add a version of the APFloat constructor that initializes to 0.0
[llvm/avr.git] / lib / VMCore / AsmWriter.cpp
blob12436523b1632766b5fb63e2893205ff0f128139
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Metadata.h"
28 #include "llvm/Module.h"
29 #include "llvm/ValueSymbolTable.h"
30 #include "llvm/TypeSymbolTable.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include <algorithm>
39 #include <cctype>
40 #include <map>
41 using namespace llvm;
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
50 static const Module *getModuleFromVal(const Value *V) {
51 if (const Argument *MA = dyn_cast<Argument>(V))
52 return MA->getParent() ? MA->getParent()->getParent() : 0;
54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55 return BB->getParent() ? BB->getParent()->getParent() : 0;
57 if (const Instruction *I = dyn_cast<Instruction>(V)) {
58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59 return M ? M->getParent() : 0;
62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63 return GV->getParent();
64 return 0;
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(const StringRef &Name,
70 raw_ostream &Out) {
71 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
72 unsigned char C = Name[i];
73 if (isprint(C) && C != '\\' && C != '"')
74 Out << C;
75 else
76 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
80 enum PrefixType {
81 GlobalPrefix,
82 LabelPrefix,
83 LocalPrefix,
84 NoPrefix
87 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
88 /// prefixed with % (if the string only contains simple characters) or is
89 /// surrounded with ""'s (if it has special chars in it). Print it out.
90 static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
91 PrefixType Prefix) {
92 assert(Name.data() && "Cannot get empty name!");
93 switch (Prefix) {
94 default: llvm_unreachable("Bad prefix!");
95 case NoPrefix: break;
96 case GlobalPrefix: OS << '@'; break;
97 case LabelPrefix: break;
98 case LocalPrefix: OS << '%'; break;
101 // Scan the name to see if it needs quotes first.
102 bool NeedsQuotes = isdigit(Name[0]);
103 if (!NeedsQuotes) {
104 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
105 char C = Name[i];
106 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
107 NeedsQuotes = true;
108 break;
113 // If we didn't need any quotes, just write out the name in one blast.
114 if (!NeedsQuotes) {
115 OS << Name;
116 return;
119 // Okay, we need quotes. Output the quotes and escape any scary characters as
120 // needed.
121 OS << '"';
122 PrintEscapedString(Name, OS);
123 OS << '"';
126 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
127 /// prefixed with % (if the string only contains simple characters) or is
128 /// surrounded with ""'s (if it has special chars in it). Print it out.
129 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
130 PrintLLVMName(OS, V->getName(),
131 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
134 //===----------------------------------------------------------------------===//
135 // TypePrinting Class: Type printing machinery
136 //===----------------------------------------------------------------------===//
138 static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
139 return *static_cast<DenseMap<const Type *, std::string>*>(M);
142 void TypePrinting::clear() {
143 getTypeNamesMap(TypeNames).clear();
146 bool TypePrinting::hasTypeName(const Type *Ty) const {
147 return getTypeNamesMap(TypeNames).count(Ty);
150 void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
151 getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
155 TypePrinting::TypePrinting() {
156 TypeNames = new DenseMap<const Type *, std::string>();
159 TypePrinting::~TypePrinting() {
160 delete &getTypeNamesMap(TypeNames);
163 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
164 /// use of type names or up references to shorten the type name where possible.
165 void TypePrinting::CalcTypeName(const Type *Ty,
166 SmallVectorImpl<const Type *> &TypeStack,
167 raw_ostream &OS, bool IgnoreTopLevelName) {
168 // Check to see if the type is named.
169 if (!IgnoreTopLevelName) {
170 DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
171 DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
172 if (I != TM.end()) {
173 OS << I->second;
174 return;
178 // Check to see if the Type is already on the stack...
179 unsigned Slot = 0, CurSize = TypeStack.size();
180 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
182 // This is another base case for the recursion. In this case, we know
183 // that we have looped back to a type that we have previously visited.
184 // Generate the appropriate upreference to handle this.
185 if (Slot < CurSize) {
186 OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
187 return;
190 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
192 switch (Ty->getTypeID()) {
193 case Type::VoidTyID: OS << "void"; break;
194 case Type::FloatTyID: OS << "float"; break;
195 case Type::DoubleTyID: OS << "double"; break;
196 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
197 case Type::FP128TyID: OS << "fp128"; break;
198 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
199 case Type::LabelTyID: OS << "label"; break;
200 case Type::MetadataTyID: OS << "metadata"; break;
201 case Type::IntegerTyID:
202 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
203 break;
205 case Type::FunctionTyID: {
206 const FunctionType *FTy = cast<FunctionType>(Ty);
207 CalcTypeName(FTy->getReturnType(), TypeStack, OS);
208 OS << " (";
209 for (FunctionType::param_iterator I = FTy->param_begin(),
210 E = FTy->param_end(); I != E; ++I) {
211 if (I != FTy->param_begin())
212 OS << ", ";
213 CalcTypeName(*I, TypeStack, OS);
215 if (FTy->isVarArg()) {
216 if (FTy->getNumParams()) OS << ", ";
217 OS << "...";
219 OS << ')';
220 break;
222 case Type::StructTyID: {
223 const StructType *STy = cast<StructType>(Ty);
224 if (STy->isPacked())
225 OS << '<';
226 OS << "{ ";
227 for (StructType::element_iterator I = STy->element_begin(),
228 E = STy->element_end(); I != E; ++I) {
229 CalcTypeName(*I, TypeStack, OS);
230 if (next(I) != STy->element_end())
231 OS << ',';
232 OS << ' ';
234 OS << '}';
235 if (STy->isPacked())
236 OS << '>';
237 break;
239 case Type::PointerTyID: {
240 const PointerType *PTy = cast<PointerType>(Ty);
241 CalcTypeName(PTy->getElementType(), TypeStack, OS);
242 if (unsigned AddressSpace = PTy->getAddressSpace())
243 OS << " addrspace(" << AddressSpace << ')';
244 OS << '*';
245 break;
247 case Type::ArrayTyID: {
248 const ArrayType *ATy = cast<ArrayType>(Ty);
249 OS << '[' << ATy->getNumElements() << " x ";
250 CalcTypeName(ATy->getElementType(), TypeStack, OS);
251 OS << ']';
252 break;
254 case Type::VectorTyID: {
255 const VectorType *PTy = cast<VectorType>(Ty);
256 OS << "<" << PTy->getNumElements() << " x ";
257 CalcTypeName(PTy->getElementType(), TypeStack, OS);
258 OS << '>';
259 break;
261 case Type::OpaqueTyID:
262 OS << "opaque";
263 break;
264 default:
265 OS << "<unrecognized-type>";
266 break;
269 TypeStack.pop_back(); // Remove self from stack.
272 /// printTypeInt - The internal guts of printing out a type that has a
273 /// potentially named portion.
275 void TypePrinting::print(const Type *Ty, raw_ostream &OS,
276 bool IgnoreTopLevelName) {
277 // Check to see if the type is named.
278 DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
279 if (!IgnoreTopLevelName) {
280 DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
281 if (I != TM.end()) {
282 OS << I->second;
283 return;
287 // Otherwise we have a type that has not been named but is a derived type.
288 // Carefully recurse the type hierarchy to print out any contained symbolic
289 // names.
290 SmallVector<const Type *, 16> TypeStack;
291 std::string TypeName;
293 raw_string_ostream TypeOS(TypeName);
294 CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
295 OS << TypeOS.str();
297 // Cache type name for later use.
298 if (!IgnoreTopLevelName)
299 TM.insert(std::make_pair(Ty, TypeOS.str()));
302 namespace {
303 class TypeFinder {
304 // To avoid walking constant expressions multiple times and other IR
305 // objects, we keep several helper maps.
306 DenseSet<const Value*> VisitedConstants;
307 DenseSet<const Type*> VisitedTypes;
309 TypePrinting &TP;
310 std::vector<const Type*> &NumberedTypes;
311 public:
312 TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
313 : TP(tp), NumberedTypes(numberedTypes) {}
315 void Run(const Module &M) {
316 // Get types from the type symbol table. This gets opaque types referened
317 // only through derived named types.
318 const TypeSymbolTable &ST = M.getTypeSymbolTable();
319 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
320 TI != E; ++TI)
321 IncorporateType(TI->second);
323 // Get types from global variables.
324 for (Module::const_global_iterator I = M.global_begin(),
325 E = M.global_end(); I != E; ++I) {
326 IncorporateType(I->getType());
327 if (I->hasInitializer())
328 IncorporateValue(I->getInitializer());
331 // Get types from aliases.
332 for (Module::const_alias_iterator I = M.alias_begin(),
333 E = M.alias_end(); I != E; ++I) {
334 IncorporateType(I->getType());
335 IncorporateValue(I->getAliasee());
338 // Get types from functions.
339 for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
340 IncorporateType(FI->getType());
342 for (Function::const_iterator BB = FI->begin(), E = FI->end();
343 BB != E;++BB)
344 for (BasicBlock::const_iterator II = BB->begin(),
345 E = BB->end(); II != E; ++II) {
346 const Instruction &I = *II;
347 // Incorporate the type of the instruction and all its operands.
348 IncorporateType(I.getType());
349 for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
350 OI != OE; ++OI)
351 IncorporateValue(*OI);
356 private:
357 void IncorporateType(const Type *Ty) {
358 // Check to see if we're already visited this type.
359 if (!VisitedTypes.insert(Ty).second)
360 return;
362 // If this is a structure or opaque type, add a name for the type.
363 if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
364 || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
365 TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
366 NumberedTypes.push_back(Ty);
369 // Recursively walk all contained types.
370 for (Type::subtype_iterator I = Ty->subtype_begin(),
371 E = Ty->subtype_end(); I != E; ++I)
372 IncorporateType(*I);
375 /// IncorporateValue - This method is used to walk operand lists finding
376 /// types hiding in constant expressions and other operands that won't be
377 /// walked in other ways. GlobalValues, basic blocks, instructions, and
378 /// inst operands are all explicitly enumerated.
379 void IncorporateValue(const Value *V) {
380 if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
382 // Already visited?
383 if (!VisitedConstants.insert(V).second)
384 return;
386 // Check this type.
387 IncorporateType(V->getType());
389 // Look in operands for types.
390 const Constant *C = cast<Constant>(V);
391 for (Constant::const_op_iterator I = C->op_begin(),
392 E = C->op_end(); I != E;++I)
393 IncorporateValue(*I);
396 } // end anonymous namespace
399 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
400 /// the specified module to the TypePrinter and all numbered types to it and the
401 /// NumberedTypes table.
402 static void AddModuleTypesToPrinter(TypePrinting &TP,
403 std::vector<const Type*> &NumberedTypes,
404 const Module *M) {
405 if (M == 0) return;
407 // If the module has a symbol table, take all global types and stuff their
408 // names into the TypeNames map.
409 const TypeSymbolTable &ST = M->getTypeSymbolTable();
410 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
411 TI != E; ++TI) {
412 const Type *Ty = cast<Type>(TI->second);
414 // As a heuristic, don't insert pointer to primitive types, because
415 // they are used too often to have a single useful name.
416 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
417 const Type *PETy = PTy->getElementType();
418 if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
419 !isa<OpaqueType>(PETy))
420 continue;
423 // Likewise don't insert primitives either.
424 if (Ty->isInteger() || Ty->isPrimitiveType())
425 continue;
427 // Get the name as a string and insert it into TypeNames.
428 std::string NameStr;
429 raw_string_ostream NameROS(NameStr);
430 formatted_raw_ostream NameOS(NameROS);
431 PrintLLVMName(NameOS, TI->first, LocalPrefix);
432 NameOS.flush();
433 TP.addTypeName(Ty, NameStr);
436 // Walk the entire module to find references to unnamed structure and opaque
437 // types. This is required for correctness by opaque types (because multiple
438 // uses of an unnamed opaque type needs to be referred to by the same ID) and
439 // it shrinks complex recursive structure types substantially in some cases.
440 TypeFinder(TP, NumberedTypes).Run(*M);
444 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
445 /// type, iff there is an entry in the modules symbol table for the specified
446 /// type or one of it's component types.
448 void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
449 TypePrinting Printer;
450 std::vector<const Type*> NumberedTypes;
451 AddModuleTypesToPrinter(Printer, NumberedTypes, M);
452 Printer.print(Ty, OS);
455 //===----------------------------------------------------------------------===//
456 // SlotTracker Class: Enumerate slot numbers for unnamed values
457 //===----------------------------------------------------------------------===//
459 namespace {
461 /// This class provides computation of slot numbers for LLVM Assembly writing.
463 class SlotTracker {
464 public:
465 /// ValueMap - A mapping of Values to slot numbers.
466 typedef DenseMap<const Value*, unsigned> ValueMap;
468 private:
469 /// TheModule - The module for which we are holding slot numbers.
470 const Module* TheModule;
472 /// TheFunction - The function for which we are holding slot numbers.
473 const Function* TheFunction;
474 bool FunctionProcessed;
476 /// TheMDNode - The MDNode for which we are holding slot numbers.
477 const MDNode *TheMDNode;
479 /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
480 const NamedMDNode *TheNamedMDNode;
482 /// mMap - The TypePlanes map for the module level data.
483 ValueMap mMap;
484 unsigned mNext;
486 /// fMap - The TypePlanes map for the function level data.
487 ValueMap fMap;
488 unsigned fNext;
490 /// mdnMap - Map for MDNodes.
491 ValueMap mdnMap;
492 unsigned mdnNext;
493 public:
494 /// Construct from a module
495 explicit SlotTracker(const Module *M);
496 /// Construct from a function, starting out in incorp state.
497 explicit SlotTracker(const Function *F);
498 /// Construct from a mdnode.
499 explicit SlotTracker(const MDNode *N);
500 /// Construct from a named mdnode.
501 explicit SlotTracker(const NamedMDNode *N);
503 /// Return the slot number of the specified value in it's type
504 /// plane. If something is not in the SlotTracker, return -1.
505 int getLocalSlot(const Value *V);
506 int getGlobalSlot(const GlobalValue *V);
507 int getMetadataSlot(const MDNode *N);
509 /// If you'd like to deal with a function instead of just a module, use
510 /// this method to get its data into the SlotTracker.
511 void incorporateFunction(const Function *F) {
512 TheFunction = F;
513 FunctionProcessed = false;
516 /// After calling incorporateFunction, use this method to remove the
517 /// most recently incorporated function from the SlotTracker. This
518 /// will reset the state of the machine back to just the module contents.
519 void purgeFunction();
521 /// MDNode map iterators.
522 ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
523 ValueMap::iterator mdnEnd() { return mdnMap.end(); }
524 unsigned mdnSize() const { return mdnMap.size(); }
525 bool mdnEmpty() const { return mdnMap.empty(); }
527 /// This function does the actual initialization.
528 inline void initialize();
530 // Implementation Details
531 private:
532 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
533 void CreateModuleSlot(const GlobalValue *V);
535 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
536 void CreateMetadataSlot(const MDNode *N);
538 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
539 void CreateFunctionSlot(const Value *V);
541 /// Add all of the module level global variables (and their initializers)
542 /// and function declarations, but not the contents of those functions.
543 void processModule();
545 /// Add all of the functions arguments, basic blocks, and instructions.
546 void processFunction();
548 /// Add all MDNode operands.
549 void processMDNode();
551 /// Add all MDNode operands.
552 void processNamedMDNode();
554 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
555 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
558 } // end anonymous namespace
561 static SlotTracker *createSlotTracker(const Value *V) {
562 if (const Argument *FA = dyn_cast<Argument>(V))
563 return new SlotTracker(FA->getParent());
565 if (const Instruction *I = dyn_cast<Instruction>(V))
566 return new SlotTracker(I->getParent()->getParent());
568 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
569 return new SlotTracker(BB->getParent());
571 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
572 return new SlotTracker(GV->getParent());
574 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
575 return new SlotTracker(GA->getParent());
577 if (const Function *Func = dyn_cast<Function>(V))
578 return new SlotTracker(Func);
580 return 0;
583 #if 0
584 #define ST_DEBUG(X) errs() << X
585 #else
586 #define ST_DEBUG(X)
587 #endif
589 // Module level constructor. Causes the contents of the Module (sans functions)
590 // to be added to the slot table.
591 SlotTracker::SlotTracker(const Module *M)
592 : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
593 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
596 // Function level constructor. Causes the contents of the Module and the one
597 // function provided to be added to the slot table.
598 SlotTracker::SlotTracker(const Function *F)
599 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
600 TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
603 // Constructor to handle single MDNode.
604 SlotTracker::SlotTracker(const MDNode *C)
605 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
606 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
609 // Constructor to handle single NamedMDNode.
610 SlotTracker::SlotTracker(const NamedMDNode *N)
611 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
612 TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) {
615 inline void SlotTracker::initialize() {
616 if (TheModule) {
617 processModule();
618 TheModule = 0; ///< Prevent re-processing next time we're called.
621 if (TheFunction && !FunctionProcessed)
622 processFunction();
624 if (TheMDNode)
625 processMDNode();
627 if (TheNamedMDNode)
628 processNamedMDNode();
631 // Iterate through all the global variables, functions, and global
632 // variable initializers and create slots for them.
633 void SlotTracker::processModule() {
634 ST_DEBUG("begin processModule!\n");
636 // Add all of the unnamed global variables to the value table.
637 for (Module::const_global_iterator I = TheModule->global_begin(),
638 E = TheModule->global_end(); I != E; ++I) {
639 if (!I->hasName())
640 CreateModuleSlot(I);
641 if (I->hasInitializer()) {
642 if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
643 CreateMetadataSlot(N);
647 // Add metadata used by named metadata.
648 for (Module::const_named_metadata_iterator
649 I = TheModule->named_metadata_begin(),
650 E = TheModule->named_metadata_end(); I != E; ++I) {
651 const NamedMDNode *NMD = I;
652 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
653 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
654 if (MD)
655 CreateMetadataSlot(MD);
659 // Add all the unnamed functions to the table.
660 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
661 I != E; ++I)
662 if (!I->hasName())
663 CreateModuleSlot(I);
665 ST_DEBUG("end processModule!\n");
668 // Process the arguments, basic blocks, and instructions of a function.
669 void SlotTracker::processFunction() {
670 ST_DEBUG("begin processFunction!\n");
671 fNext = 0;
673 // Add all the function arguments with no names.
674 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
675 AE = TheFunction->arg_end(); AI != AE; ++AI)
676 if (!AI->hasName())
677 CreateFunctionSlot(AI);
679 ST_DEBUG("Inserting Instructions:\n");
681 Metadata &TheMetadata = TheFunction->getContext().getMetadata();
683 // Add all of the basic blocks and instructions with no names.
684 for (Function::const_iterator BB = TheFunction->begin(),
685 E = TheFunction->end(); BB != E; ++BB) {
686 if (!BB->hasName())
687 CreateFunctionSlot(BB);
688 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
689 ++I) {
690 if (I->getType() != Type::getVoidTy(TheFunction->getContext()) &&
691 !I->hasName())
692 CreateFunctionSlot(I);
693 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
694 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
695 CreateMetadataSlot(N);
697 // Process metadata attached with this instruction.
698 const Metadata::MDMapTy *MDs = TheMetadata.getMDs(I);
699 if (MDs)
700 for (Metadata::MDMapTy::const_iterator MI = MDs->begin(),
701 ME = MDs->end(); MI != ME; ++MI)
702 if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
703 CreateMetadataSlot(MDN);
707 FunctionProcessed = true;
709 ST_DEBUG("end processFunction!\n");
712 /// processMDNode - Process TheMDNode.
713 void SlotTracker::processMDNode() {
714 ST_DEBUG("begin processMDNode!\n");
715 mdnNext = 0;
716 CreateMetadataSlot(TheMDNode);
717 TheMDNode = 0;
718 ST_DEBUG("end processMDNode!\n");
721 /// processNamedMDNode - Process TheNamedMDNode.
722 void SlotTracker::processNamedMDNode() {
723 ST_DEBUG("begin processNamedMDNode!\n");
724 mdnNext = 0;
725 for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
726 MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
727 if (MD)
728 CreateMetadataSlot(MD);
730 TheNamedMDNode = 0;
731 ST_DEBUG("end processNamedMDNode!\n");
734 /// Clean up after incorporating a function. This is the only way to get out of
735 /// the function incorporation state that affects get*Slot/Create*Slot. Function
736 /// incorporation state is indicated by TheFunction != 0.
737 void SlotTracker::purgeFunction() {
738 ST_DEBUG("begin purgeFunction!\n");
739 fMap.clear(); // Simply discard the function level map
740 TheFunction = 0;
741 FunctionProcessed = false;
742 ST_DEBUG("end purgeFunction!\n");
745 /// getGlobalSlot - Get the slot number of a global value.
746 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
747 // Check for uninitialized state and do lazy initialization.
748 initialize();
750 // Find the type plane in the module map
751 ValueMap::iterator MI = mMap.find(V);
752 return MI == mMap.end() ? -1 : (int)MI->second;
755 /// getGlobalSlot - Get the slot number of a MDNode.
756 int SlotTracker::getMetadataSlot(const MDNode *N) {
757 // Check for uninitialized state and do lazy initialization.
758 initialize();
760 // Find the type plane in the module map
761 ValueMap::iterator MI = mdnMap.find(N);
762 return MI == mdnMap.end() ? -1 : (int)MI->second;
766 /// getLocalSlot - Get the slot number for a value that is local to a function.
767 int SlotTracker::getLocalSlot(const Value *V) {
768 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
770 // Check for uninitialized state and do lazy initialization.
771 initialize();
773 ValueMap::iterator FI = fMap.find(V);
774 return FI == fMap.end() ? -1 : (int)FI->second;
778 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
779 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
780 assert(V && "Can't insert a null Value into SlotTracker!");
781 assert(V->getType() != Type::getVoidTy(V->getContext()) &&
782 "Doesn't need a slot!");
783 assert(!V->hasName() && "Doesn't need a slot!");
785 unsigned DestSlot = mNext++;
786 mMap[V] = DestSlot;
788 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
789 DestSlot << " [");
790 // G = Global, F = Function, A = Alias, o = other
791 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
792 (isa<Function>(V) ? 'F' :
793 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
796 /// CreateSlot - Create a new slot for the specified value if it has no name.
797 void SlotTracker::CreateFunctionSlot(const Value *V) {
798 assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) &&
799 !V->hasName() && "Doesn't need a slot!");
801 unsigned DestSlot = fNext++;
802 fMap[V] = DestSlot;
804 // G = Global, F = Function, o = other
805 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
806 DestSlot << " [o]\n");
809 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
810 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
811 assert(N && "Can't insert a null Value into SlotTracker!");
813 ValueMap::iterator I = mdnMap.find(N);
814 if (I != mdnMap.end())
815 return;
817 unsigned DestSlot = mdnNext++;
818 mdnMap[N] = DestSlot;
820 for (MDNode::const_elem_iterator MDI = N->elem_begin(),
821 MDE = N->elem_end(); MDI != MDE; ++MDI) {
822 const Value *TV = *MDI;
823 if (TV)
824 if (const MDNode *N2 = dyn_cast<MDNode>(TV))
825 CreateMetadataSlot(N2);
829 //===----------------------------------------------------------------------===//
830 // AsmWriter Implementation
831 //===----------------------------------------------------------------------===//
833 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
834 TypePrinting *TypePrinter,
835 SlotTracker *Machine);
839 static const char *getPredicateText(unsigned predicate) {
840 const char * pred = "unknown";
841 switch (predicate) {
842 case FCmpInst::FCMP_FALSE: pred = "false"; break;
843 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
844 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
845 case FCmpInst::FCMP_OGE: pred = "oge"; break;
846 case FCmpInst::FCMP_OLT: pred = "olt"; break;
847 case FCmpInst::FCMP_OLE: pred = "ole"; break;
848 case FCmpInst::FCMP_ONE: pred = "one"; break;
849 case FCmpInst::FCMP_ORD: pred = "ord"; break;
850 case FCmpInst::FCMP_UNO: pred = "uno"; break;
851 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
852 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
853 case FCmpInst::FCMP_UGE: pred = "uge"; break;
854 case FCmpInst::FCMP_ULT: pred = "ult"; break;
855 case FCmpInst::FCMP_ULE: pred = "ule"; break;
856 case FCmpInst::FCMP_UNE: pred = "une"; break;
857 case FCmpInst::FCMP_TRUE: pred = "true"; break;
858 case ICmpInst::ICMP_EQ: pred = "eq"; break;
859 case ICmpInst::ICMP_NE: pred = "ne"; break;
860 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
861 case ICmpInst::ICMP_SGE: pred = "sge"; break;
862 case ICmpInst::ICMP_SLT: pred = "slt"; break;
863 case ICmpInst::ICMP_SLE: pred = "sle"; break;
864 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
865 case ICmpInst::ICMP_UGE: pred = "uge"; break;
866 case ICmpInst::ICMP_ULT: pred = "ult"; break;
867 case ICmpInst::ICMP_ULE: pred = "ule"; break;
869 return pred;
872 static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
873 SlotTracker &Machine) {
874 SmallVector<const MDNode *, 16> Nodes;
875 Nodes.resize(Machine.mdnSize());
876 for (SlotTracker::ValueMap::iterator I =
877 Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
878 Nodes[I->second] = cast<MDNode>(I->first);
880 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
881 Out << '!' << i << " = metadata ";
882 const MDNode *Node = Nodes[i];
883 Out << "!{";
884 for (MDNode::const_elem_iterator NI = Node->elem_begin(),
885 NE = Node->elem_end(); NI != NE;) {
886 const Value *V = *NI;
887 if (!V)
888 Out << "null";
889 else if (const MDNode *N = dyn_cast<MDNode>(V)) {
890 Out << "metadata ";
891 Out << '!' << Machine.getMetadataSlot(N);
893 else {
894 TypePrinter.print((*NI)->getType(), Out);
895 Out << ' ';
896 WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine);
898 if (++NI != NE)
899 Out << ", ";
901 Out << "}\n";
905 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
906 if (const OverflowingBinaryOperator *OBO =
907 dyn_cast<OverflowingBinaryOperator>(U)) {
908 if (OBO->hasNoUnsignedWrap())
909 Out << " nuw";
910 if (OBO->hasNoSignedWrap())
911 Out << " nsw";
912 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
913 if (Div->isExact())
914 Out << " exact";
915 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
916 if (GEP->isInBounds())
917 Out << " inbounds";
921 static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
922 TypePrinting &TypePrinter, SlotTracker *Machine) {
923 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
924 if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
925 Out << (CI->getZExtValue() ? "true" : "false");
926 return;
928 Out << CI->getValue();
929 return;
932 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
933 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
934 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
935 // We would like to output the FP constant value in exponential notation,
936 // but we cannot do this if doing so will lose precision. Check here to
937 // make sure that we only output it in exponential format if we can parse
938 // the value back and get the same value.
940 bool ignored;
941 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
942 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
943 CFP->getValueAPF().convertToFloat();
944 std::string StrVal = ftostr(CFP->getValueAPF());
946 // Check to make sure that the stringized number is not some string like
947 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
948 // that the string matches the "[-+]?[0-9]" regex.
950 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
951 ((StrVal[0] == '-' || StrVal[0] == '+') &&
952 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
953 // Reparse stringized version!
954 if (atof(StrVal.c_str()) == Val) {
955 Out << StrVal;
956 return;
959 // Otherwise we could not reparse it to exactly the same value, so we must
960 // output the string in hexadecimal format! Note that loading and storing
961 // floating point types changes the bits of NaNs on some hosts, notably
962 // x86, so we must not use these types.
963 assert(sizeof(double) == sizeof(uint64_t) &&
964 "assuming that double is 64 bits!");
965 char Buffer[40];
966 APFloat apf = CFP->getValueAPF();
967 // Floats are represented in ASCII IR as double, convert.
968 if (!isDouble)
969 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
970 &ignored);
971 Out << "0x" <<
972 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
973 Buffer+40);
974 return;
977 // Some form of long double. These appear as a magic letter identifying
978 // the type, then a fixed number of hex digits.
979 Out << "0x";
980 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
981 Out << 'K';
982 // api needed to prevent premature destruction
983 APInt api = CFP->getValueAPF().bitcastToAPInt();
984 const uint64_t* p = api.getRawData();
985 uint64_t word = p[1];
986 int shiftcount=12;
987 int width = api.getBitWidth();
988 for (int j=0; j<width; j+=4, shiftcount-=4) {
989 unsigned int nibble = (word>>shiftcount) & 15;
990 if (nibble < 10)
991 Out << (unsigned char)(nibble + '0');
992 else
993 Out << (unsigned char)(nibble - 10 + 'A');
994 if (shiftcount == 0 && j+4 < width) {
995 word = *p;
996 shiftcount = 64;
997 if (width-j-4 < 64)
998 shiftcount = width-j-4;
1001 return;
1002 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
1003 Out << 'L';
1004 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1005 Out << 'M';
1006 else
1007 llvm_unreachable("Unsupported floating point type");
1008 // api needed to prevent premature destruction
1009 APInt api = CFP->getValueAPF().bitcastToAPInt();
1010 const uint64_t* p = api.getRawData();
1011 uint64_t word = *p;
1012 int shiftcount=60;
1013 int width = api.getBitWidth();
1014 for (int j=0; j<width; j+=4, shiftcount-=4) {
1015 unsigned int nibble = (word>>shiftcount) & 15;
1016 if (nibble < 10)
1017 Out << (unsigned char)(nibble + '0');
1018 else
1019 Out << (unsigned char)(nibble - 10 + 'A');
1020 if (shiftcount == 0 && j+4 < width) {
1021 word = *(++p);
1022 shiftcount = 64;
1023 if (width-j-4 < 64)
1024 shiftcount = width-j-4;
1027 return;
1030 if (isa<ConstantAggregateZero>(CV)) {
1031 Out << "zeroinitializer";
1032 return;
1035 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1036 // As a special case, print the array as a string if it is an array of
1037 // i8 with ConstantInt values.
1039 const Type *ETy = CA->getType()->getElementType();
1040 if (CA->isString()) {
1041 Out << "c\"";
1042 PrintEscapedString(CA->getAsString(), Out);
1043 Out << '"';
1044 } else { // Cannot output in string format...
1045 Out << '[';
1046 if (CA->getNumOperands()) {
1047 TypePrinter.print(ETy, Out);
1048 Out << ' ';
1049 WriteAsOperandInternal(Out, CA->getOperand(0),
1050 &TypePrinter, Machine);
1051 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1052 Out << ", ";
1053 TypePrinter.print(ETy, Out);
1054 Out << ' ';
1055 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1058 Out << ']';
1060 return;
1063 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1064 if (CS->getType()->isPacked())
1065 Out << '<';
1066 Out << '{';
1067 unsigned N = CS->getNumOperands();
1068 if (N) {
1069 Out << ' ';
1070 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1071 Out << ' ';
1073 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1075 for (unsigned i = 1; i < N; i++) {
1076 Out << ", ";
1077 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1078 Out << ' ';
1080 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1082 Out << ' ';
1085 Out << '}';
1086 if (CS->getType()->isPacked())
1087 Out << '>';
1088 return;
1091 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1092 const Type *ETy = CP->getType()->getElementType();
1093 assert(CP->getNumOperands() > 0 &&
1094 "Number of operands for a PackedConst must be > 0");
1095 Out << '<';
1096 TypePrinter.print(ETy, Out);
1097 Out << ' ';
1098 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1099 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1100 Out << ", ";
1101 TypePrinter.print(ETy, Out);
1102 Out << ' ';
1103 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1105 Out << '>';
1106 return;
1109 if (isa<ConstantPointerNull>(CV)) {
1110 Out << "null";
1111 return;
1114 if (isa<UndefValue>(CV)) {
1115 Out << "undef";
1116 return;
1119 if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1120 Out << "!" << Machine->getMetadataSlot(Node);
1121 return;
1124 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1125 Out << CE->getOpcodeName();
1126 WriteOptimizationInfo(Out, CE);
1127 if (CE->isCompare())
1128 Out << ' ' << getPredicateText(CE->getPredicate());
1129 Out << " (";
1131 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1132 TypePrinter.print((*OI)->getType(), Out);
1133 Out << ' ';
1134 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1135 if (OI+1 != CE->op_end())
1136 Out << ", ";
1139 if (CE->hasIndices()) {
1140 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1141 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1142 Out << ", " << Indices[i];
1145 if (CE->isCast()) {
1146 Out << " to ";
1147 TypePrinter.print(CE->getType(), Out);
1150 Out << ')';
1151 return;
1154 Out << "<placeholder or erroneous Constant>";
1158 /// WriteAsOperand - Write the name of the specified value out to the specified
1159 /// ostream. This can be useful when you just want to print int %reg126, not
1160 /// the whole instruction that generated it.
1162 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1163 TypePrinting *TypePrinter,
1164 SlotTracker *Machine) {
1165 if (V->hasName()) {
1166 PrintLLVMName(Out, V);
1167 return;
1170 const Constant *CV = dyn_cast<Constant>(V);
1171 if (CV && !isa<GlobalValue>(CV)) {
1172 assert(TypePrinter && "Constants require TypePrinting!");
1173 WriteConstantInt(Out, CV, *TypePrinter, Machine);
1174 return;
1177 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1178 Out << "asm ";
1179 if (IA->hasSideEffects())
1180 Out << "sideeffect ";
1181 Out << '"';
1182 PrintEscapedString(IA->getAsmString(), Out);
1183 Out << "\", \"";
1184 PrintEscapedString(IA->getConstraintString(), Out);
1185 Out << '"';
1186 return;
1189 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1190 Out << '!' << Machine->getMetadataSlot(N);
1191 return;
1194 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1195 Out << "!\"";
1196 PrintEscapedString(MDS->getString(), Out);
1197 Out << '"';
1198 return;
1201 char Prefix = '%';
1202 int Slot;
1203 if (Machine) {
1204 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1205 Slot = Machine->getGlobalSlot(GV);
1206 Prefix = '@';
1207 } else {
1208 Slot = Machine->getLocalSlot(V);
1210 } else {
1211 Machine = createSlotTracker(V);
1212 if (Machine) {
1213 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1214 Slot = Machine->getGlobalSlot(GV);
1215 Prefix = '@';
1216 } else {
1217 Slot = Machine->getLocalSlot(V);
1219 delete Machine;
1220 } else {
1221 Slot = -1;
1225 if (Slot != -1)
1226 Out << Prefix << Slot;
1227 else
1228 Out << "<badref>";
1231 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1232 bool PrintType, const Module *Context) {
1234 // Fast path: Don't construct and populate a TypePrinting object if we
1235 // won't be needing any types printed.
1236 if (!PrintType &&
1237 (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1238 WriteAsOperandInternal(Out, V, 0, 0);
1239 return;
1242 if (Context == 0) Context = getModuleFromVal(V);
1244 TypePrinting TypePrinter;
1245 std::vector<const Type*> NumberedTypes;
1246 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1247 if (PrintType) {
1248 TypePrinter.print(V->getType(), Out);
1249 Out << ' ';
1252 WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1255 namespace {
1257 class AssemblyWriter {
1258 formatted_raw_ostream &Out;
1259 SlotTracker &Machine;
1260 const Module *TheModule;
1261 TypePrinting TypePrinter;
1262 AssemblyAnnotationWriter *AnnotationWriter;
1263 std::vector<const Type*> NumberedTypes;
1265 // Each MDNode is assigned unique MetadataIDNo.
1266 std::map<const MDNode *, unsigned> MDNodes;
1267 unsigned MetadataIDNo;
1269 public:
1270 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1271 const Module *M,
1272 AssemblyAnnotationWriter *AAW)
1273 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1274 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1277 void write(const Module *M) { printModule(M); }
1279 void write(const GlobalValue *G) {
1280 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1281 printGlobal(GV);
1282 else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1283 printAlias(GA);
1284 else if (const Function *F = dyn_cast<Function>(G))
1285 printFunction(F);
1286 else
1287 llvm_unreachable("Unknown global");
1290 void write(const BasicBlock *BB) { printBasicBlock(BB); }
1291 void write(const Instruction *I) { printInstruction(*I); }
1293 void writeOperand(const Value *Op, bool PrintType);
1294 void writeParamOperand(const Value *Operand, Attributes Attrs);
1296 private:
1297 void printModule(const Module *M);
1298 void printTypeSymbolTable(const TypeSymbolTable &ST);
1299 void printGlobal(const GlobalVariable *GV);
1300 void printAlias(const GlobalAlias *GV);
1301 void printFunction(const Function *F);
1302 void printArgument(const Argument *FA, Attributes Attrs);
1303 void printBasicBlock(const BasicBlock *BB);
1304 void printInstruction(const Instruction &I);
1306 // printInfoComment - Print a little comment after the instruction indicating
1307 // which slot it occupies.
1308 void printInfoComment(const Value &V);
1310 } // end of anonymous namespace
1313 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1314 if (Operand == 0) {
1315 Out << "<null operand!>";
1316 } else {
1317 if (PrintType) {
1318 TypePrinter.print(Operand->getType(), Out);
1319 Out << ' ';
1321 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1325 void AssemblyWriter::writeParamOperand(const Value *Operand,
1326 Attributes Attrs) {
1327 if (Operand == 0) {
1328 Out << "<null operand!>";
1329 } else {
1330 // Print the type
1331 TypePrinter.print(Operand->getType(), Out);
1332 // Print parameter attributes list
1333 if (Attrs != Attribute::None)
1334 Out << ' ' << Attribute::getAsString(Attrs);
1335 Out << ' ';
1336 // Print the operand
1337 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1341 void AssemblyWriter::printModule(const Module *M) {
1342 if (!M->getModuleIdentifier().empty() &&
1343 // Don't print the ID if it will start a new line (which would
1344 // require a comment char before it).
1345 M->getModuleIdentifier().find('\n') == std::string::npos)
1346 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1348 if (!M->getDataLayout().empty())
1349 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1350 if (!M->getTargetTriple().empty())
1351 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1353 if (!M->getModuleInlineAsm().empty()) {
1354 // Split the string into lines, to make it easier to read the .ll file.
1355 std::string Asm = M->getModuleInlineAsm();
1356 size_t CurPos = 0;
1357 size_t NewLine = Asm.find_first_of('\n', CurPos);
1358 Out << '\n';
1359 while (NewLine != std::string::npos) {
1360 // We found a newline, print the portion of the asm string from the
1361 // last newline up to this newline.
1362 Out << "module asm \"";
1363 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1364 Out);
1365 Out << "\"\n";
1366 CurPos = NewLine+1;
1367 NewLine = Asm.find_first_of('\n', CurPos);
1369 Out << "module asm \"";
1370 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1371 Out << "\"\n";
1374 // Loop over the dependent libraries and emit them.
1375 Module::lib_iterator LI = M->lib_begin();
1376 Module::lib_iterator LE = M->lib_end();
1377 if (LI != LE) {
1378 Out << '\n';
1379 Out << "deplibs = [ ";
1380 while (LI != LE) {
1381 Out << '"' << *LI << '"';
1382 ++LI;
1383 if (LI != LE)
1384 Out << ", ";
1386 Out << " ]";
1389 // Loop over the symbol table, emitting all id'd types.
1390 if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1391 printTypeSymbolTable(M->getTypeSymbolTable());
1393 // Output all globals.
1394 if (!M->global_empty()) Out << '\n';
1395 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1396 I != E; ++I)
1397 printGlobal(I);
1399 // Output all aliases.
1400 if (!M->alias_empty()) Out << "\n";
1401 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1402 I != E; ++I)
1403 printAlias(I);
1405 // Output all of the functions.
1406 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1407 printFunction(I);
1409 // Output named metadata.
1410 if (!M->named_metadata_empty()) Out << '\n';
1411 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1412 E = M->named_metadata_end(); I != E; ++I) {
1413 const NamedMDNode *NMD = I;
1414 Out << "!" << NMD->getName() << " = !{";
1415 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1416 if (i) Out << ", ";
1417 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1418 Out << '!' << Machine.getMetadataSlot(MD);
1420 Out << "}\n";
1423 // Output metadata.
1424 if (!Machine.mdnEmpty()) Out << '\n';
1425 WriteMDNodes(Out, TypePrinter, Machine);
1428 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1429 formatted_raw_ostream &Out) {
1430 switch (LT) {
1431 case GlobalValue::ExternalLinkage: break;
1432 case GlobalValue::PrivateLinkage: Out << "private "; break;
1433 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1434 case GlobalValue::InternalLinkage: Out << "internal "; break;
1435 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1436 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1437 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1438 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1439 case GlobalValue::CommonLinkage: Out << "common "; break;
1440 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1441 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1442 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1443 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1444 case GlobalValue::AvailableExternallyLinkage:
1445 Out << "available_externally ";
1446 break;
1447 case GlobalValue::GhostLinkage:
1448 llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1453 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1454 formatted_raw_ostream &Out) {
1455 switch (Vis) {
1456 default: llvm_unreachable("Invalid visibility style!");
1457 case GlobalValue::DefaultVisibility: break;
1458 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1459 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1463 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1464 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1465 Out << " = ";
1467 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1468 Out << "external ";
1470 PrintLinkage(GV->getLinkage(), Out);
1471 PrintVisibility(GV->getVisibility(), Out);
1473 if (GV->isThreadLocal()) Out << "thread_local ";
1474 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1475 Out << "addrspace(" << AddressSpace << ") ";
1476 Out << (GV->isConstant() ? "constant " : "global ");
1477 TypePrinter.print(GV->getType()->getElementType(), Out);
1479 if (GV->hasInitializer()) {
1480 Out << ' ';
1481 writeOperand(GV->getInitializer(), false);
1484 if (GV->hasSection())
1485 Out << ", section \"" << GV->getSection() << '"';
1486 if (GV->getAlignment())
1487 Out << ", align " << GV->getAlignment();
1489 printInfoComment(*GV);
1490 Out << '\n';
1493 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1494 // Don't crash when dumping partially built GA
1495 if (!GA->hasName())
1496 Out << "<<nameless>> = ";
1497 else {
1498 PrintLLVMName(Out, GA);
1499 Out << " = ";
1501 PrintVisibility(GA->getVisibility(), Out);
1503 Out << "alias ";
1505 PrintLinkage(GA->getLinkage(), Out);
1507 const Constant *Aliasee = GA->getAliasee();
1509 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1510 TypePrinter.print(GV->getType(), Out);
1511 Out << ' ';
1512 PrintLLVMName(Out, GV);
1513 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1514 TypePrinter.print(F->getFunctionType(), Out);
1515 Out << "* ";
1517 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1518 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1519 TypePrinter.print(GA->getType(), Out);
1520 Out << ' ';
1521 PrintLLVMName(Out, GA);
1522 } else {
1523 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1524 // The only valid GEP is an all zero GEP.
1525 assert((CE->getOpcode() == Instruction::BitCast ||
1526 CE->getOpcode() == Instruction::GetElementPtr) &&
1527 "Unsupported aliasee");
1528 writeOperand(CE, false);
1531 printInfoComment(*GA);
1532 Out << '\n';
1535 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1536 // Emit all numbered types.
1537 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1538 Out << '%' << i << " = type ";
1540 // Make sure we print out at least one level of the type structure, so
1541 // that we do not get %2 = type %2
1542 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1543 Out << '\n';
1546 // Print the named types.
1547 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1548 TI != TE; ++TI) {
1549 PrintLLVMName(Out, TI->first, LocalPrefix);
1550 Out << " = type ";
1552 // Make sure we print out at least one level of the type structure, so
1553 // that we do not get %FILE = type %FILE
1554 TypePrinter.printAtLeastOneLevel(TI->second, Out);
1555 Out << '\n';
1559 /// printFunction - Print all aspects of a function.
1561 void AssemblyWriter::printFunction(const Function *F) {
1562 // Print out the return type and name.
1563 Out << '\n';
1565 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1567 if (F->isDeclaration())
1568 Out << "declare ";
1569 else
1570 Out << "define ";
1572 PrintLinkage(F->getLinkage(), Out);
1573 PrintVisibility(F->getVisibility(), Out);
1575 // Print the calling convention.
1576 switch (F->getCallingConv()) {
1577 case CallingConv::C: break; // default
1578 case CallingConv::Fast: Out << "fastcc "; break;
1579 case CallingConv::Cold: Out << "coldcc "; break;
1580 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1581 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1582 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break;
1583 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break;
1584 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1585 default: Out << "cc" << F->getCallingConv() << " "; break;
1588 const FunctionType *FT = F->getFunctionType();
1589 const AttrListPtr &Attrs = F->getAttributes();
1590 Attributes RetAttrs = Attrs.getRetAttributes();
1591 if (RetAttrs != Attribute::None)
1592 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1593 TypePrinter.print(F->getReturnType(), Out);
1594 Out << ' ';
1595 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1596 Out << '(';
1597 Machine.incorporateFunction(F);
1599 // Loop over the arguments, printing them...
1601 unsigned Idx = 1;
1602 if (!F->isDeclaration()) {
1603 // If this isn't a declaration, print the argument names as well.
1604 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1605 I != E; ++I) {
1606 // Insert commas as we go... the first arg doesn't get a comma
1607 if (I != F->arg_begin()) Out << ", ";
1608 printArgument(I, Attrs.getParamAttributes(Idx));
1609 Idx++;
1611 } else {
1612 // Otherwise, print the types from the function type.
1613 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1614 // Insert commas as we go... the first arg doesn't get a comma
1615 if (i) Out << ", ";
1617 // Output type...
1618 TypePrinter.print(FT->getParamType(i), Out);
1620 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1621 if (ArgAttrs != Attribute::None)
1622 Out << ' ' << Attribute::getAsString(ArgAttrs);
1626 // Finish printing arguments...
1627 if (FT->isVarArg()) {
1628 if (FT->getNumParams()) Out << ", ";
1629 Out << "..."; // Output varargs portion of signature!
1631 Out << ')';
1632 Attributes FnAttrs = Attrs.getFnAttributes();
1633 if (FnAttrs != Attribute::None)
1634 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1635 if (F->hasSection())
1636 Out << " section \"" << F->getSection() << '"';
1637 if (F->getAlignment())
1638 Out << " align " << F->getAlignment();
1639 if (F->hasGC())
1640 Out << " gc \"" << F->getGC() << '"';
1641 if (F->isDeclaration()) {
1642 Out << "\n";
1643 } else {
1644 Out << " {";
1646 // Output all of its basic blocks... for the function
1647 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1648 printBasicBlock(I);
1650 Out << "}\n";
1653 Machine.purgeFunction();
1656 /// printArgument - This member is called for every argument that is passed into
1657 /// the function. Simply print it out
1659 void AssemblyWriter::printArgument(const Argument *Arg,
1660 Attributes Attrs) {
1661 // Output type...
1662 TypePrinter.print(Arg->getType(), Out);
1664 // Output parameter attributes list
1665 if (Attrs != Attribute::None)
1666 Out << ' ' << Attribute::getAsString(Attrs);
1668 // Output name, if available...
1669 if (Arg->hasName()) {
1670 Out << ' ';
1671 PrintLLVMName(Out, Arg);
1675 /// printBasicBlock - This member is called for each basic block in a method.
1677 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1678 if (BB->hasName()) { // Print out the label if it exists...
1679 Out << "\n";
1680 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1681 Out << ':';
1682 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1683 Out << "\n; <label>:";
1684 int Slot = Machine.getLocalSlot(BB);
1685 if (Slot != -1)
1686 Out << Slot;
1687 else
1688 Out << "<badref>";
1691 if (BB->getParent() == 0) {
1692 Out.PadToColumn(50);
1693 Out << "; Error: Block without parent!";
1694 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1695 // Output predecessors for the block...
1696 Out.PadToColumn(50);
1697 Out << ";";
1698 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1700 if (PI == PE) {
1701 Out << " No predecessors!";
1702 } else {
1703 Out << " preds = ";
1704 writeOperand(*PI, false);
1705 for (++PI; PI != PE; ++PI) {
1706 Out << ", ";
1707 writeOperand(*PI, false);
1712 Out << "\n";
1714 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1716 // Output all of the instructions in the basic block...
1717 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1718 printInstruction(*I);
1719 Out << '\n';
1722 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1726 /// printInfoComment - Print a little comment after the instruction indicating
1727 /// which slot it occupies.
1729 void AssemblyWriter::printInfoComment(const Value &V) {
1730 if (V.getType() != Type::getVoidTy(V.getContext())) {
1731 Out.PadToColumn(50);
1732 Out << "; <";
1733 TypePrinter.print(V.getType(), Out);
1734 Out << "> [#uses=" << V.getNumUses() << ']'; // Output # uses
1738 // This member is called for each Instruction in a function..
1739 void AssemblyWriter::printInstruction(const Instruction &I) {
1740 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1742 // Print out indentation for an instruction.
1743 Out << " ";
1745 // Print out name if it exists...
1746 if (I.hasName()) {
1747 PrintLLVMName(Out, &I);
1748 Out << " = ";
1749 } else if (I.getType() != Type::getVoidTy(I.getContext())) {
1750 // Print out the def slot taken.
1751 int SlotNum = Machine.getLocalSlot(&I);
1752 if (SlotNum == -1)
1753 Out << "<badref> = ";
1754 else
1755 Out << '%' << SlotNum << " = ";
1758 // If this is a volatile load or store, print out the volatile marker.
1759 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1760 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1761 Out << "volatile ";
1762 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1763 // If this is a call, check if it's a tail call.
1764 Out << "tail ";
1767 // Print out the opcode...
1768 Out << I.getOpcodeName();
1770 // Print out optimization information.
1771 WriteOptimizationInfo(Out, &I);
1773 // Print out the compare instruction predicates
1774 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1775 Out << ' ' << getPredicateText(CI->getPredicate());
1777 // Print out the type of the operands...
1778 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1780 // Special case conditional branches to swizzle the condition out to the front
1781 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1782 BranchInst &BI(cast<BranchInst>(I));
1783 Out << ' ';
1784 writeOperand(BI.getCondition(), true);
1785 Out << ", ";
1786 writeOperand(BI.getSuccessor(0), true);
1787 Out << ", ";
1788 writeOperand(BI.getSuccessor(1), true);
1790 } else if (isa<SwitchInst>(I)) {
1791 // Special case switch statement to get formatting nice and correct...
1792 Out << ' ';
1793 writeOperand(Operand , true);
1794 Out << ", ";
1795 writeOperand(I.getOperand(1), true);
1796 Out << " [";
1798 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1799 Out << "\n ";
1800 writeOperand(I.getOperand(op ), true);
1801 Out << ", ";
1802 writeOperand(I.getOperand(op+1), true);
1804 Out << "\n ]";
1805 } else if (isa<PHINode>(I)) {
1806 Out << ' ';
1807 TypePrinter.print(I.getType(), Out);
1808 Out << ' ';
1810 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1811 if (op) Out << ", ";
1812 Out << "[ ";
1813 writeOperand(I.getOperand(op ), false); Out << ", ";
1814 writeOperand(I.getOperand(op+1), false); Out << " ]";
1816 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1817 Out << ' ';
1818 writeOperand(I.getOperand(0), true);
1819 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1820 Out << ", " << *i;
1821 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1822 Out << ' ';
1823 writeOperand(I.getOperand(0), true); Out << ", ";
1824 writeOperand(I.getOperand(1), true);
1825 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1826 Out << ", " << *i;
1827 } else if (isa<ReturnInst>(I) && !Operand) {
1828 Out << " void";
1829 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1830 // Print the calling convention being used.
1831 switch (CI->getCallingConv()) {
1832 case CallingConv::C: break; // default
1833 case CallingConv::Fast: Out << " fastcc"; break;
1834 case CallingConv::Cold: Out << " coldcc"; break;
1835 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1836 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1837 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1838 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1839 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1840 default: Out << " cc" << CI->getCallingConv(); break;
1843 const PointerType *PTy = cast<PointerType>(Operand->getType());
1844 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1845 const Type *RetTy = FTy->getReturnType();
1846 const AttrListPtr &PAL = CI->getAttributes();
1848 if (PAL.getRetAttributes() != Attribute::None)
1849 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1851 // If possible, print out the short form of the call instruction. We can
1852 // only do this if the first argument is a pointer to a nonvararg function,
1853 // and if the return type is not a pointer to a function.
1855 Out << ' ';
1856 if (!FTy->isVarArg() &&
1857 (!isa<PointerType>(RetTy) ||
1858 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1859 TypePrinter.print(RetTy, Out);
1860 Out << ' ';
1861 writeOperand(Operand, false);
1862 } else {
1863 writeOperand(Operand, true);
1865 Out << '(';
1866 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1867 if (op > 1)
1868 Out << ", ";
1869 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1871 Out << ')';
1872 if (PAL.getFnAttributes() != Attribute::None)
1873 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1874 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1875 const PointerType *PTy = cast<PointerType>(Operand->getType());
1876 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1877 const Type *RetTy = FTy->getReturnType();
1878 const AttrListPtr &PAL = II->getAttributes();
1880 // Print the calling convention being used.
1881 switch (II->getCallingConv()) {
1882 case CallingConv::C: break; // default
1883 case CallingConv::Fast: Out << " fastcc"; break;
1884 case CallingConv::Cold: Out << " coldcc"; break;
1885 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1886 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1887 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1888 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1889 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1890 default: Out << " cc" << II->getCallingConv(); break;
1893 if (PAL.getRetAttributes() != Attribute::None)
1894 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1896 // If possible, print out the short form of the invoke instruction. We can
1897 // only do this if the first argument is a pointer to a nonvararg function,
1898 // and if the return type is not a pointer to a function.
1900 Out << ' ';
1901 if (!FTy->isVarArg() &&
1902 (!isa<PointerType>(RetTy) ||
1903 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1904 TypePrinter.print(RetTy, Out);
1905 Out << ' ';
1906 writeOperand(Operand, false);
1907 } else {
1908 writeOperand(Operand, true);
1910 Out << '(';
1911 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1912 if (op > 3)
1913 Out << ", ";
1914 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1917 Out << ')';
1918 if (PAL.getFnAttributes() != Attribute::None)
1919 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1921 Out << "\n to ";
1922 writeOperand(II->getNormalDest(), true);
1923 Out << " unwind ";
1924 writeOperand(II->getUnwindDest(), true);
1926 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1927 Out << ' ';
1928 TypePrinter.print(AI->getType()->getElementType(), Out);
1929 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1930 Out << ", ";
1931 writeOperand(AI->getArraySize(), true);
1933 if (AI->getAlignment()) {
1934 Out << ", align " << AI->getAlignment();
1936 } else if (isa<CastInst>(I)) {
1937 if (Operand) {
1938 Out << ' ';
1939 writeOperand(Operand, true); // Work with broken code
1941 Out << " to ";
1942 TypePrinter.print(I.getType(), Out);
1943 } else if (isa<VAArgInst>(I)) {
1944 if (Operand) {
1945 Out << ' ';
1946 writeOperand(Operand, true); // Work with broken code
1948 Out << ", ";
1949 TypePrinter.print(I.getType(), Out);
1950 } else if (Operand) { // Print the normal way.
1952 // PrintAllTypes - Instructions who have operands of all the same type
1953 // omit the type from all but the first operand. If the instruction has
1954 // different type operands (for example br), then they are all printed.
1955 bool PrintAllTypes = false;
1956 const Type *TheType = Operand->getType();
1958 // Select, Store and ShuffleVector always print all types.
1959 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1960 || isa<ReturnInst>(I)) {
1961 PrintAllTypes = true;
1962 } else {
1963 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1964 Operand = I.getOperand(i);
1965 // note that Operand shouldn't be null, but the test helps make dump()
1966 // more tolerant of malformed IR
1967 if (Operand && Operand->getType() != TheType) {
1968 PrintAllTypes = true; // We have differing types! Print them all!
1969 break;
1974 if (!PrintAllTypes) {
1975 Out << ' ';
1976 TypePrinter.print(TheType, Out);
1979 Out << ' ';
1980 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1981 if (i) Out << ", ";
1982 writeOperand(I.getOperand(i), PrintAllTypes);
1986 // Print post operand alignment for load/store
1987 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1988 Out << ", align " << cast<LoadInst>(I).getAlignment();
1989 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1990 Out << ", align " << cast<StoreInst>(I).getAlignment();
1993 // Print DebugInfo
1994 Metadata &TheMetadata = I.getContext().getMetadata();
1995 unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
1996 if (const MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &I))
1997 Out << ", dbg !" << Machine.getMetadataSlot(Dbg);
1998 printInfoComment(I);
2002 //===----------------------------------------------------------------------===//
2003 // External Interface declarations
2004 //===----------------------------------------------------------------------===//
2006 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2007 SlotTracker SlotTable(this);
2008 formatted_raw_ostream OS(ROS);
2009 AssemblyWriter W(OS, SlotTable, this, AAW);
2010 W.write(this);
2013 void Type::print(raw_ostream &OS) const {
2014 if (this == 0) {
2015 OS << "<null Type>";
2016 return;
2018 TypePrinting().print(this, OS);
2021 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2022 if (this == 0) {
2023 ROS << "printing a <null> value\n";
2024 return;
2026 formatted_raw_ostream OS(ROS);
2027 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2028 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2029 SlotTracker SlotTable(F);
2030 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2031 W.write(I);
2032 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2033 SlotTracker SlotTable(BB->getParent());
2034 AssemblyWriter W(OS, SlotTable,
2035 BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2036 W.write(BB);
2037 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2038 SlotTracker SlotTable(GV->getParent());
2039 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2040 W.write(GV);
2041 } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2042 TypePrinting TypePrinter;
2043 TypePrinter.print(MDS->getType(), OS);
2044 OS << ' ';
2045 OS << "!\"";
2046 PrintEscapedString(MDS->getString(), OS);
2047 OS << '"';
2048 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2049 SlotTracker SlotTable(N);
2050 TypePrinting TypePrinter;
2051 SlotTable.initialize();
2052 WriteMDNodes(OS, TypePrinter, SlotTable);
2053 } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2054 SlotTracker SlotTable(N);
2055 TypePrinting TypePrinter;
2056 SlotTable.initialize();
2057 OS << "!" << N->getName() << " = !{";
2058 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2059 if (i) OS << ", ";
2060 MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2061 if (MD)
2062 OS << '!' << SlotTable.getMetadataSlot(MD);
2063 else
2064 OS << "null";
2066 OS << "}\n";
2067 WriteMDNodes(OS, TypePrinter, SlotTable);
2068 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2069 TypePrinting TypePrinter;
2070 TypePrinter.print(C->getType(), OS);
2071 OS << ' ';
2072 WriteConstantInt(OS, C, TypePrinter, 0);
2073 } else if (const Argument *A = dyn_cast<Argument>(this)) {
2074 WriteAsOperand(OS, this, true,
2075 A->getParent() ? A->getParent()->getParent() : 0);
2076 } else if (isa<InlineAsm>(this)) {
2077 WriteAsOperand(OS, this, true, 0);
2078 } else {
2079 llvm_unreachable("Unknown value to print out!");
2083 // Value::dump - allow easy printing of Values from the debugger.
2084 void Value::dump() const { print(errs()); errs() << '\n'; }
2086 // Type::dump - allow easy printing of Types from the debugger.
2087 // This one uses type names from the given context module
2088 void Type::dump(const Module *Context) const {
2089 WriteTypeSymbolic(errs(), this, Context);
2090 errs() << '\n';
2093 // Type::dump - allow easy printing of Types from the debugger.
2094 void Type::dump() const { dump(0); }
2096 // Module::dump() - Allow printing of Modules from the debugger.
2097 void Module::dump() const { print(errs(), 0); }