1 //===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This class contains all of the shared state and information that is used by
11 // the BugPoint tool to track down errors in optimizations. This class is the
12 // main driver class that invokes all sub-functionality.
14 //===----------------------------------------------------------------------===//
16 #include "BugDriver.h"
17 #include "ToolRunner.h"
18 #include "llvm/Linker.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/IRReader.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/FileUtilities.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/SourceMgr.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/System/Host.h"
35 // Anonymous namespace to define command line options for debugging.
38 // Output - The user can specify a file containing the expected output of the
39 // program. If this filename is set, it is used as the reference diff source,
40 // otherwise the raw input run through an interpreter is used as the reference
44 OutputFile("output", cl::desc("Specify a reference program output "
45 "(for miscompilation detection)"));
48 /// setNewProgram - If we reduce or update the program somehow, call this method
49 /// to update bugdriver with it. This deletes the old module and sets the
50 /// specified one as the current program.
51 void BugDriver::setNewProgram(Module
*M
) {
57 /// getPassesString - Turn a list of passes into a string which indicates the
58 /// command line options that must be passed to add the passes.
60 std::string
llvm::getPassesString(const std::vector
<const PassInfo
*> &Passes
) {
62 for (unsigned i
= 0, e
= Passes
.size(); i
!= e
; ++i
) {
65 Result
+= Passes
[i
]->getPassArgument();
70 BugDriver::BugDriver(const char *toolname
, bool as_child
, bool find_bugs
,
71 unsigned timeout
, unsigned memlimit
,
73 : Context(ctxt
), ToolName(toolname
), ReferenceOutputFile(OutputFile
),
74 Program(0), Interpreter(0), SafeInterpreter(0), gcc(0),
75 run_as_child(as_child
), run_find_bugs(find_bugs
), Timeout(timeout
),
76 MemoryLimit(memlimit
) {}
79 /// ParseInputFile - Given a bitcode or assembly input filename, parse and
80 /// return it, or return null if not possible.
82 Module
*llvm::ParseInputFile(const std::string
&Filename
,
85 Module
*Result
= ParseIRFile(Filename
, Err
, Ctxt
);
87 Err
.Print("bugpoint", errs());
89 // If we don't have an override triple, use the first one to configure
90 // bugpoint, or use the host triple if none provided.
92 if (TargetTriple
.getTriple().empty()) {
93 Triple
TheTriple(Result
->getTargetTriple());
95 if (TheTriple
.getTriple().empty())
96 TheTriple
.setTriple(sys::getHostTriple());
98 TargetTriple
.setTriple(TheTriple
.getTriple());
101 Result
->setTargetTriple(TargetTriple
.getTriple()); // override the triple
106 // This method takes the specified list of LLVM input files, attempts to load
107 // them, either as assembly or bitcode, then link them together. It returns
108 // true on failure (if, for example, an input bitcode file could not be
109 // parsed), and false on success.
111 bool BugDriver::addSources(const std::vector
<std::string
> &Filenames
) {
112 assert(Program
== 0 && "Cannot call addSources multiple times!");
113 assert(!Filenames
.empty() && "Must specify at least on input filename!");
116 // Load the first input file.
117 Program
= ParseInputFile(Filenames
[0], Context
);
118 if (Program
== 0) return true;
121 outs() << "Read input file : '" << Filenames
[0] << "'\n";
123 for (unsigned i
= 1, e
= Filenames
.size(); i
!= e
; ++i
) {
124 std::auto_ptr
<Module
> M(ParseInputFile(Filenames
[i
], Context
));
125 if (M
.get() == 0) return true;
128 outs() << "Linking in input file: '" << Filenames
[i
] << "'\n";
129 std::string ErrorMessage
;
130 if (Linker::LinkModules(Program
, M
.get(), &ErrorMessage
)) {
131 errs() << ToolName
<< ": error linking in '" << Filenames
[i
] << "': "
132 << ErrorMessage
<< '\n';
136 } catch (const std::string
&Error
) {
137 errs() << ToolName
<< ": error reading input '" << Error
<< "'\n";
142 outs() << "*** All input ok\n";
144 // All input files read successfully!
150 /// run - The top level method that is invoked after all of the instance
151 /// variables are set up from command line arguments.
153 bool BugDriver::run() {
154 // The first thing to do is determine if we're running as a child. If we are,
155 // then what to do is very narrow. This form of invocation is only called
156 // from the runPasses method to actually run those passes in a child process.
158 // Execute the passes
159 return runPassesAsChild(PassesToRun
);
163 // Rearrange the passes and apply them to the program. Repeat this process
164 // until the user kills the program or we find a bug.
165 return runManyPasses(PassesToRun
);
168 // If we're not running as a child, the first thing that we must do is
169 // determine what the problem is. Does the optimization series crash the
170 // compiler, or does it produce illegal code? We make the top-level
171 // decision by trying to run all of the passes on the the input program,
172 // which should generate a bitcode file. If it does generate a bitcode
173 // file, then we know the compiler didn't crash, so try to diagnose a
175 if (!PassesToRun
.empty()) {
176 outs() << "Running selected passes on program to test for crash: ";
177 if (runPasses(PassesToRun
))
178 return debugOptimizerCrash();
181 // Set up the execution environment, selecting a method to run LLVM bitcode.
182 if (initializeExecutionEnvironment()) return true;
184 // Test to see if we have a code generator crash.
185 outs() << "Running the code generator to test for a crash: ";
187 compileProgram(Program
);
189 } catch (ToolExecutionError
&TEE
) {
190 outs() << TEE
.what();
191 return debugCodeGeneratorCrash();
195 // Run the raw input to see where we are coming from. If a reference output
196 // was specified, make sure that the raw output matches it. If not, it's a
197 // problem in the front-end or the code generator.
199 bool CreatedOutput
= false;
200 if (ReferenceOutputFile
.empty()) {
201 outs() << "Generating reference output from raw program: ";
202 if(!createReferenceFile(Program
)){
203 return debugCodeGeneratorCrash();
205 CreatedOutput
= true;
208 // Make sure the reference output file gets deleted on exit from this
209 // function, if appropriate.
210 sys::Path
ROF(ReferenceOutputFile
);
211 FileRemover
RemoverInstance(ROF
, CreatedOutput
&& !SaveTemps
);
213 // Diff the output of the raw program against the reference output. If it
214 // matches, then we assume there is a miscompilation bug and try to
216 outs() << "*** Checking the code generator...\n";
218 if (!diffProgram()) {
219 outs() << "\n*** Output matches: Debugging miscompilation!\n";
220 return debugMiscompilation();
222 } catch (ToolExecutionError
&TEE
) {
223 errs() << TEE
.what();
224 return debugCodeGeneratorCrash();
227 outs() << "\n*** Input program does not match reference diff!\n";
228 outs() << "Debugging code generator problem!\n";
230 return debugCodeGenerator();
231 } catch (ToolExecutionError
&TEE
) {
232 errs() << TEE
.what();
233 return debugCodeGeneratorCrash();
237 void llvm::PrintFunctionList(const std::vector
<Function
*> &Funcs
) {
238 unsigned NumPrint
= Funcs
.size();
239 if (NumPrint
> 10) NumPrint
= 10;
240 for (unsigned i
= 0; i
!= NumPrint
; ++i
)
241 outs() << " " << Funcs
[i
]->getName();
242 if (NumPrint
< Funcs
.size())
243 outs() << "... <" << Funcs
.size() << " total>";
247 void llvm::PrintGlobalVariableList(const std::vector
<GlobalVariable
*> &GVs
) {
248 unsigned NumPrint
= GVs
.size();
249 if (NumPrint
> 10) NumPrint
= 10;
250 for (unsigned i
= 0; i
!= NumPrint
; ++i
)
251 outs() << " " << GVs
[i
]->getName();
252 if (NumPrint
< GVs
.size())
253 outs() << "... <" << GVs
.size() << " total>";