use an accessor to simplify code.
[llvm/avr.git] / examples / Kaleidoscope / toy.cpp
blob8e02e9ab61f87df75160306a39bf758ed9c43f72
1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/Interpreter.h"
4 #include "llvm/ExecutionEngine/JIT.h"
5 #include "llvm/LLVMContext.h"
6 #include "llvm/Module.h"
7 #include "llvm/ModuleProvider.h"
8 #include "llvm/PassManager.h"
9 #include "llvm/Analysis/Verifier.h"
10 #include "llvm/Target/TargetData.h"
11 #include "llvm/Target/TargetSelect.h"
12 #include "llvm/Transforms/Scalar.h"
13 #include "llvm/Support/IRBuilder.h"
14 #include <cstdio>
15 #include <string>
16 #include <map>
17 #include <vector>
18 using namespace llvm;
20 //===----------------------------------------------------------------------===//
21 // Lexer
22 //===----------------------------------------------------------------------===//
24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25 // of these for known things.
26 enum Token {
27 tok_eof = -1,
29 // commands
30 tok_def = -2, tok_extern = -3,
32 // primary
33 tok_identifier = -4, tok_number = -5,
35 // control
36 tok_if = -6, tok_then = -7, tok_else = -8,
37 tok_for = -9, tok_in = -10,
39 // operators
40 tok_binary = -11, tok_unary = -12,
42 // var definition
43 tok_var = -13
46 static std::string IdentifierStr; // Filled in if tok_identifier
47 static double NumVal; // Filled in if tok_number
49 /// gettok - Return the next token from standard input.
50 static int gettok() {
51 static int LastChar = ' ';
53 // Skip any whitespace.
54 while (isspace(LastChar))
55 LastChar = getchar();
57 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
58 IdentifierStr = LastChar;
59 while (isalnum((LastChar = getchar())))
60 IdentifierStr += LastChar;
62 if (IdentifierStr == "def") return tok_def;
63 if (IdentifierStr == "extern") return tok_extern;
64 if (IdentifierStr == "if") return tok_if;
65 if (IdentifierStr == "then") return tok_then;
66 if (IdentifierStr == "else") return tok_else;
67 if (IdentifierStr == "for") return tok_for;
68 if (IdentifierStr == "in") return tok_in;
69 if (IdentifierStr == "binary") return tok_binary;
70 if (IdentifierStr == "unary") return tok_unary;
71 if (IdentifierStr == "var") return tok_var;
72 return tok_identifier;
75 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
76 std::string NumStr;
77 do {
78 NumStr += LastChar;
79 LastChar = getchar();
80 } while (isdigit(LastChar) || LastChar == '.');
82 NumVal = strtod(NumStr.c_str(), 0);
83 return tok_number;
86 if (LastChar == '#') {
87 // Comment until end of line.
88 do LastChar = getchar();
89 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
91 if (LastChar != EOF)
92 return gettok();
95 // Check for end of file. Don't eat the EOF.
96 if (LastChar == EOF)
97 return tok_eof;
99 // Otherwise, just return the character as its ascii value.
100 int ThisChar = LastChar;
101 LastChar = getchar();
102 return ThisChar;
105 //===----------------------------------------------------------------------===//
106 // Abstract Syntax Tree (aka Parse Tree)
107 //===----------------------------------------------------------------------===//
109 /// ExprAST - Base class for all expression nodes.
110 class ExprAST {
111 public:
112 virtual ~ExprAST() {}
113 virtual Value *Codegen() = 0;
116 /// NumberExprAST - Expression class for numeric literals like "1.0".
117 class NumberExprAST : public ExprAST {
118 double Val;
119 public:
120 NumberExprAST(double val) : Val(val) {}
121 virtual Value *Codegen();
124 /// VariableExprAST - Expression class for referencing a variable, like "a".
125 class VariableExprAST : public ExprAST {
126 std::string Name;
127 public:
128 VariableExprAST(const std::string &name) : Name(name) {}
129 const std::string &getName() const { return Name; }
130 virtual Value *Codegen();
133 /// UnaryExprAST - Expression class for a unary operator.
134 class UnaryExprAST : public ExprAST {
135 char Opcode;
136 ExprAST *Operand;
137 public:
138 UnaryExprAST(char opcode, ExprAST *operand)
139 : Opcode(opcode), Operand(operand) {}
140 virtual Value *Codegen();
143 /// BinaryExprAST - Expression class for a binary operator.
144 class BinaryExprAST : public ExprAST {
145 char Op;
146 ExprAST *LHS, *RHS;
147 public:
148 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
149 : Op(op), LHS(lhs), RHS(rhs) {}
150 virtual Value *Codegen();
153 /// CallExprAST - Expression class for function calls.
154 class CallExprAST : public ExprAST {
155 std::string Callee;
156 std::vector<ExprAST*> Args;
157 public:
158 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
159 : Callee(callee), Args(args) {}
160 virtual Value *Codegen();
163 /// IfExprAST - Expression class for if/then/else.
164 class IfExprAST : public ExprAST {
165 ExprAST *Cond, *Then, *Else;
166 public:
167 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
168 : Cond(cond), Then(then), Else(_else) {}
169 virtual Value *Codegen();
172 /// ForExprAST - Expression class for for/in.
173 class ForExprAST : public ExprAST {
174 std::string VarName;
175 ExprAST *Start, *End, *Step, *Body;
176 public:
177 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
178 ExprAST *step, ExprAST *body)
179 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
180 virtual Value *Codegen();
183 /// VarExprAST - Expression class for var/in
184 class VarExprAST : public ExprAST {
185 std::vector<std::pair<std::string, ExprAST*> > VarNames;
186 ExprAST *Body;
187 public:
188 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
189 ExprAST *body)
190 : VarNames(varnames), Body(body) {}
192 virtual Value *Codegen();
195 /// PrototypeAST - This class represents the "prototype" for a function,
196 /// which captures its argument names as well as if it is an operator.
197 class PrototypeAST {
198 std::string Name;
199 std::vector<std::string> Args;
200 bool isOperator;
201 unsigned Precedence; // Precedence if a binary op.
202 public:
203 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
204 bool isoperator = false, unsigned prec = 0)
205 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
207 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
208 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
210 char getOperatorName() const {
211 assert(isUnaryOp() || isBinaryOp());
212 return Name[Name.size()-1];
215 unsigned getBinaryPrecedence() const { return Precedence; }
217 Function *Codegen();
219 void CreateArgumentAllocas(Function *F);
222 /// FunctionAST - This class represents a function definition itself.
223 class FunctionAST {
224 PrototypeAST *Proto;
225 ExprAST *Body;
226 public:
227 FunctionAST(PrototypeAST *proto, ExprAST *body)
228 : Proto(proto), Body(body) {}
230 Function *Codegen();
233 //===----------------------------------------------------------------------===//
234 // Parser
235 //===----------------------------------------------------------------------===//
237 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
238 /// token the parser it looking at. getNextToken reads another token from the
239 /// lexer and updates CurTok with its results.
240 static int CurTok;
241 static int getNextToken() {
242 return CurTok = gettok();
245 /// BinopPrecedence - This holds the precedence for each binary operator that is
246 /// defined.
247 static std::map<char, int> BinopPrecedence;
249 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
250 static int GetTokPrecedence() {
251 if (!isascii(CurTok))
252 return -1;
254 // Make sure it's a declared binop.
255 int TokPrec = BinopPrecedence[CurTok];
256 if (TokPrec <= 0) return -1;
257 return TokPrec;
260 /// Error* - These are little helper functions for error handling.
261 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
262 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
263 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
265 static ExprAST *ParseExpression();
267 /// identifierexpr
268 /// ::= identifier
269 /// ::= identifier '(' expression* ')'
270 static ExprAST *ParseIdentifierExpr() {
271 std::string IdName = IdentifierStr;
273 getNextToken(); // eat identifier.
275 if (CurTok != '(') // Simple variable ref.
276 return new VariableExprAST(IdName);
278 // Call.
279 getNextToken(); // eat (
280 std::vector<ExprAST*> Args;
281 if (CurTok != ')') {
282 while (1) {
283 ExprAST *Arg = ParseExpression();
284 if (!Arg) return 0;
285 Args.push_back(Arg);
287 if (CurTok == ')') break;
289 if (CurTok != ',')
290 return Error("Expected ')' or ',' in argument list");
291 getNextToken();
295 // Eat the ')'.
296 getNextToken();
298 return new CallExprAST(IdName, Args);
301 /// numberexpr ::= number
302 static ExprAST *ParseNumberExpr() {
303 ExprAST *Result = new NumberExprAST(NumVal);
304 getNextToken(); // consume the number
305 return Result;
308 /// parenexpr ::= '(' expression ')'
309 static ExprAST *ParseParenExpr() {
310 getNextToken(); // eat (.
311 ExprAST *V = ParseExpression();
312 if (!V) return 0;
314 if (CurTok != ')')
315 return Error("expected ')'");
316 getNextToken(); // eat ).
317 return V;
320 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
321 static ExprAST *ParseIfExpr() {
322 getNextToken(); // eat the if.
324 // condition.
325 ExprAST *Cond = ParseExpression();
326 if (!Cond) return 0;
328 if (CurTok != tok_then)
329 return Error("expected then");
330 getNextToken(); // eat the then
332 ExprAST *Then = ParseExpression();
333 if (Then == 0) return 0;
335 if (CurTok != tok_else)
336 return Error("expected else");
338 getNextToken();
340 ExprAST *Else = ParseExpression();
341 if (!Else) return 0;
343 return new IfExprAST(Cond, Then, Else);
346 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
347 static ExprAST *ParseForExpr() {
348 getNextToken(); // eat the for.
350 if (CurTok != tok_identifier)
351 return Error("expected identifier after for");
353 std::string IdName = IdentifierStr;
354 getNextToken(); // eat identifier.
356 if (CurTok != '=')
357 return Error("expected '=' after for");
358 getNextToken(); // eat '='.
361 ExprAST *Start = ParseExpression();
362 if (Start == 0) return 0;
363 if (CurTok != ',')
364 return Error("expected ',' after for start value");
365 getNextToken();
367 ExprAST *End = ParseExpression();
368 if (End == 0) return 0;
370 // The step value is optional.
371 ExprAST *Step = 0;
372 if (CurTok == ',') {
373 getNextToken();
374 Step = ParseExpression();
375 if (Step == 0) return 0;
378 if (CurTok != tok_in)
379 return Error("expected 'in' after for");
380 getNextToken(); // eat 'in'.
382 ExprAST *Body = ParseExpression();
383 if (Body == 0) return 0;
385 return new ForExprAST(IdName, Start, End, Step, Body);
388 /// varexpr ::= 'var' identifier ('=' expression)?
389 // (',' identifier ('=' expression)?)* 'in' expression
390 static ExprAST *ParseVarExpr() {
391 getNextToken(); // eat the var.
393 std::vector<std::pair<std::string, ExprAST*> > VarNames;
395 // At least one variable name is required.
396 if (CurTok != tok_identifier)
397 return Error("expected identifier after var");
399 while (1) {
400 std::string Name = IdentifierStr;
401 getNextToken(); // eat identifier.
403 // Read the optional initializer.
404 ExprAST *Init = 0;
405 if (CurTok == '=') {
406 getNextToken(); // eat the '='.
408 Init = ParseExpression();
409 if (Init == 0) return 0;
412 VarNames.push_back(std::make_pair(Name, Init));
414 // End of var list, exit loop.
415 if (CurTok != ',') break;
416 getNextToken(); // eat the ','.
418 if (CurTok != tok_identifier)
419 return Error("expected identifier list after var");
422 // At this point, we have to have 'in'.
423 if (CurTok != tok_in)
424 return Error("expected 'in' keyword after 'var'");
425 getNextToken(); // eat 'in'.
427 ExprAST *Body = ParseExpression();
428 if (Body == 0) return 0;
430 return new VarExprAST(VarNames, Body);
434 /// primary
435 /// ::= identifierexpr
436 /// ::= numberexpr
437 /// ::= parenexpr
438 /// ::= ifexpr
439 /// ::= forexpr
440 /// ::= varexpr
441 static ExprAST *ParsePrimary() {
442 switch (CurTok) {
443 default: return Error("unknown token when expecting an expression");
444 case tok_identifier: return ParseIdentifierExpr();
445 case tok_number: return ParseNumberExpr();
446 case '(': return ParseParenExpr();
447 case tok_if: return ParseIfExpr();
448 case tok_for: return ParseForExpr();
449 case tok_var: return ParseVarExpr();
453 /// unary
454 /// ::= primary
455 /// ::= '!' unary
456 static ExprAST *ParseUnary() {
457 // If the current token is not an operator, it must be a primary expr.
458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459 return ParsePrimary();
461 // If this is a unary operator, read it.
462 int Opc = CurTok;
463 getNextToken();
464 if (ExprAST *Operand = ParseUnary())
465 return new UnaryExprAST(Opc, Operand);
466 return 0;
469 /// binoprhs
470 /// ::= ('+' unary)*
471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472 // If this is a binop, find its precedence.
473 while (1) {
474 int TokPrec = GetTokPrecedence();
476 // If this is a binop that binds at least as tightly as the current binop,
477 // consume it, otherwise we are done.
478 if (TokPrec < ExprPrec)
479 return LHS;
481 // Okay, we know this is a binop.
482 int BinOp = CurTok;
483 getNextToken(); // eat binop
485 // Parse the unary expression after the binary operator.
486 ExprAST *RHS = ParseUnary();
487 if (!RHS) return 0;
489 // If BinOp binds less tightly with RHS than the operator after RHS, let
490 // the pending operator take RHS as its LHS.
491 int NextPrec = GetTokPrecedence();
492 if (TokPrec < NextPrec) {
493 RHS = ParseBinOpRHS(TokPrec+1, RHS);
494 if (RHS == 0) return 0;
497 // Merge LHS/RHS.
498 LHS = new BinaryExprAST(BinOp, LHS, RHS);
502 /// expression
503 /// ::= unary binoprhs
505 static ExprAST *ParseExpression() {
506 ExprAST *LHS = ParseUnary();
507 if (!LHS) return 0;
509 return ParseBinOpRHS(0, LHS);
512 /// prototype
513 /// ::= id '(' id* ')'
514 /// ::= binary LETTER number? (id, id)
515 /// ::= unary LETTER (id)
516 static PrototypeAST *ParsePrototype() {
517 std::string FnName;
519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
520 unsigned BinaryPrecedence = 30;
522 switch (CurTok) {
523 default:
524 return ErrorP("Expected function name in prototype");
525 case tok_identifier:
526 FnName = IdentifierStr;
527 Kind = 0;
528 getNextToken();
529 break;
530 case tok_unary:
531 getNextToken();
532 if (!isascii(CurTok))
533 return ErrorP("Expected unary operator");
534 FnName = "unary";
535 FnName += (char)CurTok;
536 Kind = 1;
537 getNextToken();
538 break;
539 case tok_binary:
540 getNextToken();
541 if (!isascii(CurTok))
542 return ErrorP("Expected binary operator");
543 FnName = "binary";
544 FnName += (char)CurTok;
545 Kind = 2;
546 getNextToken();
548 // Read the precedence if present.
549 if (CurTok == tok_number) {
550 if (NumVal < 1 || NumVal > 100)
551 return ErrorP("Invalid precedecnce: must be 1..100");
552 BinaryPrecedence = (unsigned)NumVal;
553 getNextToken();
555 break;
558 if (CurTok != '(')
559 return ErrorP("Expected '(' in prototype");
561 std::vector<std::string> ArgNames;
562 while (getNextToken() == tok_identifier)
563 ArgNames.push_back(IdentifierStr);
564 if (CurTok != ')')
565 return ErrorP("Expected ')' in prototype");
567 // success.
568 getNextToken(); // eat ')'.
570 // Verify right number of names for operator.
571 if (Kind && ArgNames.size() != Kind)
572 return ErrorP("Invalid number of operands for operator");
574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
577 /// definition ::= 'def' prototype expression
578 static FunctionAST *ParseDefinition() {
579 getNextToken(); // eat def.
580 PrototypeAST *Proto = ParsePrototype();
581 if (Proto == 0) return 0;
583 if (ExprAST *E = ParseExpression())
584 return new FunctionAST(Proto, E);
585 return 0;
588 /// toplevelexpr ::= expression
589 static FunctionAST *ParseTopLevelExpr() {
590 if (ExprAST *E = ParseExpression()) {
591 // Make an anonymous proto.
592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593 return new FunctionAST(Proto, E);
595 return 0;
598 /// external ::= 'extern' prototype
599 static PrototypeAST *ParseExtern() {
600 getNextToken(); // eat extern.
601 return ParsePrototype();
604 //===----------------------------------------------------------------------===//
605 // Code Generation
606 //===----------------------------------------------------------------------===//
608 static Module *TheModule;
609 static IRBuilder<> Builder(getGlobalContext());
610 static std::map<std::string, AllocaInst*> NamedValues;
611 static FunctionPassManager *TheFPM;
613 Value *ErrorV(const char *Str) { Error(Str); return 0; }
615 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
616 /// the function. This is used for mutable variables etc.
617 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
618 const std::string &VarName) {
619 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
620 TheFunction->getEntryBlock().begin());
621 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
622 VarName.c_str());
626 Value *NumberExprAST::Codegen() {
627 return ConstantFP::get(getGlobalContext(), APFloat(Val));
630 Value *VariableExprAST::Codegen() {
631 // Look this variable up in the function.
632 Value *V = NamedValues[Name];
633 if (V == 0) return ErrorV("Unknown variable name");
635 // Load the value.
636 return Builder.CreateLoad(V, Name.c_str());
639 Value *UnaryExprAST::Codegen() {
640 Value *OperandV = Operand->Codegen();
641 if (OperandV == 0) return 0;
643 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
644 if (F == 0)
645 return ErrorV("Unknown unary operator");
647 return Builder.CreateCall(F, OperandV, "unop");
651 Value *BinaryExprAST::Codegen() {
652 // Special case '=' because we don't want to emit the LHS as an expression.
653 if (Op == '=') {
654 // Assignment requires the LHS to be an identifier.
655 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
656 if (!LHSE)
657 return ErrorV("destination of '=' must be a variable");
658 // Codegen the RHS.
659 Value *Val = RHS->Codegen();
660 if (Val == 0) return 0;
662 // Look up the name.
663 Value *Variable = NamedValues[LHSE->getName()];
664 if (Variable == 0) return ErrorV("Unknown variable name");
666 Builder.CreateStore(Val, Variable);
667 return Val;
671 Value *L = LHS->Codegen();
672 Value *R = RHS->Codegen();
673 if (L == 0 || R == 0) return 0;
675 switch (Op) {
676 case '+': return Builder.CreateAdd(L, R, "addtmp");
677 case '-': return Builder.CreateSub(L, R, "subtmp");
678 case '*': return Builder.CreateMul(L, R, "multmp");
679 case '<':
680 L = Builder.CreateFCmpULT(L, R, "cmptmp");
681 // Convert bool 0/1 to double 0.0 or 1.0
682 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
683 "booltmp");
684 default: break;
687 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
688 // a call to it.
689 Function *F = TheModule->getFunction(std::string("binary")+Op);
690 assert(F && "binary operator not found!");
692 Value *Ops[] = { L, R };
693 return Builder.CreateCall(F, Ops, Ops+2, "binop");
696 Value *CallExprAST::Codegen() {
697 // Look up the name in the global module table.
698 Function *CalleeF = TheModule->getFunction(Callee);
699 if (CalleeF == 0)
700 return ErrorV("Unknown function referenced");
702 // If argument mismatch error.
703 if (CalleeF->arg_size() != Args.size())
704 return ErrorV("Incorrect # arguments passed");
706 std::vector<Value*> ArgsV;
707 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
708 ArgsV.push_back(Args[i]->Codegen());
709 if (ArgsV.back() == 0) return 0;
712 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
715 Value *IfExprAST::Codegen() {
716 Value *CondV = Cond->Codegen();
717 if (CondV == 0) return 0;
719 // Convert condition to a bool by comparing equal to 0.0.
720 CondV = Builder.CreateFCmpONE(CondV,
721 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
722 "ifcond");
724 Function *TheFunction = Builder.GetInsertBlock()->getParent();
726 // Create blocks for the then and else cases. Insert the 'then' block at the
727 // end of the function.
728 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
729 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
730 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
732 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
734 // Emit then value.
735 Builder.SetInsertPoint(ThenBB);
737 Value *ThenV = Then->Codegen();
738 if (ThenV == 0) return 0;
740 Builder.CreateBr(MergeBB);
741 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
742 ThenBB = Builder.GetInsertBlock();
744 // Emit else block.
745 TheFunction->getBasicBlockList().push_back(ElseBB);
746 Builder.SetInsertPoint(ElseBB);
748 Value *ElseV = Else->Codegen();
749 if (ElseV == 0) return 0;
751 Builder.CreateBr(MergeBB);
752 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
753 ElseBB = Builder.GetInsertBlock();
755 // Emit merge block.
756 TheFunction->getBasicBlockList().push_back(MergeBB);
757 Builder.SetInsertPoint(MergeBB);
758 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
759 "iftmp");
761 PN->addIncoming(ThenV, ThenBB);
762 PN->addIncoming(ElseV, ElseBB);
763 return PN;
766 Value *ForExprAST::Codegen() {
767 // Output this as:
768 // var = alloca double
769 // ...
770 // start = startexpr
771 // store start -> var
772 // goto loop
773 // loop:
774 // ...
775 // bodyexpr
776 // ...
777 // loopend:
778 // step = stepexpr
779 // endcond = endexpr
781 // curvar = load var
782 // nextvar = curvar + step
783 // store nextvar -> var
784 // br endcond, loop, endloop
785 // outloop:
787 Function *TheFunction = Builder.GetInsertBlock()->getParent();
789 // Create an alloca for the variable in the entry block.
790 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
792 // Emit the start code first, without 'variable' in scope.
793 Value *StartVal = Start->Codegen();
794 if (StartVal == 0) return 0;
796 // Store the value into the alloca.
797 Builder.CreateStore(StartVal, Alloca);
799 // Make the new basic block for the loop header, inserting after current
800 // block.
801 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
803 // Insert an explicit fall through from the current block to the LoopBB.
804 Builder.CreateBr(LoopBB);
806 // Start insertion in LoopBB.
807 Builder.SetInsertPoint(LoopBB);
809 // Within the loop, the variable is defined equal to the PHI node. If it
810 // shadows an existing variable, we have to restore it, so save it now.
811 AllocaInst *OldVal = NamedValues[VarName];
812 NamedValues[VarName] = Alloca;
814 // Emit the body of the loop. This, like any other expr, can change the
815 // current BB. Note that we ignore the value computed by the body, but don't
816 // allow an error.
817 if (Body->Codegen() == 0)
818 return 0;
820 // Emit the step value.
821 Value *StepVal;
822 if (Step) {
823 StepVal = Step->Codegen();
824 if (StepVal == 0) return 0;
825 } else {
826 // If not specified, use 1.0.
827 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
830 // Compute the end condition.
831 Value *EndCond = End->Codegen();
832 if (EndCond == 0) return EndCond;
834 // Reload, increment, and restore the alloca. This handles the case where
835 // the body of the loop mutates the variable.
836 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
837 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
838 Builder.CreateStore(NextVar, Alloca);
840 // Convert condition to a bool by comparing equal to 0.0.
841 EndCond = Builder.CreateFCmpONE(EndCond,
842 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
843 "loopcond");
845 // Create the "after loop" block and insert it.
846 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
848 // Insert the conditional branch into the end of LoopEndBB.
849 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
851 // Any new code will be inserted in AfterBB.
852 Builder.SetInsertPoint(AfterBB);
854 // Restore the unshadowed variable.
855 if (OldVal)
856 NamedValues[VarName] = OldVal;
857 else
858 NamedValues.erase(VarName);
861 // for expr always returns 0.0.
862 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
865 Value *VarExprAST::Codegen() {
866 std::vector<AllocaInst *> OldBindings;
868 Function *TheFunction = Builder.GetInsertBlock()->getParent();
870 // Register all variables and emit their initializer.
871 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
872 const std::string &VarName = VarNames[i].first;
873 ExprAST *Init = VarNames[i].second;
875 // Emit the initializer before adding the variable to scope, this prevents
876 // the initializer from referencing the variable itself, and permits stuff
877 // like this:
878 // var a = 1 in
879 // var a = a in ... # refers to outer 'a'.
880 Value *InitVal;
881 if (Init) {
882 InitVal = Init->Codegen();
883 if (InitVal == 0) return 0;
884 } else { // If not specified, use 0.0.
885 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
888 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
889 Builder.CreateStore(InitVal, Alloca);
891 // Remember the old variable binding so that we can restore the binding when
892 // we unrecurse.
893 OldBindings.push_back(NamedValues[VarName]);
895 // Remember this binding.
896 NamedValues[VarName] = Alloca;
899 // Codegen the body, now that all vars are in scope.
900 Value *BodyVal = Body->Codegen();
901 if (BodyVal == 0) return 0;
903 // Pop all our variables from scope.
904 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
905 NamedValues[VarNames[i].first] = OldBindings[i];
907 // Return the body computation.
908 return BodyVal;
912 Function *PrototypeAST::Codegen() {
913 // Make the function type: double(double,double) etc.
914 std::vector<const Type*> Doubles(Args.size(),
915 Type::getDoubleTy(getGlobalContext()));
916 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
917 Doubles, false);
919 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
921 // If F conflicted, there was already something named 'Name'. If it has a
922 // body, don't allow redefinition or reextern.
923 if (F->getName() != Name) {
924 // Delete the one we just made and get the existing one.
925 F->eraseFromParent();
926 F = TheModule->getFunction(Name);
928 // If F already has a body, reject this.
929 if (!F->empty()) {
930 ErrorF("redefinition of function");
931 return 0;
934 // If F took a different number of args, reject.
935 if (F->arg_size() != Args.size()) {
936 ErrorF("redefinition of function with different # args");
937 return 0;
941 // Set names for all arguments.
942 unsigned Idx = 0;
943 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
944 ++AI, ++Idx)
945 AI->setName(Args[Idx]);
947 return F;
950 /// CreateArgumentAllocas - Create an alloca for each argument and register the
951 /// argument in the symbol table so that references to it will succeed.
952 void PrototypeAST::CreateArgumentAllocas(Function *F) {
953 Function::arg_iterator AI = F->arg_begin();
954 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
955 // Create an alloca for this variable.
956 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
958 // Store the initial value into the alloca.
959 Builder.CreateStore(AI, Alloca);
961 // Add arguments to variable symbol table.
962 NamedValues[Args[Idx]] = Alloca;
967 Function *FunctionAST::Codegen() {
968 NamedValues.clear();
970 Function *TheFunction = Proto->Codegen();
971 if (TheFunction == 0)
972 return 0;
974 // If this is an operator, install it.
975 if (Proto->isBinaryOp())
976 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
978 // Create a new basic block to start insertion into.
979 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
980 Builder.SetInsertPoint(BB);
982 // Add all arguments to the symbol table and create their allocas.
983 Proto->CreateArgumentAllocas(TheFunction);
985 if (Value *RetVal = Body->Codegen()) {
986 // Finish off the function.
987 Builder.CreateRet(RetVal);
989 // Validate the generated code, checking for consistency.
990 verifyFunction(*TheFunction);
992 // Optimize the function.
993 TheFPM->run(*TheFunction);
995 return TheFunction;
998 // Error reading body, remove function.
999 TheFunction->eraseFromParent();
1001 if (Proto->isBinaryOp())
1002 BinopPrecedence.erase(Proto->getOperatorName());
1003 return 0;
1006 //===----------------------------------------------------------------------===//
1007 // Top-Level parsing and JIT Driver
1008 //===----------------------------------------------------------------------===//
1010 static ExecutionEngine *TheExecutionEngine;
1012 static void HandleDefinition() {
1013 if (FunctionAST *F = ParseDefinition()) {
1014 if (Function *LF = F->Codegen()) {
1015 fprintf(stderr, "Read function definition:");
1016 LF->dump();
1018 } else {
1019 // Skip token for error recovery.
1020 getNextToken();
1024 static void HandleExtern() {
1025 if (PrototypeAST *P = ParseExtern()) {
1026 if (Function *F = P->Codegen()) {
1027 fprintf(stderr, "Read extern: ");
1028 F->dump();
1030 } else {
1031 // Skip token for error recovery.
1032 getNextToken();
1036 static void HandleTopLevelExpression() {
1037 // Evaluate a top level expression into an anonymous function.
1038 if (FunctionAST *F = ParseTopLevelExpr()) {
1039 if (Function *LF = F->Codegen()) {
1040 // JIT the function, returning a function pointer.
1041 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1043 // Cast it to the right type (takes no arguments, returns a double) so we
1044 // can call it as a native function.
1045 double (*FP)() = (double (*)())(intptr_t)FPtr;
1046 fprintf(stderr, "Evaluated to %f\n", FP());
1048 } else {
1049 // Skip token for error recovery.
1050 getNextToken();
1054 /// top ::= definition | external | expression | ';'
1055 static void MainLoop() {
1056 while (1) {
1057 fprintf(stderr, "ready> ");
1058 switch (CurTok) {
1059 case tok_eof: return;
1060 case ';': getNextToken(); break; // ignore top level semicolons.
1061 case tok_def: HandleDefinition(); break;
1062 case tok_extern: HandleExtern(); break;
1063 default: HandleTopLevelExpression(); break;
1070 //===----------------------------------------------------------------------===//
1071 // "Library" functions that can be "extern'd" from user code.
1072 //===----------------------------------------------------------------------===//
1074 /// putchard - putchar that takes a double and returns 0.
1075 extern "C"
1076 double putchard(double X) {
1077 putchar((char)X);
1078 return 0;
1081 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1082 extern "C"
1083 double printd(double X) {
1084 printf("%f\n", X);
1085 return 0;
1088 //===----------------------------------------------------------------------===//
1089 // Main driver code.
1090 //===----------------------------------------------------------------------===//
1092 int main() {
1093 InitializeNativeTarget();
1094 LLVMContext &Context = getGlobalContext();
1096 // Install standard binary operators.
1097 // 1 is lowest precedence.
1098 BinopPrecedence['='] = 2;
1099 BinopPrecedence['<'] = 10;
1100 BinopPrecedence['+'] = 20;
1101 BinopPrecedence['-'] = 20;
1102 BinopPrecedence['*'] = 40; // highest.
1104 // Prime the first token.
1105 fprintf(stderr, "ready> ");
1106 getNextToken();
1108 // Make the module, which holds all the code.
1109 TheModule = new Module("my cool jit", Context);
1111 ExistingModuleProvider *OurModuleProvider =
1112 new ExistingModuleProvider(TheModule);
1114 // Create the JIT. This takes ownership of the module and module provider.
1115 TheExecutionEngine = EngineBuilder(OurModuleProvider).create();
1117 FunctionPassManager OurFPM(OurModuleProvider);
1119 // Set up the optimizer pipeline. Start with registering info about how the
1120 // target lays out data structures.
1121 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
1122 // Promote allocas to registers.
1123 OurFPM.add(createPromoteMemoryToRegisterPass());
1124 // Do simple "peephole" optimizations and bit-twiddling optzns.
1125 OurFPM.add(createInstructionCombiningPass());
1126 // Reassociate expressions.
1127 OurFPM.add(createReassociatePass());
1128 // Eliminate Common SubExpressions.
1129 OurFPM.add(createGVNPass());
1130 // Simplify the control flow graph (deleting unreachable blocks, etc).
1131 OurFPM.add(createCFGSimplificationPass());
1133 OurFPM.doInitialization();
1135 // Set the global so the code gen can use this.
1136 TheFPM = &OurFPM;
1138 // Run the main "interpreter loop" now.
1139 MainLoop();
1141 TheFPM = 0;
1143 // Print out all of the generated code.
1144 TheModule->dump();
1146 return 0;