1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Target/TargetOptions.h"
39 class X86FastISel
: public FastISel
{
40 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41 /// make the right decision when generating code for different targets.
42 const X86Subtarget
*Subtarget
;
44 /// StackPtr - Register used as the stack pointer.
48 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49 /// floating point ops.
50 /// When SSE is available, use it for f32 operations.
51 /// When SSE2 is available, use it for f64 operations.
56 explicit X86FastISel(MachineFunction
&mf
,
57 MachineModuleInfo
*mmi
,
59 DenseMap
<const Value
*, unsigned> &vm
,
60 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
61 DenseMap
<const AllocaInst
*, int> &am
63 , SmallSet
<Instruction
*, 8> &cil
66 : FastISel(mf
, mmi
, dw
, vm
, bm
, am
71 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
72 StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
73 X86ScalarSSEf64
= Subtarget
->hasSSE2();
74 X86ScalarSSEf32
= Subtarget
->hasSSE1();
77 virtual bool TargetSelectInstruction(Instruction
*I
);
79 #include "X86GenFastISel.inc"
82 bool X86FastEmitCompare(Value
*LHS
, Value
*RHS
, EVT VT
);
84 bool X86FastEmitLoad(EVT VT
, const X86AddressMode
&AM
, unsigned &RR
);
86 bool X86FastEmitStore(EVT VT
, Value
*Val
,
87 const X86AddressMode
&AM
);
88 bool X86FastEmitStore(EVT VT
, unsigned Val
,
89 const X86AddressMode
&AM
);
91 bool X86FastEmitExtend(ISD::NodeType Opc
, EVT DstVT
, unsigned Src
, EVT SrcVT
,
94 bool X86SelectAddress(Value
*V
, X86AddressMode
&AM
);
95 bool X86SelectCallAddress(Value
*V
, X86AddressMode
&AM
);
97 bool X86SelectLoad(Instruction
*I
);
99 bool X86SelectStore(Instruction
*I
);
101 bool X86SelectCmp(Instruction
*I
);
103 bool X86SelectZExt(Instruction
*I
);
105 bool X86SelectBranch(Instruction
*I
);
107 bool X86SelectShift(Instruction
*I
);
109 bool X86SelectSelect(Instruction
*I
);
111 bool X86SelectTrunc(Instruction
*I
);
113 bool X86SelectFPExt(Instruction
*I
);
114 bool X86SelectFPTrunc(Instruction
*I
);
116 bool X86SelectExtractValue(Instruction
*I
);
118 bool X86VisitIntrinsicCall(IntrinsicInst
&I
);
119 bool X86SelectCall(Instruction
*I
);
121 CCAssignFn
*CCAssignFnForCall(CallingConv::ID CC
, bool isTailCall
= false);
123 const X86InstrInfo
*getInstrInfo() const {
124 return getTargetMachine()->getInstrInfo();
126 const X86TargetMachine
*getTargetMachine() const {
127 return static_cast<const X86TargetMachine
*>(&TM
);
130 unsigned TargetMaterializeConstant(Constant
*C
);
132 unsigned TargetMaterializeAlloca(AllocaInst
*C
);
134 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135 /// computed in an SSE register, not on the X87 floating point stack.
136 bool isScalarFPTypeInSSEReg(EVT VT
) const {
137 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
138 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
141 bool isTypeLegal(const Type
*Ty
, EVT
&VT
, bool AllowI1
= false);
144 } // end anonymous namespace.
146 bool X86FastISel::isTypeLegal(const Type
*Ty
, EVT
&VT
, bool AllowI1
) {
147 VT
= TLI
.getValueType(Ty
, /*HandleUnknown=*/true);
148 if (VT
== MVT::Other
|| !VT
.isSimple())
149 // Unhandled type. Halt "fast" selection and bail.
152 // For now, require SSE/SSE2 for performing floating-point operations,
153 // since x87 requires additional work.
154 if (VT
== MVT::f64
&& !X86ScalarSSEf64
)
156 if (VT
== MVT::f32
&& !X86ScalarSSEf32
)
158 // Similarly, no f80 support yet.
161 // We only handle legal types. For example, on x86-32 the instruction
162 // selector contains all of the 64-bit instructions from x86-64,
163 // under the assumption that i64 won't be used if the target doesn't
165 return (AllowI1
&& VT
== MVT::i1
) || TLI
.isTypeLegal(VT
);
168 #include "X86GenCallingConv.inc"
170 /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
172 CCAssignFn
*X86FastISel::CCAssignFnForCall(CallingConv::ID CC
,
174 if (Subtarget
->is64Bit()) {
175 if (Subtarget
->isTargetWin64())
176 return CC_X86_Win64_C
;
181 if (CC
== CallingConv::X86_FastCall
)
182 return CC_X86_32_FastCall
;
183 else if (CC
== CallingConv::Fast
)
184 return CC_X86_32_FastCC
;
189 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
190 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
191 /// Return true and the result register by reference if it is possible.
192 bool X86FastISel::X86FastEmitLoad(EVT VT
, const X86AddressMode
&AM
,
193 unsigned &ResultReg
) {
194 // Get opcode and regclass of the output for the given load instruction.
196 const TargetRegisterClass
*RC
= NULL
;
197 switch (VT
.getSimpleVT().SimpleTy
) {
198 default: return false;
202 RC
= X86::GR8RegisterClass
;
206 RC
= X86::GR16RegisterClass
;
210 RC
= X86::GR32RegisterClass
;
213 // Must be in x86-64 mode.
215 RC
= X86::GR64RegisterClass
;
218 if (Subtarget
->hasSSE1()) {
220 RC
= X86::FR32RegisterClass
;
223 RC
= X86::RFP32RegisterClass
;
227 if (Subtarget
->hasSSE2()) {
229 RC
= X86::FR64RegisterClass
;
232 RC
= X86::RFP64RegisterClass
;
236 // No f80 support yet.
240 ResultReg
= createResultReg(RC
);
241 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
245 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
246 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
247 /// and a displacement offset, or a GlobalAddress,
248 /// i.e. V. Return true if it is possible.
250 X86FastISel::X86FastEmitStore(EVT VT
, unsigned Val
,
251 const X86AddressMode
&AM
) {
252 // Get opcode and regclass of the output for the given store instruction.
254 switch (VT
.getSimpleVT().SimpleTy
) {
255 case MVT::f80
: // No f80 support yet.
256 default: return false;
258 // Mask out all but lowest bit.
259 unsigned AndResult
= createResultReg(X86::GR8RegisterClass
);
261 TII
.get(X86::AND8ri
), AndResult
).addReg(Val
).addImm(1);
264 // FALLTHROUGH, handling i1 as i8.
265 case MVT::i8
: Opc
= X86::MOV8mr
; break;
266 case MVT::i16
: Opc
= X86::MOV16mr
; break;
267 case MVT::i32
: Opc
= X86::MOV32mr
; break;
268 case MVT::i64
: Opc
= X86::MOV64mr
; break; // Must be in x86-64 mode.
270 Opc
= Subtarget
->hasSSE1() ? X86::MOVSSmr
: X86::ST_Fp32m
;
273 Opc
= Subtarget
->hasSSE2() ? X86::MOVSDmr
: X86::ST_Fp64m
;
277 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
)), AM
).addReg(Val
);
281 bool X86FastISel::X86FastEmitStore(EVT VT
, Value
*Val
,
282 const X86AddressMode
&AM
) {
283 // Handle 'null' like i32/i64 0.
284 if (isa
<ConstantPointerNull
>(Val
))
285 Val
= Constant::getNullValue(TD
.getIntPtrType(Val
->getContext()));
287 // If this is a store of a simple constant, fold the constant into the store.
288 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Val
)) {
291 switch (VT
.getSimpleVT().SimpleTy
) {
293 case MVT::i1
: Signed
= false; // FALLTHROUGH to handle as i8.
294 case MVT::i8
: Opc
= X86::MOV8mi
; break;
295 case MVT::i16
: Opc
= X86::MOV16mi
; break;
296 case MVT::i32
: Opc
= X86::MOV32mi
; break;
298 // Must be a 32-bit sign extended value.
299 if ((int)CI
->getSExtValue() == CI
->getSExtValue())
300 Opc
= X86::MOV64mi32
;
305 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
)), AM
)
306 .addImm(Signed
? CI
->getSExtValue() :
312 unsigned ValReg
= getRegForValue(Val
);
316 return X86FastEmitStore(VT
, ValReg
, AM
);
319 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
320 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
321 /// ISD::SIGN_EXTEND).
322 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc
, EVT DstVT
,
323 unsigned Src
, EVT SrcVT
,
324 unsigned &ResultReg
) {
325 unsigned RR
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(), Opc
, Src
);
334 /// X86SelectAddress - Attempt to fill in an address from the given value.
336 bool X86FastISel::X86SelectAddress(Value
*V
, X86AddressMode
&AM
) {
338 unsigned Opcode
= Instruction::UserOp1
;
339 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
340 Opcode
= I
->getOpcode();
342 } else if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
)) {
343 Opcode
= C
->getOpcode();
349 case Instruction::BitCast
:
350 // Look past bitcasts.
351 return X86SelectAddress(U
->getOperand(0), AM
);
353 case Instruction::IntToPtr
:
354 // Look past no-op inttoptrs.
355 if (TLI
.getValueType(U
->getOperand(0)->getType()) == TLI
.getPointerTy())
356 return X86SelectAddress(U
->getOperand(0), AM
);
359 case Instruction::PtrToInt
:
360 // Look past no-op ptrtoints.
361 if (TLI
.getValueType(U
->getType()) == TLI
.getPointerTy())
362 return X86SelectAddress(U
->getOperand(0), AM
);
365 case Instruction::Alloca
: {
366 // Do static allocas.
367 const AllocaInst
*A
= cast
<AllocaInst
>(V
);
368 DenseMap
<const AllocaInst
*, int>::iterator SI
= StaticAllocaMap
.find(A
);
369 if (SI
!= StaticAllocaMap
.end()) {
370 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
371 AM
.Base
.FrameIndex
= SI
->second
;
377 case Instruction::Add
: {
378 // Adds of constants are common and easy enough.
379 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
380 uint64_t Disp
= (int32_t)AM
.Disp
+ (uint64_t)CI
->getSExtValue();
381 // They have to fit in the 32-bit signed displacement field though.
383 AM
.Disp
= (uint32_t)Disp
;
384 return X86SelectAddress(U
->getOperand(0), AM
);
390 case Instruction::GetElementPtr
: {
391 // Pattern-match simple GEPs.
392 uint64_t Disp
= (int32_t)AM
.Disp
;
393 unsigned IndexReg
= AM
.IndexReg
;
394 unsigned Scale
= AM
.Scale
;
395 gep_type_iterator GTI
= gep_type_begin(U
);
396 // Iterate through the indices, folding what we can. Constants can be
397 // folded, and one dynamic index can be handled, if the scale is supported.
398 for (User::op_iterator i
= U
->op_begin() + 1, e
= U
->op_end();
399 i
!= e
; ++i
, ++GTI
) {
401 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
402 const StructLayout
*SL
= TD
.getStructLayout(STy
);
403 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
404 Disp
+= SL
->getElementOffset(Idx
);
406 uint64_t S
= TD
.getTypeAllocSize(GTI
.getIndexedType());
407 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
408 // Constant-offset addressing.
409 Disp
+= CI
->getSExtValue() * S
;
410 } else if (IndexReg
== 0 &&
411 (!AM
.GV
|| !Subtarget
->isPICStyleRIPRel()) &&
412 (S
== 1 || S
== 2 || S
== 4 || S
== 8)) {
413 // Scaled-index addressing.
415 IndexReg
= getRegForGEPIndex(Op
);
420 goto unsupported_gep
;
423 // Check for displacement overflow.
426 // Ok, the GEP indices were covered by constant-offset and scaled-index
427 // addressing. Update the address state and move on to examining the base.
428 AM
.IndexReg
= IndexReg
;
430 AM
.Disp
= (uint32_t)Disp
;
431 return X86SelectAddress(U
->getOperand(0), AM
);
433 // Ok, the GEP indices weren't all covered.
438 // Handle constant address.
439 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
440 // Can't handle alternate code models yet.
441 if (TM
.getCodeModel() != CodeModel::Small
)
444 // RIP-relative addresses can't have additional register operands.
445 if (Subtarget
->isPICStyleRIPRel() &&
446 (AM
.Base
.Reg
!= 0 || AM
.IndexReg
!= 0))
449 // Can't handle TLS yet.
450 if (GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
451 if (GVar
->isThreadLocal())
454 // Okay, we've committed to selecting this global. Set up the basic address.
457 // Allow the subtarget to classify the global.
458 unsigned char GVFlags
= Subtarget
->ClassifyGlobalReference(GV
, TM
);
460 // If this reference is relative to the pic base, set it now.
461 if (isGlobalRelativeToPICBase(GVFlags
)) {
462 // FIXME: How do we know Base.Reg is free??
463 AM
.Base
.Reg
= getInstrInfo()->getGlobalBaseReg(&MF
);
466 // Unless the ABI requires an extra load, return a direct reference to
468 if (!isGlobalStubReference(GVFlags
)) {
469 if (Subtarget
->isPICStyleRIPRel()) {
470 // Use rip-relative addressing if we can. Above we verified that the
471 // base and index registers are unused.
472 assert(AM
.Base
.Reg
== 0 && AM
.IndexReg
== 0);
473 AM
.Base
.Reg
= X86::RIP
;
475 AM
.GVOpFlags
= GVFlags
;
479 // Ok, we need to do a load from a stub. If we've already loaded from this
480 // stub, reuse the loaded pointer, otherwise emit the load now.
481 DenseMap
<const Value
*, unsigned>::iterator I
= LocalValueMap
.find(V
);
483 if (I
!= LocalValueMap
.end() && I
->second
!= 0) {
486 // Issue load from stub.
488 const TargetRegisterClass
*RC
= NULL
;
489 X86AddressMode StubAM
;
490 StubAM
.Base
.Reg
= AM
.Base
.Reg
;
492 StubAM
.GVOpFlags
= GVFlags
;
494 if (TLI
.getPointerTy() == MVT::i64
) {
496 RC
= X86::GR64RegisterClass
;
498 if (Subtarget
->isPICStyleRIPRel())
499 StubAM
.Base
.Reg
= X86::RIP
;
502 RC
= X86::GR32RegisterClass
;
505 LoadReg
= createResultReg(RC
);
506 addFullAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), LoadReg
), StubAM
);
508 // Prevent loading GV stub multiple times in same MBB.
509 LocalValueMap
[V
] = LoadReg
;
512 // Now construct the final address. Note that the Disp, Scale,
513 // and Index values may already be set here.
514 AM
.Base
.Reg
= LoadReg
;
519 // If all else fails, try to materialize the value in a register.
520 if (!AM
.GV
|| !Subtarget
->isPICStyleRIPRel()) {
521 if (AM
.Base
.Reg
== 0) {
522 AM
.Base
.Reg
= getRegForValue(V
);
523 return AM
.Base
.Reg
!= 0;
525 if (AM
.IndexReg
== 0) {
526 assert(AM
.Scale
== 1 && "Scale with no index!");
527 AM
.IndexReg
= getRegForValue(V
);
528 return AM
.IndexReg
!= 0;
535 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
537 bool X86FastISel::X86SelectCallAddress(Value
*V
, X86AddressMode
&AM
) {
539 unsigned Opcode
= Instruction::UserOp1
;
540 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
541 Opcode
= I
->getOpcode();
543 } else if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
)) {
544 Opcode
= C
->getOpcode();
550 case Instruction::BitCast
:
551 // Look past bitcasts.
552 return X86SelectCallAddress(U
->getOperand(0), AM
);
554 case Instruction::IntToPtr
:
555 // Look past no-op inttoptrs.
556 if (TLI
.getValueType(U
->getOperand(0)->getType()) == TLI
.getPointerTy())
557 return X86SelectCallAddress(U
->getOperand(0), AM
);
560 case Instruction::PtrToInt
:
561 // Look past no-op ptrtoints.
562 if (TLI
.getValueType(U
->getType()) == TLI
.getPointerTy())
563 return X86SelectCallAddress(U
->getOperand(0), AM
);
567 // Handle constant address.
568 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
569 // Can't handle alternate code models yet.
570 if (TM
.getCodeModel() != CodeModel::Small
)
573 // RIP-relative addresses can't have additional register operands.
574 if (Subtarget
->isPICStyleRIPRel() &&
575 (AM
.Base
.Reg
!= 0 || AM
.IndexReg
!= 0))
578 // Can't handle TLS or DLLImport.
579 if (GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
580 if (GVar
->isThreadLocal() || GVar
->hasDLLImportLinkage())
583 // Okay, we've committed to selecting this global. Set up the basic address.
586 // No ABI requires an extra load for anything other than DLLImport, which
587 // we rejected above. Return a direct reference to the global.
588 if (Subtarget
->isPICStyleRIPRel()) {
589 // Use rip-relative addressing if we can. Above we verified that the
590 // base and index registers are unused.
591 assert(AM
.Base
.Reg
== 0 && AM
.IndexReg
== 0);
592 AM
.Base
.Reg
= X86::RIP
;
593 } else if (Subtarget
->isPICStyleStubPIC()) {
594 AM
.GVOpFlags
= X86II::MO_PIC_BASE_OFFSET
;
595 } else if (Subtarget
->isPICStyleGOT()) {
596 AM
.GVOpFlags
= X86II::MO_GOTOFF
;
602 // If all else fails, try to materialize the value in a register.
603 if (!AM
.GV
|| !Subtarget
->isPICStyleRIPRel()) {
604 if (AM
.Base
.Reg
== 0) {
605 AM
.Base
.Reg
= getRegForValue(V
);
606 return AM
.Base
.Reg
!= 0;
608 if (AM
.IndexReg
== 0) {
609 assert(AM
.Scale
== 1 && "Scale with no index!");
610 AM
.IndexReg
= getRegForValue(V
);
611 return AM
.IndexReg
!= 0;
619 /// X86SelectStore - Select and emit code to implement store instructions.
620 bool X86FastISel::X86SelectStore(Instruction
* I
) {
622 if (!isTypeLegal(I
->getOperand(0)->getType(), VT
, /*AllowI1=*/true))
626 if (!X86SelectAddress(I
->getOperand(1), AM
))
629 return X86FastEmitStore(VT
, I
->getOperand(0), AM
);
632 /// X86SelectLoad - Select and emit code to implement load instructions.
634 bool X86FastISel::X86SelectLoad(Instruction
*I
) {
636 if (!isTypeLegal(I
->getType(), VT
, /*AllowI1=*/true))
640 if (!X86SelectAddress(I
->getOperand(0), AM
))
643 unsigned ResultReg
= 0;
644 if (X86FastEmitLoad(VT
, AM
, ResultReg
)) {
645 UpdateValueMap(I
, ResultReg
);
651 static unsigned X86ChooseCmpOpcode(EVT VT
) {
652 switch (VT
.getSimpleVT().SimpleTy
) {
654 case MVT::i8
: return X86::CMP8rr
;
655 case MVT::i16
: return X86::CMP16rr
;
656 case MVT::i32
: return X86::CMP32rr
;
657 case MVT::i64
: return X86::CMP64rr
;
658 case MVT::f32
: return X86::UCOMISSrr
;
659 case MVT::f64
: return X86::UCOMISDrr
;
663 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
664 /// of the comparison, return an opcode that works for the compare (e.g.
665 /// CMP32ri) otherwise return 0.
666 static unsigned X86ChooseCmpImmediateOpcode(EVT VT
, ConstantInt
*RHSC
) {
667 switch (VT
.getSimpleVT().SimpleTy
) {
668 // Otherwise, we can't fold the immediate into this comparison.
670 case MVT::i8
: return X86::CMP8ri
;
671 case MVT::i16
: return X86::CMP16ri
;
672 case MVT::i32
: return X86::CMP32ri
;
674 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
676 if ((int)RHSC
->getSExtValue() == RHSC
->getSExtValue())
677 return X86::CMP64ri32
;
682 bool X86FastISel::X86FastEmitCompare(Value
*Op0
, Value
*Op1
, EVT VT
) {
683 unsigned Op0Reg
= getRegForValue(Op0
);
684 if (Op0Reg
== 0) return false;
686 // Handle 'null' like i32/i64 0.
687 if (isa
<ConstantPointerNull
>(Op1
))
688 Op1
= Constant::getNullValue(TD
.getIntPtrType(Op0
->getContext()));
690 // We have two options: compare with register or immediate. If the RHS of
691 // the compare is an immediate that we can fold into this compare, use
692 // CMPri, otherwise use CMPrr.
693 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(Op1
)) {
694 if (unsigned CompareImmOpc
= X86ChooseCmpImmediateOpcode(VT
, Op1C
)) {
695 BuildMI(MBB
, DL
, TII
.get(CompareImmOpc
)).addReg(Op0Reg
)
696 .addImm(Op1C
->getSExtValue());
701 unsigned CompareOpc
= X86ChooseCmpOpcode(VT
);
702 if (CompareOpc
== 0) return false;
704 unsigned Op1Reg
= getRegForValue(Op1
);
705 if (Op1Reg
== 0) return false;
706 BuildMI(MBB
, DL
, TII
.get(CompareOpc
)).addReg(Op0Reg
).addReg(Op1Reg
);
711 bool X86FastISel::X86SelectCmp(Instruction
*I
) {
712 CmpInst
*CI
= cast
<CmpInst
>(I
);
715 if (!isTypeLegal(I
->getOperand(0)->getType(), VT
))
718 unsigned ResultReg
= createResultReg(&X86::GR8RegClass
);
720 bool SwapArgs
; // false -> compare Op0, Op1. true -> compare Op1, Op0.
721 switch (CI
->getPredicate()) {
722 case CmpInst::FCMP_OEQ
: {
723 if (!X86FastEmitCompare(CI
->getOperand(0), CI
->getOperand(1), VT
))
726 unsigned EReg
= createResultReg(&X86::GR8RegClass
);
727 unsigned NPReg
= createResultReg(&X86::GR8RegClass
);
728 BuildMI(MBB
, DL
, TII
.get(X86::SETEr
), EReg
);
729 BuildMI(MBB
, DL
, TII
.get(X86::SETNPr
), NPReg
);
731 TII
.get(X86::AND8rr
), ResultReg
).addReg(NPReg
).addReg(EReg
);
732 UpdateValueMap(I
, ResultReg
);
735 case CmpInst::FCMP_UNE
: {
736 if (!X86FastEmitCompare(CI
->getOperand(0), CI
->getOperand(1), VT
))
739 unsigned NEReg
= createResultReg(&X86::GR8RegClass
);
740 unsigned PReg
= createResultReg(&X86::GR8RegClass
);
741 BuildMI(MBB
, DL
, TII
.get(X86::SETNEr
), NEReg
);
742 BuildMI(MBB
, DL
, TII
.get(X86::SETPr
), PReg
);
743 BuildMI(MBB
, DL
, TII
.get(X86::OR8rr
), ResultReg
).addReg(PReg
).addReg(NEReg
);
744 UpdateValueMap(I
, ResultReg
);
747 case CmpInst::FCMP_OGT
: SwapArgs
= false; SetCCOpc
= X86::SETAr
; break;
748 case CmpInst::FCMP_OGE
: SwapArgs
= false; SetCCOpc
= X86::SETAEr
; break;
749 case CmpInst::FCMP_OLT
: SwapArgs
= true; SetCCOpc
= X86::SETAr
; break;
750 case CmpInst::FCMP_OLE
: SwapArgs
= true; SetCCOpc
= X86::SETAEr
; break;
751 case CmpInst::FCMP_ONE
: SwapArgs
= false; SetCCOpc
= X86::SETNEr
; break;
752 case CmpInst::FCMP_ORD
: SwapArgs
= false; SetCCOpc
= X86::SETNPr
; break;
753 case CmpInst::FCMP_UNO
: SwapArgs
= false; SetCCOpc
= X86::SETPr
; break;
754 case CmpInst::FCMP_UEQ
: SwapArgs
= false; SetCCOpc
= X86::SETEr
; break;
755 case CmpInst::FCMP_UGT
: SwapArgs
= true; SetCCOpc
= X86::SETBr
; break;
756 case CmpInst::FCMP_UGE
: SwapArgs
= true; SetCCOpc
= X86::SETBEr
; break;
757 case CmpInst::FCMP_ULT
: SwapArgs
= false; SetCCOpc
= X86::SETBr
; break;
758 case CmpInst::FCMP_ULE
: SwapArgs
= false; SetCCOpc
= X86::SETBEr
; break;
760 case CmpInst::ICMP_EQ
: SwapArgs
= false; SetCCOpc
= X86::SETEr
; break;
761 case CmpInst::ICMP_NE
: SwapArgs
= false; SetCCOpc
= X86::SETNEr
; break;
762 case CmpInst::ICMP_UGT
: SwapArgs
= false; SetCCOpc
= X86::SETAr
; break;
763 case CmpInst::ICMP_UGE
: SwapArgs
= false; SetCCOpc
= X86::SETAEr
; break;
764 case CmpInst::ICMP_ULT
: SwapArgs
= false; SetCCOpc
= X86::SETBr
; break;
765 case CmpInst::ICMP_ULE
: SwapArgs
= false; SetCCOpc
= X86::SETBEr
; break;
766 case CmpInst::ICMP_SGT
: SwapArgs
= false; SetCCOpc
= X86::SETGr
; break;
767 case CmpInst::ICMP_SGE
: SwapArgs
= false; SetCCOpc
= X86::SETGEr
; break;
768 case CmpInst::ICMP_SLT
: SwapArgs
= false; SetCCOpc
= X86::SETLr
; break;
769 case CmpInst::ICMP_SLE
: SwapArgs
= false; SetCCOpc
= X86::SETLEr
; break;
774 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
778 // Emit a compare of Op0/Op1.
779 if (!X86FastEmitCompare(Op0
, Op1
, VT
))
782 BuildMI(MBB
, DL
, TII
.get(SetCCOpc
), ResultReg
);
783 UpdateValueMap(I
, ResultReg
);
787 bool X86FastISel::X86SelectZExt(Instruction
*I
) {
788 // Handle zero-extension from i1 to i8, which is common.
789 if (I
->getType() == Type::getInt8Ty(I
->getContext()) &&
790 I
->getOperand(0)->getType() == Type::getInt1Ty(I
->getContext())) {
791 unsigned ResultReg
= getRegForValue(I
->getOperand(0));
792 if (ResultReg
== 0) return false;
793 // Set the high bits to zero.
794 ResultReg
= FastEmitZExtFromI1(MVT::i8
, ResultReg
);
795 if (ResultReg
== 0) return false;
796 UpdateValueMap(I
, ResultReg
);
804 bool X86FastISel::X86SelectBranch(Instruction
*I
) {
805 // Unconditional branches are selected by tablegen-generated code.
806 // Handle a conditional branch.
807 BranchInst
*BI
= cast
<BranchInst
>(I
);
808 MachineBasicBlock
*TrueMBB
= MBBMap
[BI
->getSuccessor(0)];
809 MachineBasicBlock
*FalseMBB
= MBBMap
[BI
->getSuccessor(1)];
811 // Fold the common case of a conditional branch with a comparison.
812 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
813 if (CI
->hasOneUse()) {
814 EVT VT
= TLI
.getValueType(CI
->getOperand(0)->getType());
816 // Try to take advantage of fallthrough opportunities.
817 CmpInst::Predicate Predicate
= CI
->getPredicate();
818 if (MBB
->isLayoutSuccessor(TrueMBB
)) {
819 std::swap(TrueMBB
, FalseMBB
);
820 Predicate
= CmpInst::getInversePredicate(Predicate
);
823 bool SwapArgs
; // false -> compare Op0, Op1. true -> compare Op1, Op0.
824 unsigned BranchOpc
; // Opcode to jump on, e.g. "X86::JA"
827 case CmpInst::FCMP_OEQ
:
828 std::swap(TrueMBB
, FalseMBB
);
829 Predicate
= CmpInst::FCMP_UNE
;
831 case CmpInst::FCMP_UNE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
832 case CmpInst::FCMP_OGT
: SwapArgs
= false; BranchOpc
= X86::JA
; break;
833 case CmpInst::FCMP_OGE
: SwapArgs
= false; BranchOpc
= X86::JAE
; break;
834 case CmpInst::FCMP_OLT
: SwapArgs
= true; BranchOpc
= X86::JA
; break;
835 case CmpInst::FCMP_OLE
: SwapArgs
= true; BranchOpc
= X86::JAE
; break;
836 case CmpInst::FCMP_ONE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
837 case CmpInst::FCMP_ORD
: SwapArgs
= false; BranchOpc
= X86::JNP
; break;
838 case CmpInst::FCMP_UNO
: SwapArgs
= false; BranchOpc
= X86::JP
; break;
839 case CmpInst::FCMP_UEQ
: SwapArgs
= false; BranchOpc
= X86::JE
; break;
840 case CmpInst::FCMP_UGT
: SwapArgs
= true; BranchOpc
= X86::JB
; break;
841 case CmpInst::FCMP_UGE
: SwapArgs
= true; BranchOpc
= X86::JBE
; break;
842 case CmpInst::FCMP_ULT
: SwapArgs
= false; BranchOpc
= X86::JB
; break;
843 case CmpInst::FCMP_ULE
: SwapArgs
= false; BranchOpc
= X86::JBE
; break;
845 case CmpInst::ICMP_EQ
: SwapArgs
= false; BranchOpc
= X86::JE
; break;
846 case CmpInst::ICMP_NE
: SwapArgs
= false; BranchOpc
= X86::JNE
; break;
847 case CmpInst::ICMP_UGT
: SwapArgs
= false; BranchOpc
= X86::JA
; break;
848 case CmpInst::ICMP_UGE
: SwapArgs
= false; BranchOpc
= X86::JAE
; break;
849 case CmpInst::ICMP_ULT
: SwapArgs
= false; BranchOpc
= X86::JB
; break;
850 case CmpInst::ICMP_ULE
: SwapArgs
= false; BranchOpc
= X86::JBE
; break;
851 case CmpInst::ICMP_SGT
: SwapArgs
= false; BranchOpc
= X86::JG
; break;
852 case CmpInst::ICMP_SGE
: SwapArgs
= false; BranchOpc
= X86::JGE
; break;
853 case CmpInst::ICMP_SLT
: SwapArgs
= false; BranchOpc
= X86::JL
; break;
854 case CmpInst::ICMP_SLE
: SwapArgs
= false; BranchOpc
= X86::JLE
; break;
859 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
863 // Emit a compare of the LHS and RHS, setting the flags.
864 if (!X86FastEmitCompare(Op0
, Op1
, VT
))
867 BuildMI(MBB
, DL
, TII
.get(BranchOpc
)).addMBB(TrueMBB
);
869 if (Predicate
== CmpInst::FCMP_UNE
) {
870 // X86 requires a second branch to handle UNE (and OEQ,
871 // which is mapped to UNE above).
872 BuildMI(MBB
, DL
, TII
.get(X86::JP
)).addMBB(TrueMBB
);
875 FastEmitBranch(FalseMBB
);
876 MBB
->addSuccessor(TrueMBB
);
879 } else if (ExtractValueInst
*EI
=
880 dyn_cast
<ExtractValueInst
>(BI
->getCondition())) {
881 // Check to see if the branch instruction is from an "arithmetic with
882 // overflow" intrinsic. The main way these intrinsics are used is:
884 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
885 // %sum = extractvalue { i32, i1 } %t, 0
886 // %obit = extractvalue { i32, i1 } %t, 1
887 // br i1 %obit, label %overflow, label %normal
889 // The %sum and %obit are converted in an ADD and a SETO/SETB before
890 // reaching the branch. Therefore, we search backwards through the MBB
891 // looking for the SETO/SETB instruction. If an instruction modifies the
892 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
893 // convert the branch into a JO/JB instruction.
894 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(EI
->getAggregateOperand())){
895 if (CI
->getIntrinsicID() == Intrinsic::sadd_with_overflow
||
896 CI
->getIntrinsicID() == Intrinsic::uadd_with_overflow
) {
897 const MachineInstr
*SetMI
= 0;
898 unsigned Reg
= lookUpRegForValue(EI
);
900 for (MachineBasicBlock::const_reverse_iterator
901 RI
= MBB
->rbegin(), RE
= MBB
->rend(); RI
!= RE
; ++RI
) {
902 const MachineInstr
&MI
= *RI
;
904 if (MI
.modifiesRegister(Reg
)) {
905 unsigned Src
, Dst
, SrcSR
, DstSR
;
907 if (getInstrInfo()->isMoveInstr(MI
, Src
, Dst
, SrcSR
, DstSR
)) {
916 const TargetInstrDesc
&TID
= MI
.getDesc();
917 if (TID
.hasUnmodeledSideEffects() ||
918 TID
.hasImplicitDefOfPhysReg(X86::EFLAGS
))
923 unsigned OpCode
= SetMI
->getOpcode();
925 if (OpCode
== X86::SETOr
|| OpCode
== X86::SETBr
) {
926 BuildMI(MBB
, DL
, TII
.get(OpCode
== X86::SETOr
? X86::JO
: X86::JB
))
928 FastEmitBranch(FalseMBB
);
929 MBB
->addSuccessor(TrueMBB
);
937 // Otherwise do a clumsy setcc and re-test it.
938 unsigned OpReg
= getRegForValue(BI
->getCondition());
939 if (OpReg
== 0) return false;
941 BuildMI(MBB
, DL
, TII
.get(X86::TEST8rr
)).addReg(OpReg
).addReg(OpReg
);
942 BuildMI(MBB
, DL
, TII
.get(X86::JNE
)).addMBB(TrueMBB
);
943 FastEmitBranch(FalseMBB
);
944 MBB
->addSuccessor(TrueMBB
);
948 bool X86FastISel::X86SelectShift(Instruction
*I
) {
949 unsigned CReg
= 0, OpReg
= 0, OpImm
= 0;
950 const TargetRegisterClass
*RC
= NULL
;
951 if (I
->getType() == Type::getInt8Ty(I
->getContext())) {
953 RC
= &X86::GR8RegClass
;
954 switch (I
->getOpcode()) {
955 case Instruction::LShr
: OpReg
= X86::SHR8rCL
; OpImm
= X86::SHR8ri
; break;
956 case Instruction::AShr
: OpReg
= X86::SAR8rCL
; OpImm
= X86::SAR8ri
; break;
957 case Instruction::Shl
: OpReg
= X86::SHL8rCL
; OpImm
= X86::SHL8ri
; break;
958 default: return false;
960 } else if (I
->getType() == Type::getInt16Ty(I
->getContext())) {
962 RC
= &X86::GR16RegClass
;
963 switch (I
->getOpcode()) {
964 case Instruction::LShr
: OpReg
= X86::SHR16rCL
; OpImm
= X86::SHR16ri
; break;
965 case Instruction::AShr
: OpReg
= X86::SAR16rCL
; OpImm
= X86::SAR16ri
; break;
966 case Instruction::Shl
: OpReg
= X86::SHL16rCL
; OpImm
= X86::SHL16ri
; break;
967 default: return false;
969 } else if (I
->getType() == Type::getInt32Ty(I
->getContext())) {
971 RC
= &X86::GR32RegClass
;
972 switch (I
->getOpcode()) {
973 case Instruction::LShr
: OpReg
= X86::SHR32rCL
; OpImm
= X86::SHR32ri
; break;
974 case Instruction::AShr
: OpReg
= X86::SAR32rCL
; OpImm
= X86::SAR32ri
; break;
975 case Instruction::Shl
: OpReg
= X86::SHL32rCL
; OpImm
= X86::SHL32ri
; break;
976 default: return false;
978 } else if (I
->getType() == Type::getInt64Ty(I
->getContext())) {
980 RC
= &X86::GR64RegClass
;
981 switch (I
->getOpcode()) {
982 case Instruction::LShr
: OpReg
= X86::SHR64rCL
; OpImm
= X86::SHR64ri
; break;
983 case Instruction::AShr
: OpReg
= X86::SAR64rCL
; OpImm
= X86::SAR64ri
; break;
984 case Instruction::Shl
: OpReg
= X86::SHL64rCL
; OpImm
= X86::SHL64ri
; break;
985 default: return false;
991 EVT VT
= TLI
.getValueType(I
->getType(), /*HandleUnknown=*/true);
992 if (VT
== MVT::Other
|| !isTypeLegal(I
->getType(), VT
))
995 unsigned Op0Reg
= getRegForValue(I
->getOperand(0));
996 if (Op0Reg
== 0) return false;
998 // Fold immediate in shl(x,3).
999 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1000 unsigned ResultReg
= createResultReg(RC
);
1001 BuildMI(MBB
, DL
, TII
.get(OpImm
),
1002 ResultReg
).addReg(Op0Reg
).addImm(CI
->getZExtValue() & 0xff);
1003 UpdateValueMap(I
, ResultReg
);
1007 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
1008 if (Op1Reg
== 0) return false;
1009 TII
.copyRegToReg(*MBB
, MBB
->end(), CReg
, Op1Reg
, RC
, RC
);
1011 // The shift instruction uses X86::CL. If we defined a super-register
1012 // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1013 // we're doing here.
1014 if (CReg
!= X86::CL
)
1015 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::EXTRACT_SUBREG
), X86::CL
)
1016 .addReg(CReg
).addImm(X86::SUBREG_8BIT
);
1018 unsigned ResultReg
= createResultReg(RC
);
1019 BuildMI(MBB
, DL
, TII
.get(OpReg
), ResultReg
).addReg(Op0Reg
);
1020 UpdateValueMap(I
, ResultReg
);
1024 bool X86FastISel::X86SelectSelect(Instruction
*I
) {
1025 EVT VT
= TLI
.getValueType(I
->getType(), /*HandleUnknown=*/true);
1026 if (VT
== MVT::Other
|| !isTypeLegal(I
->getType(), VT
))
1030 const TargetRegisterClass
*RC
= NULL
;
1031 if (VT
.getSimpleVT() == MVT::i16
) {
1032 Opc
= X86::CMOVE16rr
;
1033 RC
= &X86::GR16RegClass
;
1034 } else if (VT
.getSimpleVT() == MVT::i32
) {
1035 Opc
= X86::CMOVE32rr
;
1036 RC
= &X86::GR32RegClass
;
1037 } else if (VT
.getSimpleVT() == MVT::i64
) {
1038 Opc
= X86::CMOVE64rr
;
1039 RC
= &X86::GR64RegClass
;
1044 unsigned Op0Reg
= getRegForValue(I
->getOperand(0));
1045 if (Op0Reg
== 0) return false;
1046 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
1047 if (Op1Reg
== 0) return false;
1048 unsigned Op2Reg
= getRegForValue(I
->getOperand(2));
1049 if (Op2Reg
== 0) return false;
1051 BuildMI(MBB
, DL
, TII
.get(X86::TEST8rr
)).addReg(Op0Reg
).addReg(Op0Reg
);
1052 unsigned ResultReg
= createResultReg(RC
);
1053 BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
).addReg(Op1Reg
).addReg(Op2Reg
);
1054 UpdateValueMap(I
, ResultReg
);
1058 bool X86FastISel::X86SelectFPExt(Instruction
*I
) {
1059 // fpext from float to double.
1060 if (Subtarget
->hasSSE2() &&
1061 I
->getType() == Type::getDoubleTy(I
->getContext())) {
1062 Value
*V
= I
->getOperand(0);
1063 if (V
->getType() == Type::getFloatTy(I
->getContext())) {
1064 unsigned OpReg
= getRegForValue(V
);
1065 if (OpReg
== 0) return false;
1066 unsigned ResultReg
= createResultReg(X86::FR64RegisterClass
);
1067 BuildMI(MBB
, DL
, TII
.get(X86::CVTSS2SDrr
), ResultReg
).addReg(OpReg
);
1068 UpdateValueMap(I
, ResultReg
);
1076 bool X86FastISel::X86SelectFPTrunc(Instruction
*I
) {
1077 if (Subtarget
->hasSSE2()) {
1078 if (I
->getType() == Type::getFloatTy(I
->getContext())) {
1079 Value
*V
= I
->getOperand(0);
1080 if (V
->getType() == Type::getDoubleTy(I
->getContext())) {
1081 unsigned OpReg
= getRegForValue(V
);
1082 if (OpReg
== 0) return false;
1083 unsigned ResultReg
= createResultReg(X86::FR32RegisterClass
);
1084 BuildMI(MBB
, DL
, TII
.get(X86::CVTSD2SSrr
), ResultReg
).addReg(OpReg
);
1085 UpdateValueMap(I
, ResultReg
);
1094 bool X86FastISel::X86SelectTrunc(Instruction
*I
) {
1095 if (Subtarget
->is64Bit())
1096 // All other cases should be handled by the tblgen generated code.
1098 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
1099 EVT DstVT
= TLI
.getValueType(I
->getType());
1101 // This code only handles truncation to byte right now.
1102 if (DstVT
!= MVT::i8
&& DstVT
!= MVT::i1
)
1103 // All other cases should be handled by the tblgen generated code.
1105 if (SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i32
)
1106 // All other cases should be handled by the tblgen generated code.
1109 unsigned InputReg
= getRegForValue(I
->getOperand(0));
1111 // Unhandled operand. Halt "fast" selection and bail.
1114 // First issue a copy to GR16_ABCD or GR32_ABCD.
1115 unsigned CopyOpc
= (SrcVT
== MVT::i16
) ? X86::MOV16rr
: X86::MOV32rr
;
1116 const TargetRegisterClass
*CopyRC
= (SrcVT
== MVT::i16
)
1117 ? X86::GR16_ABCDRegisterClass
: X86::GR32_ABCDRegisterClass
;
1118 unsigned CopyReg
= createResultReg(CopyRC
);
1119 BuildMI(MBB
, DL
, TII
.get(CopyOpc
), CopyReg
).addReg(InputReg
);
1121 // Then issue an extract_subreg.
1122 unsigned ResultReg
= FastEmitInst_extractsubreg(MVT::i8
,
1123 CopyReg
, X86::SUBREG_8BIT
);
1127 UpdateValueMap(I
, ResultReg
);
1131 bool X86FastISel::X86SelectExtractValue(Instruction
*I
) {
1132 ExtractValueInst
*EI
= cast
<ExtractValueInst
>(I
);
1133 Value
*Agg
= EI
->getAggregateOperand();
1135 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(Agg
)) {
1136 switch (CI
->getIntrinsicID()) {
1138 case Intrinsic::sadd_with_overflow
:
1139 case Intrinsic::uadd_with_overflow
:
1140 // Cheat a little. We know that the registers for "add" and "seto" are
1141 // allocated sequentially. However, we only keep track of the register
1142 // for "add" in the value map. Use extractvalue's index to get the
1143 // correct register for "seto".
1144 UpdateValueMap(I
, lookUpRegForValue(Agg
) + *EI
->idx_begin());
1152 bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst
&I
) {
1153 // FIXME: Handle more intrinsics.
1154 switch (I
.getIntrinsicID()) {
1155 default: return false;
1156 case Intrinsic::sadd_with_overflow
:
1157 case Intrinsic::uadd_with_overflow
: {
1158 // Replace "add with overflow" intrinsics with an "add" instruction followed
1159 // by a seto/setc instruction. Later on, when the "extractvalue"
1160 // instructions are encountered, we use the fact that two registers were
1161 // created sequentially to get the correct registers for the "sum" and the
1163 const Function
*Callee
= I
.getCalledFunction();
1165 cast
<StructType
>(Callee
->getReturnType())->getTypeAtIndex(unsigned(0));
1168 if (!isTypeLegal(RetTy
, VT
))
1171 Value
*Op1
= I
.getOperand(1);
1172 Value
*Op2
= I
.getOperand(2);
1173 unsigned Reg1
= getRegForValue(Op1
);
1174 unsigned Reg2
= getRegForValue(Op2
);
1176 if (Reg1
== 0 || Reg2
== 0)
1177 // FIXME: Handle values *not* in registers.
1183 else if (VT
== MVT::i64
)
1188 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(VT
));
1189 BuildMI(MBB
, DL
, TII
.get(OpC
), ResultReg
).addReg(Reg1
).addReg(Reg2
);
1190 unsigned DestReg1
= UpdateValueMap(&I
, ResultReg
);
1192 // If the add with overflow is an intra-block value then we just want to
1193 // create temporaries for it like normal. If it is a cross-block value then
1194 // UpdateValueMap will return the cross-block register used. Since we
1195 // *really* want the value to be live in the register pair known by
1196 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1197 // the cross block case. In the non-cross-block case, we should just make
1198 // another register for the value.
1199 if (DestReg1
!= ResultReg
)
1200 ResultReg
= DestReg1
+1;
1202 ResultReg
= createResultReg(TLI
.getRegClassFor(MVT::i8
));
1204 unsigned Opc
= X86::SETBr
;
1205 if (I
.getIntrinsicID() == Intrinsic::sadd_with_overflow
)
1207 BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
);
1213 bool X86FastISel::X86SelectCall(Instruction
*I
) {
1214 CallInst
*CI
= cast
<CallInst
>(I
);
1215 Value
*Callee
= I
->getOperand(0);
1217 // Can't handle inline asm yet.
1218 if (isa
<InlineAsm
>(Callee
))
1221 // Handle intrinsic calls.
1222 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
))
1223 return X86VisitIntrinsicCall(*II
);
1225 // Handle only C and fastcc calling conventions for now.
1227 CallingConv::ID CC
= CS
.getCallingConv();
1228 if (CC
!= CallingConv::C
&&
1229 CC
!= CallingConv::Fast
&&
1230 CC
!= CallingConv::X86_FastCall
)
1233 // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1234 // handle this for now.
1235 if (CC
== CallingConv::Fast
&& PerformTailCallOpt
)
1238 // Let SDISel handle vararg functions.
1239 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1240 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
1241 if (FTy
->isVarArg())
1244 // Handle *simple* calls for now.
1245 const Type
*RetTy
= CS
.getType();
1247 if (RetTy
== Type::getVoidTy(I
->getContext()))
1248 RetVT
= MVT::isVoid
;
1249 else if (!isTypeLegal(RetTy
, RetVT
, true))
1252 // Materialize callee address in a register. FIXME: GV address can be
1253 // handled with a CALLpcrel32 instead.
1254 X86AddressMode CalleeAM
;
1255 if (!X86SelectCallAddress(Callee
, CalleeAM
))
1257 unsigned CalleeOp
= 0;
1258 GlobalValue
*GV
= 0;
1259 if (CalleeAM
.GV
!= 0) {
1261 } else if (CalleeAM
.Base
.Reg
!= 0) {
1262 CalleeOp
= CalleeAM
.Base
.Reg
;
1266 // Allow calls which produce i1 results.
1267 bool AndToI1
= false;
1268 if (RetVT
== MVT::i1
) {
1273 // Deal with call operands first.
1274 SmallVector
<Value
*, 8> ArgVals
;
1275 SmallVector
<unsigned, 8> Args
;
1276 SmallVector
<EVT
, 8> ArgVTs
;
1277 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1278 Args
.reserve(CS
.arg_size());
1279 ArgVals
.reserve(CS
.arg_size());
1280 ArgVTs
.reserve(CS
.arg_size());
1281 ArgFlags
.reserve(CS
.arg_size());
1282 for (CallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
1284 unsigned Arg
= getRegForValue(*i
);
1287 ISD::ArgFlagsTy Flags
;
1288 unsigned AttrInd
= i
- CS
.arg_begin() + 1;
1289 if (CS
.paramHasAttr(AttrInd
, Attribute::SExt
))
1291 if (CS
.paramHasAttr(AttrInd
, Attribute::ZExt
))
1294 // FIXME: Only handle *easy* calls for now.
1295 if (CS
.paramHasAttr(AttrInd
, Attribute::InReg
) ||
1296 CS
.paramHasAttr(AttrInd
, Attribute::StructRet
) ||
1297 CS
.paramHasAttr(AttrInd
, Attribute::Nest
) ||
1298 CS
.paramHasAttr(AttrInd
, Attribute::ByVal
))
1301 const Type
*ArgTy
= (*i
)->getType();
1303 if (!isTypeLegal(ArgTy
, ArgVT
))
1305 unsigned OriginalAlignment
= TD
.getABITypeAlignment(ArgTy
);
1306 Flags
.setOrigAlign(OriginalAlignment
);
1308 Args
.push_back(Arg
);
1309 ArgVals
.push_back(*i
);
1310 ArgVTs
.push_back(ArgVT
);
1311 ArgFlags
.push_back(Flags
);
1314 // Analyze operands of the call, assigning locations to each operand.
1315 SmallVector
<CCValAssign
, 16> ArgLocs
;
1316 CCState
CCInfo(CC
, false, TM
, ArgLocs
, I
->getParent()->getContext());
1317 CCInfo
.AnalyzeCallOperands(ArgVTs
, ArgFlags
, CCAssignFnForCall(CC
));
1319 // Get a count of how many bytes are to be pushed on the stack.
1320 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1322 // Issue CALLSEQ_START
1323 unsigned AdjStackDown
= TM
.getRegisterInfo()->getCallFrameSetupOpcode();
1324 BuildMI(MBB
, DL
, TII
.get(AdjStackDown
)).addImm(NumBytes
);
1326 // Process argument: walk the register/memloc assignments, inserting
1328 SmallVector
<unsigned, 4> RegArgs
;
1329 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1330 CCValAssign
&VA
= ArgLocs
[i
];
1331 unsigned Arg
= Args
[VA
.getValNo()];
1332 EVT ArgVT
= ArgVTs
[VA
.getValNo()];
1334 // Promote the value if needed.
1335 switch (VA
.getLocInfo()) {
1336 default: llvm_unreachable("Unknown loc info!");
1337 case CCValAssign::Full
: break;
1338 case CCValAssign::SExt
: {
1339 bool Emitted
= X86FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1341 assert(Emitted
&& "Failed to emit a sext!"); Emitted
=Emitted
;
1343 ArgVT
= VA
.getLocVT();
1346 case CCValAssign::ZExt
: {
1347 bool Emitted
= X86FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1349 assert(Emitted
&& "Failed to emit a zext!"); Emitted
=Emitted
;
1351 ArgVT
= VA
.getLocVT();
1354 case CCValAssign::AExt
: {
1355 bool Emitted
= X86FastEmitExtend(ISD::ANY_EXTEND
, VA
.getLocVT(),
1358 Emitted
= X86FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1361 Emitted
= X86FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1364 assert(Emitted
&& "Failed to emit a aext!"); Emitted
=Emitted
;
1365 ArgVT
= VA
.getLocVT();
1368 case CCValAssign::BCvt
: {
1369 unsigned BC
= FastEmit_r(ArgVT
.getSimpleVT(), VA
.getLocVT().getSimpleVT(),
1370 ISD::BIT_CONVERT
, Arg
);
1371 assert(BC
!= 0 && "Failed to emit a bitcast!");
1373 ArgVT
= VA
.getLocVT();
1378 if (VA
.isRegLoc()) {
1379 TargetRegisterClass
* RC
= TLI
.getRegClassFor(ArgVT
);
1380 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), VA
.getLocReg(),
1382 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1384 RegArgs
.push_back(VA
.getLocReg());
1386 unsigned LocMemOffset
= VA
.getLocMemOffset();
1388 AM
.Base
.Reg
= StackPtr
;
1389 AM
.Disp
= LocMemOffset
;
1390 Value
*ArgVal
= ArgVals
[VA
.getValNo()];
1392 // If this is a really simple value, emit this with the Value* version of
1393 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1394 // can cause us to reevaluate the argument.
1395 if (isa
<ConstantInt
>(ArgVal
) || isa
<ConstantPointerNull
>(ArgVal
))
1396 X86FastEmitStore(ArgVT
, ArgVal
, AM
);
1398 X86FastEmitStore(ArgVT
, Arg
, AM
);
1402 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1404 if (Subtarget
->isPICStyleGOT()) {
1405 TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
1406 unsigned Base
= getInstrInfo()->getGlobalBaseReg(&MF
);
1407 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), X86::EBX
, Base
, RC
, RC
);
1408 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1413 MachineInstrBuilder MIB
;
1415 // Register-indirect call.
1416 unsigned CallOpc
= Subtarget
->is64Bit() ? X86::CALL64r
: X86::CALL32r
;
1417 MIB
= BuildMI(MBB
, DL
, TII
.get(CallOpc
)).addReg(CalleeOp
);
1421 assert(GV
&& "Not a direct call");
1423 Subtarget
->is64Bit() ? X86::CALL64pcrel32
: X86::CALLpcrel32
;
1425 // See if we need any target-specific flags on the GV operand.
1426 unsigned char OpFlags
= 0;
1428 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1429 // external symbols most go through the PLT in PIC mode. If the symbol
1430 // has hidden or protected visibility, or if it is static or local, then
1431 // we don't need to use the PLT - we can directly call it.
1432 if (Subtarget
->isTargetELF() &&
1433 TM
.getRelocationModel() == Reloc::PIC_
&&
1434 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
1435 OpFlags
= X86II::MO_PLT
;
1436 } else if (Subtarget
->isPICStyleStubAny() &&
1437 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
1438 Subtarget
->getDarwinVers() < 9) {
1439 // PC-relative references to external symbols should go through $stub,
1440 // unless we're building with the leopard linker or later, which
1441 // automatically synthesizes these stubs.
1442 OpFlags
= X86II::MO_DARWIN_STUB
;
1446 MIB
= BuildMI(MBB
, DL
, TII
.get(CallOpc
)).addGlobalAddress(GV
, 0, OpFlags
);
1449 // Add an implicit use GOT pointer in EBX.
1450 if (Subtarget
->isPICStyleGOT())
1451 MIB
.addReg(X86::EBX
);
1453 // Add implicit physical register uses to the call.
1454 for (unsigned i
= 0, e
= RegArgs
.size(); i
!= e
; ++i
)
1455 MIB
.addReg(RegArgs
[i
]);
1457 // Issue CALLSEQ_END
1458 unsigned AdjStackUp
= TM
.getRegisterInfo()->getCallFrameDestroyOpcode();
1459 BuildMI(MBB
, DL
, TII
.get(AdjStackUp
)).addImm(NumBytes
).addImm(0);
1461 // Now handle call return value (if any).
1462 if (RetVT
.getSimpleVT().SimpleTy
!= MVT::isVoid
) {
1463 SmallVector
<CCValAssign
, 16> RVLocs
;
1464 CCState
CCInfo(CC
, false, TM
, RVLocs
, I
->getParent()->getContext());
1465 CCInfo
.AnalyzeCallResult(RetVT
, RetCC_X86
);
1467 // Copy all of the result registers out of their specified physreg.
1468 assert(RVLocs
.size() == 1 && "Can't handle multi-value calls!");
1469 EVT CopyVT
= RVLocs
[0].getValVT();
1470 TargetRegisterClass
* DstRC
= TLI
.getRegClassFor(CopyVT
);
1471 TargetRegisterClass
*SrcRC
= DstRC
;
1473 // If this is a call to a function that returns an fp value on the x87 fp
1474 // stack, but where we prefer to use the value in xmm registers, copy it
1475 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1476 if ((RVLocs
[0].getLocReg() == X86::ST0
||
1477 RVLocs
[0].getLocReg() == X86::ST1
) &&
1478 isScalarFPTypeInSSEReg(RVLocs
[0].getValVT())) {
1480 SrcRC
= X86::RSTRegisterClass
;
1481 DstRC
= X86::RFP80RegisterClass
;
1484 unsigned ResultReg
= createResultReg(DstRC
);
1485 bool Emitted
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1486 RVLocs
[0].getLocReg(), DstRC
, SrcRC
);
1487 assert(Emitted
&& "Failed to emit a copy instruction!"); Emitted
=Emitted
;
1489 if (CopyVT
!= RVLocs
[0].getValVT()) {
1490 // Round the F80 the right size, which also moves to the appropriate xmm
1491 // register. This is accomplished by storing the F80 value in memory and
1492 // then loading it back. Ewww...
1493 EVT ResVT
= RVLocs
[0].getValVT();
1494 unsigned Opc
= ResVT
== MVT::f32
? X86::ST_Fp80m32
: X86::ST_Fp80m64
;
1495 unsigned MemSize
= ResVT
.getSizeInBits()/8;
1496 int FI
= MFI
.CreateStackObject(MemSize
, MemSize
);
1497 addFrameReference(BuildMI(MBB
, DL
, TII
.get(Opc
)), FI
).addReg(ResultReg
);
1498 DstRC
= ResVT
== MVT::f32
1499 ? X86::FR32RegisterClass
: X86::FR64RegisterClass
;
1500 Opc
= ResVT
== MVT::f32
? X86::MOVSSrm
: X86::MOVSDrm
;
1501 ResultReg
= createResultReg(DstRC
);
1502 addFrameReference(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), FI
);
1506 // Mask out all but lowest bit for some call which produces an i1.
1507 unsigned AndResult
= createResultReg(X86::GR8RegisterClass
);
1509 TII
.get(X86::AND8ri
), AndResult
).addReg(ResultReg
).addImm(1);
1510 ResultReg
= AndResult
;
1513 UpdateValueMap(I
, ResultReg
);
1521 X86FastISel::TargetSelectInstruction(Instruction
*I
) {
1522 switch (I
->getOpcode()) {
1524 case Instruction::Load
:
1525 return X86SelectLoad(I
);
1526 case Instruction::Store
:
1527 return X86SelectStore(I
);
1528 case Instruction::ICmp
:
1529 case Instruction::FCmp
:
1530 return X86SelectCmp(I
);
1531 case Instruction::ZExt
:
1532 return X86SelectZExt(I
);
1533 case Instruction::Br
:
1534 return X86SelectBranch(I
);
1535 case Instruction::Call
:
1536 return X86SelectCall(I
);
1537 case Instruction::LShr
:
1538 case Instruction::AShr
:
1539 case Instruction::Shl
:
1540 return X86SelectShift(I
);
1541 case Instruction::Select
:
1542 return X86SelectSelect(I
);
1543 case Instruction::Trunc
:
1544 return X86SelectTrunc(I
);
1545 case Instruction::FPExt
:
1546 return X86SelectFPExt(I
);
1547 case Instruction::FPTrunc
:
1548 return X86SelectFPTrunc(I
);
1549 case Instruction::ExtractValue
:
1550 return X86SelectExtractValue(I
);
1551 case Instruction::IntToPtr
: // Deliberate fall-through.
1552 case Instruction::PtrToInt
: {
1553 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
1554 EVT DstVT
= TLI
.getValueType(I
->getType());
1555 if (DstVT
.bitsGT(SrcVT
))
1556 return X86SelectZExt(I
);
1557 if (DstVT
.bitsLT(SrcVT
))
1558 return X86SelectTrunc(I
);
1559 unsigned Reg
= getRegForValue(I
->getOperand(0));
1560 if (Reg
== 0) return false;
1561 UpdateValueMap(I
, Reg
);
1569 unsigned X86FastISel::TargetMaterializeConstant(Constant
*C
) {
1571 if (!isTypeLegal(C
->getType(), VT
))
1574 // Get opcode and regclass of the output for the given load instruction.
1576 const TargetRegisterClass
*RC
= NULL
;
1577 switch (VT
.getSimpleVT().SimpleTy
) {
1578 default: return false;
1581 RC
= X86::GR8RegisterClass
;
1585 RC
= X86::GR16RegisterClass
;
1589 RC
= X86::GR32RegisterClass
;
1592 // Must be in x86-64 mode.
1594 RC
= X86::GR64RegisterClass
;
1597 if (Subtarget
->hasSSE1()) {
1599 RC
= X86::FR32RegisterClass
;
1601 Opc
= X86::LD_Fp32m
;
1602 RC
= X86::RFP32RegisterClass
;
1606 if (Subtarget
->hasSSE2()) {
1608 RC
= X86::FR64RegisterClass
;
1610 Opc
= X86::LD_Fp64m
;
1611 RC
= X86::RFP64RegisterClass
;
1615 // No f80 support yet.
1619 // Materialize addresses with LEA instructions.
1620 if (isa
<GlobalValue
>(C
)) {
1622 if (X86SelectAddress(C
, AM
)) {
1623 if (TLI
.getPointerTy() == MVT::i32
)
1627 unsigned ResultReg
= createResultReg(RC
);
1628 addLeaAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
1634 // MachineConstantPool wants an explicit alignment.
1635 unsigned Align
= TD
.getPrefTypeAlignment(C
->getType());
1637 // Alignment of vector types. FIXME!
1638 Align
= TD
.getTypeAllocSize(C
->getType());
1641 // x86-32 PIC requires a PIC base register for constant pools.
1642 unsigned PICBase
= 0;
1643 unsigned char OpFlag
= 0;
1644 if (Subtarget
->isPICStyleStubPIC()) { // Not dynamic-no-pic
1645 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
1646 PICBase
= getInstrInfo()->getGlobalBaseReg(&MF
);
1647 } else if (Subtarget
->isPICStyleGOT()) {
1648 OpFlag
= X86II::MO_GOTOFF
;
1649 PICBase
= getInstrInfo()->getGlobalBaseReg(&MF
);
1650 } else if (Subtarget
->isPICStyleRIPRel() &&
1651 TM
.getCodeModel() == CodeModel::Small
) {
1655 // Create the load from the constant pool.
1656 unsigned MCPOffset
= MCP
.getConstantPoolIndex(C
, Align
);
1657 unsigned ResultReg
= createResultReg(RC
);
1658 addConstantPoolReference(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
),
1659 MCPOffset
, PICBase
, OpFlag
);
1664 unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst
*C
) {
1665 // Fail on dynamic allocas. At this point, getRegForValue has already
1666 // checked its CSE maps, so if we're here trying to handle a dynamic
1667 // alloca, we're not going to succeed. X86SelectAddress has a
1668 // check for dynamic allocas, because it's called directly from
1669 // various places, but TargetMaterializeAlloca also needs a check
1670 // in order to avoid recursion between getRegForValue,
1671 // X86SelectAddrss, and TargetMaterializeAlloca.
1672 if (!StaticAllocaMap
.count(C
))
1676 if (!X86SelectAddress(C
, AM
))
1678 unsigned Opc
= Subtarget
->is64Bit() ? X86::LEA64r
: X86::LEA32r
;
1679 TargetRegisterClass
* RC
= TLI
.getRegClassFor(TLI
.getPointerTy());
1680 unsigned ResultReg
= createResultReg(RC
);
1681 addLeaAddress(BuildMI(MBB
, DL
, TII
.get(Opc
), ResultReg
), AM
);
1686 llvm::FastISel
*X86::createFastISel(MachineFunction
&mf
,
1687 MachineModuleInfo
*mmi
,
1689 DenseMap
<const Value
*, unsigned> &vm
,
1690 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
1691 DenseMap
<const AllocaInst
*, int> &am
1693 , SmallSet
<Instruction
*, 8> &cil
1696 return new X86FastISel(mf
, mmi
, dw
, vm
, bm
, am