1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Type.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/LeakDetector.h"
22 #include "SymbolTableListTraitsImpl.h"
26 ValueSymbolTable
*BasicBlock::getValueSymbolTable() {
27 if (Function
*F
= getParent())
28 return &F
->getValueSymbolTable();
32 LLVMContext
&BasicBlock::getContext() const {
33 return getType()->getContext();
36 // Explicit instantiation of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class SymbolTableListTraits
<Instruction
, BasicBlock
>;
41 BasicBlock::BasicBlock(LLVMContext
&C
, const Twine
&Name
, Function
*NewParent
,
42 BasicBlock
*InsertBefore
)
43 : Value(Type::getLabelTy(C
), Value::BasicBlockVal
), Parent(0) {
45 // Make sure that we get added to a function
46 LeakDetector::addGarbageObject(this);
50 "Cannot insert block before another block with no function!");
51 NewParent
->getBasicBlockList().insert(InsertBefore
, this);
52 } else if (NewParent
) {
53 NewParent
->getBasicBlockList().push_back(this);
60 BasicBlock::~BasicBlock() {
61 assert(getParent() == 0 && "BasicBlock still linked into the program!");
66 void BasicBlock::setParent(Function
*parent
) {
68 LeakDetector::addGarbageObject(this);
70 // Set Parent=parent, updating instruction symtab entries as appropriate.
71 InstList
.setSymTabObject(&Parent
, parent
);
74 LeakDetector::removeGarbageObject(this);
77 void BasicBlock::removeFromParent() {
78 getParent()->getBasicBlockList().remove(this);
81 void BasicBlock::eraseFromParent() {
82 getParent()->getBasicBlockList().erase(this);
85 /// moveBefore - Unlink this basic block from its current function and
86 /// insert it into the function that MovePos lives in, right before MovePos.
87 void BasicBlock::moveBefore(BasicBlock
*MovePos
) {
88 MovePos
->getParent()->getBasicBlockList().splice(MovePos
,
89 getParent()->getBasicBlockList(), this);
92 /// moveAfter - Unlink this basic block from its current function and
93 /// insert it into the function that MovePos lives in, right after MovePos.
94 void BasicBlock::moveAfter(BasicBlock
*MovePos
) {
95 Function::iterator I
= MovePos
;
96 MovePos
->getParent()->getBasicBlockList().splice(++I
,
97 getParent()->getBasicBlockList(), this);
101 TerminatorInst
*BasicBlock::getTerminator() {
102 if (InstList
.empty()) return 0;
103 return dyn_cast
<TerminatorInst
>(&InstList
.back());
106 const TerminatorInst
*BasicBlock::getTerminator() const {
107 if (InstList
.empty()) return 0;
108 return dyn_cast
<TerminatorInst
>(&InstList
.back());
111 Instruction
* BasicBlock::getFirstNonPHI() {
112 BasicBlock::iterator i
= begin();
113 // All valid basic blocks should have a terminator,
114 // which is not a PHINode. If we have an invalid basic
115 // block we'll get an assertion failure when dereferencing
116 // a past-the-end iterator.
117 while (isa
<PHINode
>(i
)) ++i
;
121 void BasicBlock::dropAllReferences() {
122 for(iterator I
= begin(), E
= end(); I
!= E
; ++I
)
123 I
->dropAllReferences();
126 /// getSinglePredecessor - If this basic block has a single predecessor block,
127 /// return the block, otherwise return a null pointer.
128 BasicBlock
*BasicBlock::getSinglePredecessor() {
129 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
130 if (PI
== E
) return 0; // No preds.
131 BasicBlock
*ThePred
= *PI
;
133 return (PI
== E
) ? ThePred
: 0 /*multiple preds*/;
136 /// getUniquePredecessor - If this basic block has a unique predecessor block,
137 /// return the block, otherwise return a null pointer.
138 /// Note that unique predecessor doesn't mean single edge, there can be
139 /// multiple edges from the unique predecessor to this block (for example
140 /// a switch statement with multiple cases having the same destination).
141 BasicBlock
*BasicBlock::getUniquePredecessor() {
142 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
143 if (PI
== E
) return 0; // No preds.
144 BasicBlock
*PredBB
= *PI
;
146 for (;PI
!= E
; ++PI
) {
149 // The same predecessor appears multiple times in the predecessor list.
155 /// removePredecessor - This method is used to notify a BasicBlock that the
156 /// specified Predecessor of the block is no longer able to reach it. This is
157 /// actually not used to update the Predecessor list, but is actually used to
158 /// update the PHI nodes that reside in the block. Note that this should be
159 /// called while the predecessor still refers to this block.
161 void BasicBlock::removePredecessor(BasicBlock
*Pred
,
162 bool DontDeleteUselessPHIs
) {
163 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
164 find(pred_begin(this), pred_end(this), Pred
) != pred_end(this)) &&
165 "removePredecessor: BB is not a predecessor!");
167 if (InstList
.empty()) return;
168 PHINode
*APN
= dyn_cast
<PHINode
>(&front());
169 if (!APN
) return; // Quick exit.
171 // If there are exactly two predecessors, then we want to nuke the PHI nodes
172 // altogether. However, we cannot do this, if this in this case:
175 // %x = phi [X, Loop]
176 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
177 // br Loop ;; %x2 does not dominate all uses
179 // This is because the PHI node input is actually taken from the predecessor
180 // basic block. The only case this can happen is with a self loop, so we
181 // check for this case explicitly now.
183 unsigned max_idx
= APN
->getNumIncomingValues();
184 assert(max_idx
!= 0 && "PHI Node in block with 0 predecessors!?!?!");
186 BasicBlock
*Other
= APN
->getIncomingBlock(APN
->getIncomingBlock(0) == Pred
);
188 // Disable PHI elimination!
189 if (this == Other
) max_idx
= 3;
192 // <= Two predecessors BEFORE I remove one?
193 if (max_idx
<= 2 && !DontDeleteUselessPHIs
) {
194 // Yup, loop through and nuke the PHI nodes
195 while (PHINode
*PN
= dyn_cast
<PHINode
>(&front())) {
196 // Remove the predecessor first.
197 PN
->removeIncomingValue(Pred
, !DontDeleteUselessPHIs
);
199 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
201 if (PN
->getOperand(0) != PN
)
202 PN
->replaceAllUsesWith(PN
->getOperand(0));
204 // We are left with an infinite loop with no entries: kill the PHI.
205 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
206 getInstList().pop_front(); // Remove the PHI node
209 // If the PHI node already only had one entry, it got deleted by
210 // removeIncomingValue.
213 // Okay, now we know that we need to remove predecessor #pred_idx from all
214 // PHI nodes. Iterate over each PHI node fixing them up
216 for (iterator II
= begin(); (PN
= dyn_cast
<PHINode
>(II
)); ) {
218 PN
->removeIncomingValue(Pred
, false);
219 // If all incoming values to the Phi are the same, we can replace the Phi
222 if (!DontDeleteUselessPHIs
&& (PNV
= PN
->hasConstantValue())) {
223 PN
->replaceAllUsesWith(PNV
);
224 PN
->eraseFromParent();
231 /// splitBasicBlock - This splits a basic block into two at the specified
232 /// instruction. Note that all instructions BEFORE the specified iterator stay
233 /// as part of the original basic block, an unconditional branch is added to
234 /// the new BB, and the rest of the instructions in the BB are moved to the new
235 /// BB, including the old terminator. This invalidates the iterator.
237 /// Note that this only works on well formed basic blocks (must have a
238 /// terminator), and 'I' must not be the end of instruction list (which would
239 /// cause a degenerate basic block to be formed, having a terminator inside of
240 /// the basic block).
242 BasicBlock
*BasicBlock::splitBasicBlock(iterator I
, const Twine
&BBName
) {
243 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
244 assert(I
!= InstList
.end() &&
245 "Trying to get me to create degenerate basic block!");
247 BasicBlock
*InsertBefore
= next(Function::iterator(this))
248 .getNodePtrUnchecked();
249 BasicBlock
*New
= BasicBlock::Create(getContext(), BBName
,
250 getParent(), InsertBefore
);
252 // Move all of the specified instructions from the original basic block into
253 // the new basic block.
254 New
->getInstList().splice(New
->end(), this->getInstList(), I
, end());
256 // Add a branch instruction to the newly formed basic block.
257 BranchInst::Create(New
, this);
259 // Now we must loop through all of the successors of the New block (which
260 // _were_ the successors of the 'this' block), and update any PHI nodes in
261 // successors. If there were PHI nodes in the successors, then they need to
262 // know that incoming branches will be from New, not from Old.
264 for (succ_iterator I
= succ_begin(New
), E
= succ_end(New
); I
!= E
; ++I
) {
265 // Loop over any phi nodes in the basic block, updating the BB field of
266 // incoming values...
267 BasicBlock
*Successor
= *I
;
269 for (BasicBlock::iterator II
= Successor
->begin();
270 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
271 int IDX
= PN
->getBasicBlockIndex(this);
273 PN
->setIncomingBlock((unsigned)IDX
, New
);
274 IDX
= PN
->getBasicBlockIndex(this);