))).
861 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
862 && "Cannot handle constant offsets yet!");
863 Disp
= N
.getOperand(1).getOperand(0); // The global address.
864 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
865 Disp
.getOpcode() == ISD::TargetConstantPool
||
866 Disp
.getOpcode() == ISD::TargetJumpTable
);
867 Base
= N
.getOperand(0);
868 return true; // [&g+r]
870 } else if (N
.getOpcode() == ISD::OR
) {
872 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
873 // If this is an or of disjoint bitfields, we can codegen this as an add
874 // (for better address arithmetic) if the LHS and RHS of the OR are
875 // provably disjoint.
876 APInt LHSKnownZero
, LHSKnownOne
;
877 DAG
.ComputeMaskedBits(N
.getOperand(0),
878 APInt::getAllOnesValue(N
.getOperand(0)
879 .getValueSizeInBits()),
880 LHSKnownZero
, LHSKnownOne
);
882 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
883 // If all of the bits are known zero on the LHS or RHS, the add won't
885 Base
= N
.getOperand(0);
886 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
890 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
891 // Loading from a constant address.
893 // If this address fits entirely in a 16-bit sext immediate field, codegen
896 if (isIntS16Immediate(CN
, Imm
)) {
897 Disp
= DAG
.getTargetConstant(Imm
, CN
->getValueType(0));
898 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
902 // Handle 32-bit sext immediates with LIS + addr mode.
903 if (CN
->getValueType(0) == MVT::i32
||
904 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
905 int Addr
= (int)CN
->getZExtValue();
907 // Otherwise, break this down into an LIS + disp.
908 Disp
= DAG
.getTargetConstant((short)Addr
, MVT::i32
);
910 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, MVT::i32
);
911 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
912 Base
= SDValue(DAG
.getTargetNode(Opc
, dl
, CN
->getValueType(0), Base
), 0);
917 Disp
= DAG
.getTargetConstant(0, getPointerTy());
918 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
919 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
922 return true; // [r+0]
925 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
926 /// represented as an indexed [r+r] operation.
927 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
,
929 SelectionDAG
&DAG
) const {
930 // Check to see if we can easily represent this as an [r+r] address. This
931 // will fail if it thinks that the address is more profitably represented as
932 // reg+imm, e.g. where imm = 0.
933 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
936 // If the operand is an addition, always emit this as [r+r], since this is
937 // better (for code size, and execution, as the memop does the add for free)
938 // than emitting an explicit add.
939 if (N
.getOpcode() == ISD::ADD
) {
940 Base
= N
.getOperand(0);
941 Index
= N
.getOperand(1);
945 // Otherwise, do it the hard way, using R0 as the base register.
946 Base
= DAG
.getRegister(PPC::R0
, N
.getValueType());
951 /// SelectAddressRegImmShift - Returns true if the address N can be
952 /// represented by a base register plus a signed 14-bit displacement
953 /// [r+imm*4]. Suitable for use by STD and friends.
954 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N
, SDValue
&Disp
,
956 SelectionDAG
&DAG
) const {
957 // FIXME dl should come from the parent load or store, not the address
958 DebugLoc dl
= N
.getDebugLoc();
959 // If this can be more profitably realized as r+r, fail.
960 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
963 if (N
.getOpcode() == ISD::ADD
) {
965 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
966 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
967 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
968 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
970 Base
= N
.getOperand(0);
972 return true; // [r+i]
973 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
974 // Match LOAD (ADD (X, Lo(G))).
975 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
976 && "Cannot handle constant offsets yet!");
977 Disp
= N
.getOperand(1).getOperand(0); // The global address.
978 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
979 Disp
.getOpcode() == ISD::TargetConstantPool
||
980 Disp
.getOpcode() == ISD::TargetJumpTable
);
981 Base
= N
.getOperand(0);
982 return true; // [&g+r]
984 } else if (N
.getOpcode() == ISD::OR
) {
986 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
987 // If this is an or of disjoint bitfields, we can codegen this as an add
988 // (for better address arithmetic) if the LHS and RHS of the OR are
989 // provably disjoint.
990 APInt LHSKnownZero
, LHSKnownOne
;
991 DAG
.ComputeMaskedBits(N
.getOperand(0),
992 APInt::getAllOnesValue(N
.getOperand(0)
993 .getValueSizeInBits()),
994 LHSKnownZero
, LHSKnownOne
);
995 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
996 // If all of the bits are known zero on the LHS or RHS, the add won't
998 Base
= N
.getOperand(0);
999 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
1003 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
1004 // Loading from a constant address. Verify low two bits are clear.
1005 if ((CN
->getZExtValue() & 3) == 0) {
1006 // If this address fits entirely in a 14-bit sext immediate field, codegen
1009 if (isIntS16Immediate(CN
, Imm
)) {
1010 Disp
= DAG
.getTargetConstant((unsigned short)Imm
>> 2, getPointerTy());
1011 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
1015 // Fold the low-part of 32-bit absolute addresses into addr mode.
1016 if (CN
->getValueType(0) == MVT::i32
||
1017 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
1018 int Addr
= (int)CN
->getZExtValue();
1020 // Otherwise, break this down into an LIS + disp.
1021 Disp
= DAG
.getTargetConstant((short)Addr
>> 2, MVT::i32
);
1022 Base
= DAG
.getTargetConstant((Addr
-(signed short)Addr
) >> 16, MVT::i32
);
1023 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
1024 Base
= SDValue(DAG
.getTargetNode(Opc
, dl
, CN
->getValueType(0), Base
),0);
1030 Disp
= DAG
.getTargetConstant(0, getPointerTy());
1031 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
1032 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
1035 return true; // [r+0]
1039 /// getPreIndexedAddressParts - returns true by value, base pointer and
1040 /// offset pointer and addressing mode by reference if the node's address
1041 /// can be legally represented as pre-indexed load / store address.
1042 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
1044 ISD::MemIndexedMode
&AM
,
1045 SelectionDAG
&DAG
) const {
1046 // Disabled by default for now.
1047 if (!EnablePPCPreinc
) return false;
1051 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1052 Ptr
= LD
->getBasePtr();
1053 VT
= LD
->getMemoryVT();
1055 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
1057 Ptr
= ST
->getBasePtr();
1058 VT
= ST
->getMemoryVT();
1062 // PowerPC doesn't have preinc load/store instructions for vectors.
1066 // TODO: Check reg+reg first.
1068 // LDU/STU use reg+imm*4, others use reg+imm.
1069 if (VT
!= MVT::i64
) {
1071 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
))
1075 if (!SelectAddressRegImmShift(Ptr
, Offset
, Base
, DAG
))
1079 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1080 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1081 // sext i32 to i64 when addr mode is r+i.
1082 if (LD
->getValueType(0) == MVT::i64
&& LD
->getMemoryVT() == MVT::i32
&&
1083 LD
->getExtensionType() == ISD::SEXTLOAD
&&
1084 isa
<ConstantSDNode
>(Offset
))
1092 //===----------------------------------------------------------------------===//
1093 // LowerOperation implementation
1094 //===----------------------------------------------------------------------===//
1096 SDValue
PPCTargetLowering::LowerConstantPool(SDValue Op
,
1097 SelectionDAG
&DAG
) {
1098 EVT PtrVT
= Op
.getValueType();
1099 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
1100 Constant
*C
= CP
->getConstVal();
1101 SDValue CPI
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment());
1102 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1103 // FIXME there isn't really any debug info here
1104 DebugLoc dl
= Op
.getDebugLoc();
1106 const TargetMachine
&TM
= DAG
.getTarget();
1108 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, CPI
, Zero
);
1109 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, CPI
, Zero
);
1111 // If this is a non-darwin platform, we don't support non-static relo models
1113 if (TM
.getRelocationModel() == Reloc::Static
||
1114 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1115 // Generate non-pic code that has direct accesses to the constant pool.
1116 // The address of the global is just (hi(&g)+lo(&g)).
1117 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1120 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1121 // With PIC, the first instruction is actually "GR+hi(&G)".
1122 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1123 DAG
.getNode(PPCISD::GlobalBaseReg
,
1124 DebugLoc::getUnknownLoc(), PtrVT
), Hi
);
1127 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1131 SDValue
PPCTargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
1132 EVT PtrVT
= Op
.getValueType();
1133 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
1134 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
1135 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1136 // FIXME there isn't really any debug loc here
1137 DebugLoc dl
= Op
.getDebugLoc();
1139 const TargetMachine
&TM
= DAG
.getTarget();
1141 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, JTI
, Zero
);
1142 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, JTI
, Zero
);
1144 // If this is a non-darwin platform, we don't support non-static relo models
1146 if (TM
.getRelocationModel() == Reloc::Static
||
1147 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1148 // Generate non-pic code that has direct accesses to the constant pool.
1149 // The address of the global is just (hi(&g)+lo(&g)).
1150 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1153 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1154 // With PIC, the first instruction is actually "GR+hi(&G)".
1155 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1156 DAG
.getNode(PPCISD::GlobalBaseReg
,
1157 DebugLoc::getUnknownLoc(), PtrVT
), Hi
);
1160 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1164 SDValue
PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op
,
1165 SelectionDAG
&DAG
) {
1166 llvm_unreachable("TLS not implemented for PPC.");
1167 return SDValue(); // Not reached
1170 SDValue
PPCTargetLowering::LowerGlobalAddress(SDValue Op
,
1171 SelectionDAG
&DAG
) {
1172 EVT PtrVT
= Op
.getValueType();
1173 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
1174 GlobalValue
*GV
= GSDN
->getGlobal();
1175 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, PtrVT
, GSDN
->getOffset());
1176 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1177 // FIXME there isn't really any debug info here
1178 DebugLoc dl
= GSDN
->getDebugLoc();
1180 const TargetMachine
&TM
= DAG
.getTarget();
1182 // 64-bit SVR4 ABI code is always position-independent.
1183 // The actual address of the GlobalValue is stored in the TOC.
1184 if (PPCSubTarget
.isSVR4ABI() && PPCSubTarget
.isPPC64()) {
1185 return DAG
.getNode(PPCISD::TOC_ENTRY
, dl
, MVT::i64
, GA
,
1186 DAG
.getRegister(PPC::X2
, MVT::i64
));
1189 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, GA
, Zero
);
1190 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, GA
, Zero
);
1192 // If this is a non-darwin platform, we don't support non-static relo models
1194 if (TM
.getRelocationModel() == Reloc::Static
||
1195 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1196 // Generate non-pic code that has direct accesses to globals.
1197 // The address of the global is just (hi(&g)+lo(&g)).
1198 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1201 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1202 // With PIC, the first instruction is actually "GR+hi(&G)".
1203 Hi
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
,
1204 DAG
.getNode(PPCISD::GlobalBaseReg
,
1205 DebugLoc::getUnknownLoc(), PtrVT
), Hi
);
1208 Lo
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Hi
, Lo
);
1210 if (!TM
.getSubtarget
<PPCSubtarget
>().hasLazyResolverStub(GV
, TM
))
1213 // If the global is weak or external, we have to go through the lazy
1215 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Lo
, NULL
, 0);
1218 SDValue
PPCTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
1219 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1220 DebugLoc dl
= Op
.getDebugLoc();
1222 // If we're comparing for equality to zero, expose the fact that this is
1223 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1224 // fold the new nodes.
1225 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1226 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
1227 EVT VT
= Op
.getOperand(0).getValueType();
1228 SDValue Zext
= Op
.getOperand(0);
1229 if (VT
.bitsLT(MVT::i32
)) {
1231 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
1233 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
1234 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
1235 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
1236 DAG
.getConstant(Log2b
, MVT::i32
));
1237 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
1239 // Leave comparisons against 0 and -1 alone for now, since they're usually
1240 // optimized. FIXME: revisit this when we can custom lower all setcc
1242 if (C
->isAllOnesValue() || C
->isNullValue())
1246 // If we have an integer seteq/setne, turn it into a compare against zero
1247 // by xor'ing the rhs with the lhs, which is faster than setting a
1248 // condition register, reading it back out, and masking the correct bit. The
1249 // normal approach here uses sub to do this instead of xor. Using xor exposes
1250 // the result to other bit-twiddling opportunities.
1251 EVT LHSVT
= Op
.getOperand(0).getValueType();
1252 if (LHSVT
.isInteger() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1253 EVT VT
= Op
.getValueType();
1254 SDValue Sub
= DAG
.getNode(ISD::XOR
, dl
, LHSVT
, Op
.getOperand(0),
1256 return DAG
.getSetCC(dl
, VT
, Sub
, DAG
.getConstant(0, LHSVT
), CC
);
1261 SDValue
PPCTargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
,
1262 int VarArgsFrameIndex
,
1263 int VarArgsStackOffset
,
1264 unsigned VarArgsNumGPR
,
1265 unsigned VarArgsNumFPR
,
1266 const PPCSubtarget
&Subtarget
) {
1268 llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1269 return SDValue(); // Not reached
1272 SDValue
PPCTargetLowering::LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) {
1273 SDValue Chain
= Op
.getOperand(0);
1274 SDValue Trmp
= Op
.getOperand(1); // trampoline
1275 SDValue FPtr
= Op
.getOperand(2); // nested function
1276 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
1277 DebugLoc dl
= Op
.getDebugLoc();
1279 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1280 bool isPPC64
= (PtrVT
== MVT::i64
);
1281 const Type
*IntPtrTy
=
1282 DAG
.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1285 TargetLowering::ArgListTy Args
;
1286 TargetLowering::ArgListEntry Entry
;
1288 Entry
.Ty
= IntPtrTy
;
1289 Entry
.Node
= Trmp
; Args
.push_back(Entry
);
1291 // TrampSize == (isPPC64 ? 48 : 40);
1292 Entry
.Node
= DAG
.getConstant(isPPC64
? 48 : 40,
1293 isPPC64
? MVT::i64
: MVT::i32
);
1294 Args
.push_back(Entry
);
1296 Entry
.Node
= FPtr
; Args
.push_back(Entry
);
1297 Entry
.Node
= Nest
; Args
.push_back(Entry
);
1299 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1300 std::pair
<SDValue
, SDValue
> CallResult
=
1301 LowerCallTo(Chain
, Op
.getValueType().getTypeForEVT(*DAG
.getContext()),
1302 false, false, false, false, 0, CallingConv::C
, false,
1303 /*isReturnValueUsed=*/true,
1304 DAG
.getExternalSymbol("__trampoline_setup", PtrVT
),
1308 { CallResult
.first
, CallResult
.second
};
1310 return DAG
.getMergeValues(Ops
, 2, dl
);
1313 SDValue
PPCTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
,
1314 int VarArgsFrameIndex
,
1315 int VarArgsStackOffset
,
1316 unsigned VarArgsNumGPR
,
1317 unsigned VarArgsNumFPR
,
1318 const PPCSubtarget
&Subtarget
) {
1319 DebugLoc dl
= Op
.getDebugLoc();
1321 if (Subtarget
.isDarwinABI() || Subtarget
.isPPC64()) {
1322 // vastart just stores the address of the VarArgsFrameIndex slot into the
1323 // memory location argument.
1324 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1325 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1326 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1327 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
1330 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1331 // We suppose the given va_list is already allocated.
1334 // char gpr; /* index into the array of 8 GPRs
1335 // * stored in the register save area
1336 // * gpr=0 corresponds to r3,
1337 // * gpr=1 to r4, etc.
1339 // char fpr; /* index into the array of 8 FPRs
1340 // * stored in the register save area
1341 // * fpr=0 corresponds to f1,
1342 // * fpr=1 to f2, etc.
1344 // char *overflow_arg_area;
1345 // /* location on stack that holds
1346 // * the next overflow argument
1348 // char *reg_save_area;
1349 // /* where r3:r10 and f1:f8 (if saved)
1355 SDValue ArgGPR
= DAG
.getConstant(VarArgsNumGPR
, MVT::i32
);
1356 SDValue ArgFPR
= DAG
.getConstant(VarArgsNumFPR
, MVT::i32
);
1359 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1361 SDValue StackOffsetFI
= DAG
.getFrameIndex(VarArgsStackOffset
, PtrVT
);
1362 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1364 uint64_t FrameOffset
= PtrVT
.getSizeInBits()/8;
1365 SDValue ConstFrameOffset
= DAG
.getConstant(FrameOffset
, PtrVT
);
1367 uint64_t StackOffset
= PtrVT
.getSizeInBits()/8 - 1;
1368 SDValue ConstStackOffset
= DAG
.getConstant(StackOffset
, PtrVT
);
1370 uint64_t FPROffset
= 1;
1371 SDValue ConstFPROffset
= DAG
.getConstant(FPROffset
, PtrVT
);
1373 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1375 // Store first byte : number of int regs
1376 SDValue firstStore
= DAG
.getTruncStore(Op
.getOperand(0), dl
, ArgGPR
,
1377 Op
.getOperand(1), SV
, 0, MVT::i8
);
1378 uint64_t nextOffset
= FPROffset
;
1379 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Op
.getOperand(1),
1382 // Store second byte : number of float regs
1383 SDValue secondStore
=
1384 DAG
.getTruncStore(firstStore
, dl
, ArgFPR
, nextPtr
, SV
, nextOffset
, MVT::i8
);
1385 nextOffset
+= StackOffset
;
1386 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstStackOffset
);
1388 // Store second word : arguments given on stack
1389 SDValue thirdStore
=
1390 DAG
.getStore(secondStore
, dl
, StackOffsetFI
, nextPtr
, SV
, nextOffset
);
1391 nextOffset
+= FrameOffset
;
1392 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstFrameOffset
);
1394 // Store third word : arguments given in registers
1395 return DAG
.getStore(thirdStore
, dl
, FR
, nextPtr
, SV
, nextOffset
);
1399 #include "PPCGenCallingConv.inc"
1401 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, EVT
&ValVT
, EVT
&LocVT
,
1402 CCValAssign::LocInfo
&LocInfo
,
1403 ISD::ArgFlagsTy
&ArgFlags
,
1408 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, EVT
&ValVT
,
1410 CCValAssign::LocInfo
&LocInfo
,
1411 ISD::ArgFlagsTy
&ArgFlags
,
1413 static const unsigned ArgRegs
[] = {
1414 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1415 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1417 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1419 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1421 // Skip one register if the first unallocated register has an even register
1422 // number and there are still argument registers available which have not been
1423 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1424 // need to skip a register if RegNum is odd.
1425 if (RegNum
!= NumArgRegs
&& RegNum
% 2 == 1) {
1426 State
.AllocateReg(ArgRegs
[RegNum
]);
1429 // Always return false here, as this function only makes sure that the first
1430 // unallocated register has an odd register number and does not actually
1431 // allocate a register for the current argument.
1435 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, EVT
&ValVT
,
1437 CCValAssign::LocInfo
&LocInfo
,
1438 ISD::ArgFlagsTy
&ArgFlags
,
1440 static const unsigned ArgRegs
[] = {
1441 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1445 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1447 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1449 // If there is only one Floating-point register left we need to put both f64
1450 // values of a split ppc_fp128 value on the stack.
1451 if (RegNum
!= NumArgRegs
&& ArgRegs
[RegNum
] == PPC::F8
) {
1452 State
.AllocateReg(ArgRegs
[RegNum
]);
1455 // Always return false here, as this function only makes sure that the two f64
1456 // values a ppc_fp128 value is split into are both passed in registers or both
1457 // passed on the stack and does not actually allocate a register for the
1458 // current argument.
1462 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1464 static const unsigned *GetFPR() {
1465 static const unsigned FPR
[] = {
1466 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1467 PPC::F8
, PPC::F9
, PPC::F10
, PPC::F11
, PPC::F12
, PPC::F13
1473 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1475 static unsigned CalculateStackSlotSize(EVT ArgVT
, ISD::ArgFlagsTy Flags
,
1476 unsigned PtrByteSize
) {
1477 unsigned ArgSize
= ArgVT
.getSizeInBits()/8;
1478 if (Flags
.isByVal())
1479 ArgSize
= Flags
.getByValSize();
1480 ArgSize
= ((ArgSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1486 PPCTargetLowering::LowerFormalArguments(SDValue Chain
,
1487 CallingConv::ID CallConv
, bool isVarArg
,
1488 const SmallVectorImpl
<ISD::InputArg
>
1490 DebugLoc dl
, SelectionDAG
&DAG
,
1491 SmallVectorImpl
<SDValue
> &InVals
) {
1492 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64()) {
1493 return LowerFormalArguments_SVR4(Chain
, CallConv
, isVarArg
, Ins
,
1496 return LowerFormalArguments_Darwin(Chain
, CallConv
, isVarArg
, Ins
,
1502 PPCTargetLowering::LowerFormalArguments_SVR4(
1504 CallingConv::ID CallConv
, bool isVarArg
,
1505 const SmallVectorImpl
<ISD::InputArg
>
1507 DebugLoc dl
, SelectionDAG
&DAG
,
1508 SmallVectorImpl
<SDValue
> &InVals
) {
1510 // 32-bit SVR4 ABI Stack Frame Layout:
1511 // +-----------------------------------+
1512 // +--> | Back chain |
1513 // | +-----------------------------------+
1514 // | | Floating-point register save area |
1515 // | +-----------------------------------+
1516 // | | General register save area |
1517 // | +-----------------------------------+
1518 // | | CR save word |
1519 // | +-----------------------------------+
1520 // | | VRSAVE save word |
1521 // | +-----------------------------------+
1522 // | | Alignment padding |
1523 // | +-----------------------------------+
1524 // | | Vector register save area |
1525 // | +-----------------------------------+
1526 // | | Local variable space |
1527 // | +-----------------------------------+
1528 // | | Parameter list area |
1529 // | +-----------------------------------+
1530 // | | LR save word |
1531 // | +-----------------------------------+
1532 // SP--> +--- | Back chain |
1533 // +-----------------------------------+
1536 // System V Application Binary Interface PowerPC Processor Supplement
1537 // AltiVec Technology Programming Interface Manual
1539 MachineFunction
&MF
= DAG
.getMachineFunction();
1540 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1542 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1543 // Potential tail calls could cause overwriting of argument stack slots.
1544 bool isImmutable
= !(PerformTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1545 unsigned PtrByteSize
= 4;
1547 // Assign locations to all of the incoming arguments.
1548 SmallVector
<CCValAssign
, 16> ArgLocs
;
1549 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(), ArgLocs
,
1552 // Reserve space for the linkage area on the stack.
1553 CCInfo
.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize
);
1555 CCInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4
);
1557 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1558 CCValAssign
&VA
= ArgLocs
[i
];
1560 // Arguments stored in registers.
1561 if (VA
.isRegLoc()) {
1562 TargetRegisterClass
*RC
;
1563 EVT ValVT
= VA
.getValVT();
1565 switch (ValVT
.getSimpleVT().SimpleTy
) {
1567 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1569 RC
= PPC::GPRCRegisterClass
;
1572 RC
= PPC::F4RCRegisterClass
;
1575 RC
= PPC::F8RCRegisterClass
;
1581 RC
= PPC::VRRCRegisterClass
;
1585 // Transform the arguments stored in physical registers into virtual ones.
1586 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1587 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, ValVT
);
1589 InVals
.push_back(ArgValue
);
1591 // Argument stored in memory.
1592 assert(VA
.isMemLoc());
1594 unsigned ArgSize
= VA
.getLocVT().getSizeInBits() / 8;
1595 int FI
= MFI
->CreateFixedObject(ArgSize
, VA
.getLocMemOffset(),
1598 // Create load nodes to retrieve arguments from the stack.
1599 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1600 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
, NULL
, 0));
1604 // Assign locations to all of the incoming aggregate by value arguments.
1605 // Aggregates passed by value are stored in the local variable space of the
1606 // caller's stack frame, right above the parameter list area.
1607 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
1608 CCState
CCByValInfo(CallConv
, isVarArg
, getTargetMachine(),
1609 ByValArgLocs
, *DAG
.getContext());
1611 // Reserve stack space for the allocations in CCInfo.
1612 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
1614 CCByValInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4_ByVal
);
1616 // Area that is at least reserved in the caller of this function.
1617 unsigned MinReservedArea
= CCByValInfo
.getNextStackOffset();
1619 // Set the size that is at least reserved in caller of this function. Tail
1620 // call optimized function's reserved stack space needs to be aligned so that
1621 // taking the difference between two stack areas will result in an aligned
1623 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1626 std::max(MinReservedArea
,
1627 PPCFrameInfo::getMinCallFrameSize(false, false));
1629 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
1630 getStackAlignment();
1631 unsigned AlignMask
= TargetAlign
-1;
1632 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
1634 FI
->setMinReservedArea(MinReservedArea
);
1636 SmallVector
<SDValue
, 8> MemOps
;
1638 // If the function takes variable number of arguments, make a frame index for
1639 // the start of the first vararg value... for expansion of llvm.va_start.
1641 static const unsigned GPArgRegs
[] = {
1642 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1643 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1645 const unsigned NumGPArgRegs
= array_lengthof(GPArgRegs
);
1647 static const unsigned FPArgRegs
[] = {
1648 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1651 const unsigned NumFPArgRegs
= array_lengthof(FPArgRegs
);
1653 VarArgsNumGPR
= CCInfo
.getFirstUnallocated(GPArgRegs
, NumGPArgRegs
);
1654 VarArgsNumFPR
= CCInfo
.getFirstUnallocated(FPArgRegs
, NumFPArgRegs
);
1656 // Make room for NumGPArgRegs and NumFPArgRegs.
1657 int Depth
= NumGPArgRegs
* PtrVT
.getSizeInBits()/8 +
1658 NumFPArgRegs
* EVT(MVT::f64
).getSizeInBits()/8;
1660 VarArgsStackOffset
= MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
1661 CCInfo
.getNextStackOffset());
1663 VarArgsFrameIndex
= MFI
->CreateStackObject(Depth
, 8);
1664 SDValue FIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1666 // The fixed integer arguments of a variadic function are
1667 // stored to the VarArgsFrameIndex on the stack.
1668 unsigned GPRIndex
= 0;
1669 for (; GPRIndex
!= VarArgsNumGPR
; ++GPRIndex
) {
1670 SDValue Val
= DAG
.getRegister(GPArgRegs
[GPRIndex
], PtrVT
);
1671 SDValue Store
= DAG
.getStore(Chain
, dl
, Val
, FIN
, NULL
, 0);
1672 MemOps
.push_back(Store
);
1673 // Increment the address by four for the next argument to store
1674 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
1675 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1678 // If this function is vararg, store any remaining integer argument regs
1679 // to their spots on the stack so that they may be loaded by deferencing the
1680 // result of va_next.
1681 for (; GPRIndex
!= NumGPArgRegs
; ++GPRIndex
) {
1682 unsigned VReg
= MF
.addLiveIn(GPArgRegs
[GPRIndex
], &PPC::GPRCRegClass
);
1684 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1685 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, NULL
, 0);
1686 MemOps
.push_back(Store
);
1687 // Increment the address by four for the next argument to store
1688 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
1689 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1692 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1695 // The double arguments are stored to the VarArgsFrameIndex
1697 unsigned FPRIndex
= 0;
1698 for (FPRIndex
= 0; FPRIndex
!= VarArgsNumFPR
; ++FPRIndex
) {
1699 SDValue Val
= DAG
.getRegister(FPArgRegs
[FPRIndex
], MVT::f64
);
1700 SDValue Store
= DAG
.getStore(Chain
, dl
, Val
, FIN
, NULL
, 0);
1701 MemOps
.push_back(Store
);
1702 // Increment the address by eight for the next argument to store
1703 SDValue PtrOff
= DAG
.getConstant(EVT(MVT::f64
).getSizeInBits()/8,
1705 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1708 for (; FPRIndex
!= NumFPArgRegs
; ++FPRIndex
) {
1709 unsigned VReg
= MF
.addLiveIn(FPArgRegs
[FPRIndex
], &PPC::F8RCRegClass
);
1711 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::f64
);
1712 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, NULL
, 0);
1713 MemOps
.push_back(Store
);
1714 // Increment the address by eight for the next argument to store
1715 SDValue PtrOff
= DAG
.getConstant(EVT(MVT::f64
).getSizeInBits()/8,
1717 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1721 if (!MemOps
.empty())
1722 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
1723 MVT::Other
, &MemOps
[0], MemOps
.size());
1729 PPCTargetLowering::LowerFormalArguments_Darwin(
1731 CallingConv::ID CallConv
, bool isVarArg
,
1732 const SmallVectorImpl
<ISD::InputArg
>
1734 DebugLoc dl
, SelectionDAG
&DAG
,
1735 SmallVectorImpl
<SDValue
> &InVals
) {
1736 // TODO: add description of PPC stack frame format, or at least some docs.
1738 MachineFunction
&MF
= DAG
.getMachineFunction();
1739 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1741 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1742 bool isPPC64
= PtrVT
== MVT::i64
;
1743 // Potential tail calls could cause overwriting of argument stack slots.
1744 bool isImmutable
= !(PerformTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1745 unsigned PtrByteSize
= isPPC64
? 8 : 4;
1747 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
1748 // Area that is at least reserved in caller of this function.
1749 unsigned MinReservedArea
= ArgOffset
;
1751 static const unsigned GPR_32
[] = { // 32-bit registers.
1752 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1753 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1755 static const unsigned GPR_64
[] = { // 64-bit registers.
1756 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
1757 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
1760 static const unsigned *FPR
= GetFPR();
1762 static const unsigned VR
[] = {
1763 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
1764 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
1767 const unsigned Num_GPR_Regs
= array_lengthof(GPR_32
);
1768 const unsigned Num_FPR_Regs
= 13;
1769 const unsigned Num_VR_Regs
= array_lengthof( VR
);
1771 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
1773 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
1775 // In 32-bit non-varargs functions, the stack space for vectors is after the
1776 // stack space for non-vectors. We do not use this space unless we have
1777 // too many vectors to fit in registers, something that only occurs in
1778 // constructed examples:), but we have to walk the arglist to figure
1779 // that out...for the pathological case, compute VecArgOffset as the
1780 // start of the vector parameter area. Computing VecArgOffset is the
1781 // entire point of the following loop.
1782 unsigned VecArgOffset
= ArgOffset
;
1783 if (!isVarArg
&& !isPPC64
) {
1784 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
;
1786 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1787 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1788 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1790 if (Flags
.isByVal()) {
1791 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1792 ObjSize
= Flags
.getByValSize();
1794 ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1795 VecArgOffset
+= ArgSize
;
1799 switch(ObjectVT
.getSimpleVT().SimpleTy
) {
1800 default: llvm_unreachable("Unhandled argument type!");
1803 VecArgOffset
+= isPPC64
? 8 : 4;
1805 case MVT::i64
: // PPC64
1813 // Nothing to do, we're only looking at Nonvector args here.
1818 // We've found where the vector parameter area in memory is. Skip the
1819 // first 12 parameters; these don't use that memory.
1820 VecArgOffset
= ((VecArgOffset
+15)/16)*16;
1821 VecArgOffset
+= 12*16;
1823 // Add DAG nodes to load the arguments or copy them out of registers. On
1824 // entry to a function on PPC, the arguments start after the linkage area,
1825 // although the first ones are often in registers.
1827 SmallVector
<SDValue
, 8> MemOps
;
1828 unsigned nAltivecParamsAtEnd
= 0;
1829 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
1831 bool needsLoad
= false;
1832 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1833 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1834 unsigned ArgSize
= ObjSize
;
1835 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1837 unsigned CurArgOffset
= ArgOffset
;
1839 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1840 if (ObjectVT
==MVT::v4f32
|| ObjectVT
==MVT::v4i32
||
1841 ObjectVT
==MVT::v8i16
|| ObjectVT
==MVT::v16i8
) {
1842 if (isVarArg
|| isPPC64
) {
1843 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
1844 MinReservedArea
+= CalculateStackSlotSize(ObjectVT
,
1847 } else nAltivecParamsAtEnd
++;
1849 // Calculate min reserved area.
1850 MinReservedArea
+= CalculateStackSlotSize(Ins
[ArgNo
].VT
,
1854 // FIXME the codegen can be much improved in some cases.
1855 // We do not have to keep everything in memory.
1856 if (Flags
.isByVal()) {
1857 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1858 ObjSize
= Flags
.getByValSize();
1859 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1860 // Objects of size 1 and 2 are right justified, everything else is
1861 // left justified. This means the memory address is adjusted forwards.
1862 if (ObjSize
==1 || ObjSize
==2) {
1863 CurArgOffset
= CurArgOffset
+ (4 - ObjSize
);
1865 // The value of the object is its address.
1866 int FI
= MFI
->CreateFixedObject(ObjSize
, CurArgOffset
);
1867 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1868 InVals
.push_back(FIN
);
1869 if (ObjSize
==1 || ObjSize
==2) {
1870 if (GPR_idx
!= Num_GPR_Regs
) {
1871 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1872 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1873 SDValue Store
= DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, FIN
,
1874 NULL
, 0, ObjSize
==1 ? MVT::i8
: MVT::i16
);
1875 MemOps
.push_back(Store
);
1879 ArgOffset
+= PtrByteSize
;
1883 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
1884 // Store whatever pieces of the object are in registers
1885 // to memory. ArgVal will be address of the beginning of
1887 if (GPR_idx
!= Num_GPR_Regs
) {
1888 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1889 int FI
= MFI
->CreateFixedObject(PtrByteSize
, ArgOffset
);
1890 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1891 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1892 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, NULL
, 0);
1893 MemOps
.push_back(Store
);
1895 ArgOffset
+= PtrByteSize
;
1897 ArgOffset
+= ArgSize
- (ArgOffset
-CurArgOffset
);
1904 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
1905 default: llvm_unreachable("Unhandled argument type!");
1908 if (GPR_idx
!= Num_GPR_Regs
) {
1909 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1910 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
1914 ArgSize
= PtrByteSize
;
1916 // All int arguments reserve stack space in the Darwin ABI.
1917 ArgOffset
+= PtrByteSize
;
1921 case MVT::i64
: // PPC64
1922 if (GPR_idx
!= Num_GPR_Regs
) {
1923 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
1924 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
1926 if (ObjectVT
== MVT::i32
) {
1927 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1928 // value to MVT::i64 and then truncate to the correct register size.
1930 ArgVal
= DAG
.getNode(ISD::AssertSext
, dl
, MVT::i64
, ArgVal
,
1931 DAG
.getValueType(ObjectVT
));
1932 else if (Flags
.isZExt())
1933 ArgVal
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i64
, ArgVal
,
1934 DAG
.getValueType(ObjectVT
));
1936 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, ArgVal
);
1942 ArgSize
= PtrByteSize
;
1944 // All int arguments reserve stack space in the Darwin ABI.
1950 // Every 4 bytes of argument space consumes one of the GPRs available for
1951 // argument passing.
1952 if (GPR_idx
!= Num_GPR_Regs
) {
1954 if (ObjSize
== 8 && GPR_idx
!= Num_GPR_Regs
&& !isPPC64
)
1957 if (FPR_idx
!= Num_FPR_Regs
) {
1960 if (ObjectVT
== MVT::f32
)
1961 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F4RCRegClass
);
1963 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F8RCRegClass
);
1965 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
1971 // All FP arguments reserve stack space in the Darwin ABI.
1972 ArgOffset
+= isPPC64
? 8 : ObjSize
;
1978 // Note that vector arguments in registers don't reserve stack space,
1979 // except in varargs functions.
1980 if (VR_idx
!= Num_VR_Regs
) {
1981 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
1982 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
1984 while ((ArgOffset
% 16) != 0) {
1985 ArgOffset
+= PtrByteSize
;
1986 if (GPR_idx
!= Num_GPR_Regs
)
1990 GPR_idx
= std::min(GPR_idx
+4, Num_GPR_Regs
); // FIXME correct for ppc64?
1994 if (!isVarArg
&& !isPPC64
) {
1995 // Vectors go after all the nonvectors.
1996 CurArgOffset
= VecArgOffset
;
1999 // Vectors are aligned.
2000 ArgOffset
= ((ArgOffset
+15)/16)*16;
2001 CurArgOffset
= ArgOffset
;
2009 // We need to load the argument to a virtual register if we determined above
2010 // that we ran out of physical registers of the appropriate type.
2012 int FI
= MFI
->CreateFixedObject(ObjSize
,
2013 CurArgOffset
+ (ArgSize
- ObjSize
),
2015 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
2016 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, NULL
, 0);
2019 InVals
.push_back(ArgVal
);
2022 // Set the size that is at least reserved in caller of this function. Tail
2023 // call optimized function's reserved stack space needs to be aligned so that
2024 // taking the difference between two stack areas will result in an aligned
2026 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
2027 // Add the Altivec parameters at the end, if needed.
2028 if (nAltivecParamsAtEnd
) {
2029 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
2030 MinReservedArea
+= 16*nAltivecParamsAtEnd
;
2033 std::max(MinReservedArea
,
2034 PPCFrameInfo::getMinCallFrameSize(isPPC64
, true));
2035 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
2036 getStackAlignment();
2037 unsigned AlignMask
= TargetAlign
-1;
2038 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
2039 FI
->setMinReservedArea(MinReservedArea
);
2041 // If the function takes variable number of arguments, make a frame index for
2042 // the start of the first vararg value... for expansion of llvm.va_start.
2044 int Depth
= ArgOffset
;
2046 VarArgsFrameIndex
= MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
2048 SDValue FIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
2050 // If this function is vararg, store any remaining integer argument regs
2051 // to their spots on the stack so that they may be loaded by deferencing the
2052 // result of va_next.
2053 for (; GPR_idx
!= Num_GPR_Regs
; ++GPR_idx
) {
2057 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
2059 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
2061 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
2062 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, NULL
, 0);
2063 MemOps
.push_back(Store
);
2064 // Increment the address by four for the next argument to store
2065 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
2066 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
2070 if (!MemOps
.empty())
2071 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
2072 MVT::Other
, &MemOps
[0], MemOps
.size());
2077 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2078 /// linkage area for the Darwin ABI.
2080 CalculateParameterAndLinkageAreaSize(SelectionDAG
&DAG
,
2084 const SmallVectorImpl
<ISD::OutputArg
>
2086 unsigned &nAltivecParamsAtEnd
) {
2087 // Count how many bytes are to be pushed on the stack, including the linkage
2088 // area, and parameter passing area. We start with 24/48 bytes, which is
2089 // prereserved space for [SP][CR][LR][3 x unused].
2090 unsigned NumBytes
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
2091 unsigned NumOps
= Outs
.size();
2092 unsigned PtrByteSize
= isPPC64
? 8 : 4;
2094 // Add up all the space actually used.
2095 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2096 // they all go in registers, but we must reserve stack space for them for
2097 // possible use by the caller. In varargs or 64-bit calls, parameters are
2098 // assigned stack space in order, with padding so Altivec parameters are
2100 nAltivecParamsAtEnd
= 0;
2101 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2102 SDValue Arg
= Outs
[i
].Val
;
2103 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2104 EVT ArgVT
= Arg
.getValueType();
2105 // Varargs Altivec parameters are padded to a 16 byte boundary.
2106 if (ArgVT
==MVT::v4f32
|| ArgVT
==MVT::v4i32
||
2107 ArgVT
==MVT::v8i16
|| ArgVT
==MVT::v16i8
) {
2108 if (!isVarArg
&& !isPPC64
) {
2109 // Non-varargs Altivec parameters go after all the non-Altivec
2110 // parameters; handle those later so we know how much padding we need.
2111 nAltivecParamsAtEnd
++;
2114 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2115 NumBytes
= ((NumBytes
+15)/16)*16;
2117 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
2120 // Allow for Altivec parameters at the end, if needed.
2121 if (nAltivecParamsAtEnd
) {
2122 NumBytes
= ((NumBytes
+15)/16)*16;
2123 NumBytes
+= 16*nAltivecParamsAtEnd
;
2126 // The prolog code of the callee may store up to 8 GPR argument registers to
2127 // the stack, allowing va_start to index over them in memory if its varargs.
2128 // Because we cannot tell if this is needed on the caller side, we have to
2129 // conservatively assume that it is needed. As such, make sure we have at
2130 // least enough stack space for the caller to store the 8 GPRs.
2131 NumBytes
= std::max(NumBytes
,
2132 PPCFrameInfo::getMinCallFrameSize(isPPC64
, true));
2134 // Tail call needs the stack to be aligned.
2135 if (CC
==CallingConv::Fast
&& PerformTailCallOpt
) {
2136 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameInfo()->
2137 getStackAlignment();
2138 unsigned AlignMask
= TargetAlign
-1;
2139 NumBytes
= (NumBytes
+ AlignMask
) & ~AlignMask
;
2145 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2146 /// adjusted to accomodate the arguments for the tailcall.
2147 static int CalculateTailCallSPDiff(SelectionDAG
& DAG
, bool IsTailCall
,
2148 unsigned ParamSize
) {
2150 if (!IsTailCall
) return 0;
2152 PPCFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<PPCFunctionInfo
>();
2153 unsigned CallerMinReservedArea
= FI
->getMinReservedArea();
2154 int SPDiff
= (int)CallerMinReservedArea
- (int)ParamSize
;
2155 // Remember only if the new adjustement is bigger.
2156 if (SPDiff
< FI
->getTailCallSPDelta())
2157 FI
->setTailCallSPDelta(SPDiff
);
2162 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2163 /// for tail call optimization. Targets which want to do tail call
2164 /// optimization should implement this function.
2166 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
2167 CallingConv::ID CalleeCC
,
2169 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2170 SelectionDAG
& DAG
) const {
2171 // Variable argument functions are not supported.
2175 MachineFunction
&MF
= DAG
.getMachineFunction();
2176 CallingConv::ID CallerCC
= MF
.getFunction()->getCallingConv();
2177 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
2178 // Functions containing by val parameters are not supported.
2179 for (unsigned i
= 0; i
!= Ins
.size(); i
++) {
2180 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
2181 if (Flags
.isByVal()) return false;
2184 // Non PIC/GOT tail calls are supported.
2185 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
2188 // At the moment we can only do local tail calls (in same module, hidden
2189 // or protected) if we are generating PIC.
2190 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2191 return G
->getGlobal()->hasHiddenVisibility()
2192 || G
->getGlobal()->hasProtectedVisibility();
2198 /// isCallCompatibleAddress - Return the immediate to use if the specified
2199 /// 32-bit value is representable in the immediate field of a BxA instruction.
2200 static SDNode
*isBLACompatibleAddress(SDValue Op
, SelectionDAG
&DAG
) {
2201 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2204 int Addr
= C
->getZExtValue();
2205 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
2206 (Addr
<< 6 >> 6) != Addr
)
2207 return 0; // Top 6 bits have to be sext of immediate.
2209 return DAG
.getConstant((int)C
->getZExtValue() >> 2,
2210 DAG
.getTargetLoweringInfo().getPointerTy()).getNode();
2215 struct TailCallArgumentInfo
{
2220 TailCallArgumentInfo() : FrameIdx(0) {}
2225 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2227 StoreTailCallArgumentsToStackSlot(SelectionDAG
&DAG
,
2229 const SmallVector
<TailCallArgumentInfo
, 8> &TailCallArgs
,
2230 SmallVector
<SDValue
, 8> &MemOpChains
,
2232 for (unsigned i
= 0, e
= TailCallArgs
.size(); i
!= e
; ++i
) {
2233 SDValue Arg
= TailCallArgs
[i
].Arg
;
2234 SDValue FIN
= TailCallArgs
[i
].FrameIdxOp
;
2235 int FI
= TailCallArgs
[i
].FrameIdx
;
2236 // Store relative to framepointer.
2237 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, FIN
,
2238 PseudoSourceValue::getFixedStack(FI
),
2243 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2244 /// the appropriate stack slot for the tail call optimized function call.
2245 static SDValue
EmitTailCallStoreFPAndRetAddr(SelectionDAG
&DAG
,
2246 MachineFunction
&MF
,
2255 // Calculate the new stack slot for the return address.
2256 int SlotSize
= isPPC64
? 8 : 4;
2257 int NewRetAddrLoc
= SPDiff
+ PPCFrameInfo::getReturnSaveOffset(isPPC64
,
2259 int NewRetAddr
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
,
2261 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2262 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewRetAddr
, VT
);
2263 Chain
= DAG
.getStore(Chain
, dl
, OldRetAddr
, NewRetAddrFrIdx
,
2264 PseudoSourceValue::getFixedStack(NewRetAddr
), 0);
2266 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2267 // slot as the FP is never overwritten.
2270 SPDiff
+ PPCFrameInfo::getFramePointerSaveOffset(isPPC64
, isDarwinABI
);
2271 int NewFPIdx
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, NewFPLoc
);
2272 SDValue NewFramePtrIdx
= DAG
.getFrameIndex(NewFPIdx
, VT
);
2273 Chain
= DAG
.getStore(Chain
, dl
, OldFP
, NewFramePtrIdx
,
2274 PseudoSourceValue::getFixedStack(NewFPIdx
), 0);
2280 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2281 /// the position of the argument.
2283 CalculateTailCallArgDest(SelectionDAG
&DAG
, MachineFunction
&MF
, bool isPPC64
,
2284 SDValue Arg
, int SPDiff
, unsigned ArgOffset
,
2285 SmallVector
<TailCallArgumentInfo
, 8>& TailCallArguments
) {
2286 int Offset
= ArgOffset
+ SPDiff
;
2287 uint32_t OpSize
= (Arg
.getValueType().getSizeInBits()+7)/8;
2288 int FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
2289 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2290 SDValue FIN
= DAG
.getFrameIndex(FI
, VT
);
2291 TailCallArgumentInfo Info
;
2293 Info
.FrameIdxOp
= FIN
;
2295 TailCallArguments
.push_back(Info
);
2298 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2299 /// stack slot. Returns the chain as result and the loaded frame pointers in
2300 /// LROpOut/FPOpout. Used when tail calling.
2301 SDValue
PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG
& DAG
,
2309 // Load the LR and FP stack slot for later adjusting.
2310 EVT VT
= PPCSubTarget
.isPPC64() ? MVT::i64
: MVT::i32
;
2311 LROpOut
= getReturnAddrFrameIndex(DAG
);
2312 LROpOut
= DAG
.getLoad(VT
, dl
, Chain
, LROpOut
, NULL
, 0);
2313 Chain
= SDValue(LROpOut
.getNode(), 1);
2315 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2316 // slot as the FP is never overwritten.
2318 FPOpOut
= getFramePointerFrameIndex(DAG
);
2319 FPOpOut
= DAG
.getLoad(VT
, dl
, Chain
, FPOpOut
, NULL
, 0);
2320 Chain
= SDValue(FPOpOut
.getNode(), 1);
2326 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2327 /// by "Src" to address "Dst" of size "Size". Alignment information is
2328 /// specified by the specific parameter attribute. The copy will be passed as
2329 /// a byval function parameter.
2330 /// Sometimes what we are copying is the end of a larger object, the part that
2331 /// does not fit in registers.
2333 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
2334 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
2336 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
2337 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
2338 false, NULL
, 0, NULL
, 0);
2341 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2344 LowerMemOpCallTo(SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
,
2345 SDValue Arg
, SDValue PtrOff
, int SPDiff
,
2346 unsigned ArgOffset
, bool isPPC64
, bool isTailCall
,
2347 bool isVector
, SmallVector
<SDValue
, 8> &MemOpChains
,
2348 SmallVector
<TailCallArgumentInfo
, 8>& TailCallArguments
,
2350 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2355 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
2357 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2358 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
2359 DAG
.getConstant(ArgOffset
, PtrVT
));
2361 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, NULL
, 0));
2362 // Calculate and remember argument location.
2363 } else CalculateTailCallArgDest(DAG
, MF
, isPPC64
, Arg
, SPDiff
, ArgOffset
,
2368 void PrepareTailCall(SelectionDAG
&DAG
, SDValue
&InFlag
, SDValue
&Chain
,
2369 DebugLoc dl
, bool isPPC64
, int SPDiff
, unsigned NumBytes
,
2370 SDValue LROp
, SDValue FPOp
, bool isDarwinABI
,
2371 SmallVector
<TailCallArgumentInfo
, 8> &TailCallArguments
) {
2372 MachineFunction
&MF
= DAG
.getMachineFunction();
2374 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2375 // might overwrite each other in case of tail call optimization.
2376 SmallVector
<SDValue
, 8> MemOpChains2
;
2377 // Do not flag preceeding copytoreg stuff together with the following stuff.
2379 StoreTailCallArgumentsToStackSlot(DAG
, Chain
, TailCallArguments
,
2381 if (!MemOpChains2
.empty())
2382 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2383 &MemOpChains2
[0], MemOpChains2
.size());
2385 // Store the return address to the appropriate stack slot.
2386 Chain
= EmitTailCallStoreFPAndRetAddr(DAG
, MF
, Chain
, LROp
, FPOp
, SPDiff
,
2387 isPPC64
, isDarwinABI
, dl
);
2389 // Emit callseq_end just before tailcall node.
2390 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2391 DAG
.getIntPtrConstant(0, true), InFlag
);
2392 InFlag
= Chain
.getValue(1);
2396 unsigned PrepareCall(SelectionDAG
&DAG
, SDValue
&Callee
, SDValue
&InFlag
,
2397 SDValue
&Chain
, DebugLoc dl
, int SPDiff
, bool isTailCall
,
2398 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
2399 SmallVector
<SDValue
, 8> &Ops
, std::vector
<EVT
> &NodeTys
,
2401 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2402 NodeTys
.push_back(MVT::Other
); // Returns a chain
2403 NodeTys
.push_back(MVT::Flag
); // Returns a flag for retval copy to use.
2405 unsigned CallOpc
= isSVR4ABI
? PPCISD::CALL_SVR4
: PPCISD::CALL_Darwin
;
2407 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2408 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2409 // node so that legalize doesn't hack it.
2410 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2411 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), Callee
.getValueType());
2412 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
2413 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), Callee
.getValueType());
2414 else if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
))
2415 // If this is an absolute destination address, use the munged value.
2416 Callee
= SDValue(Dest
, 0);
2418 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2419 // to do the call, we can't use PPCISD::CALL.
2420 SDValue MTCTROps
[] = {Chain
, Callee
, InFlag
};
2421 Chain
= DAG
.getNode(PPCISD::MTCTR
, dl
, NodeTys
, MTCTROps
,
2422 2 + (InFlag
.getNode() != 0));
2423 InFlag
= Chain
.getValue(1);
2426 NodeTys
.push_back(MVT::Other
);
2427 NodeTys
.push_back(MVT::Flag
);
2428 Ops
.push_back(Chain
);
2429 CallOpc
= isSVR4ABI
? PPCISD::BCTRL_SVR4
: PPCISD::BCTRL_Darwin
;
2431 // Add CTR register as callee so a bctr can be emitted later.
2433 Ops
.push_back(DAG
.getRegister(PPC::CTR
, PtrVT
));
2436 // If this is a direct call, pass the chain and the callee.
2437 if (Callee
.getNode()) {
2438 Ops
.push_back(Chain
);
2439 Ops
.push_back(Callee
);
2441 // If this is a tail call add stack pointer delta.
2443 Ops
.push_back(DAG
.getConstant(SPDiff
, MVT::i32
));
2445 // Add argument registers to the end of the list so that they are known live
2447 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2448 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2449 RegsToPass
[i
].second
.getValueType()));
2455 PPCTargetLowering::LowerCallResult(SDValue Chain
, SDValue InFlag
,
2456 CallingConv::ID CallConv
, bool isVarArg
,
2457 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2458 DebugLoc dl
, SelectionDAG
&DAG
,
2459 SmallVectorImpl
<SDValue
> &InVals
) {
2461 SmallVector
<CCValAssign
, 16> RVLocs
;
2462 CCState
CCRetInfo(CallConv
, isVarArg
, getTargetMachine(),
2463 RVLocs
, *DAG
.getContext());
2464 CCRetInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2466 // Copy all of the result registers out of their specified physreg.
2467 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
2468 CCValAssign
&VA
= RVLocs
[i
];
2469 EVT VT
= VA
.getValVT();
2470 assert(VA
.isRegLoc() && "Can only return in registers!");
2471 Chain
= DAG
.getCopyFromReg(Chain
, dl
,
2472 VA
.getLocReg(), VT
, InFlag
).getValue(1);
2473 InVals
.push_back(Chain
.getValue(0));
2474 InFlag
= Chain
.getValue(2);
2481 PPCTargetLowering::FinishCall(CallingConv::ID CallConv
, DebugLoc dl
,
2482 bool isTailCall
, bool isVarArg
,
2484 SmallVector
<std::pair
<unsigned, SDValue
>, 8>
2486 SDValue InFlag
, SDValue Chain
,
2488 int SPDiff
, unsigned NumBytes
,
2489 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2490 SmallVectorImpl
<SDValue
> &InVals
) {
2491 std::vector
<EVT
> NodeTys
;
2492 SmallVector
<SDValue
, 8> Ops
;
2493 unsigned CallOpc
= PrepareCall(DAG
, Callee
, InFlag
, Chain
, dl
, SPDiff
,
2494 isTailCall
, RegsToPass
, Ops
, NodeTys
,
2495 PPCSubTarget
.isSVR4ABI());
2497 // When performing tail call optimization the callee pops its arguments off
2498 // the stack. Account for this here so these bytes can be pushed back on in
2499 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2500 int BytesCalleePops
=
2501 (CallConv
==CallingConv::Fast
&& PerformTailCallOpt
) ? NumBytes
: 0;
2503 if (InFlag
.getNode())
2504 Ops
.push_back(InFlag
);
2508 // If this is the first return lowered for this function, add the regs
2509 // to the liveout set for the function.
2510 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
2511 SmallVector
<CCValAssign
, 16> RVLocs
;
2512 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(), RVLocs
,
2514 CCInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2515 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
2516 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
2519 assert(((Callee
.getOpcode() == ISD::Register
&&
2520 cast
<RegisterSDNode
>(Callee
)->getReg() == PPC::CTR
) ||
2521 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
2522 Callee
.getOpcode() == ISD::TargetGlobalAddress
||
2523 isa
<ConstantSDNode
>(Callee
)) &&
2524 "Expecting an global address, external symbol, absolute value or register");
2526 return DAG
.getNode(PPCISD::TC_RETURN
, dl
, MVT::Other
, &Ops
[0], Ops
.size());
2529 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2530 InFlag
= Chain
.getValue(1);
2532 // Add a NOP immediately after the branch instruction when using the 64-bit
2533 // SVR4 ABI. At link time, if caller and callee are in a different module and
2534 // thus have a different TOC, the call will be replaced with a call to a stub
2535 // function which saves the current TOC, loads the TOC of the callee and
2536 // branches to the callee. The NOP will be replaced with a load instruction
2537 // which restores the TOC of the caller from the TOC save slot of the current
2538 // stack frame. If caller and callee belong to the same module (and have the
2539 // same TOC), the NOP will remain unchanged.
2540 if (!isTailCall
&& PPCSubTarget
.isSVR4ABI()&& PPCSubTarget
.isPPC64()) {
2542 InFlag
= DAG
.getNode(PPCISD::NOP
, dl
, MVT::Flag
, InFlag
);
2545 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2546 DAG
.getIntPtrConstant(BytesCalleePops
, true),
2549 InFlag
= Chain
.getValue(1);
2551 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
2552 Ins
, dl
, DAG
, InVals
);
2556 PPCTargetLowering::LowerCall(SDValue Chain
, SDValue Callee
,
2557 CallingConv::ID CallConv
, bool isVarArg
,
2559 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2560 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2561 DebugLoc dl
, SelectionDAG
&DAG
,
2562 SmallVectorImpl
<SDValue
> &InVals
) {
2563 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64()) {
2564 return LowerCall_SVR4(Chain
, Callee
, CallConv
, isVarArg
,
2565 isTailCall
, Outs
, Ins
,
2568 return LowerCall_Darwin(Chain
, Callee
, CallConv
, isVarArg
,
2569 isTailCall
, Outs
, Ins
,
2575 PPCTargetLowering::LowerCall_SVR4(SDValue Chain
, SDValue Callee
,
2576 CallingConv::ID CallConv
, bool isVarArg
,
2578 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2579 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2580 DebugLoc dl
, SelectionDAG
&DAG
,
2581 SmallVectorImpl
<SDValue
> &InVals
) {
2582 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2583 // of the 32-bit SVR4 ABI stack frame layout.
2585 assert((!isTailCall
||
2586 (CallConv
== CallingConv::Fast
&& PerformTailCallOpt
)) &&
2587 "IsEligibleForTailCallOptimization missed a case!");
2589 assert((CallConv
== CallingConv::C
||
2590 CallConv
== CallingConv::Fast
) && "Unknown calling convention!");
2592 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2593 unsigned PtrByteSize
= 4;
2595 MachineFunction
&MF
= DAG
.getMachineFunction();
2597 // Mark this function as potentially containing a function that contains a
2598 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2599 // and restoring the callers stack pointer in this functions epilog. This is
2600 // done because by tail calling the called function might overwrite the value
2601 // in this function's (MF) stack pointer stack slot 0(SP).
2602 if (PerformTailCallOpt
&& CallConv
==CallingConv::Fast
)
2603 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
2605 // Count how many bytes are to be pushed on the stack, including the linkage
2606 // area, parameter list area and the part of the local variable space which
2607 // contains copies of aggregates which are passed by value.
2609 // Assign locations to all of the outgoing arguments.
2610 SmallVector
<CCValAssign
, 16> ArgLocs
;
2611 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
2612 ArgLocs
, *DAG
.getContext());
2614 // Reserve space for the linkage area on the stack.
2615 CCInfo
.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize
);
2618 // Handle fixed and variable vector arguments differently.
2619 // Fixed vector arguments go into registers as long as registers are
2620 // available. Variable vector arguments always go into memory.
2621 unsigned NumArgs
= Outs
.size();
2623 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
2624 EVT ArgVT
= Outs
[i
].Val
.getValueType();
2625 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
2628 if (Outs
[i
].IsFixed
) {
2629 Result
= CC_PPC_SVR4(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
,
2632 Result
= CC_PPC_SVR4_VarArg(i
, ArgVT
, ArgVT
, CCValAssign::Full
,
2638 errs() << "Call operand #" << i
<< " has unhandled type "
2639 << ArgVT
.getEVTString() << "\n";
2641 llvm_unreachable(0);
2645 // All arguments are treated the same.
2646 CCInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4
);
2649 // Assign locations to all of the outgoing aggregate by value arguments.
2650 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
2651 CCState
CCByValInfo(CallConv
, isVarArg
, getTargetMachine(), ByValArgLocs
,
2654 // Reserve stack space for the allocations in CCInfo.
2655 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
2657 CCByValInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4_ByVal
);
2659 // Size of the linkage area, parameter list area and the part of the local
2660 // space variable where copies of aggregates which are passed by value are
2662 unsigned NumBytes
= CCByValInfo
.getNextStackOffset();
2664 // Calculate by how many bytes the stack has to be adjusted in case of tail
2665 // call optimization.
2666 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
2668 // Adjust the stack pointer for the new arguments...
2669 // These operations are automatically eliminated by the prolog/epilog pass
2670 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
2671 SDValue CallSeqStart
= Chain
;
2673 // Load the return address and frame pointer so it can be moved somewhere else
2676 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, false,
2679 // Set up a copy of the stack pointer for use loading and storing any
2680 // arguments that may not fit in the registers available for argument
2682 SDValue StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2684 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
2685 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
2686 SmallVector
<SDValue
, 8> MemOpChains
;
2688 // Walk the register/memloc assignments, inserting copies/loads.
2689 for (unsigned i
= 0, j
= 0, e
= ArgLocs
.size();
2692 CCValAssign
&VA
= ArgLocs
[i
];
2693 SDValue Arg
= Outs
[i
].Val
;
2694 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2696 if (Flags
.isByVal()) {
2697 // Argument is an aggregate which is passed by value, thus we need to
2698 // create a copy of it in the local variable space of the current stack
2699 // frame (which is the stack frame of the caller) and pass the address of
2700 // this copy to the callee.
2701 assert((j
< ByValArgLocs
.size()) && "Index out of bounds!");
2702 CCValAssign
&ByValVA
= ByValArgLocs
[j
++];
2703 assert((VA
.getValNo() == ByValVA
.getValNo()) && "ValNo mismatch!");
2705 // Memory reserved in the local variable space of the callers stack frame.
2706 unsigned LocMemOffset
= ByValVA
.getLocMemOffset();
2708 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2709 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2711 // Create a copy of the argument in the local area of the current
2713 SDValue MemcpyCall
=
2714 CreateCopyOfByValArgument(Arg
, PtrOff
,
2715 CallSeqStart
.getNode()->getOperand(0),
2718 // This must go outside the CALLSEQ_START..END.
2719 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
2720 CallSeqStart
.getNode()->getOperand(1));
2721 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
2722 NewCallSeqStart
.getNode());
2723 Chain
= CallSeqStart
= NewCallSeqStart
;
2725 // Pass the address of the aggregate copy on the stack either in a
2726 // physical register or in the parameter list area of the current stack
2727 // frame to the callee.
2731 if (VA
.isRegLoc()) {
2732 // Put argument in a physical register.
2733 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2735 // Put argument in the parameter list area of the current stack frame.
2736 assert(VA
.isMemLoc());
2737 unsigned LocMemOffset
= VA
.getLocMemOffset();
2740 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2741 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2743 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
2744 PseudoSourceValue::getStack(), LocMemOffset
));
2746 // Calculate and remember argument location.
2747 CalculateTailCallArgDest(DAG
, MF
, false, Arg
, SPDiff
, LocMemOffset
,
2753 if (!MemOpChains
.empty())
2754 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2755 &MemOpChains
[0], MemOpChains
.size());
2757 // Build a sequence of copy-to-reg nodes chained together with token chain
2758 // and flag operands which copy the outgoing args into the appropriate regs.
2760 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2761 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2762 RegsToPass
[i
].second
, InFlag
);
2763 InFlag
= Chain
.getValue(1);
2766 // Set CR6 to true if this is a vararg call.
2768 SDValue
SetCR(DAG
.getTargetNode(PPC::CRSET
, dl
, MVT::i32
), 0);
2769 Chain
= DAG
.getCopyToReg(Chain
, dl
, PPC::CR1EQ
, SetCR
, InFlag
);
2770 InFlag
= Chain
.getValue(1);
2774 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, false, SPDiff
, NumBytes
, LROp
, FPOp
,
2775 false, TailCallArguments
);
2778 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
2779 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
2784 PPCTargetLowering::LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
2785 CallingConv::ID CallConv
, bool isVarArg
,
2787 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2788 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2789 DebugLoc dl
, SelectionDAG
&DAG
,
2790 SmallVectorImpl
<SDValue
> &InVals
) {
2792 unsigned NumOps
= Outs
.size();
2794 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2795 bool isPPC64
= PtrVT
== MVT::i64
;
2796 unsigned PtrByteSize
= isPPC64
? 8 : 4;
2798 MachineFunction
&MF
= DAG
.getMachineFunction();
2800 // Mark this function as potentially containing a function that contains a
2801 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2802 // and restoring the callers stack pointer in this functions epilog. This is
2803 // done because by tail calling the called function might overwrite the value
2804 // in this function's (MF) stack pointer stack slot 0(SP).
2805 if (PerformTailCallOpt
&& CallConv
==CallingConv::Fast
)
2806 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
2808 unsigned nAltivecParamsAtEnd
= 0;
2810 // Count how many bytes are to be pushed on the stack, including the linkage
2811 // area, and parameter passing area. We start with 24/48 bytes, which is
2812 // prereserved space for [SP][CR][LR][3 x unused].
2814 CalculateParameterAndLinkageAreaSize(DAG
, isPPC64
, isVarArg
, CallConv
,
2816 nAltivecParamsAtEnd
);
2818 // Calculate by how many bytes the stack has to be adjusted in case of tail
2819 // call optimization.
2820 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
2822 // To protect arguments on the stack from being clobbered in a tail call,
2823 // force all the loads to happen before doing any other lowering.
2825 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
2827 // Adjust the stack pointer for the new arguments...
2828 // These operations are automatically eliminated by the prolog/epilog pass
2829 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
2830 SDValue CallSeqStart
= Chain
;
2832 // Load the return address and frame pointer so it can be move somewhere else
2835 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, true,
2838 // Set up a copy of the stack pointer for use loading and storing any
2839 // arguments that may not fit in the registers available for argument
2843 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
2845 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2847 // Figure out which arguments are going to go in registers, and which in
2848 // memory. Also, if this is a vararg function, floating point operations
2849 // must be stored to our stack, and loaded into integer regs as well, if
2850 // any integer regs are available for argument passing.
2851 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, true);
2852 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
2854 static const unsigned GPR_32
[] = { // 32-bit registers.
2855 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
2856 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
2858 static const unsigned GPR_64
[] = { // 64-bit registers.
2859 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
2860 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
2862 static const unsigned *FPR
= GetFPR();
2864 static const unsigned VR
[] = {
2865 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
2866 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
2868 const unsigned NumGPRs
= array_lengthof(GPR_32
);
2869 const unsigned NumFPRs
= 13;
2870 const unsigned NumVRs
= array_lengthof(VR
);
2872 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
2874 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
2875 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
2877 SmallVector
<SDValue
, 8> MemOpChains
;
2878 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2879 SDValue Arg
= Outs
[i
].Val
;
2880 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2882 // PtrOff will be used to store the current argument to the stack if a
2883 // register cannot be found for it.
2886 PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
2888 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
2890 // On PPC64, promote integers to 64-bit values.
2891 if (isPPC64
&& Arg
.getValueType() == MVT::i32
) {
2892 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2893 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2894 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
2897 // FIXME memcpy is used way more than necessary. Correctness first.
2898 if (Flags
.isByVal()) {
2899 unsigned Size
= Flags
.getByValSize();
2900 if (Size
==1 || Size
==2) {
2901 // Very small objects are passed right-justified.
2902 // Everything else is passed left-justified.
2903 EVT VT
= (Size
==1) ? MVT::i8
: MVT::i16
;
2904 if (GPR_idx
!= NumGPRs
) {
2905 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, PtrVT
, Chain
, Arg
,
2907 MemOpChains
.push_back(Load
.getValue(1));
2908 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
2910 ArgOffset
+= PtrByteSize
;
2912 SDValue Const
= DAG
.getConstant(4 - Size
, PtrOff
.getValueType());
2913 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
2914 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, AddPtr
,
2915 CallSeqStart
.getNode()->getOperand(0),
2917 // This must go outside the CALLSEQ_START..END.
2918 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
2919 CallSeqStart
.getNode()->getOperand(1));
2920 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
2921 NewCallSeqStart
.getNode());
2922 Chain
= CallSeqStart
= NewCallSeqStart
;
2923 ArgOffset
+= PtrByteSize
;
2927 // Copy entire object into memory. There are cases where gcc-generated
2928 // code assumes it is there, even if it could be put entirely into
2929 // registers. (This is not what the doc says.)
2930 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, PtrOff
,
2931 CallSeqStart
.getNode()->getOperand(0),
2933 // This must go outside the CALLSEQ_START..END.
2934 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
2935 CallSeqStart
.getNode()->getOperand(1));
2936 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(), NewCallSeqStart
.getNode());
2937 Chain
= CallSeqStart
= NewCallSeqStart
;
2938 // And copy the pieces of it that fit into registers.
2939 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
2940 SDValue Const
= DAG
.getConstant(j
, PtrOff
.getValueType());
2941 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2942 if (GPR_idx
!= NumGPRs
) {
2943 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
, NULL
, 0);
2944 MemOpChains
.push_back(Load
.getValue(1));
2945 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
2946 ArgOffset
+= PtrByteSize
;
2948 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
2955 switch (Arg
.getValueType().getSimpleVT().SimpleTy
) {
2956 default: llvm_unreachable("Unexpected ValueType for argument!");
2959 if (GPR_idx
!= NumGPRs
) {
2960 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
2962 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
2963 isPPC64
, isTailCall
, false, MemOpChains
,
2964 TailCallArguments
, dl
);
2966 ArgOffset
+= PtrByteSize
;
2970 if (FPR_idx
!= NumFPRs
) {
2971 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
2974 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, NULL
, 0);
2975 MemOpChains
.push_back(Store
);
2977 // Float varargs are always shadowed in available integer registers
2978 if (GPR_idx
!= NumGPRs
) {
2979 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
, NULL
, 0);
2980 MemOpChains
.push_back(Load
.getValue(1));
2981 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
2983 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&& !isPPC64
){
2984 SDValue ConstFour
= DAG
.getConstant(4, PtrOff
.getValueType());
2985 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
2986 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
, NULL
, 0);
2987 MemOpChains
.push_back(Load
.getValue(1));
2988 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
2991 // If we have any FPRs remaining, we may also have GPRs remaining.
2992 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2994 if (GPR_idx
!= NumGPRs
)
2996 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&&
2997 !isPPC64
) // PPC64 has 64-bit GPR's obviously :)
3001 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3002 isPPC64
, isTailCall
, false, MemOpChains
,
3003 TailCallArguments
, dl
);
3008 ArgOffset
+= Arg
.getValueType() == MVT::f32
? 4 : 8;
3015 // These go aligned on the stack, or in the corresponding R registers
3016 // when within range. The Darwin PPC ABI doc claims they also go in
3017 // V registers; in fact gcc does this only for arguments that are
3018 // prototyped, not for those that match the ... We do it for all
3019 // arguments, seems to work.
3020 while (ArgOffset
% 16 !=0) {
3021 ArgOffset
+= PtrByteSize
;
3022 if (GPR_idx
!= NumGPRs
)
3025 // We could elide this store in the case where the object fits
3026 // entirely in R registers. Maybe later.
3027 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
3028 DAG
.getConstant(ArgOffset
, PtrVT
));
3029 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, NULL
, 0);
3030 MemOpChains
.push_back(Store
);
3031 if (VR_idx
!= NumVRs
) {
3032 SDValue Load
= DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
, NULL
, 0);
3033 MemOpChains
.push_back(Load
.getValue(1));
3034 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
3037 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
3038 if (GPR_idx
== NumGPRs
)
3040 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
3041 DAG
.getConstant(i
, PtrVT
));
3042 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, NULL
, 0);
3043 MemOpChains
.push_back(Load
.getValue(1));
3044 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3049 // Non-varargs Altivec params generally go in registers, but have
3050 // stack space allocated at the end.
3051 if (VR_idx
!= NumVRs
) {
3052 // Doesn't have GPR space allocated.
3053 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
3054 } else if (nAltivecParamsAtEnd
==0) {
3055 // We are emitting Altivec params in order.
3056 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3057 isPPC64
, isTailCall
, true, MemOpChains
,
3058 TailCallArguments
, dl
);
3064 // If all Altivec parameters fit in registers, as they usually do,
3065 // they get stack space following the non-Altivec parameters. We
3066 // don't track this here because nobody below needs it.
3067 // If there are more Altivec parameters than fit in registers emit
3069 if (!isVarArg
&& nAltivecParamsAtEnd
> NumVRs
) {
3071 // Offset is aligned; skip 1st 12 params which go in V registers.
3072 ArgOffset
= ((ArgOffset
+15)/16)*16;
3074 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3075 SDValue Arg
= Outs
[i
].Val
;
3076 EVT ArgType
= Arg
.getValueType();
3077 if (ArgType
==MVT::v4f32
|| ArgType
==MVT::v4i32
||
3078 ArgType
==MVT::v8i16
|| ArgType
==MVT::v16i8
) {
3081 // We are emitting Altivec params in order.
3082 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3083 isPPC64
, isTailCall
, true, MemOpChains
,
3084 TailCallArguments
, dl
);
3091 if (!MemOpChains
.empty())
3092 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3093 &MemOpChains
[0], MemOpChains
.size());
3095 // Build a sequence of copy-to-reg nodes chained together with token chain
3096 // and flag operands which copy the outgoing args into the appropriate regs.
3098 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
3099 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
3100 RegsToPass
[i
].second
, InFlag
);
3101 InFlag
= Chain
.getValue(1);
3105 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, isPPC64
, SPDiff
, NumBytes
, LROp
,
3106 FPOp
, true, TailCallArguments
);
3109 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
3110 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
3115 PPCTargetLowering::LowerReturn(SDValue Chain
,
3116 CallingConv::ID CallConv
, bool isVarArg
,
3117 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3118 DebugLoc dl
, SelectionDAG
&DAG
) {
3120 SmallVector
<CCValAssign
, 16> RVLocs
;
3121 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
3122 RVLocs
, *DAG
.getContext());
3123 CCInfo
.AnalyzeReturn(Outs
, RetCC_PPC
);
3125 // If this is the first return lowered for this function, add the regs to the
3126 // liveout set for the function.
3127 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
3128 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
3129 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
3134 // Copy the result values into the output registers.
3135 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3136 CCValAssign
&VA
= RVLocs
[i
];
3137 assert(VA
.isRegLoc() && "Can only return in registers!");
3138 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3140 Flag
= Chain
.getValue(1);
3144 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
, Flag
);
3146 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
);
3149 SDValue
PPCTargetLowering::LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
,
3150 const PPCSubtarget
&Subtarget
) {
3151 // When we pop the dynamic allocation we need to restore the SP link.
3152 DebugLoc dl
= Op
.getDebugLoc();
3154 // Get the corect type for pointers.
3155 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3157 // Construct the stack pointer operand.
3158 bool IsPPC64
= Subtarget
.isPPC64();
3159 unsigned SP
= IsPPC64
? PPC::X1
: PPC::R1
;
3160 SDValue StackPtr
= DAG
.getRegister(SP
, PtrVT
);
3162 // Get the operands for the STACKRESTORE.
3163 SDValue Chain
= Op
.getOperand(0);
3164 SDValue SaveSP
= Op
.getOperand(1);
3166 // Load the old link SP.
3167 SDValue LoadLinkSP
= DAG
.getLoad(PtrVT
, dl
, Chain
, StackPtr
, NULL
, 0);
3169 // Restore the stack pointer.
3170 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), dl
, SP
, SaveSP
);
3172 // Store the old link SP.
3173 return DAG
.getStore(Chain
, dl
, LoadLinkSP
, StackPtr
, NULL
, 0);
3179 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG
& DAG
) const {
3180 MachineFunction
&MF
= DAG
.getMachineFunction();
3181 bool IsPPC64
= PPCSubTarget
.isPPC64();
3182 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3183 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3185 // Get current frame pointer save index. The users of this index will be
3186 // primarily DYNALLOC instructions.
3187 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3188 int RASI
= FI
->getReturnAddrSaveIndex();
3190 // If the frame pointer save index hasn't been defined yet.
3192 // Find out what the fix offset of the frame pointer save area.
3193 int LROffset
= PPCFrameInfo::getReturnSaveOffset(IsPPC64
, isDarwinABI
);
3194 // Allocate the frame index for frame pointer save area.
3195 RASI
= MF
.getFrameInfo()->CreateFixedObject(IsPPC64
? 8 : 4, LROffset
);
3197 FI
->setReturnAddrSaveIndex(RASI
);
3199 return DAG
.getFrameIndex(RASI
, PtrVT
);
3203 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG
& DAG
) const {
3204 MachineFunction
&MF
= DAG
.getMachineFunction();
3205 bool IsPPC64
= PPCSubTarget
.isPPC64();
3206 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3207 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3209 // Get current frame pointer save index. The users of this index will be
3210 // primarily DYNALLOC instructions.
3211 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3212 int FPSI
= FI
->getFramePointerSaveIndex();
3214 // If the frame pointer save index hasn't been defined yet.
3216 // Find out what the fix offset of the frame pointer save area.
3217 int FPOffset
= PPCFrameInfo::getFramePointerSaveOffset(IsPPC64
,
3220 // Allocate the frame index for frame pointer save area.
3221 FPSI
= MF
.getFrameInfo()->CreateFixedObject(IsPPC64
? 8 : 4, FPOffset
);
3223 FI
->setFramePointerSaveIndex(FPSI
);
3225 return DAG
.getFrameIndex(FPSI
, PtrVT
);
3228 SDValue
PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
3230 const PPCSubtarget
&Subtarget
) {
3232 SDValue Chain
= Op
.getOperand(0);
3233 SDValue Size
= Op
.getOperand(1);
3234 DebugLoc dl
= Op
.getDebugLoc();
3236 // Get the corect type for pointers.
3237 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3239 SDValue NegSize
= DAG
.getNode(ISD::SUB
, dl
, PtrVT
,
3240 DAG
.getConstant(0, PtrVT
), Size
);
3241 // Construct a node for the frame pointer save index.
3242 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
3243 // Build a DYNALLOC node.
3244 SDValue Ops
[3] = { Chain
, NegSize
, FPSIdx
};
3245 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
3246 return DAG
.getNode(PPCISD::DYNALLOC
, dl
, VTs
, Ops
, 3);
3249 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3251 SDValue
PPCTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) {
3252 // Not FP? Not a fsel.
3253 if (!Op
.getOperand(0).getValueType().isFloatingPoint() ||
3254 !Op
.getOperand(2).getValueType().isFloatingPoint())
3257 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
3259 // Cannot handle SETEQ/SETNE.
3260 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) return Op
;
3262 EVT ResVT
= Op
.getValueType();
3263 EVT CmpVT
= Op
.getOperand(0).getValueType();
3264 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
3265 SDValue TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
3266 DebugLoc dl
= Op
.getDebugLoc();
3268 // If the RHS of the comparison is a 0.0, we don't need to do the
3269 // subtraction at all.
3270 if (isFloatingPointZero(RHS
))
3272 default: break; // SETUO etc aren't handled by fsel.
3275 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3278 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3279 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3280 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
3283 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3286 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3287 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3288 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
3289 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), TV
, FV
);
3294 default: break; // SETUO etc aren't handled by fsel.
3297 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3298 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3299 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3300 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3303 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3304 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3305 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3306 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3309 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3310 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3311 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3312 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3315 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3316 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3317 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3318 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3323 // FIXME: Split this code up when LegalizeDAGTypes lands.
3324 SDValue
PPCTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
3326 assert(Op
.getOperand(0).getValueType().isFloatingPoint());
3327 SDValue Src
= Op
.getOperand(0);
3328 if (Src
.getValueType() == MVT::f32
)
3329 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
3332 switch (Op
.getValueType().getSimpleVT().SimpleTy
) {
3333 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3335 Tmp
= DAG
.getNode(Op
.getOpcode()==ISD::FP_TO_SINT
? PPCISD::FCTIWZ
:
3340 Tmp
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Src
);
3344 // Convert the FP value to an int value through memory.
3345 SDValue FIPtr
= DAG
.CreateStackTemporary(MVT::f64
);
3347 // Emit a store to the stack slot.
3348 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp
, FIPtr
, NULL
, 0);
3350 // Result is a load from the stack slot. If loading 4 bytes, make sure to
3352 if (Op
.getValueType() == MVT::i32
)
3353 FIPtr
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
,
3354 DAG
.getConstant(4, FIPtr
.getValueType()));
3355 return DAG
.getLoad(Op
.getValueType(), dl
, Chain
, FIPtr
, NULL
, 0);
3358 SDValue
PPCTargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
3359 DebugLoc dl
= Op
.getDebugLoc();
3360 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3361 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
3364 if (Op
.getOperand(0).getValueType() == MVT::i64
) {
3365 SDValue Bits
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3366 MVT::f64
, Op
.getOperand(0));
3367 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Bits
);
3368 if (Op
.getValueType() == MVT::f32
)
3369 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
3370 MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3374 assert(Op
.getOperand(0).getValueType() == MVT::i32
&&
3375 "Unhandled SINT_TO_FP type in custom expander!");
3376 // Since we only generate this in 64-bit mode, we can take advantage of
3377 // 64-bit registers. In particular, sign extend the input value into the
3378 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3379 // then lfd it and fcfid it.
3380 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
3381 int FrameIdx
= FrameInfo
->CreateStackObject(8, 8);
3382 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3383 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3385 SDValue Ext64
= DAG
.getNode(PPCISD::EXTSW_32
, dl
, MVT::i32
,
3388 // STD the extended value into the stack slot.
3389 MachineMemOperand
MO(PseudoSourceValue::getFixedStack(FrameIdx
),
3390 MachineMemOperand::MOStore
, 0, 8, 8);
3391 SDValue Store
= DAG
.getNode(PPCISD::STD_32
, dl
, MVT::Other
,
3392 DAG
.getEntryNode(), Ext64
, FIdx
,
3393 DAG
.getMemOperand(MO
));
3394 // Load the value as a double.
3395 SDValue Ld
= DAG
.getLoad(MVT::f64
, dl
, Store
, FIdx
, NULL
, 0);
3397 // FCFID it and return it.
3398 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Ld
);
3399 if (Op
.getValueType() == MVT::f32
)
3400 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3404 SDValue
PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
3405 DebugLoc dl
= Op
.getDebugLoc();
3407 The rounding mode is in bits 30:31 of FPSR, and has the following
3414 FLT_ROUNDS, on the other hand, expects the following:
3421 To perform the conversion, we do:
3422 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3425 MachineFunction
&MF
= DAG
.getMachineFunction();
3426 EVT VT
= Op
.getValueType();
3427 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3428 std::vector
<EVT
> NodeTys
;
3429 SDValue MFFSreg
, InFlag
;
3431 // Save FP Control Word to register
3432 NodeTys
.push_back(MVT::f64
); // return register
3433 NodeTys
.push_back(MVT::Flag
); // unused in this context
3434 SDValue Chain
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
3436 // Save FP register to stack slot
3437 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
3438 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, PtrVT
);
3439 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Chain
,
3440 StackSlot
, NULL
, 0);
3442 // Load FP Control Word from low 32 bits of stack slot.
3443 SDValue Four
= DAG
.getConstant(4, PtrVT
);
3444 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackSlot
, Four
);
3445 SDValue CWD
= DAG
.getLoad(MVT::i32
, dl
, Store
, Addr
, NULL
, 0);
3447 // Transform as necessary
3449 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3450 CWD
, DAG
.getConstant(3, MVT::i32
));
3452 DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
3453 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3454 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
,
3455 CWD
, DAG
.getConstant(3, MVT::i32
)),
3456 DAG
.getConstant(3, MVT::i32
)),
3457 DAG
.getConstant(1, MVT::i32
));
3460 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, CWD1
, CWD2
);
3462 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
3463 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
3466 SDValue
PPCTargetLowering::LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) {
3467 EVT VT
= Op
.getValueType();
3468 unsigned BitWidth
= VT
.getSizeInBits();
3469 DebugLoc dl
= Op
.getDebugLoc();
3470 assert(Op
.getNumOperands() == 3 &&
3471 VT
== Op
.getOperand(1).getValueType() &&
3474 // Expand into a bunch of logical ops. Note that these ops
3475 // depend on the PPC behavior for oversized shift amounts.
3476 SDValue Lo
= Op
.getOperand(0);
3477 SDValue Hi
= Op
.getOperand(1);
3478 SDValue Amt
= Op
.getOperand(2);
3479 EVT AmtVT
= Amt
.getValueType();
3481 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3482 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3483 SDValue Tmp2
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Amt
);
3484 SDValue Tmp3
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Tmp1
);
3485 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3486 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3487 DAG
.getConstant(-BitWidth
, AmtVT
));
3488 SDValue Tmp6
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Tmp5
);
3489 SDValue OutHi
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3490 SDValue OutLo
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Amt
);
3491 SDValue OutOps
[] = { OutLo
, OutHi
};
3492 return DAG
.getMergeValues(OutOps
, 2, dl
);
3495 SDValue
PPCTargetLowering::LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) {
3496 EVT VT
= Op
.getValueType();
3497 DebugLoc dl
= Op
.getDebugLoc();
3498 unsigned BitWidth
= VT
.getSizeInBits();
3499 assert(Op
.getNumOperands() == 3 &&
3500 VT
== Op
.getOperand(1).getValueType() &&
3503 // Expand into a bunch of logical ops. Note that these ops
3504 // depend on the PPC behavior for oversized shift amounts.
3505 SDValue Lo
= Op
.getOperand(0);
3506 SDValue Hi
= Op
.getOperand(1);
3507 SDValue Amt
= Op
.getOperand(2);
3508 EVT AmtVT
= Amt
.getValueType();
3510 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3511 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3512 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3513 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3514 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3515 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3516 DAG
.getConstant(-BitWidth
, AmtVT
));
3517 SDValue Tmp6
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Tmp5
);
3518 SDValue OutLo
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3519 SDValue OutHi
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Amt
);
3520 SDValue OutOps
[] = { OutLo
, OutHi
};
3521 return DAG
.getMergeValues(OutOps
, 2, dl
);
3524 SDValue
PPCTargetLowering::LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) {
3525 DebugLoc dl
= Op
.getDebugLoc();
3526 EVT VT
= Op
.getValueType();
3527 unsigned BitWidth
= VT
.getSizeInBits();
3528 assert(Op
.getNumOperands() == 3 &&
3529 VT
== Op
.getOperand(1).getValueType() &&
3532 // Expand into a bunch of logical ops, followed by a select_cc.
3533 SDValue Lo
= Op
.getOperand(0);
3534 SDValue Hi
= Op
.getOperand(1);
3535 SDValue Amt
= Op
.getOperand(2);
3536 EVT AmtVT
= Amt
.getValueType();
3538 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3539 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3540 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3541 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3542 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3543 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3544 DAG
.getConstant(-BitWidth
, AmtVT
));
3545 SDValue Tmp6
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Tmp5
);
3546 SDValue OutHi
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Amt
);
3547 SDValue OutLo
= DAG
.getSelectCC(dl
, Tmp5
, DAG
.getConstant(0, AmtVT
),
3548 Tmp4
, Tmp6
, ISD::SETLE
);
3549 SDValue OutOps
[] = { OutLo
, OutHi
};
3550 return DAG
.getMergeValues(OutOps
, 2, dl
);
3553 //===----------------------------------------------------------------------===//
3554 // Vector related lowering.
3557 /// BuildSplatI - Build a canonical splati of Val with an element size of
3558 /// SplatSize. Cast the result to VT.
3559 static SDValue
BuildSplatI(int Val
, unsigned SplatSize
, EVT VT
,
3560 SelectionDAG
&DAG
, DebugLoc dl
) {
3561 assert(Val
>= -16 && Val
<= 15 && "vsplti is out of range!");
3563 static const EVT VTys
[] = { // canonical VT to use for each size.
3564 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
3567 EVT ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
3569 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3573 EVT CanonicalVT
= VTys
[SplatSize
-1];
3575 // Build a canonical splat for this value.
3576 SDValue Elt
= DAG
.getConstant(Val
, MVT::i32
);
3577 SmallVector
<SDValue
, 8> Ops
;
3578 Ops
.assign(CanonicalVT
.getVectorNumElements(), Elt
);
3579 SDValue Res
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, CanonicalVT
,
3580 &Ops
[0], Ops
.size());
3581 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ReqVT
, Res
);
3584 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3585 /// specified intrinsic ID.
3586 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue LHS
, SDValue RHS
,
3587 SelectionDAG
&DAG
, DebugLoc dl
,
3588 EVT DestVT
= MVT::Other
) {
3589 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
3590 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3591 DAG
.getConstant(IID
, MVT::i32
), LHS
, RHS
);
3594 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3595 /// specified intrinsic ID.
3596 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op0
, SDValue Op1
,
3597 SDValue Op2
, SelectionDAG
&DAG
,
3598 DebugLoc dl
, EVT DestVT
= MVT::Other
) {
3599 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
3600 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3601 DAG
.getConstant(IID
, MVT::i32
), Op0
, Op1
, Op2
);
3605 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3606 /// amount. The result has the specified value type.
3607 static SDValue
BuildVSLDOI(SDValue LHS
, SDValue RHS
, unsigned Amt
,
3608 EVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
3609 // Force LHS/RHS to be the right type.
3610 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, LHS
);
3611 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, RHS
);
3614 for (unsigned i
= 0; i
!= 16; ++i
)
3616 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, LHS
, RHS
, Ops
);
3617 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, T
);
3620 // If this is a case we can't handle, return null and let the default
3621 // expansion code take care of it. If we CAN select this case, and if it
3622 // selects to a single instruction, return Op. Otherwise, if we can codegen
3623 // this case more efficiently than a constant pool load, lower it to the
3624 // sequence of ops that should be used.
3625 SDValue
PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3626 DebugLoc dl
= Op
.getDebugLoc();
3627 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
3628 assert(BVN
!= 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3630 // Check if this is a splat of a constant value.
3631 APInt APSplatBits
, APSplatUndef
;
3632 unsigned SplatBitSize
;
3634 if (! BVN
->isConstantSplat(APSplatBits
, APSplatUndef
, SplatBitSize
,
3635 HasAnyUndefs
) || SplatBitSize
> 32)
3638 unsigned SplatBits
= APSplatBits
.getZExtValue();
3639 unsigned SplatUndef
= APSplatUndef
.getZExtValue();
3640 unsigned SplatSize
= SplatBitSize
/ 8;
3642 // First, handle single instruction cases.
3645 if (SplatBits
== 0) {
3646 // Canonicalize all zero vectors to be v4i32.
3647 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
3648 SDValue Z
= DAG
.getConstant(0, MVT::i32
);
3649 Z
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Z
, Z
, Z
, Z
);
3650 Op
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Z
);
3655 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3656 int32_t SextVal
= (int32_t(SplatBits
<< (32-SplatBitSize
)) >>
3658 if (SextVal
>= -16 && SextVal
<= 15)
3659 return BuildSplatI(SextVal
, SplatSize
, Op
.getValueType(), DAG
, dl
);
3662 // Two instruction sequences.
3664 // If this value is in the range [-32,30] and is even, use:
3665 // tmp = VSPLTI[bhw], result = add tmp, tmp
3666 if (SextVal
>= -32 && SextVal
<= 30 && (SextVal
& 1) == 0) {
3667 SDValue Res
= BuildSplatI(SextVal
>> 1, SplatSize
, MVT::Other
, DAG
, dl
);
3668 Res
= DAG
.getNode(ISD::ADD
, dl
, Res
.getValueType(), Res
, Res
);
3669 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3672 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3673 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3675 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
3676 // Make -1 and vspltisw -1:
3677 SDValue OnesV
= BuildSplatI(-1, 4, MVT::v4i32
, DAG
, dl
);
3679 // Make the VSLW intrinsic, computing 0x8000_0000.
3680 SDValue Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
3683 // xor by OnesV to invert it.
3684 Res
= DAG
.getNode(ISD::XOR
, dl
, MVT::v4i32
, Res
, OnesV
);
3685 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3688 // Check to see if this is a wide variety of vsplti*, binop self cases.
3689 static const signed char SplatCsts
[] = {
3690 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3691 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3694 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
3695 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3696 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
3697 int i
= SplatCsts
[idx
];
3699 // Figure out what shift amount will be used by altivec if shifted by i in
3701 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
3703 // vsplti + shl self.
3704 if (SextVal
== (i
<< (int)TypeShiftAmt
)) {
3705 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3706 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3707 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
3708 Intrinsic::ppc_altivec_vslw
3710 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3711 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3714 // vsplti + srl self.
3715 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
3716 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3717 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3718 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
3719 Intrinsic::ppc_altivec_vsrw
3721 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3722 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3725 // vsplti + sra self.
3726 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
3727 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3728 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3729 Intrinsic::ppc_altivec_vsrab
, Intrinsic::ppc_altivec_vsrah
, 0,
3730 Intrinsic::ppc_altivec_vsraw
3732 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3733 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3736 // vsplti + rol self.
3737 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
3738 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
3739 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
3740 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
3741 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
3742 Intrinsic::ppc_altivec_vrlw
3744 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
3745 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Res
);
3748 // t = vsplti c, result = vsldoi t, t, 1
3749 if (SextVal
== ((i
<< 8) | (i
>> (TypeShiftAmt
-8)))) {
3750 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3751 return BuildVSLDOI(T
, T
, 1, Op
.getValueType(), DAG
, dl
);
3753 // t = vsplti c, result = vsldoi t, t, 2
3754 if (SextVal
== ((i
<< 16) | (i
>> (TypeShiftAmt
-16)))) {
3755 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3756 return BuildVSLDOI(T
, T
, 2, Op
.getValueType(), DAG
, dl
);
3758 // t = vsplti c, result = vsldoi t, t, 3
3759 if (SextVal
== ((i
<< 24) | (i
>> (TypeShiftAmt
-24)))) {
3760 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
3761 return BuildVSLDOI(T
, T
, 3, Op
.getValueType(), DAG
, dl
);
3765 // Three instruction sequences.
3767 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
3768 if (SextVal
>= 0 && SextVal
<= 31) {
3769 SDValue LHS
= BuildSplatI(SextVal
-16, SplatSize
, MVT::Other
, DAG
, dl
);
3770 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
3771 LHS
= DAG
.getNode(ISD::SUB
, dl
, LHS
.getValueType(), LHS
, RHS
);
3772 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), LHS
);
3774 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
3775 if (SextVal
>= -31 && SextVal
<= 0) {
3776 SDValue LHS
= BuildSplatI(SextVal
+16, SplatSize
, MVT::Other
, DAG
, dl
);
3777 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
3778 LHS
= DAG
.getNode(ISD::ADD
, dl
, LHS
.getValueType(), LHS
, RHS
);
3779 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), LHS
);
3785 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3786 /// the specified operations to build the shuffle.
3787 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
3788 SDValue RHS
, SelectionDAG
&DAG
,
3790 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
3791 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
3792 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
3795 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3807 if (OpNum
== OP_COPY
) {
3808 if (LHSID
== (1*9+2)*9+3) return LHS
;
3809 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3813 SDValue OpLHS
, OpRHS
;
3814 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
3815 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
3819 default: llvm_unreachable("Unknown i32 permute!");
3821 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
3822 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
3823 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
3824 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
3827 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
3828 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
3829 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
3830 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
3833 for (unsigned i
= 0; i
!= 16; ++i
)
3834 ShufIdxs
[i
] = (i
&3)+0;
3837 for (unsigned i
= 0; i
!= 16; ++i
)
3838 ShufIdxs
[i
] = (i
&3)+4;
3841 for (unsigned i
= 0; i
!= 16; ++i
)
3842 ShufIdxs
[i
] = (i
&3)+8;
3845 for (unsigned i
= 0; i
!= 16; ++i
)
3846 ShufIdxs
[i
] = (i
&3)+12;
3849 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
, dl
);
3851 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
, dl
);
3853 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
, dl
);
3855 EVT VT
= OpLHS
.getValueType();
3856 OpLHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OpLHS
);
3857 OpRHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OpRHS
);
3858 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, OpLHS
, OpRHS
, ShufIdxs
);
3859 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, T
);
3862 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
3863 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
3864 /// return the code it can be lowered into. Worst case, it can always be
3865 /// lowered into a vperm.
3866 SDValue
PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
3867 SelectionDAG
&DAG
) {
3868 DebugLoc dl
= Op
.getDebugLoc();
3869 SDValue V1
= Op
.getOperand(0);
3870 SDValue V2
= Op
.getOperand(1);
3871 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
3872 EVT VT
= Op
.getValueType();
3874 // Cases that are handled by instructions that take permute immediates
3875 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3876 // selected by the instruction selector.
3877 if (V2
.getOpcode() == ISD::UNDEF
) {
3878 if (PPC::isSplatShuffleMask(SVOp
, 1) ||
3879 PPC::isSplatShuffleMask(SVOp
, 2) ||
3880 PPC::isSplatShuffleMask(SVOp
, 4) ||
3881 PPC::isVPKUWUMShuffleMask(SVOp
, true) ||
3882 PPC::isVPKUHUMShuffleMask(SVOp
, true) ||
3883 PPC::isVSLDOIShuffleMask(SVOp
, true) != -1 ||
3884 PPC::isVMRGLShuffleMask(SVOp
, 1, true) ||
3885 PPC::isVMRGLShuffleMask(SVOp
, 2, true) ||
3886 PPC::isVMRGLShuffleMask(SVOp
, 4, true) ||
3887 PPC::isVMRGHShuffleMask(SVOp
, 1, true) ||
3888 PPC::isVMRGHShuffleMask(SVOp
, 2, true) ||
3889 PPC::isVMRGHShuffleMask(SVOp
, 4, true)) {
3894 // Altivec has a variety of "shuffle immediates" that take two vector inputs
3895 // and produce a fixed permutation. If any of these match, do not lower to
3897 if (PPC::isVPKUWUMShuffleMask(SVOp
, false) ||
3898 PPC::isVPKUHUMShuffleMask(SVOp
, false) ||
3899 PPC::isVSLDOIShuffleMask(SVOp
, false) != -1 ||
3900 PPC::isVMRGLShuffleMask(SVOp
, 1, false) ||
3901 PPC::isVMRGLShuffleMask(SVOp
, 2, false) ||
3902 PPC::isVMRGLShuffleMask(SVOp
, 4, false) ||
3903 PPC::isVMRGHShuffleMask(SVOp
, 1, false) ||
3904 PPC::isVMRGHShuffleMask(SVOp
, 2, false) ||
3905 PPC::isVMRGHShuffleMask(SVOp
, 4, false))
3908 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3909 // perfect shuffle table to emit an optimal matching sequence.
3910 SmallVector
<int, 16> PermMask
;
3911 SVOp
->getMask(PermMask
);
3913 unsigned PFIndexes
[4];
3914 bool isFourElementShuffle
= true;
3915 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
3916 unsigned EltNo
= 8; // Start out undef.
3917 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
3918 if (PermMask
[i
*4+j
] < 0)
3919 continue; // Undef, ignore it.
3921 unsigned ByteSource
= PermMask
[i
*4+j
];
3922 if ((ByteSource
& 3) != j
) {
3923 isFourElementShuffle
= false;
3928 EltNo
= ByteSource
/4;
3929 } else if (EltNo
!= ByteSource
/4) {
3930 isFourElementShuffle
= false;
3934 PFIndexes
[i
] = EltNo
;
3937 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3938 // perfect shuffle vector to determine if it is cost effective to do this as
3939 // discrete instructions, or whether we should use a vperm.
3940 if (isFourElementShuffle
) {
3941 // Compute the index in the perfect shuffle table.
3942 unsigned PFTableIndex
=
3943 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
3945 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
3946 unsigned Cost
= (PFEntry
>> 30);
3948 // Determining when to avoid vperm is tricky. Many things affect the cost
3949 // of vperm, particularly how many times the perm mask needs to be computed.
3950 // For example, if the perm mask can be hoisted out of a loop or is already
3951 // used (perhaps because there are multiple permutes with the same shuffle
3952 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3953 // the loop requires an extra register.
3955 // As a compromise, we only emit discrete instructions if the shuffle can be
3956 // generated in 3 or fewer operations. When we have loop information
3957 // available, if this block is within a loop, we should avoid using vperm
3958 // for 3-operation perms and use a constant pool load instead.
3960 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
3963 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3964 // vector that will get spilled to the constant pool.
3965 if (V2
.getOpcode() == ISD::UNDEF
) V2
= V1
;
3967 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3968 // that it is in input element units, not in bytes. Convert now.
3969 EVT EltVT
= V1
.getValueType().getVectorElementType();
3970 unsigned BytesPerElement
= EltVT
.getSizeInBits()/8;
3972 SmallVector
<SDValue
, 16> ResultMask
;
3973 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
3974 unsigned SrcElt
= PermMask
[i
] < 0 ? 0 : PermMask
[i
];
3976 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
3977 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+j
,
3981 SDValue VPermMask
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i8
,
3982 &ResultMask
[0], ResultMask
.size());
3983 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(), V1
, V2
, VPermMask
);
3986 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3987 /// altivec comparison. If it is, return true and fill in Opc/isDot with
3988 /// information about the intrinsic.
3989 static bool getAltivecCompareInfo(SDValue Intrin
, int &CompareOpc
,
3991 unsigned IntrinsicID
=
3992 cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getZExtValue();
3995 switch (IntrinsicID
) {
3996 default: return false;
3997 // Comparison predicates.
3998 case Intrinsic::ppc_altivec_vcmpbfp_p
: CompareOpc
= 966; isDot
= 1; break;
3999 case Intrinsic::ppc_altivec_vcmpeqfp_p
: CompareOpc
= 198; isDot
= 1; break;
4000 case Intrinsic::ppc_altivec_vcmpequb_p
: CompareOpc
= 6; isDot
= 1; break;
4001 case Intrinsic::ppc_altivec_vcmpequh_p
: CompareOpc
= 70; isDot
= 1; break;
4002 case Intrinsic::ppc_altivec_vcmpequw_p
: CompareOpc
= 134; isDot
= 1; break;
4003 case Intrinsic::ppc_altivec_vcmpgefp_p
: CompareOpc
= 454; isDot
= 1; break;
4004 case Intrinsic::ppc_altivec_vcmpgtfp_p
: CompareOpc
= 710; isDot
= 1; break;
4005 case Intrinsic::ppc_altivec_vcmpgtsb_p
: CompareOpc
= 774; isDot
= 1; break;
4006 case Intrinsic::ppc_altivec_vcmpgtsh_p
: CompareOpc
= 838; isDot
= 1; break;
4007 case Intrinsic::ppc_altivec_vcmpgtsw_p
: CompareOpc
= 902; isDot
= 1; break;
4008 case Intrinsic::ppc_altivec_vcmpgtub_p
: CompareOpc
= 518; isDot
= 1; break;
4009 case Intrinsic::ppc_altivec_vcmpgtuh_p
: CompareOpc
= 582; isDot
= 1; break;
4010 case Intrinsic::ppc_altivec_vcmpgtuw_p
: CompareOpc
= 646; isDot
= 1; break;
4012 // Normal Comparisons.
4013 case Intrinsic::ppc_altivec_vcmpbfp
: CompareOpc
= 966; isDot
= 0; break;
4014 case Intrinsic::ppc_altivec_vcmpeqfp
: CompareOpc
= 198; isDot
= 0; break;
4015 case Intrinsic::ppc_altivec_vcmpequb
: CompareOpc
= 6; isDot
= 0; break;
4016 case Intrinsic::ppc_altivec_vcmpequh
: CompareOpc
= 70; isDot
= 0; break;
4017 case Intrinsic::ppc_altivec_vcmpequw
: CompareOpc
= 134; isDot
= 0; break;
4018 case Intrinsic::ppc_altivec_vcmpgefp
: CompareOpc
= 454; isDot
= 0; break;
4019 case Intrinsic::ppc_altivec_vcmpgtfp
: CompareOpc
= 710; isDot
= 0; break;
4020 case Intrinsic::ppc_altivec_vcmpgtsb
: CompareOpc
= 774; isDot
= 0; break;
4021 case Intrinsic::ppc_altivec_vcmpgtsh
: CompareOpc
= 838; isDot
= 0; break;
4022 case Intrinsic::ppc_altivec_vcmpgtsw
: CompareOpc
= 902; isDot
= 0; break;
4023 case Intrinsic::ppc_altivec_vcmpgtub
: CompareOpc
= 518; isDot
= 0; break;
4024 case Intrinsic::ppc_altivec_vcmpgtuh
: CompareOpc
= 582; isDot
= 0; break;
4025 case Intrinsic::ppc_altivec_vcmpgtuw
: CompareOpc
= 646; isDot
= 0; break;
4030 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4031 /// lower, do it, otherwise return null.
4032 SDValue
PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
4033 SelectionDAG
&DAG
) {
4034 // If this is a lowered altivec predicate compare, CompareOpc is set to the
4035 // opcode number of the comparison.
4036 DebugLoc dl
= Op
.getDebugLoc();
4039 if (!getAltivecCompareInfo(Op
, CompareOpc
, isDot
))
4040 return SDValue(); // Don't custom lower most intrinsics.
4042 // If this is a non-dot comparison, make the VCMP node and we are done.
4044 SDValue Tmp
= DAG
.getNode(PPCISD::VCMP
, dl
, Op
.getOperand(2).getValueType(),
4045 Op
.getOperand(1), Op
.getOperand(2),
4046 DAG
.getConstant(CompareOpc
, MVT::i32
));
4047 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Tmp
);
4050 // Create the PPCISD altivec 'dot' comparison node.
4052 Op
.getOperand(2), // LHS
4053 Op
.getOperand(3), // RHS
4054 DAG
.getConstant(CompareOpc
, MVT::i32
)
4056 std::vector
<EVT
> VTs
;
4057 VTs
.push_back(Op
.getOperand(2).getValueType());
4058 VTs
.push_back(MVT::Flag
);
4059 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
4061 // Now that we have the comparison, emit a copy from the CR to a GPR.
4062 // This is flagged to the above dot comparison.
4063 SDValue Flags
= DAG
.getNode(PPCISD::MFCR
, dl
, MVT::i32
,
4064 DAG
.getRegister(PPC::CR6
, MVT::i32
),
4065 CompNode
.getValue(1));
4067 // Unpack the result based on how the target uses it.
4068 unsigned BitNo
; // Bit # of CR6.
4069 bool InvertBit
; // Invert result?
4070 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue()) {
4071 default: // Can't happen, don't crash on invalid number though.
4072 case 0: // Return the value of the EQ bit of CR6.
4073 BitNo
= 0; InvertBit
= false;
4075 case 1: // Return the inverted value of the EQ bit of CR6.
4076 BitNo
= 0; InvertBit
= true;
4078 case 2: // Return the value of the LT bit of CR6.
4079 BitNo
= 2; InvertBit
= false;
4081 case 3: // Return the inverted value of the LT bit of CR6.
4082 BitNo
= 2; InvertBit
= true;
4086 // Shift the bit into the low position.
4087 Flags
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Flags
,
4088 DAG
.getConstant(8-(3-BitNo
), MVT::i32
));
4090 Flags
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Flags
,
4091 DAG
.getConstant(1, MVT::i32
));
4093 // If we are supposed to, toggle the bit.
4095 Flags
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Flags
,
4096 DAG
.getConstant(1, MVT::i32
));
4100 SDValue
PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
,
4101 SelectionDAG
&DAG
) {
4102 DebugLoc dl
= Op
.getDebugLoc();
4103 // Create a stack slot that is 16-byte aligned.
4104 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
4105 int FrameIdx
= FrameInfo
->CreateStackObject(16, 16);
4106 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
4107 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
4109 // Store the input value into Value#0 of the stack slot.
4110 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
,
4111 Op
.getOperand(0), FIdx
, NULL
, 0);
4113 return DAG
.getLoad(Op
.getValueType(), dl
, Store
, FIdx
, NULL
, 0);
4116 SDValue
PPCTargetLowering::LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
4117 DebugLoc dl
= Op
.getDebugLoc();
4118 if (Op
.getValueType() == MVT::v4i32
) {
4119 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4121 SDValue Zero
= BuildSplatI( 0, 1, MVT::v4i32
, DAG
, dl
);
4122 SDValue Neg16
= BuildSplatI(-16, 4, MVT::v4i32
, DAG
, dl
);//+16 as shift amt.
4124 SDValue RHSSwap
= // = vrlw RHS, 16
4125 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
, dl
);
4127 // Shrinkify inputs to v8i16.
4128 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, LHS
);
4129 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, RHS
);
4130 RHSSwap
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, RHSSwap
);
4132 // Low parts multiplied together, generating 32-bit results (we ignore the
4134 SDValue LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
4135 LHS
, RHS
, DAG
, dl
, MVT::v4i32
);
4137 SDValue HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
4138 LHS
, RHSSwap
, Zero
, DAG
, dl
, MVT::v4i32
);
4139 // Shift the high parts up 16 bits.
4140 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
,
4142 return DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, LoProd
, HiProd
);
4143 } else if (Op
.getValueType() == MVT::v8i16
) {
4144 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4146 SDValue Zero
= BuildSplatI(0, 1, MVT::v8i16
, DAG
, dl
);
4148 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm
,
4149 LHS
, RHS
, Zero
, DAG
, dl
);
4150 } else if (Op
.getValueType() == MVT::v16i8
) {
4151 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4153 // Multiply the even 8-bit parts, producing 16-bit sums.
4154 SDValue EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
4155 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4156 EvenParts
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, EvenParts
);
4158 // Multiply the odd 8-bit parts, producing 16-bit sums.
4159 SDValue OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
4160 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4161 OddParts
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, OddParts
);
4163 // Merge the results together.
4165 for (unsigned i
= 0; i
!= 8; ++i
) {
4167 Ops
[i
*2+1] = 2*i
+1+16;
4169 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, EvenParts
, OddParts
, Ops
);
4171 llvm_unreachable("Unknown mul to lower!");
4175 /// LowerOperation - Provide custom lowering hooks for some operations.
4177 SDValue
PPCTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
4178 switch (Op
.getOpcode()) {
4179 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4180 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
4181 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
4182 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
4183 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
4184 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
4185 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
4187 return LowerVASTART(Op
, DAG
, VarArgsFrameIndex
, VarArgsStackOffset
,
4188 VarArgsNumGPR
, VarArgsNumFPR
, PPCSubTarget
);
4191 return LowerVAARG(Op
, DAG
, VarArgsFrameIndex
, VarArgsStackOffset
,
4192 VarArgsNumGPR
, VarArgsNumFPR
, PPCSubTarget
);
4194 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
, PPCSubTarget
);
4195 case ISD::DYNAMIC_STACKALLOC
:
4196 return LowerDYNAMIC_STACKALLOC(Op
, DAG
, PPCSubTarget
);
4198 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
4199 case ISD::FP_TO_UINT
:
4200 case ISD::FP_TO_SINT
: return LowerFP_TO_INT(Op
, DAG
,
4202 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
4203 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
4205 // Lower 64-bit shifts.
4206 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
4207 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
4208 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
4210 // Vector-related lowering.
4211 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
4212 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
4213 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
4214 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
4215 case ISD::MUL
: return LowerMUL(Op
, DAG
);
4217 // Frame & Return address.
4218 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
4219 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
4224 void PPCTargetLowering::ReplaceNodeResults(SDNode
*N
,
4225 SmallVectorImpl
<SDValue
>&Results
,
4226 SelectionDAG
&DAG
) {
4227 DebugLoc dl
= N
->getDebugLoc();
4228 switch (N
->getOpcode()) {
4230 assert(false && "Do not know how to custom type legalize this operation!");
4232 case ISD::FP_ROUND_INREG
: {
4233 assert(N
->getValueType(0) == MVT::ppcf128
);
4234 assert(N
->getOperand(0).getValueType() == MVT::ppcf128
);
4235 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4236 MVT::f64
, N
->getOperand(0),
4237 DAG
.getIntPtrConstant(0));
4238 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4239 MVT::f64
, N
->getOperand(0),
4240 DAG
.getIntPtrConstant(1));
4242 // This sequence changes FPSCR to do round-to-zero, adds the two halves
4243 // of the long double, and puts FPSCR back the way it was. We do not
4244 // actually model FPSCR.
4245 std::vector
<EVT
> NodeTys
;
4246 SDValue Ops
[4], Result
, MFFSreg
, InFlag
, FPreg
;
4248 NodeTys
.push_back(MVT::f64
); // Return register
4249 NodeTys
.push_back(MVT::Flag
); // Returns a flag for later insns
4250 Result
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
4251 MFFSreg
= Result
.getValue(0);
4252 InFlag
= Result
.getValue(1);
4255 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4256 Ops
[0] = DAG
.getConstant(31, MVT::i32
);
4258 Result
= DAG
.getNode(PPCISD::MTFSB1
, dl
, NodeTys
, Ops
, 2);
4259 InFlag
= Result
.getValue(0);
4262 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4263 Ops
[0] = DAG
.getConstant(30, MVT::i32
);
4265 Result
= DAG
.getNode(PPCISD::MTFSB0
, dl
, NodeTys
, Ops
, 2);
4266 InFlag
= Result
.getValue(0);
4269 NodeTys
.push_back(MVT::f64
); // result of add
4270 NodeTys
.push_back(MVT::Flag
); // Returns a flag
4274 Result
= DAG
.getNode(PPCISD::FADDRTZ
, dl
, NodeTys
, Ops
, 3);
4275 FPreg
= Result
.getValue(0);
4276 InFlag
= Result
.getValue(1);
4279 NodeTys
.push_back(MVT::f64
);
4280 Ops
[0] = DAG
.getConstant(1, MVT::i32
);
4284 Result
= DAG
.getNode(PPCISD::MTFSF
, dl
, NodeTys
, Ops
, 4);
4285 FPreg
= Result
.getValue(0);
4287 // We know the low half is about to be thrown away, so just use something
4289 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::ppcf128
,
4293 case ISD::FP_TO_SINT
:
4294 Results
.push_back(LowerFP_TO_INT(SDValue(N
, 0), DAG
, dl
));
4300 //===----------------------------------------------------------------------===//
4301 // Other Lowering Code
4302 //===----------------------------------------------------------------------===//
4305 PPCTargetLowering::EmitAtomicBinary(MachineInstr
*MI
, MachineBasicBlock
*BB
,
4306 bool is64bit
, unsigned BinOpcode
) const {
4307 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4308 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4310 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4311 MachineFunction
*F
= BB
->getParent();
4312 MachineFunction::iterator It
= BB
;
4315 unsigned dest
= MI
->getOperand(0).getReg();
4316 unsigned ptrA
= MI
->getOperand(1).getReg();
4317 unsigned ptrB
= MI
->getOperand(2).getReg();
4318 unsigned incr
= MI
->getOperand(3).getReg();
4319 DebugLoc dl
= MI
->getDebugLoc();
4321 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4322 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4323 F
->insert(It
, loopMBB
);
4324 F
->insert(It
, exitMBB
);
4325 exitMBB
->transferSuccessors(BB
);
4327 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4328 unsigned TmpReg
= (!BinOpcode
) ? incr
:
4329 RegInfo
.createVirtualRegister(
4330 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4331 (const TargetRegisterClass
*) &PPC::GPRCRegClass
);
4335 // fallthrough --> loopMBB
4336 BB
->addSuccessor(loopMBB
);
4339 // l[wd]arx dest, ptr
4340 // add r0, dest, incr
4341 // st[wd]cx. r0, ptr
4343 // fallthrough --> exitMBB
4345 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4346 .addReg(ptrA
).addReg(ptrB
);
4348 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
).addReg(incr
).addReg(dest
);
4349 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4350 .addReg(TmpReg
).addReg(ptrA
).addReg(ptrB
);
4351 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4352 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4353 BB
->addSuccessor(loopMBB
);
4354 BB
->addSuccessor(exitMBB
);
4363 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr
*MI
,
4364 MachineBasicBlock
*BB
,
4365 bool is8bit
, // operation
4366 unsigned BinOpcode
) const {
4367 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4368 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4369 // In 64 bit mode we have to use 64 bits for addresses, even though the
4370 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
4371 // registers without caring whether they're 32 or 64, but here we're
4372 // doing actual arithmetic on the addresses.
4373 bool is64bit
= PPCSubTarget
.isPPC64();
4375 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4376 MachineFunction
*F
= BB
->getParent();
4377 MachineFunction::iterator It
= BB
;
4380 unsigned dest
= MI
->getOperand(0).getReg();
4381 unsigned ptrA
= MI
->getOperand(1).getReg();
4382 unsigned ptrB
= MI
->getOperand(2).getReg();
4383 unsigned incr
= MI
->getOperand(3).getReg();
4384 DebugLoc dl
= MI
->getDebugLoc();
4386 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4387 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4388 F
->insert(It
, loopMBB
);
4389 F
->insert(It
, exitMBB
);
4390 exitMBB
->transferSuccessors(BB
);
4392 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4393 const TargetRegisterClass
*RC
=
4394 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4395 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
4396 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
4397 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
4398 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
4399 unsigned Incr2Reg
= RegInfo
.createVirtualRegister(RC
);
4400 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
4401 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
4402 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
4403 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
4404 unsigned Tmp3Reg
= RegInfo
.createVirtualRegister(RC
);
4405 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
4406 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
4408 unsigned TmpReg
= (!BinOpcode
) ? Incr2Reg
: RegInfo
.createVirtualRegister(RC
);
4412 // fallthrough --> loopMBB
4413 BB
->addSuccessor(loopMBB
);
4415 // The 4-byte load must be aligned, while a char or short may be
4416 // anywhere in the word. Hence all this nasty bookkeeping code.
4417 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4418 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4419 // xori shift, shift1, 24 [16]
4420 // rlwinm ptr, ptr1, 0, 0, 29
4421 // slw incr2, incr, shift
4422 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4423 // slw mask, mask2, shift
4425 // lwarx tmpDest, ptr
4426 // add tmp, tmpDest, incr2
4427 // andc tmp2, tmpDest, mask
4428 // and tmp3, tmp, mask
4429 // or tmp4, tmp3, tmp2
4432 // fallthrough --> exitMBB
4433 // srw dest, tmpDest, shift
4435 if (ptrA
!=PPC::R0
) {
4436 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
4437 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
4438 .addReg(ptrA
).addReg(ptrB
);
4442 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
4443 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
4444 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
4445 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
4447 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
4448 .addReg(Ptr1Reg
).addImm(0).addImm(61);
4450 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
4451 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
4452 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), Incr2Reg
)
4453 .addReg(incr
).addReg(ShiftReg
);
4455 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
4457 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
4458 BuildMI(BB
, dl
, TII
->get(PPC::ORI
),Mask2Reg
).addReg(Mask3Reg
).addImm(65535);
4460 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
4461 .addReg(Mask2Reg
).addReg(ShiftReg
);
4464 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
4465 .addReg(PPC::R0
).addReg(PtrReg
);
4467 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
)
4468 .addReg(Incr2Reg
).addReg(TmpDestReg
);
4469 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ANDC8
: PPC::ANDC
), Tmp2Reg
)
4470 .addReg(TmpDestReg
).addReg(MaskReg
);
4471 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::AND8
: PPC::AND
), Tmp3Reg
)
4472 .addReg(TmpReg
).addReg(MaskReg
);
4473 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::OR8
: PPC::OR
), Tmp4Reg
)
4474 .addReg(Tmp3Reg
).addReg(Tmp2Reg
);
4475 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
4476 .addReg(Tmp4Reg
).addReg(PPC::R0
).addReg(PtrReg
);
4477 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4478 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4479 BB
->addSuccessor(loopMBB
);
4480 BB
->addSuccessor(exitMBB
);
4485 BuildMI(BB
, dl
, TII
->get(PPC::SRW
), dest
).addReg(TmpDestReg
).addReg(ShiftReg
);
4490 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
4491 MachineBasicBlock
*BB
) const {
4492 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4494 // To "insert" these instructions we actually have to insert their
4495 // control-flow patterns.
4496 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4497 MachineFunction::iterator It
= BB
;
4500 MachineFunction
*F
= BB
->getParent();
4502 if (MI
->getOpcode() == PPC::SELECT_CC_I4
||
4503 MI
->getOpcode() == PPC::SELECT_CC_I8
||
4504 MI
->getOpcode() == PPC::SELECT_CC_F4
||
4505 MI
->getOpcode() == PPC::SELECT_CC_F8
||
4506 MI
->getOpcode() == PPC::SELECT_CC_VRRC
) {
4508 // The incoming instruction knows the destination vreg to set, the
4509 // condition code register to branch on, the true/false values to
4510 // select between, and a branch opcode to use.
4515 // cmpTY ccX, r1, r2
4517 // fallthrough --> copy0MBB
4518 MachineBasicBlock
*thisMBB
= BB
;
4519 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4520 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4521 unsigned SelectPred
= MI
->getOperand(4).getImm();
4522 DebugLoc dl
= MI
->getDebugLoc();
4523 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4524 .addImm(SelectPred
).addReg(MI
->getOperand(1).getReg()).addMBB(sinkMBB
);
4525 F
->insert(It
, copy0MBB
);
4526 F
->insert(It
, sinkMBB
);
4527 // Update machine-CFG edges by transferring all successors of the current
4528 // block to the new block which will contain the Phi node for the select.
4529 sinkMBB
->transferSuccessors(BB
);
4530 // Next, add the true and fallthrough blocks as its successors.
4531 BB
->addSuccessor(copy0MBB
);
4532 BB
->addSuccessor(sinkMBB
);
4535 // %FalseValue = ...
4536 // # fallthrough to sinkMBB
4539 // Update machine-CFG edges
4540 BB
->addSuccessor(sinkMBB
);
4543 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4546 BuildMI(BB
, dl
, TII
->get(PPC::PHI
), MI
->getOperand(0).getReg())
4547 .addReg(MI
->getOperand(3).getReg()).addMBB(copy0MBB
)
4548 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
4550 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8
)
4551 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ADD4
);
4552 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16
)
4553 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4554 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32
)
4555 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4556 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64
)
4557 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ADD8
);
4559 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I8
)
4560 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::AND
);
4561 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I16
)
4562 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::AND
);
4563 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I32
)
4564 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::AND
);
4565 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I64
)
4566 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::AND8
);
4568 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I8
)
4569 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::OR
);
4570 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I16
)
4571 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::OR
);
4572 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I32
)
4573 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::OR
);
4574 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I64
)
4575 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::OR8
);
4577 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8
)
4578 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::XOR
);
4579 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16
)
4580 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::XOR
);
4581 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32
)
4582 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::XOR
);
4583 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64
)
4584 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::XOR8
);
4586 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8
)
4587 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ANDC
);
4588 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16
)
4589 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4590 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32
)
4591 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4592 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64
)
4593 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ANDC8
);
4595 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8
)
4596 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::SUBF
);
4597 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16
)
4598 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4599 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32
)
4600 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4601 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64
)
4602 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::SUBF8
);
4604 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I8
)
4605 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0);
4606 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I16
)
4607 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0);
4608 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I32
)
4609 BB
= EmitAtomicBinary(MI
, BB
, false, 0);
4610 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I64
)
4611 BB
= EmitAtomicBinary(MI
, BB
, true, 0);
4613 else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32
||
4614 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
) {
4615 bool is64bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
;
4617 unsigned dest
= MI
->getOperand(0).getReg();
4618 unsigned ptrA
= MI
->getOperand(1).getReg();
4619 unsigned ptrB
= MI
->getOperand(2).getReg();
4620 unsigned oldval
= MI
->getOperand(3).getReg();
4621 unsigned newval
= MI
->getOperand(4).getReg();
4622 DebugLoc dl
= MI
->getDebugLoc();
4624 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4625 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4626 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4627 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4628 F
->insert(It
, loop1MBB
);
4629 F
->insert(It
, loop2MBB
);
4630 F
->insert(It
, midMBB
);
4631 F
->insert(It
, exitMBB
);
4632 exitMBB
->transferSuccessors(BB
);
4636 // fallthrough --> loopMBB
4637 BB
->addSuccessor(loop1MBB
);
4640 // l[wd]arx dest, ptr
4641 // cmp[wd] dest, oldval
4644 // st[wd]cx. newval, ptr
4648 // st[wd]cx. dest, ptr
4651 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4652 .addReg(ptrA
).addReg(ptrB
);
4653 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::CMPD
: PPC::CMPW
), PPC::CR0
)
4654 .addReg(oldval
).addReg(dest
);
4655 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4656 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
4657 BB
->addSuccessor(loop2MBB
);
4658 BB
->addSuccessor(midMBB
);
4661 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4662 .addReg(newval
).addReg(ptrA
).addReg(ptrB
);
4663 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4664 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
4665 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
4666 BB
->addSuccessor(loop1MBB
);
4667 BB
->addSuccessor(exitMBB
);
4670 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4671 .addReg(dest
).addReg(ptrA
).addReg(ptrB
);
4672 BB
->addSuccessor(exitMBB
);
4677 } else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
||
4678 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
) {
4679 // We must use 64-bit registers for addresses when targeting 64-bit,
4680 // since we're actually doing arithmetic on them. Other registers
4682 bool is64bit
= PPCSubTarget
.isPPC64();
4683 bool is8bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
;
4685 unsigned dest
= MI
->getOperand(0).getReg();
4686 unsigned ptrA
= MI
->getOperand(1).getReg();
4687 unsigned ptrB
= MI
->getOperand(2).getReg();
4688 unsigned oldval
= MI
->getOperand(3).getReg();
4689 unsigned newval
= MI
->getOperand(4).getReg();
4690 DebugLoc dl
= MI
->getDebugLoc();
4692 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4693 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4694 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4695 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4696 F
->insert(It
, loop1MBB
);
4697 F
->insert(It
, loop2MBB
);
4698 F
->insert(It
, midMBB
);
4699 F
->insert(It
, exitMBB
);
4700 exitMBB
->transferSuccessors(BB
);
4702 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4703 const TargetRegisterClass
*RC
=
4704 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4705 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
4706 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
4707 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
4708 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
4709 unsigned NewVal2Reg
= RegInfo
.createVirtualRegister(RC
);
4710 unsigned NewVal3Reg
= RegInfo
.createVirtualRegister(RC
);
4711 unsigned OldVal2Reg
= RegInfo
.createVirtualRegister(RC
);
4712 unsigned OldVal3Reg
= RegInfo
.createVirtualRegister(RC
);
4713 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
4714 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
4715 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
4716 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
4717 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
4718 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
4720 unsigned TmpReg
= RegInfo
.createVirtualRegister(RC
);
4723 // fallthrough --> loopMBB
4724 BB
->addSuccessor(loop1MBB
);
4726 // The 4-byte load must be aligned, while a char or short may be
4727 // anywhere in the word. Hence all this nasty bookkeeping code.
4728 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4729 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4730 // xori shift, shift1, 24 [16]
4731 // rlwinm ptr, ptr1, 0, 0, 29
4732 // slw newval2, newval, shift
4733 // slw oldval2, oldval,shift
4734 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4735 // slw mask, mask2, shift
4736 // and newval3, newval2, mask
4737 // and oldval3, oldval2, mask
4739 // lwarx tmpDest, ptr
4740 // and tmp, tmpDest, mask
4741 // cmpw tmp, oldval3
4744 // andc tmp2, tmpDest, mask
4745 // or tmp4, tmp2, newval3
4750 // stwcx. tmpDest, ptr
4752 // srw dest, tmpDest, shift
4753 if (ptrA
!=PPC::R0
) {
4754 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
4755 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
4756 .addReg(ptrA
).addReg(ptrB
);
4760 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
4761 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
4762 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
4763 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
4765 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
4766 .addReg(Ptr1Reg
).addImm(0).addImm(61);
4768 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
4769 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
4770 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), NewVal2Reg
)
4771 .addReg(newval
).addReg(ShiftReg
);
4772 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), OldVal2Reg
)
4773 .addReg(oldval
).addReg(ShiftReg
);
4775 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
4777 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
4778 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
4779 .addReg(Mask3Reg
).addImm(65535);
4781 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
4782 .addReg(Mask2Reg
).addReg(ShiftReg
);
4783 BuildMI(BB
, dl
, TII
->get(PPC::AND
), NewVal3Reg
)
4784 .addReg(NewVal2Reg
).addReg(MaskReg
);
4785 BuildMI(BB
, dl
, TII
->get(PPC::AND
), OldVal3Reg
)
4786 .addReg(OldVal2Reg
).addReg(MaskReg
);
4789 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
4790 .addReg(PPC::R0
).addReg(PtrReg
);
4791 BuildMI(BB
, dl
, TII
->get(PPC::AND
),TmpReg
)
4792 .addReg(TmpDestReg
).addReg(MaskReg
);
4793 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), PPC::CR0
)
4794 .addReg(TmpReg
).addReg(OldVal3Reg
);
4795 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4796 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
4797 BB
->addSuccessor(loop2MBB
);
4798 BB
->addSuccessor(midMBB
);
4801 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
),Tmp2Reg
)
4802 .addReg(TmpDestReg
).addReg(MaskReg
);
4803 BuildMI(BB
, dl
, TII
->get(PPC::OR
),Tmp4Reg
)
4804 .addReg(Tmp2Reg
).addReg(NewVal3Reg
);
4805 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(Tmp4Reg
)
4806 .addReg(PPC::R0
).addReg(PtrReg
);
4807 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4808 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
4809 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
4810 BB
->addSuccessor(loop1MBB
);
4811 BB
->addSuccessor(exitMBB
);
4814 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(TmpDestReg
)
4815 .addReg(PPC::R0
).addReg(PtrReg
);
4816 BB
->addSuccessor(exitMBB
);
4821 BuildMI(BB
, dl
, TII
->get(PPC::SRW
),dest
).addReg(TmpReg
).addReg(ShiftReg
);
4823 llvm_unreachable("Unexpected instr type to insert");
4826 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
4830 //===----------------------------------------------------------------------===//
4831 // Target Optimization Hooks
4832 //===----------------------------------------------------------------------===//
4834 SDValue
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
4835 DAGCombinerInfo
&DCI
) const {
4836 TargetMachine
&TM
= getTargetMachine();
4837 SelectionDAG
&DAG
= DCI
.DAG
;
4838 DebugLoc dl
= N
->getDebugLoc();
4839 switch (N
->getOpcode()) {
4842 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
4843 if (C
->getZExtValue() == 0) // 0 << V -> 0.
4844 return N
->getOperand(0);
4848 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
4849 if (C
->getZExtValue() == 0) // 0 >>u V -> 0.
4850 return N
->getOperand(0);
4854 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
4855 if (C
->getZExtValue() == 0 || // 0 >>s V -> 0.
4856 C
->isAllOnesValue()) // -1 >>s V -> -1.
4857 return N
->getOperand(0);
4861 case ISD::SINT_TO_FP
:
4862 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
4863 if (N
->getOperand(0).getOpcode() == ISD::FP_TO_SINT
) {
4864 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4865 // We allow the src/dst to be either f32/f64, but the intermediate
4866 // type must be i64.
4867 if (N
->getOperand(0).getValueType() == MVT::i64
&&
4868 N
->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128
) {
4869 SDValue Val
= N
->getOperand(0).getOperand(0);
4870 if (Val
.getValueType() == MVT::f32
) {
4871 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
4872 DCI
.AddToWorklist(Val
.getNode());
4875 Val
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Val
);
4876 DCI
.AddToWorklist(Val
.getNode());
4877 Val
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Val
);
4878 DCI
.AddToWorklist(Val
.getNode());
4879 if (N
->getValueType(0) == MVT::f32
) {
4880 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Val
,
4881 DAG
.getIntPtrConstant(0));
4882 DCI
.AddToWorklist(Val
.getNode());
4885 } else if (N
->getOperand(0).getValueType() == MVT::i32
) {
4886 // If the intermediate type is i32, we can avoid the load/store here
4893 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4894 if (TM
.getSubtarget
<PPCSubtarget
>().hasSTFIWX() &&
4895 !cast
<StoreSDNode
>(N
)->isTruncatingStore() &&
4896 N
->getOperand(1).getOpcode() == ISD::FP_TO_SINT
&&
4897 N
->getOperand(1).getValueType() == MVT::i32
&&
4898 N
->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128
) {
4899 SDValue Val
= N
->getOperand(1).getOperand(0);
4900 if (Val
.getValueType() == MVT::f32
) {
4901 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
4902 DCI
.AddToWorklist(Val
.getNode());
4904 Val
= DAG
.getNode(PPCISD::FCTIWZ
, dl
, MVT::f64
, Val
);
4905 DCI
.AddToWorklist(Val
.getNode());
4907 Val
= DAG
.getNode(PPCISD::STFIWX
, dl
, MVT::Other
, N
->getOperand(0), Val
,
4908 N
->getOperand(2), N
->getOperand(3));
4909 DCI
.AddToWorklist(Val
.getNode());
4913 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4914 if (N
->getOperand(1).getOpcode() == ISD::BSWAP
&&
4915 N
->getOperand(1).getNode()->hasOneUse() &&
4916 (N
->getOperand(1).getValueType() == MVT::i32
||
4917 N
->getOperand(1).getValueType() == MVT::i16
)) {
4918 SDValue BSwapOp
= N
->getOperand(1).getOperand(0);
4919 // Do an any-extend to 32-bits if this is a half-word input.
4920 if (BSwapOp
.getValueType() == MVT::i16
)
4921 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, BSwapOp
);
4923 return DAG
.getNode(PPCISD::STBRX
, dl
, MVT::Other
, N
->getOperand(0),
4924 BSwapOp
, N
->getOperand(2), N
->getOperand(3),
4925 DAG
.getValueType(N
->getOperand(1).getValueType()));
4929 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4930 if (ISD::isNON_EXTLoad(N
->getOperand(0).getNode()) &&
4931 N
->getOperand(0).hasOneUse() &&
4932 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
)) {
4933 SDValue Load
= N
->getOperand(0);
4934 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
4935 // Create the byte-swapping load.
4936 std::vector
<EVT
> VTs
;
4937 VTs
.push_back(MVT::i32
);
4938 VTs
.push_back(MVT::Other
);
4939 SDValue MO
= DAG
.getMemOperand(LD
->getMemOperand());
4941 LD
->getChain(), // Chain
4942 LD
->getBasePtr(), // Ptr
4944 DAG
.getValueType(N
->getValueType(0)) // VT
4946 SDValue BSLoad
= DAG
.getNode(PPCISD::LBRX
, dl
, VTs
, Ops
, 4);
4948 // If this is an i16 load, insert the truncate.
4949 SDValue ResVal
= BSLoad
;
4950 if (N
->getValueType(0) == MVT::i16
)
4951 ResVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
, BSLoad
);
4953 // First, combine the bswap away. This makes the value produced by the
4955 DCI
.CombineTo(N
, ResVal
);
4957 // Next, combine the load away, we give it a bogus result value but a real
4958 // chain result. The result value is dead because the bswap is dead.
4959 DCI
.CombineTo(Load
.getNode(), ResVal
, BSLoad
.getValue(1));
4961 // Return N so it doesn't get rechecked!
4962 return SDValue(N
, 0);
4966 case PPCISD::VCMP
: {
4967 // If a VCMPo node already exists with exactly the same operands as this
4968 // node, use its result instead of this node (VCMPo computes both a CR6 and
4969 // a normal output).
4971 if (!N
->getOperand(0).hasOneUse() &&
4972 !N
->getOperand(1).hasOneUse() &&
4973 !N
->getOperand(2).hasOneUse()) {
4975 // Scan all of the users of the LHS, looking for VCMPo's that match.
4976 SDNode
*VCMPoNode
= 0;
4978 SDNode
*LHSN
= N
->getOperand(0).getNode();
4979 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
4981 if (UI
->getOpcode() == PPCISD::VCMPo
&&
4982 UI
->getOperand(1) == N
->getOperand(1) &&
4983 UI
->getOperand(2) == N
->getOperand(2) &&
4984 UI
->getOperand(0) == N
->getOperand(0)) {
4989 // If there is no VCMPo node, or if the flag value has a single use, don't
4991 if (!VCMPoNode
|| VCMPoNode
->hasNUsesOfValue(0, 1))
4994 // Look at the (necessarily single) use of the flag value. If it has a
4995 // chain, this transformation is more complex. Note that multiple things
4996 // could use the value result, which we should ignore.
4997 SDNode
*FlagUser
= 0;
4998 for (SDNode::use_iterator UI
= VCMPoNode
->use_begin();
4999 FlagUser
== 0; ++UI
) {
5000 assert(UI
!= VCMPoNode
->use_end() && "Didn't find user!");
5002 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
5003 if (User
->getOperand(i
) == SDValue(VCMPoNode
, 1)) {
5010 // If the user is a MFCR instruction, we know this is safe. Otherwise we
5011 // give up for right now.
5012 if (FlagUser
->getOpcode() == PPCISD::MFCR
)
5013 return SDValue(VCMPoNode
, 0);
5018 // If this is a branch on an altivec predicate comparison, lower this so
5019 // that we don't have to do a MFCR: instead, branch directly on CR6. This
5020 // lowering is done pre-legalize, because the legalizer lowers the predicate
5021 // compare down to code that is difficult to reassemble.
5022 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
5023 SDValue LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
5027 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
5028 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
5029 getAltivecCompareInfo(LHS
, CompareOpc
, isDot
)) {
5030 assert(isDot
&& "Can't compare against a vector result!");
5032 // If this is a comparison against something other than 0/1, then we know
5033 // that the condition is never/always true.
5034 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
5035 if (Val
!= 0 && Val
!= 1) {
5036 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
5037 return N
->getOperand(0);
5038 // Always !=, turn it into an unconditional branch.
5039 return DAG
.getNode(ISD::BR
, dl
, MVT::Other
,
5040 N
->getOperand(0), N
->getOperand(4));
5043 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
5045 // Create the PPCISD altivec 'dot' comparison node.
5046 std::vector
<EVT
> VTs
;
5048 LHS
.getOperand(2), // LHS of compare
5049 LHS
.getOperand(3), // RHS of compare
5050 DAG
.getConstant(CompareOpc
, MVT::i32
)
5052 VTs
.push_back(LHS
.getOperand(2).getValueType());
5053 VTs
.push_back(MVT::Flag
);
5054 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
5056 // Unpack the result based on how the target uses it.
5057 PPC::Predicate CompOpc
;
5058 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue()) {
5059 default: // Can't happen, don't crash on invalid number though.
5060 case 0: // Branch on the value of the EQ bit of CR6.
5061 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
5063 case 1: // Branch on the inverted value of the EQ bit of CR6.
5064 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
5066 case 2: // Branch on the value of the LT bit of CR6.
5067 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
5069 case 3: // Branch on the inverted value of the LT bit of CR6.
5070 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
5074 return DAG
.getNode(PPCISD::COND_BRANCH
, dl
, MVT::Other
, N
->getOperand(0),
5075 DAG
.getConstant(CompOpc
, MVT::i32
),
5076 DAG
.getRegister(PPC::CR6
, MVT::i32
),
5077 N
->getOperand(4), CompNode
.getValue(1));
5086 //===----------------------------------------------------------------------===//
5087 // Inline Assembly Support
5088 //===----------------------------------------------------------------------===//
5090 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
5094 const SelectionDAG
&DAG
,
5095 unsigned Depth
) const {
5096 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
5097 switch (Op
.getOpcode()) {
5099 case PPCISD::LBRX
: {
5100 // lhbrx is known to have the top bits cleared out.
5101 if (cast
<VTSDNode
>(Op
.getOperand(3))->getVT() == MVT::i16
)
5102 KnownZero
= 0xFFFF0000;
5105 case ISD::INTRINSIC_WO_CHAIN
: {
5106 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue()) {
5108 case Intrinsic::ppc_altivec_vcmpbfp_p
:
5109 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
5110 case Intrinsic::ppc_altivec_vcmpequb_p
:
5111 case Intrinsic::ppc_altivec_vcmpequh_p
:
5112 case Intrinsic::ppc_altivec_vcmpequw_p
:
5113 case Intrinsic::ppc_altivec_vcmpgefp_p
:
5114 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
5115 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
5116 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
5117 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
5118 case Intrinsic::ppc_altivec_vcmpgtub_p
:
5119 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
5120 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
5121 KnownZero
= ~1U; // All bits but the low one are known to be zero.
5129 /// getConstraintType - Given a constraint, return the type of
5130 /// constraint it is for this target.
5131 PPCTargetLowering::ConstraintType
5132 PPCTargetLowering::getConstraintType(const std::string
&Constraint
) const {
5133 if (Constraint
.size() == 1) {
5134 switch (Constraint
[0]) {
5141 return C_RegisterClass
;
5144 return TargetLowering::getConstraintType(Constraint
);
5147 std::pair
<unsigned, const TargetRegisterClass
*>
5148 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
5150 if (Constraint
.size() == 1) {
5151 // GCC RS6000 Constraint Letters
5152 switch (Constraint
[0]) {
5155 if (VT
== MVT::i64
&& PPCSubTarget
.isPPC64())
5156 return std::make_pair(0U, PPC::G8RCRegisterClass
);
5157 return std::make_pair(0U, PPC::GPRCRegisterClass
);
5160 return std::make_pair(0U, PPC::F4RCRegisterClass
);
5161 else if (VT
== MVT::f64
)
5162 return std::make_pair(0U, PPC::F8RCRegisterClass
);
5165 return std::make_pair(0U, PPC::VRRCRegisterClass
);
5167 return std::make_pair(0U, PPC::CRRCRegisterClass
);
5171 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
5175 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5176 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is true
5177 /// it means one of the asm constraint of the inline asm instruction being
5178 /// processed is 'm'.
5179 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op
, char Letter
,
5181 std::vector
<SDValue
>&Ops
,
5182 SelectionDAG
&DAG
) const {
5183 SDValue
Result(0,0);
5194 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
5195 if (!CST
) return; // Must be an immediate to match.
5196 unsigned Value
= CST
->getZExtValue();
5198 default: llvm_unreachable("Unknown constraint letter!");
5199 case 'I': // "I" is a signed 16-bit constant.
5200 if ((short)Value
== (int)Value
)
5201 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5203 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
5204 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
5205 if ((short)Value
== 0)
5206 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5208 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
5209 if ((Value
>> 16) == 0)
5210 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5212 case 'M': // "M" is a constant that is greater than 31.
5214 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5216 case 'N': // "N" is a positive constant that is an exact power of two.
5217 if ((int)Value
> 0 && isPowerOf2_32(Value
))
5218 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5220 case 'O': // "O" is the constant zero.
5222 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5224 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
5225 if ((short)-Value
== (int)-Value
)
5226 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5233 if (Result
.getNode()) {
5234 Ops
.push_back(Result
);
5238 // Handle standard constraint letters.
5239 TargetLowering::LowerAsmOperandForConstraint(Op
, Letter
, hasMemory
, Ops
, DAG
);
5242 // isLegalAddressingMode - Return true if the addressing mode represented
5243 // by AM is legal for this target, for a load/store of the specified type.
5244 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
5245 const Type
*Ty
) const {
5246 // FIXME: PPC does not allow r+i addressing modes for vectors!
5248 // PPC allows a sign-extended 16-bit immediate field.
5249 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
5252 // No global is ever allowed as a base.
5256 // PPC only support r+r,
5258 case 0: // "r+i" or just "i", depending on HasBaseReg.
5261 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
5263 // Otherwise we have r+r or r+i.
5266 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
5268 // Allow 2*r as r+r.
5271 // No other scales are supported.
5278 /// isLegalAddressImmediate - Return true if the integer value can be used
5279 /// as the offset of the target addressing mode for load / store of the
5281 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V
,const Type
*Ty
) const{
5282 // PPC allows a sign-extended 16-bit immediate field.
5283 return (V
> -(1 << 16) && V
< (1 << 16)-1);
5286 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue
* GV
) const {
5290 SDValue
PPCTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
5291 DebugLoc dl
= Op
.getDebugLoc();
5292 // Depths > 0 not supported yet!
5293 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
5296 MachineFunction
&MF
= DAG
.getMachineFunction();
5297 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
5299 // Just load the return address off the stack.
5300 SDValue RetAddrFI
= getReturnAddrFrameIndex(DAG
);
5302 // Make sure the function really does not optimize away the store of the RA
5304 FuncInfo
->setLRStoreRequired();
5305 return DAG
.getLoad(getPointerTy(), dl
,
5306 DAG
.getEntryNode(), RetAddrFI
, NULL
, 0);
5309 SDValue
PPCTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
5310 DebugLoc dl
= Op
.getDebugLoc();
5311 // Depths > 0 not supported yet!
5312 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
5315 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
5316 bool isPPC64
= PtrVT
== MVT::i64
;
5318 MachineFunction
&MF
= DAG
.getMachineFunction();
5319 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
5320 bool is31
= (NoFramePointerElim
|| MFI
->hasVarSizedObjects())
5321 && MFI
->getStackSize();
5324 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, is31
? PPC::X31
: PPC::X1
,
5327 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, is31
? PPC::R31
: PPC::R1
,
5332 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
5333 // The PowerPC target isn't yet aware of offsets.
5337 EVT
PPCTargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
5338 bool isSrcConst
, bool isSrcStr
,
5339 SelectionDAG
&DAG
) const {
5340 if (this->PPCSubTarget
.isPPC64()) {