Fix comment for consistency sake.
[llvm/avr.git] / lib / Analysis / BasicAliasAnalysis.cpp
blob9e9d0f10d096153f547cd63aad1bb50f36ef54f3
1 //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the default implementation of the Alias Analysis interface
11 // that simply implements a few identities (two different globals cannot alias,
12 // etc), but otherwise does no analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CaptureTracking.h"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/LLVMContext.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include <algorithm>
35 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // Useful predicates
39 //===----------------------------------------------------------------------===//
41 static const GEPOperator *isGEP(const Value *V) {
42 return dyn_cast<GEPOperator>(V);
45 static const Value *GetGEPOperands(const Value *V,
46 SmallVector<Value*, 16> &GEPOps) {
47 assert(GEPOps.empty() && "Expect empty list to populate!");
48 GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
49 cast<User>(V)->op_end());
51 // Accumulate all of the chained indexes into the operand array
52 V = cast<User>(V)->getOperand(0);
54 while (const User *G = isGEP(V)) {
55 if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
56 !cast<Constant>(GEPOps[0])->isNullValue())
57 break; // Don't handle folding arbitrary pointer offsets yet...
58 GEPOps.erase(GEPOps.begin()); // Drop the zero index
59 GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
60 V = G->getOperand(0);
62 return V;
65 /// isKnownNonNull - Return true if we know that the specified value is never
66 /// null.
67 static bool isKnownNonNull(const Value *V) {
68 // Alloca never returns null, malloc might.
69 if (isa<AllocaInst>(V)) return true;
71 // A byval argument is never null.
72 if (const Argument *A = dyn_cast<Argument>(V))
73 return A->hasByValAttr();
75 // Global values are not null unless extern weak.
76 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
77 return !GV->hasExternalWeakLinkage();
78 return false;
81 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
82 /// object that never escapes from the function.
83 static bool isNonEscapingLocalObject(const Value *V) {
84 // If this is a local allocation, check to see if it escapes.
85 if (isa<AllocationInst>(V) || isNoAliasCall(V))
86 return !PointerMayBeCaptured(V, false);
88 // If this is an argument that corresponds to a byval or noalias argument,
89 // then it has not escaped before entering the function. Check if it escapes
90 // inside the function.
91 if (const Argument *A = dyn_cast<Argument>(V))
92 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
93 // Don't bother analyzing arguments already known not to escape.
94 if (A->hasNoCaptureAttr())
95 return true;
96 return !PointerMayBeCaptured(V, false);
98 return false;
102 /// isObjectSmallerThan - Return true if we can prove that the object specified
103 /// by V is smaller than Size.
104 static bool isObjectSmallerThan(const Value *V, unsigned Size,
105 const TargetData &TD) {
106 const Type *AccessTy;
107 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
108 AccessTy = GV->getType()->getElementType();
109 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
110 if (!AI->isArrayAllocation())
111 AccessTy = AI->getType()->getElementType();
112 else
113 return false;
114 } else if (const Argument *A = dyn_cast<Argument>(V)) {
115 if (A->hasByValAttr())
116 AccessTy = cast<PointerType>(A->getType())->getElementType();
117 else
118 return false;
119 } else {
120 return false;
123 if (AccessTy->isSized())
124 return TD.getTypeAllocSize(AccessTy) < Size;
125 return false;
128 //===----------------------------------------------------------------------===//
129 // NoAA Pass
130 //===----------------------------------------------------------------------===//
132 namespace {
133 /// NoAA - This class implements the -no-aa pass, which always returns "I
134 /// don't know" for alias queries. NoAA is unlike other alias analysis
135 /// implementations, in that it does not chain to a previous analysis. As
136 /// such it doesn't follow many of the rules that other alias analyses must.
138 struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
139 static char ID; // Class identification, replacement for typeinfo
140 NoAA() : ImmutablePass(&ID) {}
141 explicit NoAA(void *PID) : ImmutablePass(PID) { }
143 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 virtual void initializePass() {
147 TD = getAnalysisIfAvailable<TargetData>();
150 virtual AliasResult alias(const Value *V1, unsigned V1Size,
151 const Value *V2, unsigned V2Size) {
152 return MayAlias;
155 virtual void getArgumentAccesses(Function *F, CallSite CS,
156 std::vector<PointerAccessInfo> &Info) {
157 llvm_unreachable("This method may not be called on this function!");
160 virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
161 virtual bool pointsToConstantMemory(const Value *P) { return false; }
162 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
163 return ModRef;
165 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
166 return ModRef;
168 virtual bool hasNoModRefInfoForCalls() const { return true; }
170 virtual void deleteValue(Value *V) {}
171 virtual void copyValue(Value *From, Value *To) {}
173 } // End of anonymous namespace
175 // Register this pass...
176 char NoAA::ID = 0;
177 static RegisterPass<NoAA>
178 U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
180 // Declare that we implement the AliasAnalysis interface
181 static RegisterAnalysisGroup<AliasAnalysis> V(U);
183 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
185 //===----------------------------------------------------------------------===//
186 // BasicAA Pass
187 //===----------------------------------------------------------------------===//
189 namespace {
190 /// BasicAliasAnalysis - This is the default alias analysis implementation.
191 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
192 /// derives from the NoAA class.
193 struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
194 static char ID; // Class identification, replacement for typeinfo
195 BasicAliasAnalysis() : NoAA(&ID) {}
196 AliasResult alias(const Value *V1, unsigned V1Size,
197 const Value *V2, unsigned V2Size);
199 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
200 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
202 /// hasNoModRefInfoForCalls - We can provide mod/ref information against
203 /// non-escaping allocations.
204 virtual bool hasNoModRefInfoForCalls() const { return false; }
206 /// pointsToConstantMemory - Chase pointers until we find a (constant
207 /// global) or not.
208 bool pointsToConstantMemory(const Value *P);
210 private:
211 // CheckGEPInstructions - Check two GEP instructions with known
212 // must-aliasing base pointers. This checks to see if the index expressions
213 // preclude the pointers from aliasing...
214 AliasResult
215 CheckGEPInstructions(const Type* BasePtr1Ty,
216 Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
217 const Type *BasePtr2Ty,
218 Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
220 } // End of anonymous namespace
222 // Register this pass...
223 char BasicAliasAnalysis::ID = 0;
224 static RegisterPass<BasicAliasAnalysis>
225 X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
227 // Declare that we implement the AliasAnalysis interface
228 static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
230 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
231 return new BasicAliasAnalysis();
235 /// pointsToConstantMemory - Chase pointers until we find a (constant
236 /// global) or not.
237 bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
238 if (const GlobalVariable *GV =
239 dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
240 return GV->isConstant();
241 return false;
245 // getModRefInfo - Check to see if the specified callsite can clobber the
246 // specified memory object. Since we only look at local properties of this
247 // function, we really can't say much about this query. We do, however, use
248 // simple "address taken" analysis on local objects.
250 AliasAnalysis::ModRefResult
251 BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
252 if (!isa<Constant>(P)) {
253 const Value *Object = P->getUnderlyingObject();
255 // If this is a tail call and P points to a stack location, we know that
256 // the tail call cannot access or modify the local stack.
257 // We cannot exclude byval arguments here; these belong to the caller of
258 // the current function not to the current function, and a tail callee
259 // may reference them.
260 if (isa<AllocaInst>(Object))
261 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
262 if (CI->isTailCall())
263 return NoModRef;
265 // If the pointer is to a locally allocated object that does not escape,
266 // then the call can not mod/ref the pointer unless the call takes the
267 // argument without capturing it.
268 if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
269 bool passedAsArg = false;
270 // TODO: Eventually only check 'nocapture' arguments.
271 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
272 CI != CE; ++CI)
273 if (isa<PointerType>((*CI)->getType()) &&
274 alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
275 passedAsArg = true;
277 if (!passedAsArg)
278 return NoModRef;
282 // The AliasAnalysis base class has some smarts, lets use them.
283 return AliasAnalysis::getModRefInfo(CS, P, Size);
287 AliasAnalysis::ModRefResult
288 BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
289 // If CS1 or CS2 are readnone, they don't interact.
290 ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
291 if (CS1B == DoesNotAccessMemory) return NoModRef;
293 ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
294 if (CS2B == DoesNotAccessMemory) return NoModRef;
296 // If they both only read from memory, just return ref.
297 if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
298 return Ref;
300 // Otherwise, fall back to NoAA (mod+ref).
301 return NoAA::getModRefInfo(CS1, CS2);
305 // alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
306 // as array references.
308 AliasAnalysis::AliasResult
309 BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
310 const Value *V2, unsigned V2Size) {
311 // Strip off any casts if they exist.
312 V1 = V1->stripPointerCasts();
313 V2 = V2->stripPointerCasts();
315 // Are we checking for alias of the same value?
316 if (V1 == V2) return MustAlias;
318 if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
319 return NoAlias; // Scalars cannot alias each other
321 // Figure out what objects these things are pointing to if we can.
322 const Value *O1 = V1->getUnderlyingObject();
323 const Value *O2 = V2->getUnderlyingObject();
325 if (O1 != O2) {
326 // If V1/V2 point to two different objects we know that we have no alias.
327 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
328 return NoAlias;
330 // Arguments can't alias with local allocations or noalias calls.
331 if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
332 (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
333 return NoAlias;
335 // Most objects can't alias null.
336 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
337 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
338 return NoAlias;
341 // If the size of one access is larger than the entire object on the other
342 // side, then we know such behavior is undefined and can assume no alias.
343 if (TD)
344 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
345 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
346 return NoAlias;
348 // If one pointer is the result of a call/invoke and the other is a
349 // non-escaping local object, then we know the object couldn't escape to a
350 // point where the call could return it.
351 if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
352 isNonEscapingLocalObject(O2) && O1 != O2)
353 return NoAlias;
354 if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
355 isNonEscapingLocalObject(O1) && O1 != O2)
356 return NoAlias;
358 // If we have two gep instructions with must-alias'ing base pointers, figure
359 // out if the indexes to the GEP tell us anything about the derived pointer.
360 // Note that we also handle chains of getelementptr instructions as well as
361 // constant expression getelementptrs here.
363 if (isGEP(V1) && isGEP(V2)) {
364 const User *GEP1 = cast<User>(V1);
365 const User *GEP2 = cast<User>(V2);
367 // If V1 and V2 are identical GEPs, just recurse down on both of them.
368 // This allows us to analyze things like:
369 // P = gep A, 0, i, 1
370 // Q = gep B, 0, i, 1
371 // by just analyzing A and B. This is even safe for variable indices.
372 if (GEP1->getType() == GEP2->getType() &&
373 GEP1->getNumOperands() == GEP2->getNumOperands() &&
374 GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
375 // All operands are the same, ignoring the base.
376 std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
377 return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
380 // Drill down into the first non-gep value, to test for must-aliasing of
381 // the base pointers.
382 while (isGEP(GEP1->getOperand(0)) &&
383 GEP1->getOperand(1) ==
384 Constant::getNullValue(GEP1->getOperand(1)->getType()))
385 GEP1 = cast<User>(GEP1->getOperand(0));
386 const Value *BasePtr1 = GEP1->getOperand(0);
388 while (isGEP(GEP2->getOperand(0)) &&
389 GEP2->getOperand(1) ==
390 Constant::getNullValue(GEP2->getOperand(1)->getType()))
391 GEP2 = cast<User>(GEP2->getOperand(0));
392 const Value *BasePtr2 = GEP2->getOperand(0);
394 // Do the base pointers alias?
395 AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
396 if (BaseAlias == NoAlias) return NoAlias;
397 if (BaseAlias == MustAlias) {
398 // If the base pointers alias each other exactly, check to see if we can
399 // figure out anything about the resultant pointers, to try to prove
400 // non-aliasing.
402 // Collect all of the chained GEP operands together into one simple place
403 SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
404 BasePtr1 = GetGEPOperands(V1, GEP1Ops);
405 BasePtr2 = GetGEPOperands(V2, GEP2Ops);
407 // If GetGEPOperands were able to fold to the same must-aliased pointer,
408 // do the comparison.
409 if (BasePtr1 == BasePtr2) {
410 AliasResult GAlias =
411 CheckGEPInstructions(BasePtr1->getType(),
412 &GEP1Ops[0], GEP1Ops.size(), V1Size,
413 BasePtr2->getType(),
414 &GEP2Ops[0], GEP2Ops.size(), V2Size);
415 if (GAlias != MayAlias)
416 return GAlias;
421 // Check to see if these two pointers are related by a getelementptr
422 // instruction. If one pointer is a GEP with a non-zero index of the other
423 // pointer, we know they cannot alias.
425 if (isGEP(V2)) {
426 std::swap(V1, V2);
427 std::swap(V1Size, V2Size);
430 if (V1Size != ~0U && V2Size != ~0U)
431 if (isGEP(V1)) {
432 SmallVector<Value*, 16> GEPOperands;
433 const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
435 AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
436 if (R == MustAlias) {
437 // If there is at least one non-zero constant index, we know they cannot
438 // alias.
439 bool ConstantFound = false;
440 bool AllZerosFound = true;
441 for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
442 if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
443 if (!C->isNullValue()) {
444 ConstantFound = true;
445 AllZerosFound = false;
446 break;
448 } else {
449 AllZerosFound = false;
452 // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
453 // the ptr, the end result is a must alias also.
454 if (AllZerosFound)
455 return MustAlias;
457 if (ConstantFound) {
458 if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
459 return NoAlias;
461 // Otherwise we have to check to see that the distance is more than
462 // the size of the argument... build an index vector that is equal to
463 // the arguments provided, except substitute 0's for any variable
464 // indexes we find...
465 if (TD && cast<PointerType>(
466 BasePtr->getType())->getElementType()->isSized()) {
467 for (unsigned i = 0; i != GEPOperands.size(); ++i)
468 if (!isa<ConstantInt>(GEPOperands[i]))
469 GEPOperands[i] =
470 Constant::getNullValue(GEPOperands[i]->getType());
471 int64_t Offset =
472 TD->getIndexedOffset(BasePtr->getType(),
473 &GEPOperands[0],
474 GEPOperands.size());
476 if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
477 return NoAlias;
483 return MayAlias;
486 // This function is used to determine if the indices of two GEP instructions are
487 // equal. V1 and V2 are the indices.
488 static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
489 if (V1->getType() == V2->getType())
490 return V1 == V2;
491 if (Constant *C1 = dyn_cast<Constant>(V1))
492 if (Constant *C2 = dyn_cast<Constant>(V2)) {
493 // Sign extend the constants to long types, if necessary
494 if (C1->getType() != Type::getInt64Ty(Context))
495 C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
496 if (C2->getType() != Type::getInt64Ty(Context))
497 C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
498 return C1 == C2;
500 return false;
503 /// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
504 /// base pointers. This checks to see if the index expressions preclude the
505 /// pointers from aliasing...
506 AliasAnalysis::AliasResult
507 BasicAliasAnalysis::CheckGEPInstructions(
508 const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
509 const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
510 // We currently can't handle the case when the base pointers have different
511 // primitive types. Since this is uncommon anyway, we are happy being
512 // extremely conservative.
513 if (BasePtr1Ty != BasePtr2Ty)
514 return MayAlias;
516 const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
518 LLVMContext &Context = GEPPointerTy->getContext();
520 // Find the (possibly empty) initial sequence of equal values... which are not
521 // necessarily constants.
522 unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
523 unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
524 unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
525 unsigned UnequalOper = 0;
526 while (UnequalOper != MinOperands &&
527 IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
528 Context)) {
529 // Advance through the type as we go...
530 ++UnequalOper;
531 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
532 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
533 else {
534 // If all operands equal each other, then the derived pointers must
535 // alias each other...
536 BasePtr1Ty = 0;
537 assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
538 "Ran out of type nesting, but not out of operands?");
539 return MustAlias;
543 // If we have seen all constant operands, and run out of indexes on one of the
544 // getelementptrs, check to see if the tail of the leftover one is all zeros.
545 // If so, return mustalias.
546 if (UnequalOper == MinOperands) {
547 if (NumGEP1Ops < NumGEP2Ops) {
548 std::swap(GEP1Ops, GEP2Ops);
549 std::swap(NumGEP1Ops, NumGEP2Ops);
552 bool AllAreZeros = true;
553 for (unsigned i = UnequalOper; i != MaxOperands; ++i)
554 if (!isa<Constant>(GEP1Ops[i]) ||
555 !cast<Constant>(GEP1Ops[i])->isNullValue()) {
556 AllAreZeros = false;
557 break;
559 if (AllAreZeros) return MustAlias;
563 // So now we know that the indexes derived from the base pointers,
564 // which are known to alias, are different. We can still determine a
565 // no-alias result if there are differing constant pairs in the index
566 // chain. For example:
567 // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
569 // We have to be careful here about array accesses. In particular, consider:
570 // A[1][0] vs A[0][i]
571 // In this case, we don't *know* that the array will be accessed in bounds:
572 // the index could even be negative. Because of this, we have to
573 // conservatively *give up* and return may alias. We disregard differing
574 // array subscripts that are followed by a variable index without going
575 // through a struct.
577 unsigned SizeMax = std::max(G1S, G2S);
578 if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
580 // Scan for the first operand that is constant and unequal in the
581 // two getelementptrs...
582 unsigned FirstConstantOper = UnequalOper;
583 for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
584 const Value *G1Oper = GEP1Ops[FirstConstantOper];
585 const Value *G2Oper = GEP2Ops[FirstConstantOper];
587 if (G1Oper != G2Oper) // Found non-equal constant indexes...
588 if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
589 if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
590 if (G1OC->getType() != G2OC->getType()) {
591 // Sign extend both operands to long.
592 if (G1OC->getType() != Type::getInt64Ty(Context))
593 G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
594 if (G2OC->getType() != Type::getInt64Ty(Context))
595 G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
596 GEP1Ops[FirstConstantOper] = G1OC;
597 GEP2Ops[FirstConstantOper] = G2OC;
600 if (G1OC != G2OC) {
601 // Handle the "be careful" case above: if this is an array/vector
602 // subscript, scan for a subsequent variable array index.
603 if (const SequentialType *STy =
604 dyn_cast<SequentialType>(BasePtr1Ty)) {
605 const Type *NextTy = STy;
606 bool isBadCase = false;
608 for (unsigned Idx = FirstConstantOper;
609 Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
610 const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
611 if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
612 isBadCase = true;
613 break;
615 // If the array is indexed beyond the bounds of the static type
616 // at this level, it will also fall into the "be careful" case.
617 // It would theoretically be possible to analyze these cases,
618 // but for now just be conservatively correct.
619 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
620 if (cast<ConstantInt>(G1OC)->getZExtValue() >=
621 ATy->getNumElements() ||
622 cast<ConstantInt>(G2OC)->getZExtValue() >=
623 ATy->getNumElements()) {
624 isBadCase = true;
625 break;
627 if (const VectorType *VTy = dyn_cast<VectorType>(STy))
628 if (cast<ConstantInt>(G1OC)->getZExtValue() >=
629 VTy->getNumElements() ||
630 cast<ConstantInt>(G2OC)->getZExtValue() >=
631 VTy->getNumElements()) {
632 isBadCase = true;
633 break;
635 STy = cast<SequentialType>(NextTy);
636 NextTy = cast<SequentialType>(NextTy)->getElementType();
639 if (isBadCase) G1OC = 0;
642 // Make sure they are comparable (ie, not constant expressions), and
643 // make sure the GEP with the smaller leading constant is GEP1.
644 if (G1OC) {
645 Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
646 G1OC, G2OC);
647 if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
648 if (CV->getZExtValue()) { // If they are comparable and G2 > G1
649 std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
650 std::swap(NumGEP1Ops, NumGEP2Ops);
652 break;
657 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
660 // No shared constant operands, and we ran out of common operands. At this
661 // point, the GEP instructions have run through all of their operands, and we
662 // haven't found evidence that there are any deltas between the GEP's.
663 // However, one GEP may have more operands than the other. If this is the
664 // case, there may still be hope. Check this now.
665 if (FirstConstantOper == MinOperands) {
666 // Without TargetData, we won't know what the offsets are.
667 if (!TD)
668 return MayAlias;
670 // Make GEP1Ops be the longer one if there is a longer one.
671 if (NumGEP1Ops < NumGEP2Ops) {
672 std::swap(GEP1Ops, GEP2Ops);
673 std::swap(NumGEP1Ops, NumGEP2Ops);
676 // Is there anything to check?
677 if (NumGEP1Ops > MinOperands) {
678 for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
679 if (isa<ConstantInt>(GEP1Ops[i]) &&
680 !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
681 // Yup, there's a constant in the tail. Set all variables to
682 // constants in the GEP instruction to make it suitable for
683 // TargetData::getIndexedOffset.
684 for (i = 0; i != MaxOperands; ++i)
685 if (!isa<ConstantInt>(GEP1Ops[i]))
686 GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
687 // Okay, now get the offset. This is the relative offset for the full
688 // instruction.
689 int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
690 NumGEP1Ops);
692 // Now check without any constants at the end.
693 int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
694 MinOperands);
696 // Make sure we compare the absolute difference.
697 if (Offset1 > Offset2)
698 std::swap(Offset1, Offset2);
700 // If the tail provided a bit enough offset, return noalias!
701 if ((uint64_t)(Offset2-Offset1) >= SizeMax)
702 return NoAlias;
703 // Otherwise break - we don't look for another constant in the tail.
704 break;
708 // Couldn't find anything useful.
709 return MayAlias;
712 // If there are non-equal constants arguments, then we can figure
713 // out a minimum known delta between the two index expressions... at
714 // this point we know that the first constant index of GEP1 is less
715 // than the first constant index of GEP2.
717 // Advance BasePtr[12]Ty over this first differing constant operand.
718 BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
719 getTypeAtIndex(GEP2Ops[FirstConstantOper]);
720 BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
721 getTypeAtIndex(GEP1Ops[FirstConstantOper]);
723 // We are going to be using TargetData::getIndexedOffset to determine the
724 // offset that each of the GEP's is reaching. To do this, we have to convert
725 // all variable references to constant references. To do this, we convert the
726 // initial sequence of array subscripts into constant zeros to start with.
727 const Type *ZeroIdxTy = GEPPointerTy;
728 for (unsigned i = 0; i != FirstConstantOper; ++i) {
729 if (!isa<StructType>(ZeroIdxTy))
730 GEP1Ops[i] = GEP2Ops[i] =
731 Constant::getNullValue(Type::getInt32Ty(Context));
733 if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
734 ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
737 // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
739 // Loop over the rest of the operands...
740 for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
741 const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
742 const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
743 // If they are equal, use a zero index...
744 if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
745 if (!isa<ConstantInt>(Op1))
746 GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
747 // Otherwise, just keep the constants we have.
748 } else {
749 if (Op1) {
750 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
751 // If this is an array index, make sure the array element is in range.
752 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
753 if (Op1C->getZExtValue() >= AT->getNumElements())
754 return MayAlias; // Be conservative with out-of-range accesses
755 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
756 if (Op1C->getZExtValue() >= VT->getNumElements())
757 return MayAlias; // Be conservative with out-of-range accesses
760 } else {
761 // GEP1 is known to produce a value less than GEP2. To be
762 // conservatively correct, we must assume the largest possible
763 // constant is used in this position. This cannot be the initial
764 // index to the GEP instructions (because we know we have at least one
765 // element before this one with the different constant arguments), so
766 // we know that the current index must be into either a struct or
767 // array. Because we know it's not constant, this cannot be a
768 // structure index. Because of this, we can calculate the maximum
769 // value possible.
771 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
772 GEP1Ops[i] =
773 ConstantInt::get(Type::getInt64Ty(Context),
774 AT->getNumElements()-1);
775 else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
776 GEP1Ops[i] =
777 ConstantInt::get(Type::getInt64Ty(Context),
778 VT->getNumElements()-1);
782 if (Op2) {
783 if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
784 // If this is an array index, make sure the array element is in range.
785 if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
786 if (Op2C->getZExtValue() >= AT->getNumElements())
787 return MayAlias; // Be conservative with out-of-range accesses
788 } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
789 if (Op2C->getZExtValue() >= VT->getNumElements())
790 return MayAlias; // Be conservative with out-of-range accesses
792 } else { // Conservatively assume the minimum value for this index
793 GEP2Ops[i] = Constant::getNullValue(Op2->getType());
798 if (BasePtr1Ty && Op1) {
799 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
800 BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
801 else
802 BasePtr1Ty = 0;
805 if (BasePtr2Ty && Op2) {
806 if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
807 BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
808 else
809 BasePtr2Ty = 0;
813 if (TD && GEPPointerTy->getElementType()->isSized()) {
814 int64_t Offset1 =
815 TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
816 int64_t Offset2 =
817 TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
818 assert(Offset1 != Offset2 &&
819 "There is at least one different constant here!");
821 // Make sure we compare the absolute difference.
822 if (Offset1 > Offset2)
823 std::swap(Offset1, Offset2);
825 if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
826 //cerr << "Determined that these two GEP's don't alias ["
827 // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
828 return NoAlias;
831 return MayAlias;
834 // Make sure that anything that uses AliasAnalysis pulls in this file...
835 DEFINING_FILE_FOR(BasicAliasAnalysis)